eyeling 1.6.12 → 1.6.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (75) hide show
  1. package/examples/output/age.n3 +0 -17
  2. package/examples/output/alignment-demo.n3 +0 -572
  3. package/examples/output/backward.n3 +0 -15
  4. package/examples/output/basic-monadic.n3 +0 -105
  5. package/examples/output/brussels-brew-club.n3 +0 -476
  6. package/examples/output/cat-koko.n3 +0 -108
  7. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  8. package/examples/output/complex.n3 +0 -46
  9. package/examples/output/control-system.n3 +0 -75
  10. package/examples/output/cranberry-calculus.n3 +0 -1313
  11. package/examples/output/crypto-builtins-tests.n3 +0 -60
  12. package/examples/output/deep-taxonomy-10.n3 +0 -602
  13. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  14. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  15. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  16. package/examples/output/derived-backward-rule-2.n3 +0 -58
  17. package/examples/output/derived-backward-rule.n3 +0 -44
  18. package/examples/output/derived-rule.n3 +0 -42
  19. package/examples/output/dijkstra.n3 +0 -297
  20. package/examples/output/dog.n3 +0 -30
  21. package/examples/output/drone-corridor-planner.n3 +0 -799
  22. package/examples/output/easter.n3 +0 -3570
  23. package/examples/output/equals.n3 +0 -15
  24. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  25. package/examples/output/existential-rule.n3 +0 -34
  26. package/examples/output/expression-eval.n3 +0 -20
  27. package/examples/output/family-cousins.n3 +0 -636
  28. package/examples/output/fibonacci.n3 +0 -36
  29. package/examples/output/french-cities.n3 +0 -484
  30. package/examples/output/good-cobbler.n3 +0 -22
  31. package/examples/output/gps.n3 +0 -62
  32. package/examples/output/gray-code-counter.n3 +0 -17
  33. package/examples/output/hanoi.n3 +0 -17
  34. package/examples/output/jade-eigen-loom.n3 +0 -4690
  35. package/examples/output/json-pointer.n3 +0 -529
  36. package/examples/output/json-reconcile-vat.n3 +0 -12882
  37. package/examples/output/light-eaters.n3 +0 -311
  38. package/examples/output/list-builtins-tests.n3 +0 -167
  39. package/examples/output/list-iterate.n3 +0 -124
  40. package/examples/output/lldm.n3 +0 -960
  41. package/examples/output/log-collect-all-in.n3 +0 -117
  42. package/examples/output/log-for-all-in.n3 +0 -27
  43. package/examples/output/log-not-includes.n3 +0 -59
  44. package/examples/output/log-skolem.n3 +0 -17
  45. package/examples/output/log-uri.n3 +0 -42
  46. package/examples/output/math-builtins-tests.n3 +0 -4434
  47. package/examples/output/minimal-skos-alignment.n3 +0 -39
  48. package/examples/output/monkey.n3 +0 -36
  49. package/examples/output/odrl-trust.n3 +0 -46
  50. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  51. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  52. package/examples/output/peano.n3 +0 -23
  53. package/examples/output/pi.n3 +0 -17
  54. package/examples/output/pillar.n3 +0 -32
  55. package/examples/output/polygon.n3 +0 -17
  56. package/examples/output/rdf-list.n3 +0 -28
  57. package/examples/output/reordering.n3 +0 -26
  58. package/examples/output/ruby-runge-workshop.n3 +0 -613
  59. package/examples/output/rule-matching.n3 +0 -26
  60. package/examples/output/saffron-slopeworks.n3 +0 -1447
  61. package/examples/output/self-referential.n3 +0 -81
  62. package/examples/output/similar.n3 +0 -15
  63. package/examples/output/snaf.n3 +0 -23
  64. package/examples/output/socrates.n3 +0 -21
  65. package/examples/output/spectral-week.n3 +0 -350
  66. package/examples/output/string-builtins-tests.n3 +0 -240
  67. package/examples/output/topaz-markov-mill.n3 +0 -4178
  68. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  69. package/examples/output/turing.n3 +0 -36
  70. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  71. package/examples/output/witch.n3 +0 -107
  72. package/examples/output/zebra.n3 +0 -111
  73. package/eyeling.js +126 -18
  74. package/package.json +1 -1
  75. package/test/examples.test.js +1 -1
@@ -1,66 +1,6 @@
1
1
  @prefix : <https://eyereasoner.github.io/ns#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :ok_crypto_sha_1 a :Pass .
6
- # It holds because the following instance of the rule body is provable:
7
- # "hello world" crypto:sha "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed" .
8
- # via the schematic forward rule:
9
- # {
10
- # "hello world" crypto:sha "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed" .
11
- # } => {
12
- # :ok_crypto_sha_1 a :Pass .
13
- # } .
14
- # Therefore the derived triple above is entailed by the rules and facts.
15
- # ----------------------------------------------------------------------
16
-
17
3
  :ok_crypto_sha_1 a :Pass .
18
-
19
- # ----------------------------------------------------------------------
20
- # Proof for derived triple:
21
- # :ok_crypto_md5_1 a :Pass .
22
- # It holds because the following instance of the rule body is provable:
23
- # "hello world" crypto:md5 "5eb63bbbe01eeed093cb22bb8f5acdc3" .
24
- # via the schematic forward rule:
25
- # {
26
- # "hello world" crypto:md5 "5eb63bbbe01eeed093cb22bb8f5acdc3" .
27
- # } => {
28
- # :ok_crypto_md5_1 a :Pass .
29
- # } .
30
- # Therefore the derived triple above is entailed by the rules and facts.
31
- # ----------------------------------------------------------------------
32
-
33
4
  :ok_crypto_md5_1 a :Pass .
34
-
35
- # ----------------------------------------------------------------------
36
- # Proof for derived triple:
37
- # :ok_crypto_sha256_1 a :Pass .
38
- # It holds because the following instance of the rule body is provable:
39
- # "hello world" crypto:sha256 "b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9" .
40
- # via the schematic forward rule:
41
- # {
42
- # "hello world" crypto:sha256 "b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9" .
43
- # } => {
44
- # :ok_crypto_sha256_1 a :Pass .
45
- # } .
46
- # Therefore the derived triple above is entailed by the rules and facts.
47
- # ----------------------------------------------------------------------
48
-
49
5
  :ok_crypto_sha256_1 a :Pass .
50
-
51
- # ----------------------------------------------------------------------
52
- # Proof for derived triple:
53
- # :ok_crypto_sha512_1 a :Pass .
54
- # It holds because the following instance of the rule body is provable:
55
- # "hello world" crypto:sha512 "309ecc489c12d6eb4cc40f50c902f2b4d0ed77ee511a7c7a9bcd3ca86d4cd86f989dd35bc5ff499670da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f" .
56
- # via the schematic forward rule:
57
- # {
58
- # "hello world" crypto:sha512 "309ecc489c12d6eb4cc40f50c902f2b4d0ed77ee511a7c7a9bcd3ca86d4cd86f989dd35bc5ff499670da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f" .
59
- # } => {
60
- # :ok_crypto_sha512_1 a :Pass .
61
- # } .
62
- # Therefore the derived triple above is entailed by the rules and facts.
63
- # ----------------------------------------------------------------------
64
-
65
6
  :ok_crypto_sha512_1 a :Pass .
66
-
@@ -1,636 +1,34 @@
1
1
  @prefix : <http://eulersharp.sourceforge.net/2009/12dtb/test#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :ind a :N1 .
6
- # It holds because the following instance of the rule body is provable:
7
- # :ind a :N0 .
8
- # via the schematic forward rule:
9
- # {
10
- # ?X a :N0 .
11
- # } => {
12
- # ?X a :N1 .
13
- # ?X a :I1 .
14
- # ?X a :J1 .
15
- # } .
16
- # with substitution (on rule variables):
17
- # ?X = :ind
18
- # Therefore the derived triple above is entailed by the rules and facts.
19
- # ----------------------------------------------------------------------
20
-
21
3
  :ind a :N1 .
22
-
23
- # ----------------------------------------------------------------------
24
- # Proof for derived triple:
25
- # :ind a :I1 .
26
- # It holds because the following instance of the rule body is provable:
27
- # :ind a :N0 .
28
- # via the schematic forward rule:
29
- # {
30
- # ?X a :N0 .
31
- # } => {
32
- # ?X a :N1 .
33
- # ?X a :I1 .
34
- # ?X a :J1 .
35
- # } .
36
- # with substitution (on rule variables):
37
- # ?X = :ind
38
- # Therefore the derived triple above is entailed by the rules and facts.
39
- # ----------------------------------------------------------------------
40
-
41
4
  :ind a :I1 .
42
-
43
- # ----------------------------------------------------------------------
44
- # Proof for derived triple:
45
- # :ind a :J1 .
46
- # It holds because the following instance of the rule body is provable:
47
- # :ind a :N0 .
48
- # via the schematic forward rule:
49
- # {
50
- # ?X a :N0 .
51
- # } => {
52
- # ?X a :N1 .
53
- # ?X a :I1 .
54
- # ?X a :J1 .
55
- # } .
56
- # with substitution (on rule variables):
57
- # ?X = :ind
58
- # Therefore the derived triple above is entailed by the rules and facts.
59
- # ----------------------------------------------------------------------
60
-
61
5
  :ind a :J1 .
62
-
63
- # ----------------------------------------------------------------------
64
- # Proof for derived triple:
65
- # :ind a :N2 .
66
- # It holds because the following instance of the rule body is provable:
67
- # :ind a :N1 .
68
- # via the schematic forward rule:
69
- # {
70
- # ?X a :N1 .
71
- # } => {
72
- # ?X a :N2 .
73
- # ?X a :I2 .
74
- # ?X a :J2 .
75
- # } .
76
- # with substitution (on rule variables):
77
- # ?X = :ind
78
- # Therefore the derived triple above is entailed by the rules and facts.
79
- # ----------------------------------------------------------------------
80
-
81
6
  :ind a :N2 .
82
-
83
- # ----------------------------------------------------------------------
84
- # Proof for derived triple:
85
- # :ind a :I2 .
86
- # It holds because the following instance of the rule body is provable:
87
- # :ind a :N1 .
88
- # via the schematic forward rule:
89
- # {
90
- # ?X a :N1 .
91
- # } => {
92
- # ?X a :N2 .
93
- # ?X a :I2 .
94
- # ?X a :J2 .
95
- # } .
96
- # with substitution (on rule variables):
97
- # ?X = :ind
98
- # Therefore the derived triple above is entailed by the rules and facts.
99
- # ----------------------------------------------------------------------
100
-
101
7
  :ind a :I2 .
102
-
103
- # ----------------------------------------------------------------------
104
- # Proof for derived triple:
105
- # :ind a :J2 .
106
- # It holds because the following instance of the rule body is provable:
107
- # :ind a :N1 .
108
- # via the schematic forward rule:
109
- # {
110
- # ?X a :N1 .
111
- # } => {
112
- # ?X a :N2 .
113
- # ?X a :I2 .
114
- # ?X a :J2 .
115
- # } .
116
- # with substitution (on rule variables):
117
- # ?X = :ind
118
- # Therefore the derived triple above is entailed by the rules and facts.
119
- # ----------------------------------------------------------------------
120
-
121
8
  :ind a :J2 .
122
-
123
- # ----------------------------------------------------------------------
124
- # Proof for derived triple:
125
- # :ind a :N3 .
126
- # It holds because the following instance of the rule body is provable:
127
- # :ind a :N2 .
128
- # via the schematic forward rule:
129
- # {
130
- # ?X a :N2 .
131
- # } => {
132
- # ?X a :N3 .
133
- # ?X a :I3 .
134
- # ?X a :J3 .
135
- # } .
136
- # with substitution (on rule variables):
137
- # ?X = :ind
138
- # Therefore the derived triple above is entailed by the rules and facts.
139
- # ----------------------------------------------------------------------
140
-
141
9
  :ind a :N3 .
142
-
143
- # ----------------------------------------------------------------------
144
- # Proof for derived triple:
145
- # :ind a :I3 .
146
- # It holds because the following instance of the rule body is provable:
147
- # :ind a :N2 .
148
- # via the schematic forward rule:
149
- # {
150
- # ?X a :N2 .
151
- # } => {
152
- # ?X a :N3 .
153
- # ?X a :I3 .
154
- # ?X a :J3 .
155
- # } .
156
- # with substitution (on rule variables):
157
- # ?X = :ind
158
- # Therefore the derived triple above is entailed by the rules and facts.
159
- # ----------------------------------------------------------------------
160
-
161
10
  :ind a :I3 .
162
-
163
- # ----------------------------------------------------------------------
164
- # Proof for derived triple:
165
- # :ind a :J3 .
166
- # It holds because the following instance of the rule body is provable:
167
- # :ind a :N2 .
168
- # via the schematic forward rule:
169
- # {
170
- # ?X a :N2 .
171
- # } => {
172
- # ?X a :N3 .
173
- # ?X a :I3 .
174
- # ?X a :J3 .
175
- # } .
176
- # with substitution (on rule variables):
177
- # ?X = :ind
178
- # Therefore the derived triple above is entailed by the rules and facts.
179
- # ----------------------------------------------------------------------
180
-
181
11
  :ind a :J3 .
182
-
183
- # ----------------------------------------------------------------------
184
- # Proof for derived triple:
185
- # :ind a :N4 .
186
- # It holds because the following instance of the rule body is provable:
187
- # :ind a :N3 .
188
- # via the schematic forward rule:
189
- # {
190
- # ?X a :N3 .
191
- # } => {
192
- # ?X a :N4 .
193
- # ?X a :I4 .
194
- # ?X a :J4 .
195
- # } .
196
- # with substitution (on rule variables):
197
- # ?X = :ind
198
- # Therefore the derived triple above is entailed by the rules and facts.
199
- # ----------------------------------------------------------------------
200
-
201
12
  :ind a :N4 .
202
-
203
- # ----------------------------------------------------------------------
204
- # Proof for derived triple:
205
- # :ind a :I4 .
206
- # It holds because the following instance of the rule body is provable:
207
- # :ind a :N3 .
208
- # via the schematic forward rule:
209
- # {
210
- # ?X a :N3 .
211
- # } => {
212
- # ?X a :N4 .
213
- # ?X a :I4 .
214
- # ?X a :J4 .
215
- # } .
216
- # with substitution (on rule variables):
217
- # ?X = :ind
218
- # Therefore the derived triple above is entailed by the rules and facts.
219
- # ----------------------------------------------------------------------
220
-
221
13
  :ind a :I4 .
222
-
223
- # ----------------------------------------------------------------------
224
- # Proof for derived triple:
225
- # :ind a :J4 .
226
- # It holds because the following instance of the rule body is provable:
227
- # :ind a :N3 .
228
- # via the schematic forward rule:
229
- # {
230
- # ?X a :N3 .
231
- # } => {
232
- # ?X a :N4 .
233
- # ?X a :I4 .
234
- # ?X a :J4 .
235
- # } .
236
- # with substitution (on rule variables):
237
- # ?X = :ind
238
- # Therefore the derived triple above is entailed by the rules and facts.
239
- # ----------------------------------------------------------------------
240
-
241
14
  :ind a :J4 .
242
-
243
- # ----------------------------------------------------------------------
244
- # Proof for derived triple:
245
- # :ind a :N5 .
246
- # It holds because the following instance of the rule body is provable:
247
- # :ind a :N4 .
248
- # via the schematic forward rule:
249
- # {
250
- # ?X a :N4 .
251
- # } => {
252
- # ?X a :N5 .
253
- # ?X a :I5 .
254
- # ?X a :J5 .
255
- # } .
256
- # with substitution (on rule variables):
257
- # ?X = :ind
258
- # Therefore the derived triple above is entailed by the rules and facts.
259
- # ----------------------------------------------------------------------
260
-
261
15
  :ind a :N5 .
262
-
263
- # ----------------------------------------------------------------------
264
- # Proof for derived triple:
265
- # :ind a :I5 .
266
- # It holds because the following instance of the rule body is provable:
267
- # :ind a :N4 .
268
- # via the schematic forward rule:
269
- # {
270
- # ?X a :N4 .
271
- # } => {
272
- # ?X a :N5 .
273
- # ?X a :I5 .
274
- # ?X a :J5 .
275
- # } .
276
- # with substitution (on rule variables):
277
- # ?X = :ind
278
- # Therefore the derived triple above is entailed by the rules and facts.
279
- # ----------------------------------------------------------------------
280
-
281
16
  :ind a :I5 .
282
-
283
- # ----------------------------------------------------------------------
284
- # Proof for derived triple:
285
- # :ind a :J5 .
286
- # It holds because the following instance of the rule body is provable:
287
- # :ind a :N4 .
288
- # via the schematic forward rule:
289
- # {
290
- # ?X a :N4 .
291
- # } => {
292
- # ?X a :N5 .
293
- # ?X a :I5 .
294
- # ?X a :J5 .
295
- # } .
296
- # with substitution (on rule variables):
297
- # ?X = :ind
298
- # Therefore the derived triple above is entailed by the rules and facts.
299
- # ----------------------------------------------------------------------
300
-
301
17
  :ind a :J5 .
302
-
303
- # ----------------------------------------------------------------------
304
- # Proof for derived triple:
305
- # :ind a :N6 .
306
- # It holds because the following instance of the rule body is provable:
307
- # :ind a :N5 .
308
- # via the schematic forward rule:
309
- # {
310
- # ?X a :N5 .
311
- # } => {
312
- # ?X a :N6 .
313
- # ?X a :I6 .
314
- # ?X a :J6 .
315
- # } .
316
- # with substitution (on rule variables):
317
- # ?X = :ind
318
- # Therefore the derived triple above is entailed by the rules and facts.
319
- # ----------------------------------------------------------------------
320
-
321
18
  :ind a :N6 .
322
-
323
- # ----------------------------------------------------------------------
324
- # Proof for derived triple:
325
- # :ind a :I6 .
326
- # It holds because the following instance of the rule body is provable:
327
- # :ind a :N5 .
328
- # via the schematic forward rule:
329
- # {
330
- # ?X a :N5 .
331
- # } => {
332
- # ?X a :N6 .
333
- # ?X a :I6 .
334
- # ?X a :J6 .
335
- # } .
336
- # with substitution (on rule variables):
337
- # ?X = :ind
338
- # Therefore the derived triple above is entailed by the rules and facts.
339
- # ----------------------------------------------------------------------
340
-
341
19
  :ind a :I6 .
342
-
343
- # ----------------------------------------------------------------------
344
- # Proof for derived triple:
345
- # :ind a :J6 .
346
- # It holds because the following instance of the rule body is provable:
347
- # :ind a :N5 .
348
- # via the schematic forward rule:
349
- # {
350
- # ?X a :N5 .
351
- # } => {
352
- # ?X a :N6 .
353
- # ?X a :I6 .
354
- # ?X a :J6 .
355
- # } .
356
- # with substitution (on rule variables):
357
- # ?X = :ind
358
- # Therefore the derived triple above is entailed by the rules and facts.
359
- # ----------------------------------------------------------------------
360
-
361
20
  :ind a :J6 .
362
-
363
- # ----------------------------------------------------------------------
364
- # Proof for derived triple:
365
- # :ind a :N7 .
366
- # It holds because the following instance of the rule body is provable:
367
- # :ind a :N6 .
368
- # via the schematic forward rule:
369
- # {
370
- # ?X a :N6 .
371
- # } => {
372
- # ?X a :N7 .
373
- # ?X a :I7 .
374
- # ?X a :J7 .
375
- # } .
376
- # with substitution (on rule variables):
377
- # ?X = :ind
378
- # Therefore the derived triple above is entailed by the rules and facts.
379
- # ----------------------------------------------------------------------
380
-
381
21
  :ind a :N7 .
382
-
383
- # ----------------------------------------------------------------------
384
- # Proof for derived triple:
385
- # :ind a :I7 .
386
- # It holds because the following instance of the rule body is provable:
387
- # :ind a :N6 .
388
- # via the schematic forward rule:
389
- # {
390
- # ?X a :N6 .
391
- # } => {
392
- # ?X a :N7 .
393
- # ?X a :I7 .
394
- # ?X a :J7 .
395
- # } .
396
- # with substitution (on rule variables):
397
- # ?X = :ind
398
- # Therefore the derived triple above is entailed by the rules and facts.
399
- # ----------------------------------------------------------------------
400
-
401
22
  :ind a :I7 .
402
-
403
- # ----------------------------------------------------------------------
404
- # Proof for derived triple:
405
- # :ind a :J7 .
406
- # It holds because the following instance of the rule body is provable:
407
- # :ind a :N6 .
408
- # via the schematic forward rule:
409
- # {
410
- # ?X a :N6 .
411
- # } => {
412
- # ?X a :N7 .
413
- # ?X a :I7 .
414
- # ?X a :J7 .
415
- # } .
416
- # with substitution (on rule variables):
417
- # ?X = :ind
418
- # Therefore the derived triple above is entailed by the rules and facts.
419
- # ----------------------------------------------------------------------
420
-
421
23
  :ind a :J7 .
422
-
423
- # ----------------------------------------------------------------------
424
- # Proof for derived triple:
425
- # :ind a :N8 .
426
- # It holds because the following instance of the rule body is provable:
427
- # :ind a :N7 .
428
- # via the schematic forward rule:
429
- # {
430
- # ?X a :N7 .
431
- # } => {
432
- # ?X a :N8 .
433
- # ?X a :I8 .
434
- # ?X a :J8 .
435
- # } .
436
- # with substitution (on rule variables):
437
- # ?X = :ind
438
- # Therefore the derived triple above is entailed by the rules and facts.
439
- # ----------------------------------------------------------------------
440
-
441
24
  :ind a :N8 .
442
-
443
- # ----------------------------------------------------------------------
444
- # Proof for derived triple:
445
- # :ind a :I8 .
446
- # It holds because the following instance of the rule body is provable:
447
- # :ind a :N7 .
448
- # via the schematic forward rule:
449
- # {
450
- # ?X a :N7 .
451
- # } => {
452
- # ?X a :N8 .
453
- # ?X a :I8 .
454
- # ?X a :J8 .
455
- # } .
456
- # with substitution (on rule variables):
457
- # ?X = :ind
458
- # Therefore the derived triple above is entailed by the rules and facts.
459
- # ----------------------------------------------------------------------
460
-
461
25
  :ind a :I8 .
462
-
463
- # ----------------------------------------------------------------------
464
- # Proof for derived triple:
465
- # :ind a :J8 .
466
- # It holds because the following instance of the rule body is provable:
467
- # :ind a :N7 .
468
- # via the schematic forward rule:
469
- # {
470
- # ?X a :N7 .
471
- # } => {
472
- # ?X a :N8 .
473
- # ?X a :I8 .
474
- # ?X a :J8 .
475
- # } .
476
- # with substitution (on rule variables):
477
- # ?X = :ind
478
- # Therefore the derived triple above is entailed by the rules and facts.
479
- # ----------------------------------------------------------------------
480
-
481
26
  :ind a :J8 .
482
-
483
- # ----------------------------------------------------------------------
484
- # Proof for derived triple:
485
- # :ind a :N9 .
486
- # It holds because the following instance of the rule body is provable:
487
- # :ind a :N8 .
488
- # via the schematic forward rule:
489
- # {
490
- # ?X a :N8 .
491
- # } => {
492
- # ?X a :N9 .
493
- # ?X a :I9 .
494
- # ?X a :J9 .
495
- # } .
496
- # with substitution (on rule variables):
497
- # ?X = :ind
498
- # Therefore the derived triple above is entailed by the rules and facts.
499
- # ----------------------------------------------------------------------
500
-
501
27
  :ind a :N9 .
502
-
503
- # ----------------------------------------------------------------------
504
- # Proof for derived triple:
505
- # :ind a :I9 .
506
- # It holds because the following instance of the rule body is provable:
507
- # :ind a :N8 .
508
- # via the schematic forward rule:
509
- # {
510
- # ?X a :N8 .
511
- # } => {
512
- # ?X a :N9 .
513
- # ?X a :I9 .
514
- # ?X a :J9 .
515
- # } .
516
- # with substitution (on rule variables):
517
- # ?X = :ind
518
- # Therefore the derived triple above is entailed by the rules and facts.
519
- # ----------------------------------------------------------------------
520
-
521
28
  :ind a :I9 .
522
-
523
- # ----------------------------------------------------------------------
524
- # Proof for derived triple:
525
- # :ind a :J9 .
526
- # It holds because the following instance of the rule body is provable:
527
- # :ind a :N8 .
528
- # via the schematic forward rule:
529
- # {
530
- # ?X a :N8 .
531
- # } => {
532
- # ?X a :N9 .
533
- # ?X a :I9 .
534
- # ?X a :J9 .
535
- # } .
536
- # with substitution (on rule variables):
537
- # ?X = :ind
538
- # Therefore the derived triple above is entailed by the rules and facts.
539
- # ----------------------------------------------------------------------
540
-
541
29
  :ind a :J9 .
542
-
543
- # ----------------------------------------------------------------------
544
- # Proof for derived triple:
545
- # :ind a :N10 .
546
- # It holds because the following instance of the rule body is provable:
547
- # :ind a :N9 .
548
- # via the schematic forward rule:
549
- # {
550
- # ?X a :N9 .
551
- # } => {
552
- # ?X a :N10 .
553
- # ?X a :I10 .
554
- # ?X a :J10 .
555
- # } .
556
- # with substitution (on rule variables):
557
- # ?X = :ind
558
- # Therefore the derived triple above is entailed by the rules and facts.
559
- # ----------------------------------------------------------------------
560
-
561
30
  :ind a :N10 .
562
-
563
- # ----------------------------------------------------------------------
564
- # Proof for derived triple:
565
- # :ind a :I10 .
566
- # It holds because the following instance of the rule body is provable:
567
- # :ind a :N9 .
568
- # via the schematic forward rule:
569
- # {
570
- # ?X a :N9 .
571
- # } => {
572
- # ?X a :N10 .
573
- # ?X a :I10 .
574
- # ?X a :J10 .
575
- # } .
576
- # with substitution (on rule variables):
577
- # ?X = :ind
578
- # Therefore the derived triple above is entailed by the rules and facts.
579
- # ----------------------------------------------------------------------
580
-
581
31
  :ind a :I10 .
582
-
583
- # ----------------------------------------------------------------------
584
- # Proof for derived triple:
585
- # :ind a :J10 .
586
- # It holds because the following instance of the rule body is provable:
587
- # :ind a :N9 .
588
- # via the schematic forward rule:
589
- # {
590
- # ?X a :N9 .
591
- # } => {
592
- # ?X a :N10 .
593
- # ?X a :I10 .
594
- # ?X a :J10 .
595
- # } .
596
- # with substitution (on rule variables):
597
- # ?X = :ind
598
- # Therefore the derived triple above is entailed by the rules and facts.
599
- # ----------------------------------------------------------------------
600
-
601
32
  :ind a :J10 .
602
-
603
- # ----------------------------------------------------------------------
604
- # Proof for derived triple:
605
- # :ind a :A2 .
606
- # It holds because the following instance of the rule body is provable:
607
- # :ind a :N10 .
608
- # via the schematic forward rule:
609
- # {
610
- # ?X a :N10 .
611
- # } => {
612
- # ?X a :A2 .
613
- # } .
614
- # with substitution (on rule variables):
615
- # ?X = :ind
616
- # Therefore the derived triple above is entailed by the rules and facts.
617
- # ----------------------------------------------------------------------
618
-
619
33
  :ind a :A2 .
620
-
621
- # ----------------------------------------------------------------------
622
- # Proof for derived triple:
623
- # :test :is true .
624
- # It holds because the following instance of the rule body is provable:
625
- # :ind a :A2 .
626
- # via the schematic forward rule:
627
- # {
628
- # :ind a :A2 .
629
- # } => {
630
- # :test :is true .
631
- # } .
632
- # Therefore the derived triple above is entailed by the rules and facts.
633
- # ----------------------------------------------------------------------
634
-
635
34
  :test :is true .
636
-