eyeling 1.6.5 → 1.6.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,5 @@
1
1
  @prefix : <http://example.org/saffron-slopeworks#> .
2
+ @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
2
3
 
3
4
  # ----------------------------------------------------------------------
4
5
  # Proof for derived triple:
@@ -14,27 +15,27 @@
14
15
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
15
16
  # ?p :y ?y .
16
17
  # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
17
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
18
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
18
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
19
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
19
20
  # (?x2 {
20
21
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
21
22
  # ?p :x ?x .
22
23
  # (?x 2.0) math:exponentiation ?x2 .
23
- # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
24
- # (64 49 36 25 16 9 4 1) math:sum 204 .
24
+ # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
25
+ # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
25
26
  # (?y2 {
26
27
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
27
28
  # ?p :y ?y .
28
29
  # (?y 2.0) math:exponentiation ?y2 .
29
- # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
30
- # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
30
+ # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
31
+ # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
31
32
  # (?xy {
32
33
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
33
34
  # ?p :x ?x .
34
35
  # ?p :y ?y .
35
36
  # (?x ?y) math:product ?xy .
36
- # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
37
- # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
37
+ # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
38
+ # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
38
39
  # via the schematic forward rule:
39
40
  # {
40
41
  # :Reg1 :points ?pts .
@@ -79,15 +80,15 @@
79
80
  # with substitution (on rule variables):
80
81
  # ?n = 8
81
82
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
82
- # ?sumX = 36
83
- # ?sumXX = 204
84
- # ?sumXY = 266.00000000000006
85
- # ?sumY = 46
86
- # ?sumYY = 379.72
87
- # ?x2s = (64 49 36 25 16 9 4 1)
83
+ # ?sumX = "36"^^xsd:decimal
84
+ # ?sumXX = "204"^^xsd:decimal
85
+ # ?sumXY = "266.00000000000006"^^xsd:decimal
86
+ # ?sumY = "46"^^xsd:decimal
87
+ # ?sumYY = "379.72"^^xsd:decimal
88
+ # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
88
89
  # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
89
- # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
90
- # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
90
+ # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
91
+ # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
91
92
  # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
92
93
  # Therefore the derived triple above is entailed by the rules and facts.
93
94
  # ----------------------------------------------------------------------
@@ -96,7 +97,7 @@
96
97
 
97
98
  # ----------------------------------------------------------------------
98
99
  # Proof for derived triple:
99
- # :Reg1 :sumX 36 .
100
+ # :Reg1 :sumX "36"^^xsd:decimal .
100
101
  # It holds because the following instance of the rule body is provable:
101
102
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
102
103
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
@@ -108,27 +109,27 @@
108
109
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
109
110
  # ?p :y ?y .
110
111
  # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
111
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
112
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
112
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
113
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
113
114
  # (?x2 {
114
115
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
115
116
  # ?p :x ?x .
116
117
  # (?x 2.0) math:exponentiation ?x2 .
117
- # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
118
- # (64 49 36 25 16 9 4 1) math:sum 204 .
118
+ # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
119
+ # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
119
120
  # (?y2 {
120
121
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
121
122
  # ?p :y ?y .
122
123
  # (?y 2.0) math:exponentiation ?y2 .
123
- # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
124
- # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
124
+ # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
125
+ # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
125
126
  # (?xy {
126
127
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
127
128
  # ?p :x ?x .
128
129
  # ?p :y ?y .
129
130
  # (?x ?y) math:product ?xy .
130
- # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
131
- # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
131
+ # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
132
+ # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
132
133
  # via the schematic forward rule:
133
134
  # {
134
135
  # :Reg1 :points ?pts .
@@ -173,24 +174,24 @@
173
174
  # with substitution (on rule variables):
174
175
  # ?n = 8
175
176
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
176
- # ?sumX = 36
177
- # ?sumXX = 204
178
- # ?sumXY = 266.00000000000006
179
- # ?sumY = 46
180
- # ?sumYY = 379.72
181
- # ?x2s = (64 49 36 25 16 9 4 1)
177
+ # ?sumX = "36"^^xsd:decimal
178
+ # ?sumXX = "204"^^xsd:decimal
179
+ # ?sumXY = "266.00000000000006"^^xsd:decimal
180
+ # ?sumY = "46"^^xsd:decimal
181
+ # ?sumYY = "379.72"^^xsd:decimal
182
+ # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
182
183
  # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
183
- # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
184
- # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
184
+ # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
185
+ # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
185
186
  # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
186
187
  # Therefore the derived triple above is entailed by the rules and facts.
187
188
  # ----------------------------------------------------------------------
188
189
 
189
- :Reg1 :sumX 36 .
190
+ :Reg1 :sumX "36"^^xsd:decimal .
190
191
 
191
192
  # ----------------------------------------------------------------------
192
193
  # Proof for derived triple:
193
- # :Reg1 :sumY 46 .
194
+ # :Reg1 :sumY "46"^^xsd:decimal .
194
195
  # It holds because the following instance of the rule body is provable:
195
196
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
196
197
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
@@ -202,27 +203,27 @@
202
203
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
203
204
  # ?p :y ?y .
204
205
  # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
205
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
206
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
206
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
207
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
207
208
  # (?x2 {
208
209
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
209
210
  # ?p :x ?x .
210
211
  # (?x 2.0) math:exponentiation ?x2 .
211
- # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
212
- # (64 49 36 25 16 9 4 1) math:sum 204 .
212
+ # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
213
+ # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
213
214
  # (?y2 {
214
215
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
215
216
  # ?p :y ?y .
216
217
  # (?y 2.0) math:exponentiation ?y2 .
217
- # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
218
- # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
218
+ # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
219
+ # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
219
220
  # (?xy {
220
221
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
221
222
  # ?p :x ?x .
222
223
  # ?p :y ?y .
223
224
  # (?x ?y) math:product ?xy .
224
- # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
225
- # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
225
+ # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
226
+ # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
226
227
  # via the schematic forward rule:
227
228
  # {
228
229
  # :Reg1 :points ?pts .
@@ -267,24 +268,24 @@
267
268
  # with substitution (on rule variables):
268
269
  # ?n = 8
269
270
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
270
- # ?sumX = 36
271
- # ?sumXX = 204
272
- # ?sumXY = 266.00000000000006
273
- # ?sumY = 46
274
- # ?sumYY = 379.72
275
- # ?x2s = (64 49 36 25 16 9 4 1)
271
+ # ?sumX = "36"^^xsd:decimal
272
+ # ?sumXX = "204"^^xsd:decimal
273
+ # ?sumXY = "266.00000000000006"^^xsd:decimal
274
+ # ?sumY = "46"^^xsd:decimal
275
+ # ?sumYY = "379.72"^^xsd:decimal
276
+ # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
276
277
  # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
277
- # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
278
- # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
278
+ # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
279
+ # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
279
280
  # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
280
281
  # Therefore the derived triple above is entailed by the rules and facts.
281
282
  # ----------------------------------------------------------------------
282
283
 
283
- :Reg1 :sumY 46 .
284
+ :Reg1 :sumY "46"^^xsd:decimal .
284
285
 
285
286
  # ----------------------------------------------------------------------
286
287
  # Proof for derived triple:
287
- # :Reg1 :sumXX 204 .
288
+ # :Reg1 :sumXX "204"^^xsd:decimal .
288
289
  # It holds because the following instance of the rule body is provable:
289
290
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
290
291
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
@@ -296,27 +297,27 @@
296
297
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
297
298
  # ?p :y ?y .
298
299
  # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
299
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
300
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
300
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
301
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
301
302
  # (?x2 {
302
303
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
303
304
  # ?p :x ?x .
304
305
  # (?x 2.0) math:exponentiation ?x2 .
305
- # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
306
- # (64 49 36 25 16 9 4 1) math:sum 204 .
306
+ # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
307
+ # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
307
308
  # (?y2 {
308
309
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
309
310
  # ?p :y ?y .
310
311
  # (?y 2.0) math:exponentiation ?y2 .
311
- # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
312
- # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
312
+ # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
313
+ # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
313
314
  # (?xy {
314
315
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
315
316
  # ?p :x ?x .
316
317
  # ?p :y ?y .
317
318
  # (?x ?y) math:product ?xy .
318
- # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
319
- # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
319
+ # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
320
+ # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
320
321
  # via the schematic forward rule:
321
322
  # {
322
323
  # :Reg1 :points ?pts .
@@ -361,24 +362,24 @@
361
362
  # with substitution (on rule variables):
362
363
  # ?n = 8
363
364
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
364
- # ?sumX = 36
365
- # ?sumXX = 204
366
- # ?sumXY = 266.00000000000006
367
- # ?sumY = 46
368
- # ?sumYY = 379.72
369
- # ?x2s = (64 49 36 25 16 9 4 1)
365
+ # ?sumX = "36"^^xsd:decimal
366
+ # ?sumXX = "204"^^xsd:decimal
367
+ # ?sumXY = "266.00000000000006"^^xsd:decimal
368
+ # ?sumY = "46"^^xsd:decimal
369
+ # ?sumYY = "379.72"^^xsd:decimal
370
+ # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
370
371
  # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
371
- # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
372
- # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
372
+ # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
373
+ # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
373
374
  # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
374
375
  # Therefore the derived triple above is entailed by the rules and facts.
375
376
  # ----------------------------------------------------------------------
376
377
 
377
- :Reg1 :sumXX 204 .
378
+ :Reg1 :sumXX "204"^^xsd:decimal .
378
379
 
379
380
  # ----------------------------------------------------------------------
380
381
  # Proof for derived triple:
381
- # :Reg1 :sumYY 379.72 .
382
+ # :Reg1 :sumYY "379.72"^^xsd:decimal .
382
383
  # It holds because the following instance of the rule body is provable:
383
384
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
384
385
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
@@ -390,27 +391,27 @@
390
391
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
391
392
  # ?p :y ?y .
392
393
  # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
393
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
394
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
394
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
395
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
395
396
  # (?x2 {
396
397
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
397
398
  # ?p :x ?x .
398
399
  # (?x 2.0) math:exponentiation ?x2 .
399
- # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
400
- # (64 49 36 25 16 9 4 1) math:sum 204 .
400
+ # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
401
+ # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
401
402
  # (?y2 {
402
403
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
403
404
  # ?p :y ?y .
404
405
  # (?y 2.0) math:exponentiation ?y2 .
405
- # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
406
- # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
406
+ # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
407
+ # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
407
408
  # (?xy {
408
409
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
409
410
  # ?p :x ?x .
410
411
  # ?p :y ?y .
411
412
  # (?x ?y) math:product ?xy .
412
- # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
413
- # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
413
+ # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
414
+ # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
414
415
  # via the schematic forward rule:
415
416
  # {
416
417
  # :Reg1 :points ?pts .
@@ -455,24 +456,24 @@
455
456
  # with substitution (on rule variables):
456
457
  # ?n = 8
457
458
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
458
- # ?sumX = 36
459
- # ?sumXX = 204
460
- # ?sumXY = 266.00000000000006
461
- # ?sumY = 46
462
- # ?sumYY = 379.72
463
- # ?x2s = (64 49 36 25 16 9 4 1)
459
+ # ?sumX = "36"^^xsd:decimal
460
+ # ?sumXX = "204"^^xsd:decimal
461
+ # ?sumXY = "266.00000000000006"^^xsd:decimal
462
+ # ?sumY = "46"^^xsd:decimal
463
+ # ?sumYY = "379.72"^^xsd:decimal
464
+ # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
464
465
  # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
465
- # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
466
- # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
466
+ # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
467
+ # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
467
468
  # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
468
469
  # Therefore the derived triple above is entailed by the rules and facts.
469
470
  # ----------------------------------------------------------------------
470
471
 
471
- :Reg1 :sumYY 379.72 .
472
+ :Reg1 :sumYY "379.72"^^xsd:decimal .
472
473
 
473
474
  # ----------------------------------------------------------------------
474
475
  # Proof for derived triple:
475
- # :Reg1 :sumXY 266.00000000000006 .
476
+ # :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
476
477
  # It holds because the following instance of the rule body is provable:
477
478
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
478
479
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
@@ -484,27 +485,27 @@
484
485
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
485
486
  # ?p :y ?y .
486
487
  # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
487
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
488
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
488
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
489
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
489
490
  # (?x2 {
490
491
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
491
492
  # ?p :x ?x .
492
493
  # (?x 2.0) math:exponentiation ?x2 .
493
- # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
494
- # (64 49 36 25 16 9 4 1) math:sum 204 .
494
+ # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
495
+ # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
495
496
  # (?y2 {
496
497
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
497
498
  # ?p :y ?y .
498
499
  # (?y 2.0) math:exponentiation ?y2 .
499
- # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
500
- # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
500
+ # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
501
+ # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
501
502
  # (?xy {
502
503
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
503
504
  # ?p :x ?x .
504
505
  # ?p :y ?y .
505
506
  # (?x ?y) math:product ?xy .
506
- # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
507
- # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
507
+ # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
508
+ # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
508
509
  # via the schematic forward rule:
509
510
  # {
510
511
  # :Reg1 :points ?pts .
@@ -549,48 +550,48 @@
549
550
  # with substitution (on rule variables):
550
551
  # ?n = 8
551
552
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
552
- # ?sumX = 36
553
- # ?sumXX = 204
554
- # ?sumXY = 266.00000000000006
555
- # ?sumY = 46
556
- # ?sumYY = 379.72
557
- # ?x2s = (64 49 36 25 16 9 4 1)
553
+ # ?sumX = "36"^^xsd:decimal
554
+ # ?sumXX = "204"^^xsd:decimal
555
+ # ?sumXY = "266.00000000000006"^^xsd:decimal
556
+ # ?sumY = "46"^^xsd:decimal
557
+ # ?sumYY = "379.72"^^xsd:decimal
558
+ # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
558
559
  # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
559
- # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
560
- # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
560
+ # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
561
+ # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
561
562
  # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
562
563
  # Therefore the derived triple above is entailed by the rules and facts.
563
564
  # ----------------------------------------------------------------------
564
565
 
565
- :Reg1 :sumXY 266.00000000000006 .
566
+ :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
566
567
 
567
568
  # ----------------------------------------------------------------------
568
569
  # Proof for derived triple:
569
- # :Reg1 :slope 1.4047619047619062 .
570
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
570
571
  # It holds because the following instance of the rule body is provable:
571
572
  # :Reg1 :n 8 .
572
- # :Reg1 :sumX 36 .
573
- # :Reg1 :sumY 46 .
574
- # :Reg1 :sumXX 204 .
575
- # :Reg1 :sumYY 379.72 .
576
- # :Reg1 :sumXY 266.00000000000006 .
577
- # (8 266.00000000000006) math:product 2128.0000000000005 .
578
- # (36 46) math:product 1656 .
579
- # (2128.0000000000005 1656) math:difference 472.00000000000045 .
580
- # (8 204) math:product 1632 .
581
- # (36 2.0) math:exponentiation 1296 .
582
- # (1632 1296) math:difference 336 .
583
- # (472.00000000000045 336) math:quotient 1.4047619047619062 .
584
- # (1.4047619047619062 36) math:product 50.571428571428626 .
585
- # (46 50.571428571428626) math:difference -4.571428571428626 .
586
- # (-4.571428571428626 8) math:quotient -0.5714285714285783 .
587
- # (8 379.72) math:product 3037.76 .
588
- # (46 2.0) math:exponentiation 2116 .
589
- # (3037.76 2116) math:difference 921.7600000000002 .
590
- # (336 921.7600000000002) math:product 309711.3600000001 .
591
- # (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
592
- # (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
593
- # (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
573
+ # :Reg1 :sumX "36"^^xsd:decimal .
574
+ # :Reg1 :sumY "46"^^xsd:decimal .
575
+ # :Reg1 :sumXX "204"^^xsd:decimal .
576
+ # :Reg1 :sumYY "379.72"^^xsd:decimal .
577
+ # :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
578
+ # (8 "266.00000000000006"^^xsd:decimal) math:product "2128.0000000000005"^^xsd:decimal .
579
+ # ("36"^^xsd:decimal "46"^^xsd:decimal) math:product "1656"^^xsd:decimal .
580
+ # ("2128.0000000000005"^^xsd:decimal "1656"^^xsd:decimal) math:difference "472.00000000000045"^^xsd:decimal .
581
+ # (8 "204"^^xsd:decimal) math:product "1632"^^xsd:decimal .
582
+ # ("36"^^xsd:decimal 2.0) math:exponentiation "1296"^^xsd:decimal .
583
+ # ("1632"^^xsd:decimal "1296"^^xsd:decimal) math:difference "336"^^xsd:decimal .
584
+ # ("472.00000000000045"^^xsd:decimal "336"^^xsd:decimal) math:quotient "1.4047619047619062"^^xsd:decimal .
585
+ # ("1.4047619047619062"^^xsd:decimal "36"^^xsd:decimal) math:product "50.571428571428626"^^xsd:decimal .
586
+ # ("46"^^xsd:decimal "50.571428571428626"^^xsd:decimal) math:difference "-4.571428571428626"^^xsd:decimal .
587
+ # ("-4.571428571428626"^^xsd:decimal 8) math:quotient "-0.5714285714285783"^^xsd:decimal .
588
+ # (8 "379.72"^^xsd:decimal) math:product "3037.76"^^xsd:decimal .
589
+ # ("46"^^xsd:decimal 2.0) math:exponentiation "2116"^^xsd:decimal .
590
+ # ("3037.76"^^xsd:decimal "2116"^^xsd:decimal) math:difference "921.7600000000002"^^xsd:decimal .
591
+ # ("336"^^xsd:decimal "921.7600000000002"^^xsd:decimal) math:product "309711.3600000001"^^xsd:decimal .
592
+ # ("309711.3600000001"^^xsd:decimal 0.5) math:exponentiation "556.5171695464571"^^xsd:decimal .
593
+ # ("472.00000000000045"^^xsd:decimal "556.5171695464571"^^xsd:decimal) math:quotient "0.8481319639871393"^^xsd:decimal .
594
+ # ("0.8481319639871393"^^xsd:decimal 2.0) math:exponentiation "0.7193278283366822"^^xsd:decimal .
594
595
  # via the schematic forward rule:
595
596
  # {
596
597
  # :Reg1 :n ?n .
@@ -623,61 +624,61 @@
623
624
  # :Reg1 :rSquared ?r2 .
624
625
  # } .
625
626
  # with substitution (on rule variables):
626
- # ?a = -0.5714285714285783
627
- # ?b = 1.4047619047619062
628
- # ?b_sx = 50.571428571428626
629
- # ?denX = 336
630
- # ?denXY = 309711.3600000001
631
- # ?denY = 921.7600000000002
627
+ # ?a = "-0.5714285714285783"^^xsd:decimal
628
+ # ?b = "1.4047619047619062"^^xsd:decimal
629
+ # ?b_sx = "50.571428571428626"^^xsd:decimal
630
+ # ?denX = "336"^^xsd:decimal
631
+ # ?denXY = "309711.3600000001"^^xsd:decimal
632
+ # ?denY = "921.7600000000002"^^xsd:decimal
632
633
  # ?n = 8
633
- # ?n_sxx = 1632
634
- # ?n_sxy = 2128.0000000000005
635
- # ?n_syy = 3037.76
636
- # ?num = 472.00000000000045
637
- # ?r = 0.8481319639871393
638
- # ?r2 = 0.7193278283366822
639
- # ?sqrtDen = 556.5171695464571
640
- # ?sx = 36
641
- # ?sx2 = 1296
642
- # ?sx_sy = 1656
643
- # ?sxx = 204
644
- # ?sxy = 266.00000000000006
645
- # ?sy = 46
646
- # ?sy2 = 2116
647
- # ?syy = 379.72
648
- # ?tmpA = -4.571428571428626
634
+ # ?n_sxx = "1632"^^xsd:decimal
635
+ # ?n_sxy = "2128.0000000000005"^^xsd:decimal
636
+ # ?n_syy = "3037.76"^^xsd:decimal
637
+ # ?num = "472.00000000000045"^^xsd:decimal
638
+ # ?r = "0.8481319639871393"^^xsd:decimal
639
+ # ?r2 = "0.7193278283366822"^^xsd:decimal
640
+ # ?sqrtDen = "556.5171695464571"^^xsd:decimal
641
+ # ?sx = "36"^^xsd:decimal
642
+ # ?sx2 = "1296"^^xsd:decimal
643
+ # ?sx_sy = "1656"^^xsd:decimal
644
+ # ?sxx = "204"^^xsd:decimal
645
+ # ?sxy = "266.00000000000006"^^xsd:decimal
646
+ # ?sy = "46"^^xsd:decimal
647
+ # ?sy2 = "2116"^^xsd:decimal
648
+ # ?syy = "379.72"^^xsd:decimal
649
+ # ?tmpA = "-4.571428571428626"^^xsd:decimal
649
650
  # Therefore the derived triple above is entailed by the rules and facts.
650
651
  # ----------------------------------------------------------------------
651
652
 
652
- :Reg1 :slope 1.4047619047619062 .
653
+ :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
653
654
 
654
655
  # ----------------------------------------------------------------------
655
656
  # Proof for derived triple:
656
- # :Reg1 :intercept -0.5714285714285783 .
657
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
657
658
  # It holds because the following instance of the rule body is provable:
658
659
  # :Reg1 :n 8 .
659
- # :Reg1 :sumX 36 .
660
- # :Reg1 :sumY 46 .
661
- # :Reg1 :sumXX 204 .
662
- # :Reg1 :sumYY 379.72 .
663
- # :Reg1 :sumXY 266.00000000000006 .
664
- # (8 266.00000000000006) math:product 2128.0000000000005 .
665
- # (36 46) math:product 1656 .
666
- # (2128.0000000000005 1656) math:difference 472.00000000000045 .
667
- # (8 204) math:product 1632 .
668
- # (36 2.0) math:exponentiation 1296 .
669
- # (1632 1296) math:difference 336 .
670
- # (472.00000000000045 336) math:quotient 1.4047619047619062 .
671
- # (1.4047619047619062 36) math:product 50.571428571428626 .
672
- # (46 50.571428571428626) math:difference -4.571428571428626 .
673
- # (-4.571428571428626 8) math:quotient -0.5714285714285783 .
674
- # (8 379.72) math:product 3037.76 .
675
- # (46 2.0) math:exponentiation 2116 .
676
- # (3037.76 2116) math:difference 921.7600000000002 .
677
- # (336 921.7600000000002) math:product 309711.3600000001 .
678
- # (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
679
- # (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
680
- # (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
660
+ # :Reg1 :sumX "36"^^xsd:decimal .
661
+ # :Reg1 :sumY "46"^^xsd:decimal .
662
+ # :Reg1 :sumXX "204"^^xsd:decimal .
663
+ # :Reg1 :sumYY "379.72"^^xsd:decimal .
664
+ # :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
665
+ # (8 "266.00000000000006"^^xsd:decimal) math:product "2128.0000000000005"^^xsd:decimal .
666
+ # ("36"^^xsd:decimal "46"^^xsd:decimal) math:product "1656"^^xsd:decimal .
667
+ # ("2128.0000000000005"^^xsd:decimal "1656"^^xsd:decimal) math:difference "472.00000000000045"^^xsd:decimal .
668
+ # (8 "204"^^xsd:decimal) math:product "1632"^^xsd:decimal .
669
+ # ("36"^^xsd:decimal 2.0) math:exponentiation "1296"^^xsd:decimal .
670
+ # ("1632"^^xsd:decimal "1296"^^xsd:decimal) math:difference "336"^^xsd:decimal .
671
+ # ("472.00000000000045"^^xsd:decimal "336"^^xsd:decimal) math:quotient "1.4047619047619062"^^xsd:decimal .
672
+ # ("1.4047619047619062"^^xsd:decimal "36"^^xsd:decimal) math:product "50.571428571428626"^^xsd:decimal .
673
+ # ("46"^^xsd:decimal "50.571428571428626"^^xsd:decimal) math:difference "-4.571428571428626"^^xsd:decimal .
674
+ # ("-4.571428571428626"^^xsd:decimal 8) math:quotient "-0.5714285714285783"^^xsd:decimal .
675
+ # (8 "379.72"^^xsd:decimal) math:product "3037.76"^^xsd:decimal .
676
+ # ("46"^^xsd:decimal 2.0) math:exponentiation "2116"^^xsd:decimal .
677
+ # ("3037.76"^^xsd:decimal "2116"^^xsd:decimal) math:difference "921.7600000000002"^^xsd:decimal .
678
+ # ("336"^^xsd:decimal "921.7600000000002"^^xsd:decimal) math:product "309711.3600000001"^^xsd:decimal .
679
+ # ("309711.3600000001"^^xsd:decimal 0.5) math:exponentiation "556.5171695464571"^^xsd:decimal .
680
+ # ("472.00000000000045"^^xsd:decimal "556.5171695464571"^^xsd:decimal) math:quotient "0.8481319639871393"^^xsd:decimal .
681
+ # ("0.8481319639871393"^^xsd:decimal 2.0) math:exponentiation "0.7193278283366822"^^xsd:decimal .
681
682
  # via the schematic forward rule:
682
683
  # {
683
684
  # :Reg1 :n ?n .
@@ -710,61 +711,61 @@
710
711
  # :Reg1 :rSquared ?r2 .
711
712
  # } .
712
713
  # with substitution (on rule variables):
713
- # ?a = -0.5714285714285783
714
- # ?b = 1.4047619047619062
715
- # ?b_sx = 50.571428571428626
716
- # ?denX = 336
717
- # ?denXY = 309711.3600000001
718
- # ?denY = 921.7600000000002
714
+ # ?a = "-0.5714285714285783"^^xsd:decimal
715
+ # ?b = "1.4047619047619062"^^xsd:decimal
716
+ # ?b_sx = "50.571428571428626"^^xsd:decimal
717
+ # ?denX = "336"^^xsd:decimal
718
+ # ?denXY = "309711.3600000001"^^xsd:decimal
719
+ # ?denY = "921.7600000000002"^^xsd:decimal
719
720
  # ?n = 8
720
- # ?n_sxx = 1632
721
- # ?n_sxy = 2128.0000000000005
722
- # ?n_syy = 3037.76
723
- # ?num = 472.00000000000045
724
- # ?r = 0.8481319639871393
725
- # ?r2 = 0.7193278283366822
726
- # ?sqrtDen = 556.5171695464571
727
- # ?sx = 36
728
- # ?sx2 = 1296
729
- # ?sx_sy = 1656
730
- # ?sxx = 204
731
- # ?sxy = 266.00000000000006
732
- # ?sy = 46
733
- # ?sy2 = 2116
734
- # ?syy = 379.72
735
- # ?tmpA = -4.571428571428626
721
+ # ?n_sxx = "1632"^^xsd:decimal
722
+ # ?n_sxy = "2128.0000000000005"^^xsd:decimal
723
+ # ?n_syy = "3037.76"^^xsd:decimal
724
+ # ?num = "472.00000000000045"^^xsd:decimal
725
+ # ?r = "0.8481319639871393"^^xsd:decimal
726
+ # ?r2 = "0.7193278283366822"^^xsd:decimal
727
+ # ?sqrtDen = "556.5171695464571"^^xsd:decimal
728
+ # ?sx = "36"^^xsd:decimal
729
+ # ?sx2 = "1296"^^xsd:decimal
730
+ # ?sx_sy = "1656"^^xsd:decimal
731
+ # ?sxx = "204"^^xsd:decimal
732
+ # ?sxy = "266.00000000000006"^^xsd:decimal
733
+ # ?sy = "46"^^xsd:decimal
734
+ # ?sy2 = "2116"^^xsd:decimal
735
+ # ?syy = "379.72"^^xsd:decimal
736
+ # ?tmpA = "-4.571428571428626"^^xsd:decimal
736
737
  # Therefore the derived triple above is entailed by the rules and facts.
737
738
  # ----------------------------------------------------------------------
738
739
 
739
- :Reg1 :intercept -0.5714285714285783 .
740
+ :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
740
741
 
741
742
  # ----------------------------------------------------------------------
742
743
  # Proof for derived triple:
743
- # :Reg1 :pearsonR 0.8481319639871393 .
744
+ # :Reg1 :pearsonR "0.8481319639871393"^^xsd:decimal .
744
745
  # It holds because the following instance of the rule body is provable:
745
746
  # :Reg1 :n 8 .
746
- # :Reg1 :sumX 36 .
747
- # :Reg1 :sumY 46 .
748
- # :Reg1 :sumXX 204 .
749
- # :Reg1 :sumYY 379.72 .
750
- # :Reg1 :sumXY 266.00000000000006 .
751
- # (8 266.00000000000006) math:product 2128.0000000000005 .
752
- # (36 46) math:product 1656 .
753
- # (2128.0000000000005 1656) math:difference 472.00000000000045 .
754
- # (8 204) math:product 1632 .
755
- # (36 2.0) math:exponentiation 1296 .
756
- # (1632 1296) math:difference 336 .
757
- # (472.00000000000045 336) math:quotient 1.4047619047619062 .
758
- # (1.4047619047619062 36) math:product 50.571428571428626 .
759
- # (46 50.571428571428626) math:difference -4.571428571428626 .
760
- # (-4.571428571428626 8) math:quotient -0.5714285714285783 .
761
- # (8 379.72) math:product 3037.76 .
762
- # (46 2.0) math:exponentiation 2116 .
763
- # (3037.76 2116) math:difference 921.7600000000002 .
764
- # (336 921.7600000000002) math:product 309711.3600000001 .
765
- # (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
766
- # (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
767
- # (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
747
+ # :Reg1 :sumX "36"^^xsd:decimal .
748
+ # :Reg1 :sumY "46"^^xsd:decimal .
749
+ # :Reg1 :sumXX "204"^^xsd:decimal .
750
+ # :Reg1 :sumYY "379.72"^^xsd:decimal .
751
+ # :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
752
+ # (8 "266.00000000000006"^^xsd:decimal) math:product "2128.0000000000005"^^xsd:decimal .
753
+ # ("36"^^xsd:decimal "46"^^xsd:decimal) math:product "1656"^^xsd:decimal .
754
+ # ("2128.0000000000005"^^xsd:decimal "1656"^^xsd:decimal) math:difference "472.00000000000045"^^xsd:decimal .
755
+ # (8 "204"^^xsd:decimal) math:product "1632"^^xsd:decimal .
756
+ # ("36"^^xsd:decimal 2.0) math:exponentiation "1296"^^xsd:decimal .
757
+ # ("1632"^^xsd:decimal "1296"^^xsd:decimal) math:difference "336"^^xsd:decimal .
758
+ # ("472.00000000000045"^^xsd:decimal "336"^^xsd:decimal) math:quotient "1.4047619047619062"^^xsd:decimal .
759
+ # ("1.4047619047619062"^^xsd:decimal "36"^^xsd:decimal) math:product "50.571428571428626"^^xsd:decimal .
760
+ # ("46"^^xsd:decimal "50.571428571428626"^^xsd:decimal) math:difference "-4.571428571428626"^^xsd:decimal .
761
+ # ("-4.571428571428626"^^xsd:decimal 8) math:quotient "-0.5714285714285783"^^xsd:decimal .
762
+ # (8 "379.72"^^xsd:decimal) math:product "3037.76"^^xsd:decimal .
763
+ # ("46"^^xsd:decimal 2.0) math:exponentiation "2116"^^xsd:decimal .
764
+ # ("3037.76"^^xsd:decimal "2116"^^xsd:decimal) math:difference "921.7600000000002"^^xsd:decimal .
765
+ # ("336"^^xsd:decimal "921.7600000000002"^^xsd:decimal) math:product "309711.3600000001"^^xsd:decimal .
766
+ # ("309711.3600000001"^^xsd:decimal 0.5) math:exponentiation "556.5171695464571"^^xsd:decimal .
767
+ # ("472.00000000000045"^^xsd:decimal "556.5171695464571"^^xsd:decimal) math:quotient "0.8481319639871393"^^xsd:decimal .
768
+ # ("0.8481319639871393"^^xsd:decimal 2.0) math:exponentiation "0.7193278283366822"^^xsd:decimal .
768
769
  # via the schematic forward rule:
769
770
  # {
770
771
  # :Reg1 :n ?n .
@@ -797,61 +798,61 @@
797
798
  # :Reg1 :rSquared ?r2 .
798
799
  # } .
799
800
  # with substitution (on rule variables):
800
- # ?a = -0.5714285714285783
801
- # ?b = 1.4047619047619062
802
- # ?b_sx = 50.571428571428626
803
- # ?denX = 336
804
- # ?denXY = 309711.3600000001
805
- # ?denY = 921.7600000000002
801
+ # ?a = "-0.5714285714285783"^^xsd:decimal
802
+ # ?b = "1.4047619047619062"^^xsd:decimal
803
+ # ?b_sx = "50.571428571428626"^^xsd:decimal
804
+ # ?denX = "336"^^xsd:decimal
805
+ # ?denXY = "309711.3600000001"^^xsd:decimal
806
+ # ?denY = "921.7600000000002"^^xsd:decimal
806
807
  # ?n = 8
807
- # ?n_sxx = 1632
808
- # ?n_sxy = 2128.0000000000005
809
- # ?n_syy = 3037.76
810
- # ?num = 472.00000000000045
811
- # ?r = 0.8481319639871393
812
- # ?r2 = 0.7193278283366822
813
- # ?sqrtDen = 556.5171695464571
814
- # ?sx = 36
815
- # ?sx2 = 1296
816
- # ?sx_sy = 1656
817
- # ?sxx = 204
818
- # ?sxy = 266.00000000000006
819
- # ?sy = 46
820
- # ?sy2 = 2116
821
- # ?syy = 379.72
822
- # ?tmpA = -4.571428571428626
808
+ # ?n_sxx = "1632"^^xsd:decimal
809
+ # ?n_sxy = "2128.0000000000005"^^xsd:decimal
810
+ # ?n_syy = "3037.76"^^xsd:decimal
811
+ # ?num = "472.00000000000045"^^xsd:decimal
812
+ # ?r = "0.8481319639871393"^^xsd:decimal
813
+ # ?r2 = "0.7193278283366822"^^xsd:decimal
814
+ # ?sqrtDen = "556.5171695464571"^^xsd:decimal
815
+ # ?sx = "36"^^xsd:decimal
816
+ # ?sx2 = "1296"^^xsd:decimal
817
+ # ?sx_sy = "1656"^^xsd:decimal
818
+ # ?sxx = "204"^^xsd:decimal
819
+ # ?sxy = "266.00000000000006"^^xsd:decimal
820
+ # ?sy = "46"^^xsd:decimal
821
+ # ?sy2 = "2116"^^xsd:decimal
822
+ # ?syy = "379.72"^^xsd:decimal
823
+ # ?tmpA = "-4.571428571428626"^^xsd:decimal
823
824
  # Therefore the derived triple above is entailed by the rules and facts.
824
825
  # ----------------------------------------------------------------------
825
826
 
826
- :Reg1 :pearsonR 0.8481319639871393 .
827
+ :Reg1 :pearsonR "0.8481319639871393"^^xsd:decimal .
827
828
 
828
829
  # ----------------------------------------------------------------------
829
830
  # Proof for derived triple:
830
- # :Reg1 :rSquared 0.7193278283366822 .
831
+ # :Reg1 :rSquared "0.7193278283366822"^^xsd:decimal .
831
832
  # It holds because the following instance of the rule body is provable:
832
833
  # :Reg1 :n 8 .
833
- # :Reg1 :sumX 36 .
834
- # :Reg1 :sumY 46 .
835
- # :Reg1 :sumXX 204 .
836
- # :Reg1 :sumYY 379.72 .
837
- # :Reg1 :sumXY 266.00000000000006 .
838
- # (8 266.00000000000006) math:product 2128.0000000000005 .
839
- # (36 46) math:product 1656 .
840
- # (2128.0000000000005 1656) math:difference 472.00000000000045 .
841
- # (8 204) math:product 1632 .
842
- # (36 2.0) math:exponentiation 1296 .
843
- # (1632 1296) math:difference 336 .
844
- # (472.00000000000045 336) math:quotient 1.4047619047619062 .
845
- # (1.4047619047619062 36) math:product 50.571428571428626 .
846
- # (46 50.571428571428626) math:difference -4.571428571428626 .
847
- # (-4.571428571428626 8) math:quotient -0.5714285714285783 .
848
- # (8 379.72) math:product 3037.76 .
849
- # (46 2.0) math:exponentiation 2116 .
850
- # (3037.76 2116) math:difference 921.7600000000002 .
851
- # (336 921.7600000000002) math:product 309711.3600000001 .
852
- # (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
853
- # (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
854
- # (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
834
+ # :Reg1 :sumX "36"^^xsd:decimal .
835
+ # :Reg1 :sumY "46"^^xsd:decimal .
836
+ # :Reg1 :sumXX "204"^^xsd:decimal .
837
+ # :Reg1 :sumYY "379.72"^^xsd:decimal .
838
+ # :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
839
+ # (8 "266.00000000000006"^^xsd:decimal) math:product "2128.0000000000005"^^xsd:decimal .
840
+ # ("36"^^xsd:decimal "46"^^xsd:decimal) math:product "1656"^^xsd:decimal .
841
+ # ("2128.0000000000005"^^xsd:decimal "1656"^^xsd:decimal) math:difference "472.00000000000045"^^xsd:decimal .
842
+ # (8 "204"^^xsd:decimal) math:product "1632"^^xsd:decimal .
843
+ # ("36"^^xsd:decimal 2.0) math:exponentiation "1296"^^xsd:decimal .
844
+ # ("1632"^^xsd:decimal "1296"^^xsd:decimal) math:difference "336"^^xsd:decimal .
845
+ # ("472.00000000000045"^^xsd:decimal "336"^^xsd:decimal) math:quotient "1.4047619047619062"^^xsd:decimal .
846
+ # ("1.4047619047619062"^^xsd:decimal "36"^^xsd:decimal) math:product "50.571428571428626"^^xsd:decimal .
847
+ # ("46"^^xsd:decimal "50.571428571428626"^^xsd:decimal) math:difference "-4.571428571428626"^^xsd:decimal .
848
+ # ("-4.571428571428626"^^xsd:decimal 8) math:quotient "-0.5714285714285783"^^xsd:decimal .
849
+ # (8 "379.72"^^xsd:decimal) math:product "3037.76"^^xsd:decimal .
850
+ # ("46"^^xsd:decimal 2.0) math:exponentiation "2116"^^xsd:decimal .
851
+ # ("3037.76"^^xsd:decimal "2116"^^xsd:decimal) math:difference "921.7600000000002"^^xsd:decimal .
852
+ # ("336"^^xsd:decimal "921.7600000000002"^^xsd:decimal) math:product "309711.3600000001"^^xsd:decimal .
853
+ # ("309711.3600000001"^^xsd:decimal 0.5) math:exponentiation "556.5171695464571"^^xsd:decimal .
854
+ # ("472.00000000000045"^^xsd:decimal "556.5171695464571"^^xsd:decimal) math:quotient "0.8481319639871393"^^xsd:decimal .
855
+ # ("0.8481319639871393"^^xsd:decimal 2.0) math:exponentiation "0.7193278283366822"^^xsd:decimal .
855
856
  # via the schematic forward rule:
856
857
  # {
857
858
  # :Reg1 :n ?n .
@@ -884,54 +885,54 @@
884
885
  # :Reg1 :rSquared ?r2 .
885
886
  # } .
886
887
  # with substitution (on rule variables):
887
- # ?a = -0.5714285714285783
888
- # ?b = 1.4047619047619062
889
- # ?b_sx = 50.571428571428626
890
- # ?denX = 336
891
- # ?denXY = 309711.3600000001
892
- # ?denY = 921.7600000000002
888
+ # ?a = "-0.5714285714285783"^^xsd:decimal
889
+ # ?b = "1.4047619047619062"^^xsd:decimal
890
+ # ?b_sx = "50.571428571428626"^^xsd:decimal
891
+ # ?denX = "336"^^xsd:decimal
892
+ # ?denXY = "309711.3600000001"^^xsd:decimal
893
+ # ?denY = "921.7600000000002"^^xsd:decimal
893
894
  # ?n = 8
894
- # ?n_sxx = 1632
895
- # ?n_sxy = 2128.0000000000005
896
- # ?n_syy = 3037.76
897
- # ?num = 472.00000000000045
898
- # ?r = 0.8481319639871393
899
- # ?r2 = 0.7193278283366822
900
- # ?sqrtDen = 556.5171695464571
901
- # ?sx = 36
902
- # ?sx2 = 1296
903
- # ?sx_sy = 1656
904
- # ?sxx = 204
905
- # ?sxy = 266.00000000000006
906
- # ?sy = 46
907
- # ?sy2 = 2116
908
- # ?syy = 379.72
909
- # ?tmpA = -4.571428571428626
895
+ # ?n_sxx = "1632"^^xsd:decimal
896
+ # ?n_sxy = "2128.0000000000005"^^xsd:decimal
897
+ # ?n_syy = "3037.76"^^xsd:decimal
898
+ # ?num = "472.00000000000045"^^xsd:decimal
899
+ # ?r = "0.8481319639871393"^^xsd:decimal
900
+ # ?r2 = "0.7193278283366822"^^xsd:decimal
901
+ # ?sqrtDen = "556.5171695464571"^^xsd:decimal
902
+ # ?sx = "36"^^xsd:decimal
903
+ # ?sx2 = "1296"^^xsd:decimal
904
+ # ?sx_sy = "1656"^^xsd:decimal
905
+ # ?sxx = "204"^^xsd:decimal
906
+ # ?sxy = "266.00000000000006"^^xsd:decimal
907
+ # ?sy = "46"^^xsd:decimal
908
+ # ?sy2 = "2116"^^xsd:decimal
909
+ # ?syy = "379.72"^^xsd:decimal
910
+ # ?tmpA = "-4.571428571428626"^^xsd:decimal
910
911
  # Therefore the derived triple above is entailed by the rules and facts.
911
912
  # ----------------------------------------------------------------------
912
913
 
913
- :Reg1 :rSquared 0.7193278283366822 .
914
+ :Reg1 :rSquared "0.7193278283366822"^^xsd:decimal .
914
915
 
915
916
  # ----------------------------------------------------------------------
916
917
  # Proof for derived triple:
917
- # :Reg1 :sse 32.33904761904761 .
918
+ # :Reg1 :sse "32.33904761904761"^^xsd:decimal .
918
919
  # It holds because the following instance of the rule body is provable:
919
920
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
920
- # :Reg1 :slope 1.4047619047619062 .
921
- # :Reg1 :intercept -0.5714285714285783 .
921
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
922
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
922
923
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
923
924
  # (?e2 {
924
925
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
925
926
  # ?p :x ?x .
926
927
  # ?p :y ?y .
927
- # (1.4047619047619062 ?x) math:product ?bx .
928
- # (-0.5714285714285783 ?bx) math:sum ?yhat .
928
+ # ("1.4047619047619062"^^xsd:decimal ?x) math:product ?bx .
929
+ # ("-0.5714285714285783"^^xsd:decimal ?bx) math:sum ?yhat .
929
930
  # (?y ?yhat) math:difference ?e .
930
931
  # (?e 2.0) math:exponentiation ?e2 .
931
- # } (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)) log:collectAllIn ?_b1 .
932
- # (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583) math:sum 32.33904761904761 .
933
- # (32.33904761904761 8) math:quotient 4.0423809523809515 .
934
- # (4.0423809523809515 0.5) math:exponentiation 2.010567321026817 .
932
+ # } ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal)) log:collectAllIn ?_b1 .
933
+ # ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal) math:sum "32.33904761904761"^^xsd:decimal .
934
+ # ("32.33904761904761"^^xsd:decimal 8) math:quotient "4.0423809523809515"^^xsd:decimal .
935
+ # ("4.0423809523809515"^^xsd:decimal 0.5) math:exponentiation "2.010567321026817"^^xsd:decimal .
935
936
  # via the schematic forward rule:
936
937
  # {
937
938
  # :Reg1 :points ?pts .
@@ -955,39 +956,39 @@
955
956
  # :Reg1 :rmse ?rmse .
956
957
  # } .
957
958
  # with substitution (on rule variables):
958
- # ?a = -0.5714285714285783
959
- # ?b = 1.4047619047619062
960
- # ?e2s = (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)
961
- # ?mse = 4.0423809523809515
959
+ # ?a = "-0.5714285714285783"^^xsd:decimal
960
+ # ?b = "1.4047619047619062"^^xsd:decimal
961
+ # ?e2s = ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal)
962
+ # ?mse = "4.0423809523809515"^^xsd:decimal
962
963
  # ?n = 8
963
964
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
964
- # ?rmse = 2.010567321026817
965
- # ?sse = 32.33904761904761
965
+ # ?rmse = "2.010567321026817"^^xsd:decimal
966
+ # ?sse = "32.33904761904761"^^xsd:decimal
966
967
  # Therefore the derived triple above is entailed by the rules and facts.
967
968
  # ----------------------------------------------------------------------
968
969
 
969
- :Reg1 :sse 32.33904761904761 .
970
+ :Reg1 :sse "32.33904761904761"^^xsd:decimal .
970
971
 
971
972
  # ----------------------------------------------------------------------
972
973
  # Proof for derived triple:
973
- # :Reg1 :rmse 2.010567321026817 .
974
+ # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
974
975
  # It holds because the following instance of the rule body is provable:
975
976
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
976
- # :Reg1 :slope 1.4047619047619062 .
977
- # :Reg1 :intercept -0.5714285714285783 .
977
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
978
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
978
979
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
979
980
  # (?e2 {
980
981
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
981
982
  # ?p :x ?x .
982
983
  # ?p :y ?y .
983
- # (1.4047619047619062 ?x) math:product ?bx .
984
- # (-0.5714285714285783 ?bx) math:sum ?yhat .
984
+ # ("1.4047619047619062"^^xsd:decimal ?x) math:product ?bx .
985
+ # ("-0.5714285714285783"^^xsd:decimal ?bx) math:sum ?yhat .
985
986
  # (?y ?yhat) math:difference ?e .
986
987
  # (?e 2.0) math:exponentiation ?e2 .
987
- # } (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)) log:collectAllIn ?_b1 .
988
- # (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583) math:sum 32.33904761904761 .
989
- # (32.33904761904761 8) math:quotient 4.0423809523809515 .
990
- # (4.0423809523809515 0.5) math:exponentiation 2.010567321026817 .
988
+ # } ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal)) log:collectAllIn ?_b1 .
989
+ # ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal) math:sum "32.33904761904761"^^xsd:decimal .
990
+ # ("32.33904761904761"^^xsd:decimal 8) math:quotient "4.0423809523809515"^^xsd:decimal .
991
+ # ("4.0423809523809515"^^xsd:decimal 0.5) math:exponentiation "2.010567321026817"^^xsd:decimal .
991
992
  # via the schematic forward rule:
992
993
  # {
993
994
  # :Reg1 :points ?pts .
@@ -1011,36 +1012,36 @@
1011
1012
  # :Reg1 :rmse ?rmse .
1012
1013
  # } .
1013
1014
  # with substitution (on rule variables):
1014
- # ?a = -0.5714285714285783
1015
- # ?b = 1.4047619047619062
1016
- # ?e2s = (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)
1017
- # ?mse = 4.0423809523809515
1015
+ # ?a = "-0.5714285714285783"^^xsd:decimal
1016
+ # ?b = "1.4047619047619062"^^xsd:decimal
1017
+ # ?e2s = ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal)
1018
+ # ?mse = "4.0423809523809515"^^xsd:decimal
1018
1019
  # ?n = 8
1019
1020
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1020
- # ?rmse = 2.010567321026817
1021
- # ?sse = 32.33904761904761
1021
+ # ?rmse = "2.010567321026817"^^xsd:decimal
1022
+ # ?sse = "32.33904761904761"^^xsd:decimal
1022
1023
  # Therefore the derived triple above is entailed by the rules and facts.
1023
1024
  # ----------------------------------------------------------------------
1024
1025
 
1025
- :Reg1 :rmse 2.010567321026817 .
1026
+ :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1026
1027
 
1027
1028
  # ----------------------------------------------------------------------
1028
1029
  # Proof for derived triple:
1029
1030
  # _:sk_0 :point _:b8 .
1030
1031
  # It holds because the following instance of the rule body is provable:
1031
1032
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1032
- # :Reg1 :slope 1.4047619047619062 .
1033
- # :Reg1 :intercept -0.5714285714285783 .
1034
- # :Reg1 :rmse 2.010567321026817 .
1033
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1034
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1035
+ # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1035
1036
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1036
1037
  # _:b8 :x 8.0 .
1037
1038
  # _:b8 :y 15.0 .
1038
- # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1039
- # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1040
- # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1041
- # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1042
- # (2.0 2.010567321026817) math:product 4.021134642053634 .
1043
- # 4.333333333333329 math:greaterThan 4.021134642053634 .
1039
+ # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1040
+ # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1041
+ # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1042
+ # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1043
+ # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1044
+ # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1044
1045
  # via the schematic forward rule:
1045
1046
  # {
1046
1047
  # :Reg1 :points ?pts .
@@ -1065,18 +1066,18 @@
1065
1066
  # :Reg1 :highResidual _:b9 .
1066
1067
  # } .
1067
1068
  # with substitution (on rule variables):
1068
- # ?a = -0.5714285714285783
1069
- # ?ae = 4.333333333333329
1070
- # ?b = 1.4047619047619062
1071
- # ?bx = 11.23809523809525
1072
- # ?e = 4.333333333333329
1069
+ # ?a = "-0.5714285714285783"^^xsd:decimal
1070
+ # ?ae = "4.333333333333329"^^xsd:decimal
1071
+ # ?b = "1.4047619047619062"^^xsd:decimal
1072
+ # ?bx = "11.23809523809525"^^xsd:decimal
1073
+ # ?e = "4.333333333333329"^^xsd:decimal
1073
1074
  # ?p = _:b8
1074
1075
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1075
- # ?rmse = 2.010567321026817
1076
- # ?thr = 4.021134642053634
1076
+ # ?rmse = "2.010567321026817"^^xsd:decimal
1077
+ # ?thr = "4.021134642053634"^^xsd:decimal
1077
1078
  # ?x = 8.0
1078
1079
  # ?y = 15.0
1079
- # ?yhat = 10.666666666666671
1080
+ # ?yhat = "10.666666666666671"^^xsd:decimal
1080
1081
  # Therefore the derived triple above is entailed by the rules and facts.
1081
1082
  # ----------------------------------------------------------------------
1082
1083
 
@@ -1087,18 +1088,18 @@ _:sk_0 :point _:b8 .
1087
1088
  # _:sk_0 :x 8.0 .
1088
1089
  # It holds because the following instance of the rule body is provable:
1089
1090
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1090
- # :Reg1 :slope 1.4047619047619062 .
1091
- # :Reg1 :intercept -0.5714285714285783 .
1092
- # :Reg1 :rmse 2.010567321026817 .
1091
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1092
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1093
+ # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1093
1094
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1094
1095
  # _:b8 :x 8.0 .
1095
1096
  # _:b8 :y 15.0 .
1096
- # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1097
- # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1098
- # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1099
- # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1100
- # (2.0 2.010567321026817) math:product 4.021134642053634 .
1101
- # 4.333333333333329 math:greaterThan 4.021134642053634 .
1097
+ # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1098
+ # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1099
+ # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1100
+ # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1101
+ # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1102
+ # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1102
1103
  # via the schematic forward rule:
1103
1104
  # {
1104
1105
  # :Reg1 :points ?pts .
@@ -1123,18 +1124,18 @@ _:sk_0 :point _:b8 .
1123
1124
  # :Reg1 :highResidual _:b9 .
1124
1125
  # } .
1125
1126
  # with substitution (on rule variables):
1126
- # ?a = -0.5714285714285783
1127
- # ?ae = 4.333333333333329
1128
- # ?b = 1.4047619047619062
1129
- # ?bx = 11.23809523809525
1130
- # ?e = 4.333333333333329
1127
+ # ?a = "-0.5714285714285783"^^xsd:decimal
1128
+ # ?ae = "4.333333333333329"^^xsd:decimal
1129
+ # ?b = "1.4047619047619062"^^xsd:decimal
1130
+ # ?bx = "11.23809523809525"^^xsd:decimal
1131
+ # ?e = "4.333333333333329"^^xsd:decimal
1131
1132
  # ?p = _:b8
1132
1133
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1133
- # ?rmse = 2.010567321026817
1134
- # ?thr = 4.021134642053634
1134
+ # ?rmse = "2.010567321026817"^^xsd:decimal
1135
+ # ?thr = "4.021134642053634"^^xsd:decimal
1135
1136
  # ?x = 8.0
1136
1137
  # ?y = 15.0
1137
- # ?yhat = 10.666666666666671
1138
+ # ?yhat = "10.666666666666671"^^xsd:decimal
1138
1139
  # Therefore the derived triple above is entailed by the rules and facts.
1139
1140
  # ----------------------------------------------------------------------
1140
1141
 
@@ -1145,18 +1146,18 @@ _:sk_0 :x 8.0 .
1145
1146
  # _:sk_0 :y 15.0 .
1146
1147
  # It holds because the following instance of the rule body is provable:
1147
1148
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1148
- # :Reg1 :slope 1.4047619047619062 .
1149
- # :Reg1 :intercept -0.5714285714285783 .
1150
- # :Reg1 :rmse 2.010567321026817 .
1149
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1150
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1151
+ # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1151
1152
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1152
1153
  # _:b8 :x 8.0 .
1153
1154
  # _:b8 :y 15.0 .
1154
- # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1155
- # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1156
- # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1157
- # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1158
- # (2.0 2.010567321026817) math:product 4.021134642053634 .
1159
- # 4.333333333333329 math:greaterThan 4.021134642053634 .
1155
+ # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1156
+ # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1157
+ # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1158
+ # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1159
+ # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1160
+ # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1160
1161
  # via the schematic forward rule:
1161
1162
  # {
1162
1163
  # :Reg1 :points ?pts .
@@ -1181,18 +1182,18 @@ _:sk_0 :x 8.0 .
1181
1182
  # :Reg1 :highResidual _:b9 .
1182
1183
  # } .
1183
1184
  # with substitution (on rule variables):
1184
- # ?a = -0.5714285714285783
1185
- # ?ae = 4.333333333333329
1186
- # ?b = 1.4047619047619062
1187
- # ?bx = 11.23809523809525
1188
- # ?e = 4.333333333333329
1185
+ # ?a = "-0.5714285714285783"^^xsd:decimal
1186
+ # ?ae = "4.333333333333329"^^xsd:decimal
1187
+ # ?b = "1.4047619047619062"^^xsd:decimal
1188
+ # ?bx = "11.23809523809525"^^xsd:decimal
1189
+ # ?e = "4.333333333333329"^^xsd:decimal
1189
1190
  # ?p = _:b8
1190
1191
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1191
- # ?rmse = 2.010567321026817
1192
- # ?thr = 4.021134642053634
1192
+ # ?rmse = "2.010567321026817"^^xsd:decimal
1193
+ # ?thr = "4.021134642053634"^^xsd:decimal
1193
1194
  # ?x = 8.0
1194
1195
  # ?y = 15.0
1195
- # ?yhat = 10.666666666666671
1196
+ # ?yhat = "10.666666666666671"^^xsd:decimal
1196
1197
  # Therefore the derived triple above is entailed by the rules and facts.
1197
1198
  # ----------------------------------------------------------------------
1198
1199
 
@@ -1200,21 +1201,21 @@ _:sk_0 :y 15.0 .
1200
1201
 
1201
1202
  # ----------------------------------------------------------------------
1202
1203
  # Proof for derived triple:
1203
- # _:sk_0 :yhat 10.666666666666671 .
1204
+ # _:sk_0 :yhat "10.666666666666671"^^xsd:decimal .
1204
1205
  # It holds because the following instance of the rule body is provable:
1205
1206
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1206
- # :Reg1 :slope 1.4047619047619062 .
1207
- # :Reg1 :intercept -0.5714285714285783 .
1208
- # :Reg1 :rmse 2.010567321026817 .
1207
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1208
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1209
+ # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1209
1210
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1210
1211
  # _:b8 :x 8.0 .
1211
1212
  # _:b8 :y 15.0 .
1212
- # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1213
- # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1214
- # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1215
- # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1216
- # (2.0 2.010567321026817) math:product 4.021134642053634 .
1217
- # 4.333333333333329 math:greaterThan 4.021134642053634 .
1213
+ # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1214
+ # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1215
+ # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1216
+ # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1217
+ # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1218
+ # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1218
1219
  # via the schematic forward rule:
1219
1220
  # {
1220
1221
  # :Reg1 :points ?pts .
@@ -1239,40 +1240,40 @@ _:sk_0 :y 15.0 .
1239
1240
  # :Reg1 :highResidual _:b9 .
1240
1241
  # } .
1241
1242
  # with substitution (on rule variables):
1242
- # ?a = -0.5714285714285783
1243
- # ?ae = 4.333333333333329
1244
- # ?b = 1.4047619047619062
1245
- # ?bx = 11.23809523809525
1246
- # ?e = 4.333333333333329
1243
+ # ?a = "-0.5714285714285783"^^xsd:decimal
1244
+ # ?ae = "4.333333333333329"^^xsd:decimal
1245
+ # ?b = "1.4047619047619062"^^xsd:decimal
1246
+ # ?bx = "11.23809523809525"^^xsd:decimal
1247
+ # ?e = "4.333333333333329"^^xsd:decimal
1247
1248
  # ?p = _:b8
1248
1249
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1249
- # ?rmse = 2.010567321026817
1250
- # ?thr = 4.021134642053634
1250
+ # ?rmse = "2.010567321026817"^^xsd:decimal
1251
+ # ?thr = "4.021134642053634"^^xsd:decimal
1251
1252
  # ?x = 8.0
1252
1253
  # ?y = 15.0
1253
- # ?yhat = 10.666666666666671
1254
+ # ?yhat = "10.666666666666671"^^xsd:decimal
1254
1255
  # Therefore the derived triple above is entailed by the rules and facts.
1255
1256
  # ----------------------------------------------------------------------
1256
1257
 
1257
- _:sk_0 :yhat 10.666666666666671 .
1258
+ _:sk_0 :yhat "10.666666666666671"^^xsd:decimal .
1258
1259
 
1259
1260
  # ----------------------------------------------------------------------
1260
1261
  # Proof for derived triple:
1261
- # _:sk_0 :residual 4.333333333333329 .
1262
+ # _:sk_0 :residual "4.333333333333329"^^xsd:decimal .
1262
1263
  # It holds because the following instance of the rule body is provable:
1263
1264
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1264
- # :Reg1 :slope 1.4047619047619062 .
1265
- # :Reg1 :intercept -0.5714285714285783 .
1266
- # :Reg1 :rmse 2.010567321026817 .
1265
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1266
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1267
+ # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1267
1268
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1268
1269
  # _:b8 :x 8.0 .
1269
1270
  # _:b8 :y 15.0 .
1270
- # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1271
- # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1272
- # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1273
- # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1274
- # (2.0 2.010567321026817) math:product 4.021134642053634 .
1275
- # 4.333333333333329 math:greaterThan 4.021134642053634 .
1271
+ # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1272
+ # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1273
+ # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1274
+ # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1275
+ # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1276
+ # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1276
1277
  # via the schematic forward rule:
1277
1278
  # {
1278
1279
  # :Reg1 :points ?pts .
@@ -1297,40 +1298,40 @@ _:sk_0 :yhat 10.666666666666671 .
1297
1298
  # :Reg1 :highResidual _:b9 .
1298
1299
  # } .
1299
1300
  # with substitution (on rule variables):
1300
- # ?a = -0.5714285714285783
1301
- # ?ae = 4.333333333333329
1302
- # ?b = 1.4047619047619062
1303
- # ?bx = 11.23809523809525
1304
- # ?e = 4.333333333333329
1301
+ # ?a = "-0.5714285714285783"^^xsd:decimal
1302
+ # ?ae = "4.333333333333329"^^xsd:decimal
1303
+ # ?b = "1.4047619047619062"^^xsd:decimal
1304
+ # ?bx = "11.23809523809525"^^xsd:decimal
1305
+ # ?e = "4.333333333333329"^^xsd:decimal
1305
1306
  # ?p = _:b8
1306
1307
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1307
- # ?rmse = 2.010567321026817
1308
- # ?thr = 4.021134642053634
1308
+ # ?rmse = "2.010567321026817"^^xsd:decimal
1309
+ # ?thr = "4.021134642053634"^^xsd:decimal
1309
1310
  # ?x = 8.0
1310
1311
  # ?y = 15.0
1311
- # ?yhat = 10.666666666666671
1312
+ # ?yhat = "10.666666666666671"^^xsd:decimal
1312
1313
  # Therefore the derived triple above is entailed by the rules and facts.
1313
1314
  # ----------------------------------------------------------------------
1314
1315
 
1315
- _:sk_0 :residual 4.333333333333329 .
1316
+ _:sk_0 :residual "4.333333333333329"^^xsd:decimal .
1316
1317
 
1317
1318
  # ----------------------------------------------------------------------
1318
1319
  # Proof for derived triple:
1319
1320
  # :Reg1 :highResidual _:sk_0 .
1320
1321
  # It holds because the following instance of the rule body is provable:
1321
1322
  # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1322
- # :Reg1 :slope 1.4047619047619062 .
1323
- # :Reg1 :intercept -0.5714285714285783 .
1324
- # :Reg1 :rmse 2.010567321026817 .
1323
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1324
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1325
+ # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1325
1326
  # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1326
1327
  # _:b8 :x 8.0 .
1327
1328
  # _:b8 :y 15.0 .
1328
- # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1329
- # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1330
- # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1331
- # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1332
- # (2.0 2.010567321026817) math:product 4.021134642053634 .
1333
- # 4.333333333333329 math:greaterThan 4.021134642053634 .
1329
+ # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1330
+ # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1331
+ # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1332
+ # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1333
+ # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1334
+ # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1334
1335
  # via the schematic forward rule:
1335
1336
  # {
1336
1337
  # :Reg1 :points ?pts .
@@ -1355,18 +1356,18 @@ _:sk_0 :residual 4.333333333333329 .
1355
1356
  # :Reg1 :highResidual _:b9 .
1356
1357
  # } .
1357
1358
  # with substitution (on rule variables):
1358
- # ?a = -0.5714285714285783
1359
- # ?ae = 4.333333333333329
1360
- # ?b = 1.4047619047619062
1361
- # ?bx = 11.23809523809525
1362
- # ?e = 4.333333333333329
1359
+ # ?a = "-0.5714285714285783"^^xsd:decimal
1360
+ # ?ae = "4.333333333333329"^^xsd:decimal
1361
+ # ?b = "1.4047619047619062"^^xsd:decimal
1362
+ # ?bx = "11.23809523809525"^^xsd:decimal
1363
+ # ?e = "4.333333333333329"^^xsd:decimal
1363
1364
  # ?p = _:b8
1364
1365
  # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1365
- # ?rmse = 2.010567321026817
1366
- # ?thr = 4.021134642053634
1366
+ # ?rmse = "2.010567321026817"^^xsd:decimal
1367
+ # ?thr = "4.021134642053634"^^xsd:decimal
1367
1368
  # ?x = 8.0
1368
1369
  # ?y = 15.0
1369
- # ?yhat = 10.666666666666671
1370
+ # ?yhat = "10.666666666666671"^^xsd:decimal
1370
1371
  # Therefore the derived triple above is entailed by the rules and facts.
1371
1372
  # ----------------------------------------------------------------------
1372
1373
 
@@ -1377,10 +1378,10 @@ _:sk_0 :residual 4.333333333333329 .
1377
1378
  # _:sk_1 :x 8.5 .
1378
1379
  # It holds because the following instance of the rule body is provable:
1379
1380
  # :Reg1 :predictX 8.5 .
1380
- # :Reg1 :slope 1.4047619047619062 .
1381
- # :Reg1 :intercept -0.5714285714285783 .
1382
- # (1.4047619047619062 8.5) math:product 11.940476190476202 .
1383
- # (-0.5714285714285783 11.940476190476202) math:sum 11.369047619047624 .
1381
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1382
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1383
+ # ("1.4047619047619062"^^xsd:decimal 8.5) math:product "11.940476190476202"^^xsd:decimal .
1384
+ # ("-0.5714285714285783"^^xsd:decimal "11.940476190476202"^^xsd:decimal) math:sum "11.369047619047624"^^xsd:decimal .
1384
1385
  # via the schematic forward rule:
1385
1386
  # {
1386
1387
  # :Reg1 :predictX ?x0 .
@@ -1394,11 +1395,11 @@ _:sk_0 :residual 4.333333333333329 .
1394
1395
  # :Reg1 :prediction _:b10 .
1395
1396
  # } .
1396
1397
  # with substitution (on rule variables):
1397
- # ?a = -0.5714285714285783
1398
- # ?b = 1.4047619047619062
1399
- # ?bx0 = 11.940476190476202
1398
+ # ?a = "-0.5714285714285783"^^xsd:decimal
1399
+ # ?b = "1.4047619047619062"^^xsd:decimal
1400
+ # ?bx0 = "11.940476190476202"^^xsd:decimal
1400
1401
  # ?x0 = 8.5
1401
- # ?y0 = 11.369047619047624
1402
+ # ?y0 = "11.369047619047624"^^xsd:decimal
1402
1403
  # Therefore the derived triple above is entailed by the rules and facts.
1403
1404
  # ----------------------------------------------------------------------
1404
1405
 
@@ -1406,13 +1407,13 @@ _:sk_1 :x 8.5 .
1406
1407
 
1407
1408
  # ----------------------------------------------------------------------
1408
1409
  # Proof for derived triple:
1409
- # _:sk_1 :y 11.369047619047624 .
1410
+ # _:sk_1 :y "11.369047619047624"^^xsd:decimal .
1410
1411
  # It holds because the following instance of the rule body is provable:
1411
1412
  # :Reg1 :predictX 8.5 .
1412
- # :Reg1 :slope 1.4047619047619062 .
1413
- # :Reg1 :intercept -0.5714285714285783 .
1414
- # (1.4047619047619062 8.5) math:product 11.940476190476202 .
1415
- # (-0.5714285714285783 11.940476190476202) math:sum 11.369047619047624 .
1413
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1414
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1415
+ # ("1.4047619047619062"^^xsd:decimal 8.5) math:product "11.940476190476202"^^xsd:decimal .
1416
+ # ("-0.5714285714285783"^^xsd:decimal "11.940476190476202"^^xsd:decimal) math:sum "11.369047619047624"^^xsd:decimal .
1416
1417
  # via the schematic forward rule:
1417
1418
  # {
1418
1419
  # :Reg1 :predictX ?x0 .
@@ -1426,25 +1427,25 @@ _:sk_1 :x 8.5 .
1426
1427
  # :Reg1 :prediction _:b10 .
1427
1428
  # } .
1428
1429
  # with substitution (on rule variables):
1429
- # ?a = -0.5714285714285783
1430
- # ?b = 1.4047619047619062
1431
- # ?bx0 = 11.940476190476202
1430
+ # ?a = "-0.5714285714285783"^^xsd:decimal
1431
+ # ?b = "1.4047619047619062"^^xsd:decimal
1432
+ # ?bx0 = "11.940476190476202"^^xsd:decimal
1432
1433
  # ?x0 = 8.5
1433
- # ?y0 = 11.369047619047624
1434
+ # ?y0 = "11.369047619047624"^^xsd:decimal
1434
1435
  # Therefore the derived triple above is entailed by the rules and facts.
1435
1436
  # ----------------------------------------------------------------------
1436
1437
 
1437
- _:sk_1 :y 11.369047619047624 .
1438
+ _:sk_1 :y "11.369047619047624"^^xsd:decimal .
1438
1439
 
1439
1440
  # ----------------------------------------------------------------------
1440
1441
  # Proof for derived triple:
1441
1442
  # :Reg1 :prediction _:sk_1 .
1442
1443
  # It holds because the following instance of the rule body is provable:
1443
1444
  # :Reg1 :predictX 8.5 .
1444
- # :Reg1 :slope 1.4047619047619062 .
1445
- # :Reg1 :intercept -0.5714285714285783 .
1446
- # (1.4047619047619062 8.5) math:product 11.940476190476202 .
1447
- # (-0.5714285714285783 11.940476190476202) math:sum 11.369047619047624 .
1445
+ # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1446
+ # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1447
+ # ("1.4047619047619062"^^xsd:decimal 8.5) math:product "11.940476190476202"^^xsd:decimal .
1448
+ # ("-0.5714285714285783"^^xsd:decimal "11.940476190476202"^^xsd:decimal) math:sum "11.369047619047624"^^xsd:decimal .
1448
1449
  # via the schematic forward rule:
1449
1450
  # {
1450
1451
  # :Reg1 :predictX ?x0 .
@@ -1458,11 +1459,11 @@ _:sk_1 :y 11.369047619047624 .
1458
1459
  # :Reg1 :prediction _:b10 .
1459
1460
  # } .
1460
1461
  # with substitution (on rule variables):
1461
- # ?a = -0.5714285714285783
1462
- # ?b = 1.4047619047619062
1463
- # ?bx0 = 11.940476190476202
1462
+ # ?a = "-0.5714285714285783"^^xsd:decimal
1463
+ # ?b = "1.4047619047619062"^^xsd:decimal
1464
+ # ?bx0 = "11.940476190476202"^^xsd:decimal
1464
1465
  # ?x0 = 8.5
1465
- # ?y0 = 11.369047619047624
1466
+ # ?y0 = "11.369047619047624"^^xsd:decimal
1466
1467
  # Therefore the derived triple above is entailed by the rules and facts.
1467
1468
  # ----------------------------------------------------------------------
1468
1469