eyeling 1.6.5 → 1.6.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,23 +1,24 @@
1
1
  @prefix : <http://example.org/#> .
2
2
  @prefix complex: <https://eyereasoner.github.io/eye/complex#> .
3
+ @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3
4
 
4
5
  # ----------------------------------------------------------------------
5
6
  # Proof for derived triple:
6
7
  # :test :is {
7
- # ((-1 0) (0.5 0)) complex:exponentiation (6.123233995736766e-17 1) .
8
- # ((2.718281828459045 0) (0 3.141592653589793)) complex:exponentiation (-1 1.2246467991473532e-16) .
9
- # ((0 1) (0 1)) complex:exponentiation (0.20787957635076193 0) .
10
- # ((2.718281828459045 0) (-1.57079632679 0)) complex:exponentiation (0.20787957635177984 0) .
11
- # (2 0) complex:asin (1.5707963267948966 1.3169578969248166) .
12
- # (2 0) complex:acos (0 -1.3169578969248166) .
8
+ # ((-1 0) (0.5 0)) complex:exponentiation ("6.123233995736766e-17"^^xsd:decimal "1"^^xsd:decimal) .
9
+ # ((2.718281828459045 0) (0 3.141592653589793)) complex:exponentiation ("-1"^^xsd:decimal "1.2246467991473532e-16"^^xsd:decimal) .
10
+ # ((0 1) (0 1)) complex:exponentiation ("0.20787957635076193"^^xsd:decimal "0"^^xsd:decimal) .
11
+ # ((2.718281828459045 0) (-1.57079632679 0)) complex:exponentiation ("0.20787957635177984"^^xsd:decimal "0"^^xsd:decimal) .
12
+ # (2 0) complex:asin ("1.5707963267948966"^^xsd:decimal "1.3169578969248166"^^xsd:decimal) .
13
+ # (2 0) complex:acos ("0"^^xsd:decimal "-1.3169578969248166"^^xsd:decimal) .
13
14
  # } .
14
15
  # It holds because the following instance of the rule body is provable:
15
- # ((-1 0) (0.5 0)) complex:exponentiation (6.123233995736766e-17 1) .
16
- # ((2.718281828459045 0) (0 3.141592653589793)) complex:exponentiation (-1 1.2246467991473532e-16) .
17
- # ((0 1) (0 1)) complex:exponentiation (0.20787957635076193 0) .
18
- # ((2.718281828459045 0) (-1.57079632679 0)) complex:exponentiation (0.20787957635177984 0) .
19
- # (2 0) complex:asin (1.5707963267948966 1.3169578969248166) .
20
- # (2 0) complex:acos (0 -1.3169578969248166) .
16
+ # ((-1 0) (0.5 0)) complex:exponentiation ("6.123233995736766e-17"^^xsd:decimal "1"^^xsd:decimal) .
17
+ # ((2.718281828459045 0) (0 3.141592653589793)) complex:exponentiation ("-1"^^xsd:decimal "1.2246467991473532e-16"^^xsd:decimal) .
18
+ # ((0 1) (0 1)) complex:exponentiation ("0.20787957635076193"^^xsd:decimal "0"^^xsd:decimal) .
19
+ # ((2.718281828459045 0) (-1.57079632679 0)) complex:exponentiation ("0.20787957635177984"^^xsd:decimal "0"^^xsd:decimal) .
20
+ # (2 0) complex:asin ("1.5707963267948966"^^xsd:decimal "1.3169578969248166"^^xsd:decimal) .
21
+ # (2 0) complex:acos ("0"^^xsd:decimal "-1.3169578969248166"^^xsd:decimal) .
21
22
  # via the schematic forward rule:
22
23
  # {
23
24
  # ((-1 0) (0.5 0)) complex:exponentiation ?C1 .
@@ -37,21 +38,21 @@
37
38
  # } .
38
39
  # } .
39
40
  # with substitution (on rule variables):
40
- # ?C1 = (6.123233995736766e-17 1)
41
- # ?C2 = (-1 1.2246467991473532e-16)
42
- # ?C3 = (0.20787957635076193 0)
43
- # ?C4 = (0.20787957635177984 0)
44
- # ?C5 = (1.5707963267948966 1.3169578969248166)
45
- # ?C6 = (0 -1.3169578969248166)
41
+ # ?C1 = ("6.123233995736766e-17"^^xsd:decimal "1"^^xsd:decimal)
42
+ # ?C2 = ("-1"^^xsd:decimal "1.2246467991473532e-16"^^xsd:decimal)
43
+ # ?C3 = ("0.20787957635076193"^^xsd:decimal "0"^^xsd:decimal)
44
+ # ?C4 = ("0.20787957635177984"^^xsd:decimal "0"^^xsd:decimal)
45
+ # ?C5 = ("1.5707963267948966"^^xsd:decimal "1.3169578969248166"^^xsd:decimal)
46
+ # ?C6 = ("0"^^xsd:decimal "-1.3169578969248166"^^xsd:decimal)
46
47
  # Therefore the derived triple above is entailed by the rules and facts.
47
48
  # ----------------------------------------------------------------------
48
49
 
49
50
  :test :is {
50
- ((-1 0) (0.5 0)) complex:exponentiation (6.123233995736766e-17 1) .
51
- ((2.718281828459045 0) (0 3.141592653589793)) complex:exponentiation (-1 1.2246467991473532e-16) .
52
- ((0 1) (0 1)) complex:exponentiation (0.20787957635076193 0) .
53
- ((2.718281828459045 0) (-1.57079632679 0)) complex:exponentiation (0.20787957635177984 0) .
54
- (2 0) complex:asin (1.5707963267948966 1.3169578969248166) .
55
- (2 0) complex:acos (0 -1.3169578969248166) .
51
+ ((-1 0) (0.5 0)) complex:exponentiation ("6.123233995736766e-17"^^xsd:decimal "1"^^xsd:decimal) .
52
+ ((2.718281828459045 0) (0 3.141592653589793)) complex:exponentiation ("-1"^^xsd:decimal "1.2246467991473532e-16"^^xsd:decimal) .
53
+ ((0 1) (0 1)) complex:exponentiation ("0.20787957635076193"^^xsd:decimal "0"^^xsd:decimal) .
54
+ ((2.718281828459045 0) (-1.57079632679 0)) complex:exponentiation ("0.20787957635177984"^^xsd:decimal "0"^^xsd:decimal) .
55
+ (2 0) complex:asin ("1.5707963267948966"^^xsd:decimal "1.3169578969248166"^^xsd:decimal) .
56
+ (2 0) complex:acos ("0"^^xsd:decimal "-1.3169578969248166"^^xsd:decimal) .
56
57
  } .
57
58
 
@@ -1,15 +1,16 @@
1
1
  @prefix : <https://eyereasoner.github.io/eye/reasoning/cs#> .
2
+ @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
2
3
 
3
4
  # ----------------------------------------------------------------------
4
5
  # Proof for derived triple:
5
- # :actuator1 :control1 39.27346198678276 .
6
+ # :actuator1 :control1 "39.27346198678276"^^xsd:decimal .
6
7
  # It holds because the following instance of the rule body is provable:
7
- # :input1 :measurement10 2.23606797749979 .
8
+ # :input1 :measurement10 "2.23606797749979"^^xsd:decimal .
8
9
  # :input2 :measurement2 true .
9
10
  # :disturbance1 :measurement3 35766 .
10
- # (2.23606797749979 19.6) math:product 43.82693235899588 .
11
- # (10 4.553470372213121) math:exponentiation 35766 .
12
- # (43.82693235899588 4.553470372213121) math:difference 39.27346198678276 .
11
+ # ("2.23606797749979"^^xsd:decimal 19.6) math:product "43.82693235899588"^^xsd:decimal .
12
+ # (10 "4.553470372213121"^^xsd:decimal) math:exponentiation 35766 .
13
+ # ("43.82693235899588"^^xsd:decimal "4.553470372213121"^^xsd:decimal) math:difference "39.27346198678276"^^xsd:decimal .
13
14
  # via the schematic forward rule:
14
15
  # {
15
16
  # :input1 :measurement10 ?M1 .
@@ -22,19 +23,19 @@
22
23
  # :actuator1 :control1 ?C .
23
24
  # } .
24
25
  # with substitution (on rule variables):
25
- # ?C = 39.27346198678276
26
- # ?C1 = 43.82693235899588
27
- # ?C2 = 4.553470372213121
26
+ # ?C = "39.27346198678276"^^xsd:decimal
27
+ # ?C1 = "43.82693235899588"^^xsd:decimal
28
+ # ?C2 = "4.553470372213121"^^xsd:decimal
28
29
  # ?D1 = 35766
29
- # ?M1 = 2.23606797749979
30
+ # ?M1 = "2.23606797749979"^^xsd:decimal
30
31
  # Therefore the derived triple above is entailed by the rules and facts.
31
32
  # ----------------------------------------------------------------------
32
33
 
33
- :actuator1 :control1 39.27346198678276 .
34
+ :actuator1 :control1 "39.27346198678276"^^xsd:decimal .
34
35
 
35
36
  # ----------------------------------------------------------------------
36
37
  # Proof for derived triple:
37
- # :actuator2 :control1 26.08 .
38
+ # :actuator2 :control1 "26.08"^^xsd:decimal .
38
39
  # It holds because the following instance of the rule body is provable:
39
40
  # :input3 :measurement3 56967 .
40
41
  # :state3 :observation3 22 .
@@ -42,10 +43,10 @@
42
43
  # :output2 :target2 29 .
43
44
  # (29 24) math:difference 5 .
44
45
  # (22 24) math:difference -2 .
45
- # (5.8 5) math:product 29 .
46
- # (7.3 5) math:quotient 1.46 .
47
- # (1.46 -2) math:product -2.92 .
48
- # (29 -2.92) math:sum 26.08 .
46
+ # (5.8 5) math:product "29"^^xsd:decimal .
47
+ # (7.3 5) math:quotient "1.46"^^xsd:decimal .
48
+ # ("1.46"^^xsd:decimal -2) math:product "-2.92"^^xsd:decimal .
49
+ # ("29"^^xsd:decimal "-2.92"^^xsd:decimal) math:sum "26.08"^^xsd:decimal .
49
50
  # via the schematic forward rule:
50
51
  # {
51
52
  # :input3 :measurement3 ?M3 .
@@ -62,18 +63,18 @@
62
63
  # :actuator2 :control1 ?C .
63
64
  # } .
64
65
  # with substitution (on rule variables):
65
- # ?C = 26.08
66
- # ?C1 = 29
67
- # ?C2 = -2.92
66
+ # ?C = "26.08"^^xsd:decimal
67
+ # ?C1 = "29"^^xsd:decimal
68
+ # ?C2 = "-2.92"^^xsd:decimal
68
69
  # ?D = -2
69
70
  # ?E = 5
70
71
  # ?M3 = 56967
71
72
  # ?M4 = 24
72
- # ?N = 1.46
73
+ # ?N = "1.46"^^xsd:decimal
73
74
  # ?P3 = 22
74
75
  # ?T2 = 29
75
76
  # Therefore the derived triple above is entailed by the rules and facts.
76
77
  # ----------------------------------------------------------------------
77
78
 
78
- :actuator2 :control1 26.08 .
79
+ :actuator2 :control1 "26.08"^^xsd:decimal .
79
80