eyeling 1.5.42 → 1.6.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. package/examples/cobalt-kepler-kitchen.n3 +220 -0
  2. package/examples/jade-eigen-loom.n3 +322 -0
  3. package/examples/log-not-includes.n3 +32 -0
  4. package/examples/output/cobalt-kepler-kitchen.n3 +7112 -0
  5. package/examples/output/cranberry-calculus.n3 +495 -495
  6. package/examples/output/jade-eigen-loom.n3 +4749 -0
  7. package/examples/output/log-not-includes.n3 +69 -0
  8. package/examples/output/ruby-runge-workshop.n3 +628 -0
  9. package/examples/output/topaz-markov-mill.n3 +4231 -0
  10. package/examples/output/traffic-skos-aggregate.n3 +3298 -0
  11. package/examples/output/ultramarine-simpson-forge.n3 +3936 -0
  12. package/examples/ruby-runge-workshop.n3 +256 -0
  13. package/examples/topaz-markov-mill.n3 +260 -0
  14. package/examples/traffic-skos-aggregate.n3 +319 -0
  15. package/examples/ultramarine-simpson-forge.n3 +178 -0
  16. package/eyeling.js +219 -144
  17. package/index.js +1 -4
  18. package/package.json +1 -1
  19. package/test/api.test.js +32 -47
  20. package/test/examples.test.js +29 -24
  21. package/test/package.test.js +27 -15
  22. package/test/packlist.test.js +14 -17
  23. /package/examples/{collect-all-in.n3 → log-collect-all-in.n3} +0 -0
  24. /package/examples/{for-all-in.n3 → log-for-all-in.n3} +0 -0
  25. /package/examples/{skolem.n3 → log-skolem.n3} +0 -0
  26. /package/examples/{uri.n3 → log-uri.n3} +0 -0
  27. /package/examples/output/{collect-all-in.n3 → log-collect-all-in.n3} +0 -0
  28. /package/examples/output/{for-all-in.n3 → log-for-all-in.n3} +0 -0
  29. /package/examples/output/{skolem.n3 → log-skolem.n3} +0 -0
  30. /package/examples/output/{uri.n3 → log-uri.n3} +0 -0
@@ -1,290 +1,5 @@
1
1
  @prefix : <http://example.org/cranberry-calculus#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :DataSet1 :mean 2.642857142857143 .
6
- # It holds because the following instance of the rule body is provable:
7
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
8
- # :DataSet1 :zThreshold 2.0 .
9
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
10
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
11
- # (18.5 7) math:quotient 2.642857142857143 .
12
- # (?sq {
13
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
14
- # (?x 2.642857142857143) math:difference ?d .
15
- # (?d 2.0) math:exponentiation ?sq .
16
- # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
17
- # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
18
- # (63.58214285714286 7) math:quotient 9.083163265306123 .
19
- # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
20
- # via the schematic forward rule:
21
- # {
22
- # :DataSet1 :values ?xs .
23
- # :DataSet1 :zThreshold ?thr .
24
- # ?xs list:length ?n .
25
- # ?xs math:sum ?sum .
26
- # (?sum ?n) math:quotient ?mean .
27
- # (?sq {
28
- # ?xs list:member ?x .
29
- # (?x ?mean) math:difference ?d .
30
- # (?d 2.0) math:exponentiation ?sq .
31
- # } ?sqList) log:collectAllIn ?_b1 .
32
- # ?sqList math:sum ?sse .
33
- # (?sse ?n) math:quotient ?var .
34
- # (?var 0.5) math:exponentiation ?std .
35
- # } => {
36
- # :DataSet1 :mean ?mean .
37
- # :DataSet1 :variance ?var .
38
- # :DataSet1 :stddev ?std .
39
- # } .
40
- # with substitution (on rule variables):
41
- # ?mean = 2.642857142857143
42
- # ?n = 7
43
- # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
44
- # ?sse = 63.58214285714286
45
- # ?std = 3.0138286721886036
46
- # ?sum = 18.5
47
- # ?thr = 2.0
48
- # ?var = 9.083163265306123
49
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
50
- # Therefore the derived triple above is entailed by the rules and facts.
51
- # ----------------------------------------------------------------------
52
-
53
- :DataSet1 :mean 2.642857142857143 .
54
-
55
- # ----------------------------------------------------------------------
56
- # Proof for derived triple:
57
- # :DataSet1 :variance 9.083163265306123 .
58
- # It holds because the following instance of the rule body is provable:
59
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
60
- # :DataSet1 :zThreshold 2.0 .
61
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
62
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
63
- # (18.5 7) math:quotient 2.642857142857143 .
64
- # (?sq {
65
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
66
- # (?x 2.642857142857143) math:difference ?d .
67
- # (?d 2.0) math:exponentiation ?sq .
68
- # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
69
- # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
70
- # (63.58214285714286 7) math:quotient 9.083163265306123 .
71
- # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
72
- # via the schematic forward rule:
73
- # {
74
- # :DataSet1 :values ?xs .
75
- # :DataSet1 :zThreshold ?thr .
76
- # ?xs list:length ?n .
77
- # ?xs math:sum ?sum .
78
- # (?sum ?n) math:quotient ?mean .
79
- # (?sq {
80
- # ?xs list:member ?x .
81
- # (?x ?mean) math:difference ?d .
82
- # (?d 2.0) math:exponentiation ?sq .
83
- # } ?sqList) log:collectAllIn ?_b1 .
84
- # ?sqList math:sum ?sse .
85
- # (?sse ?n) math:quotient ?var .
86
- # (?var 0.5) math:exponentiation ?std .
87
- # } => {
88
- # :DataSet1 :mean ?mean .
89
- # :DataSet1 :variance ?var .
90
- # :DataSet1 :stddev ?std .
91
- # } .
92
- # with substitution (on rule variables):
93
- # ?mean = 2.642857142857143
94
- # ?n = 7
95
- # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
96
- # ?sse = 63.58214285714286
97
- # ?std = 3.0138286721886036
98
- # ?sum = 18.5
99
- # ?thr = 2.0
100
- # ?var = 9.083163265306123
101
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
102
- # Therefore the derived triple above is entailed by the rules and facts.
103
- # ----------------------------------------------------------------------
104
-
105
- :DataSet1 :variance 9.083163265306123 .
106
-
107
- # ----------------------------------------------------------------------
108
- # Proof for derived triple:
109
- # :DataSet1 :stddev 3.0138286721886036 .
110
- # It holds because the following instance of the rule body is provable:
111
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
112
- # :DataSet1 :zThreshold 2.0 .
113
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
114
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
115
- # (18.5 7) math:quotient 2.642857142857143 .
116
- # (?sq {
117
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
118
- # (?x 2.642857142857143) math:difference ?d .
119
- # (?d 2.0) math:exponentiation ?sq .
120
- # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
121
- # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
122
- # (63.58214285714286 7) math:quotient 9.083163265306123 .
123
- # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
124
- # via the schematic forward rule:
125
- # {
126
- # :DataSet1 :values ?xs .
127
- # :DataSet1 :zThreshold ?thr .
128
- # ?xs list:length ?n .
129
- # ?xs math:sum ?sum .
130
- # (?sum ?n) math:quotient ?mean .
131
- # (?sq {
132
- # ?xs list:member ?x .
133
- # (?x ?mean) math:difference ?d .
134
- # (?d 2.0) math:exponentiation ?sq .
135
- # } ?sqList) log:collectAllIn ?_b1 .
136
- # ?sqList math:sum ?sse .
137
- # (?sse ?n) math:quotient ?var .
138
- # (?var 0.5) math:exponentiation ?std .
139
- # } => {
140
- # :DataSet1 :mean ?mean .
141
- # :DataSet1 :variance ?var .
142
- # :DataSet1 :stddev ?std .
143
- # } .
144
- # with substitution (on rule variables):
145
- # ?mean = 2.642857142857143
146
- # ?n = 7
147
- # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
148
- # ?sse = 63.58214285714286
149
- # ?std = 3.0138286721886036
150
- # ?sum = 18.5
151
- # ?thr = 2.0
152
- # ?var = 9.083163265306123
153
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
154
- # Therefore the derived triple above is entailed by the rules and facts.
155
- # ----------------------------------------------------------------------
156
-
157
- :DataSet1 :stddev 3.0138286721886036 .
158
-
159
- # ----------------------------------------------------------------------
160
- # Proof for derived triple:
161
- # _:sk_0 :value 10.0 .
162
- # It holds because the following instance of the rule body is provable:
163
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
164
- # :DataSet1 :mean 2.642857142857143 .
165
- # :DataSet1 :stddev 3.0138286721886036 .
166
- # :DataSet1 :zThreshold 2.0 .
167
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
168
- # (10.0 2.642857142857143) math:difference 7.357142857142858 .
169
- # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
170
- # 2.44112843076783 math:absoluteValue 2.44112843076783 .
171
- # 2.44112843076783 math:greaterThan 2.0 .
172
- # via the schematic forward rule:
173
- # {
174
- # :DataSet1 :values ?xs .
175
- # :DataSet1 :mean ?mean .
176
- # :DataSet1 :stddev ?std .
177
- # :DataSet1 :zThreshold ?thr .
178
- # ?xs list:member ?x .
179
- # (?x ?mean) math:difference ?d .
180
- # (?d ?std) math:quotient ?z .
181
- # ?z math:absoluteValue ?absz .
182
- # ?absz math:greaterThan ?thr .
183
- # } => {
184
- # _:b1 :value ?x .
185
- # _:b1 :zScore ?z .
186
- # :DataSet1 :outlier _:b1 .
187
- # } .
188
- # with substitution (on rule variables):
189
- # ?absz = 2.44112843076783
190
- # ?d = 7.357142857142858
191
- # ?mean = 2.642857142857143
192
- # ?std = 3.0138286721886036
193
- # ?thr = 2.0
194
- # ?x = 10.0
195
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
196
- # ?z = 2.44112843076783
197
- # Therefore the derived triple above is entailed by the rules and facts.
198
- # ----------------------------------------------------------------------
199
-
200
- _:sk_0 :value 10.0 .
201
-
202
- # ----------------------------------------------------------------------
203
- # Proof for derived triple:
204
- # _:sk_0 :zScore 2.44112843076783 .
205
- # It holds because the following instance of the rule body is provable:
206
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
207
- # :DataSet1 :mean 2.642857142857143 .
208
- # :DataSet1 :stddev 3.0138286721886036 .
209
- # :DataSet1 :zThreshold 2.0 .
210
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
211
- # (10.0 2.642857142857143) math:difference 7.357142857142858 .
212
- # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
213
- # 2.44112843076783 math:absoluteValue 2.44112843076783 .
214
- # 2.44112843076783 math:greaterThan 2.0 .
215
- # via the schematic forward rule:
216
- # {
217
- # :DataSet1 :values ?xs .
218
- # :DataSet1 :mean ?mean .
219
- # :DataSet1 :stddev ?std .
220
- # :DataSet1 :zThreshold ?thr .
221
- # ?xs list:member ?x .
222
- # (?x ?mean) math:difference ?d .
223
- # (?d ?std) math:quotient ?z .
224
- # ?z math:absoluteValue ?absz .
225
- # ?absz math:greaterThan ?thr .
226
- # } => {
227
- # _:b1 :value ?x .
228
- # _:b1 :zScore ?z .
229
- # :DataSet1 :outlier _:b1 .
230
- # } .
231
- # with substitution (on rule variables):
232
- # ?absz = 2.44112843076783
233
- # ?d = 7.357142857142858
234
- # ?mean = 2.642857142857143
235
- # ?std = 3.0138286721886036
236
- # ?thr = 2.0
237
- # ?x = 10.0
238
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
239
- # ?z = 2.44112843076783
240
- # Therefore the derived triple above is entailed by the rules and facts.
241
- # ----------------------------------------------------------------------
242
-
243
- _:sk_0 :zScore 2.44112843076783 .
244
-
245
- # ----------------------------------------------------------------------
246
- # Proof for derived triple:
247
- # :DataSet1 :outlier _:sk_0 .
248
- # It holds because the following instance of the rule body is provable:
249
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
250
- # :DataSet1 :mean 2.642857142857143 .
251
- # :DataSet1 :stddev 3.0138286721886036 .
252
- # :DataSet1 :zThreshold 2.0 .
253
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
254
- # (10.0 2.642857142857143) math:difference 7.357142857142858 .
255
- # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
256
- # 2.44112843076783 math:absoluteValue 2.44112843076783 .
257
- # 2.44112843076783 math:greaterThan 2.0 .
258
- # via the schematic forward rule:
259
- # {
260
- # :DataSet1 :values ?xs .
261
- # :DataSet1 :mean ?mean .
262
- # :DataSet1 :stddev ?std .
263
- # :DataSet1 :zThreshold ?thr .
264
- # ?xs list:member ?x .
265
- # (?x ?mean) math:difference ?d .
266
- # (?d ?std) math:quotient ?z .
267
- # ?z math:absoluteValue ?absz .
268
- # ?absz math:greaterThan ?thr .
269
- # } => {
270
- # _:b1 :value ?x .
271
- # _:b1 :zScore ?z .
272
- # :DataSet1 :outlier _:b1 .
273
- # } .
274
- # with substitution (on rule variables):
275
- # ?absz = 2.44112843076783
276
- # ?d = 7.357142857142858
277
- # ?mean = 2.642857142857143
278
- # ?std = 3.0138286721886036
279
- # ?thr = 2.0
280
- # ?x = 10.0
281
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
282
- # ?z = 2.44112843076783
283
- # Therefore the derived triple above is entailed by the rules and facts.
284
- # ----------------------------------------------------------------------
285
-
286
- :DataSet1 :outlier _:sk_0 .
287
-
288
3
  # ----------------------------------------------------------------------
289
4
  # Proof for derived triple:
290
5
  # :VecA :dotWithVecB 12 .
@@ -362,7 +77,7 @@ _:sk_0 :zScore 2.44112843076783 .
362
77
 
363
78
  # ----------------------------------------------------------------------
364
79
  # Proof for derived triple:
365
- # _:sk_1 :radians 0.9272952180016123 .
80
+ # _:sk_0 :radians 0.9272952180016123 .
366
81
  # It holds because the following instance of the rule body is provable:
367
82
  # :VecA :x 3.0 .
368
83
  # :VecA :y 4.0 .
@@ -433,11 +148,11 @@ _:sk_0 :zScore 2.44112843076783 .
433
148
  # Therefore the derived triple above is entailed by the rules and facts.
434
149
  # ----------------------------------------------------------------------
435
150
 
436
- _:sk_1 :radians 0.9272952180016123 .
151
+ _:sk_0 :radians 0.9272952180016123 .
437
152
 
438
153
  # ----------------------------------------------------------------------
439
154
  # Proof for derived triple:
440
- # _:sk_1 :degrees 53.13010235415598 .
155
+ # _:sk_0 :degrees 53.13010235415598 .
441
156
  # It holds because the following instance of the rule body is provable:
442
157
  # :VecA :x 3.0 .
443
158
  # :VecA :y 4.0 .
@@ -508,11 +223,11 @@ _:sk_1 :radians 0.9272952180016123 .
508
223
  # Therefore the derived triple above is entailed by the rules and facts.
509
224
  # ----------------------------------------------------------------------
510
225
 
511
- _:sk_1 :degrees 53.13010235415598 .
226
+ _:sk_0 :degrees 53.13010235415598 .
512
227
 
513
228
  # ----------------------------------------------------------------------
514
229
  # Proof for derived triple:
515
- # :VecA :angleToVecB _:sk_1 .
230
+ # :VecA :angleToVecB _:sk_0 .
516
231
  # It holds because the following instance of the rule body is provable:
517
232
  # :VecA :x 3.0 .
518
233
  # :VecA :y 4.0 .
@@ -561,33 +276,199 @@ _:sk_1 :degrees 53.13010235415598 .
561
276
  # :VecA :angleToVecB _:b2 .
562
277
  # } .
563
278
  # with substitution (on rule variables):
564
- # ?a2 = 25
565
- # ?aNorm = 5
566
- # ?ax = 3.0
567
- # ?ax2 = 9
568
- # ?axbx = 12
569
- # ?ay = 4.0
570
- # ?ay2 = 16
571
- # ?ayby = 0
572
- # ?b2 = 16
573
- # ?bNorm = 4
574
- # ?bx = 4.0
575
- # ?bx2 = 16
576
- # ?by = 0.0
577
- # ?by2 = 0
578
- # ?cosTheta = 0.6
579
- # ?den = 20
580
- # ?dot = 12
581
- # ?thetaDeg = 53.13010235415598
582
- # ?thetaRad = 0.9272952180016123
279
+ # ?a2 = 25
280
+ # ?aNorm = 5
281
+ # ?ax = 3.0
282
+ # ?ax2 = 9
283
+ # ?axbx = 12
284
+ # ?ay = 4.0
285
+ # ?ay2 = 16
286
+ # ?ayby = 0
287
+ # ?b2 = 16
288
+ # ?bNorm = 4
289
+ # ?bx = 4.0
290
+ # ?bx2 = 16
291
+ # ?by = 0.0
292
+ # ?by2 = 0
293
+ # ?cosTheta = 0.6
294
+ # ?den = 20
295
+ # ?dot = 12
296
+ # ?thetaDeg = 53.13010235415598
297
+ # ?thetaRad = 0.9272952180016123
298
+ # Therefore the derived triple above is entailed by the rules and facts.
299
+ # ----------------------------------------------------------------------
300
+
301
+ :VecA :angleToVecB _:sk_0 .
302
+
303
+ # ----------------------------------------------------------------------
304
+ # Proof for derived triple:
305
+ # :Shot1 :vx 21.213203435596427 .
306
+ # It holds because the following instance of the rule body is provable:
307
+ # :Shot1 :speed 30.0 .
308
+ # :Shot1 :angleRad 0.7853981633974483 .
309
+ # :Shot1 :g 9.81 .
310
+ # :Shot1 :tSample 2.5 .
311
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
312
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
313
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
314
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
315
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
316
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
317
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
318
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
319
+ # (2.0 9.81) math:product 19.62 .
320
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
321
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
322
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
323
+ # (2.5 2.0) math:exponentiation 6.25 .
324
+ # (9.81 6.25) math:product 61.3125 .
325
+ # (0.5 61.3125) math:product 30.65625 .
326
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
327
+ # via the schematic forward rule:
328
+ # {
329
+ # :Shot1 :speed ?v .
330
+ # :Shot1 :angleRad ?theta .
331
+ # :Shot1 :g ?g .
332
+ # :Shot1 :tSample ?t .
333
+ # ?theta math:sin ?sinT .
334
+ # ?theta math:cos ?cosT .
335
+ # (?v ?cosT) math:product ?vx .
336
+ # (?v ?sinT) math:product ?vy .
337
+ # (2.0 ?vy) math:product ?twoVy .
338
+ # (?twoVy ?g) math:quotient ?tFlight .
339
+ # (?vx ?tFlight) math:product ?range .
340
+ # (?vy 2.0) math:exponentiation ?vy2 .
341
+ # (2.0 ?g) math:product ?twoG .
342
+ # (?vy2 ?twoG) math:quotient ?hMax .
343
+ # (?vx ?t) math:product ?xAtT .
344
+ # (?vy ?t) math:product ?vy_t .
345
+ # (?t 2.0) math:exponentiation ?t2 .
346
+ # (?g ?t2) math:product ?g_t2 .
347
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
348
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
349
+ # } => {
350
+ # :Shot1 :vx ?vx .
351
+ # :Shot1 :vy ?vy .
352
+ # :Shot1 :timeOfFlight ?tFlight .
353
+ # :Shot1 :range ?range .
354
+ # :Shot1 :maxHeight ?hMax .
355
+ # _:b3 :t ?t .
356
+ # _:b3 :x ?xAtT .
357
+ # _:b3 :y ?yAtT .
358
+ # :Shot1 :positionAtSample _:b3 .
359
+ # } .
360
+ # with substitution (on rule variables):
361
+ # ?cosT = 0.7071067811865476
362
+ # ?g = 9.81
363
+ # ?g_t2 = 61.3125
364
+ # ?hMax = 22.935779816513755
365
+ # ?half_g_t2 = 30.65625
366
+ # ?range = 91.74311926605502
367
+ # ?sinT = 0.7071067811865475
368
+ # ?t = 2.5
369
+ # ?t2 = 6.25
370
+ # ?tFlight = 4.324812117348913
371
+ # ?theta = 0.7853981633974483
372
+ # ?twoG = 19.62
373
+ # ?twoVy = 42.426406871192846
374
+ # ?v = 30.0
375
+ # ?vx = 21.213203435596427
376
+ # ?vy = 21.213203435596423
377
+ # ?vy2 = 449.9999999999999
378
+ # ?vy_t = 53.03300858899106
379
+ # ?xAtT = 53.033008588991066
380
+ # ?yAtT = 22.37675858899106
381
+ # Therefore the derived triple above is entailed by the rules and facts.
382
+ # ----------------------------------------------------------------------
383
+
384
+ :Shot1 :vx 21.213203435596427 .
385
+
386
+ # ----------------------------------------------------------------------
387
+ # Proof for derived triple:
388
+ # :Shot1 :vy 21.213203435596423 .
389
+ # It holds because the following instance of the rule body is provable:
390
+ # :Shot1 :speed 30.0 .
391
+ # :Shot1 :angleRad 0.7853981633974483 .
392
+ # :Shot1 :g 9.81 .
393
+ # :Shot1 :tSample 2.5 .
394
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
395
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
396
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
397
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
398
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
399
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
400
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
401
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
402
+ # (2.0 9.81) math:product 19.62 .
403
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
404
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
405
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
406
+ # (2.5 2.0) math:exponentiation 6.25 .
407
+ # (9.81 6.25) math:product 61.3125 .
408
+ # (0.5 61.3125) math:product 30.65625 .
409
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
410
+ # via the schematic forward rule:
411
+ # {
412
+ # :Shot1 :speed ?v .
413
+ # :Shot1 :angleRad ?theta .
414
+ # :Shot1 :g ?g .
415
+ # :Shot1 :tSample ?t .
416
+ # ?theta math:sin ?sinT .
417
+ # ?theta math:cos ?cosT .
418
+ # (?v ?cosT) math:product ?vx .
419
+ # (?v ?sinT) math:product ?vy .
420
+ # (2.0 ?vy) math:product ?twoVy .
421
+ # (?twoVy ?g) math:quotient ?tFlight .
422
+ # (?vx ?tFlight) math:product ?range .
423
+ # (?vy 2.0) math:exponentiation ?vy2 .
424
+ # (2.0 ?g) math:product ?twoG .
425
+ # (?vy2 ?twoG) math:quotient ?hMax .
426
+ # (?vx ?t) math:product ?xAtT .
427
+ # (?vy ?t) math:product ?vy_t .
428
+ # (?t 2.0) math:exponentiation ?t2 .
429
+ # (?g ?t2) math:product ?g_t2 .
430
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
431
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
432
+ # } => {
433
+ # :Shot1 :vx ?vx .
434
+ # :Shot1 :vy ?vy .
435
+ # :Shot1 :timeOfFlight ?tFlight .
436
+ # :Shot1 :range ?range .
437
+ # :Shot1 :maxHeight ?hMax .
438
+ # _:b3 :t ?t .
439
+ # _:b3 :x ?xAtT .
440
+ # _:b3 :y ?yAtT .
441
+ # :Shot1 :positionAtSample _:b3 .
442
+ # } .
443
+ # with substitution (on rule variables):
444
+ # ?cosT = 0.7071067811865476
445
+ # ?g = 9.81
446
+ # ?g_t2 = 61.3125
447
+ # ?hMax = 22.935779816513755
448
+ # ?half_g_t2 = 30.65625
449
+ # ?range = 91.74311926605502
450
+ # ?sinT = 0.7071067811865475
451
+ # ?t = 2.5
452
+ # ?t2 = 6.25
453
+ # ?tFlight = 4.324812117348913
454
+ # ?theta = 0.7853981633974483
455
+ # ?twoG = 19.62
456
+ # ?twoVy = 42.426406871192846
457
+ # ?v = 30.0
458
+ # ?vx = 21.213203435596427
459
+ # ?vy = 21.213203435596423
460
+ # ?vy2 = 449.9999999999999
461
+ # ?vy_t = 53.03300858899106
462
+ # ?xAtT = 53.033008588991066
463
+ # ?yAtT = 22.37675858899106
583
464
  # Therefore the derived triple above is entailed by the rules and facts.
584
465
  # ----------------------------------------------------------------------
585
466
 
586
- :VecA :angleToVecB _:sk_1 .
467
+ :Shot1 :vy 21.213203435596423 .
587
468
 
588
469
  # ----------------------------------------------------------------------
589
470
  # Proof for derived triple:
590
- # :Shot1 :vx 21.213203435596427 .
471
+ # :Shot1 :timeOfFlight 4.324812117348913 .
591
472
  # It holds because the following instance of the rule body is provable:
592
473
  # :Shot1 :speed 30.0 .
593
474
  # :Shot1 :angleRad 0.7853981633974483 .
@@ -666,11 +547,11 @@ _:sk_1 :degrees 53.13010235415598 .
666
547
  # Therefore the derived triple above is entailed by the rules and facts.
667
548
  # ----------------------------------------------------------------------
668
549
 
669
- :Shot1 :vx 21.213203435596427 .
550
+ :Shot1 :timeOfFlight 4.324812117348913 .
670
551
 
671
552
  # ----------------------------------------------------------------------
672
553
  # Proof for derived triple:
673
- # :Shot1 :vy 21.213203435596423 .
554
+ # :Shot1 :range 91.74311926605502 .
674
555
  # It holds because the following instance of the rule body is provable:
675
556
  # :Shot1 :speed 30.0 .
676
557
  # :Shot1 :angleRad 0.7853981633974483 .
@@ -749,11 +630,11 @@ _:sk_1 :degrees 53.13010235415598 .
749
630
  # Therefore the derived triple above is entailed by the rules and facts.
750
631
  # ----------------------------------------------------------------------
751
632
 
752
- :Shot1 :vy 21.213203435596423 .
633
+ :Shot1 :range 91.74311926605502 .
753
634
 
754
635
  # ----------------------------------------------------------------------
755
636
  # Proof for derived triple:
756
- # :Shot1 :timeOfFlight 4.324812117348913 .
637
+ # :Shot1 :maxHeight 22.935779816513755 .
757
638
  # It holds because the following instance of the rule body is provable:
758
639
  # :Shot1 :speed 30.0 .
759
640
  # :Shot1 :angleRad 0.7853981633974483 .
@@ -832,11 +713,11 @@ _:sk_1 :degrees 53.13010235415598 .
832
713
  # Therefore the derived triple above is entailed by the rules and facts.
833
714
  # ----------------------------------------------------------------------
834
715
 
835
- :Shot1 :timeOfFlight 4.324812117348913 .
716
+ :Shot1 :maxHeight 22.935779816513755 .
836
717
 
837
718
  # ----------------------------------------------------------------------
838
719
  # Proof for derived triple:
839
- # :Shot1 :range 91.74311926605502 .
720
+ # _:sk_1 :t 2.5 .
840
721
  # It holds because the following instance of the rule body is provable:
841
722
  # :Shot1 :speed 30.0 .
842
723
  # :Shot1 :angleRad 0.7853981633974483 .
@@ -915,11 +796,11 @@ _:sk_1 :degrees 53.13010235415598 .
915
796
  # Therefore the derived triple above is entailed by the rules and facts.
916
797
  # ----------------------------------------------------------------------
917
798
 
918
- :Shot1 :range 91.74311926605502 .
799
+ _:sk_1 :t 2.5 .
919
800
 
920
801
  # ----------------------------------------------------------------------
921
802
  # Proof for derived triple:
922
- # :Shot1 :maxHeight 22.935779816513755 .
803
+ # _:sk_1 :x 53.033008588991066 .
923
804
  # It holds because the following instance of the rule body is provable:
924
805
  # :Shot1 :speed 30.0 .
925
806
  # :Shot1 :angleRad 0.7853981633974483 .
@@ -998,11 +879,11 @@ _:sk_1 :degrees 53.13010235415598 .
998
879
  # Therefore the derived triple above is entailed by the rules and facts.
999
880
  # ----------------------------------------------------------------------
1000
881
 
1001
- :Shot1 :maxHeight 22.935779816513755 .
882
+ _:sk_1 :x 53.033008588991066 .
1002
883
 
1003
884
  # ----------------------------------------------------------------------
1004
885
  # Proof for derived triple:
1005
- # _:sk_2 :t 2.5 .
886
+ # _:sk_1 :y 22.37675858899106 .
1006
887
  # It holds because the following instance of the rule body is provable:
1007
888
  # :Shot1 :speed 30.0 .
1008
889
  # :Shot1 :angleRad 0.7853981633974483 .
@@ -1081,11 +962,11 @@ _:sk_1 :degrees 53.13010235415598 .
1081
962
  # Therefore the derived triple above is entailed by the rules and facts.
1082
963
  # ----------------------------------------------------------------------
1083
964
 
1084
- _:sk_2 :t 2.5 .
965
+ _:sk_1 :y 22.37675858899106 .
1085
966
 
1086
967
  # ----------------------------------------------------------------------
1087
968
  # Proof for derived triple:
1088
- # _:sk_2 :x 53.033008588991066 .
969
+ # :Shot1 :positionAtSample _:sk_1 .
1089
970
  # It holds because the following instance of the rule body is provable:
1090
971
  # :Shot1 :speed 30.0 .
1091
972
  # :Shot1 :angleRad 0.7853981633974483 .
@@ -1130,205 +1011,324 @@ _:sk_2 :t 2.5 .
1130
1011
  # (0.5 ?g_t2) math:product ?half_g_t2 .
1131
1012
  # (?vy_t ?half_g_t2) math:difference ?yAtT .
1132
1013
  # } => {
1133
- # :Shot1 :vx ?vx .
1134
- # :Shot1 :vy ?vy .
1135
- # :Shot1 :timeOfFlight ?tFlight .
1136
- # :Shot1 :range ?range .
1137
- # :Shot1 :maxHeight ?hMax .
1138
- # _:b3 :t ?t .
1139
- # _:b3 :x ?xAtT .
1140
- # _:b3 :y ?yAtT .
1141
- # :Shot1 :positionAtSample _:b3 .
1014
+ # :Shot1 :vx ?vx .
1015
+ # :Shot1 :vy ?vy .
1016
+ # :Shot1 :timeOfFlight ?tFlight .
1017
+ # :Shot1 :range ?range .
1018
+ # :Shot1 :maxHeight ?hMax .
1019
+ # _:b3 :t ?t .
1020
+ # _:b3 :x ?xAtT .
1021
+ # _:b3 :y ?yAtT .
1022
+ # :Shot1 :positionAtSample _:b3 .
1023
+ # } .
1024
+ # with substitution (on rule variables):
1025
+ # ?cosT = 0.7071067811865476
1026
+ # ?g = 9.81
1027
+ # ?g_t2 = 61.3125
1028
+ # ?hMax = 22.935779816513755
1029
+ # ?half_g_t2 = 30.65625
1030
+ # ?range = 91.74311926605502
1031
+ # ?sinT = 0.7071067811865475
1032
+ # ?t = 2.5
1033
+ # ?t2 = 6.25
1034
+ # ?tFlight = 4.324812117348913
1035
+ # ?theta = 0.7853981633974483
1036
+ # ?twoG = 19.62
1037
+ # ?twoVy = 42.426406871192846
1038
+ # ?v = 30.0
1039
+ # ?vx = 21.213203435596427
1040
+ # ?vy = 21.213203435596423
1041
+ # ?vy2 = 449.9999999999999
1042
+ # ?vy_t = 53.03300858899106
1043
+ # ?xAtT = 53.033008588991066
1044
+ # ?yAtT = 22.37675858899106
1045
+ # Therefore the derived triple above is entailed by the rules and facts.
1046
+ # ----------------------------------------------------------------------
1047
+
1048
+ :Shot1 :positionAtSample _:sk_1 .
1049
+
1050
+ # ----------------------------------------------------------------------
1051
+ # Proof for derived triple:
1052
+ # :DataSet1 :mean 2.642857142857143 .
1053
+ # It holds because the following instance of the rule body is provable:
1054
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1055
+ # :DataSet1 :zThreshold 2.0 .
1056
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
1057
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
1058
+ # (18.5 7) math:quotient 2.642857142857143 .
1059
+ # (?sq {
1060
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
1061
+ # (?x 2.642857142857143) math:difference ?d .
1062
+ # (?d 2.0) math:exponentiation ?sq .
1063
+ # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
1064
+ # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
1065
+ # (63.58214285714286 7) math:quotient 9.083163265306123 .
1066
+ # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
1067
+ # via the schematic forward rule:
1068
+ # {
1069
+ # :DataSet1 :values ?xs .
1070
+ # :DataSet1 :zThreshold ?thr .
1071
+ # ?xs list:length ?n .
1072
+ # ?xs math:sum ?sum .
1073
+ # (?sum ?n) math:quotient ?mean .
1074
+ # (?sq {
1075
+ # ?xs list:member ?x .
1076
+ # (?x ?mean) math:difference ?d .
1077
+ # (?d 2.0) math:exponentiation ?sq .
1078
+ # } ?sqList) log:collectAllIn ?_b1 .
1079
+ # ?sqList math:sum ?sse .
1080
+ # (?sse ?n) math:quotient ?var .
1081
+ # (?var 0.5) math:exponentiation ?std .
1082
+ # } => {
1083
+ # :DataSet1 :mean ?mean .
1084
+ # :DataSet1 :variance ?var .
1085
+ # :DataSet1 :stddev ?std .
1086
+ # } .
1087
+ # with substitution (on rule variables):
1088
+ # ?mean = 2.642857142857143
1089
+ # ?n = 7
1090
+ # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
1091
+ # ?sse = 63.58214285714286
1092
+ # ?std = 3.0138286721886036
1093
+ # ?sum = 18.5
1094
+ # ?thr = 2.0
1095
+ # ?var = 9.083163265306123
1096
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1097
+ # Therefore the derived triple above is entailed by the rules and facts.
1098
+ # ----------------------------------------------------------------------
1099
+
1100
+ :DataSet1 :mean 2.642857142857143 .
1101
+
1102
+ # ----------------------------------------------------------------------
1103
+ # Proof for derived triple:
1104
+ # :DataSet1 :variance 9.083163265306123 .
1105
+ # It holds because the following instance of the rule body is provable:
1106
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1107
+ # :DataSet1 :zThreshold 2.0 .
1108
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
1109
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
1110
+ # (18.5 7) math:quotient 2.642857142857143 .
1111
+ # (?sq {
1112
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
1113
+ # (?x 2.642857142857143) math:difference ?d .
1114
+ # (?d 2.0) math:exponentiation ?sq .
1115
+ # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
1116
+ # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
1117
+ # (63.58214285714286 7) math:quotient 9.083163265306123 .
1118
+ # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
1119
+ # via the schematic forward rule:
1120
+ # {
1121
+ # :DataSet1 :values ?xs .
1122
+ # :DataSet1 :zThreshold ?thr .
1123
+ # ?xs list:length ?n .
1124
+ # ?xs math:sum ?sum .
1125
+ # (?sum ?n) math:quotient ?mean .
1126
+ # (?sq {
1127
+ # ?xs list:member ?x .
1128
+ # (?x ?mean) math:difference ?d .
1129
+ # (?d 2.0) math:exponentiation ?sq .
1130
+ # } ?sqList) log:collectAllIn ?_b1 .
1131
+ # ?sqList math:sum ?sse .
1132
+ # (?sse ?n) math:quotient ?var .
1133
+ # (?var 0.5) math:exponentiation ?std .
1134
+ # } => {
1135
+ # :DataSet1 :mean ?mean .
1136
+ # :DataSet1 :variance ?var .
1137
+ # :DataSet1 :stddev ?std .
1138
+ # } .
1139
+ # with substitution (on rule variables):
1140
+ # ?mean = 2.642857142857143
1141
+ # ?n = 7
1142
+ # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
1143
+ # ?sse = 63.58214285714286
1144
+ # ?std = 3.0138286721886036
1145
+ # ?sum = 18.5
1146
+ # ?thr = 2.0
1147
+ # ?var = 9.083163265306123
1148
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1149
+ # Therefore the derived triple above is entailed by the rules and facts.
1150
+ # ----------------------------------------------------------------------
1151
+
1152
+ :DataSet1 :variance 9.083163265306123 .
1153
+
1154
+ # ----------------------------------------------------------------------
1155
+ # Proof for derived triple:
1156
+ # :DataSet1 :stddev 3.0138286721886036 .
1157
+ # It holds because the following instance of the rule body is provable:
1158
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1159
+ # :DataSet1 :zThreshold 2.0 .
1160
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
1161
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
1162
+ # (18.5 7) math:quotient 2.642857142857143 .
1163
+ # (?sq {
1164
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
1165
+ # (?x 2.642857142857143) math:difference ?d .
1166
+ # (?d 2.0) math:exponentiation ?sq .
1167
+ # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
1168
+ # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
1169
+ # (63.58214285714286 7) math:quotient 9.083163265306123 .
1170
+ # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
1171
+ # via the schematic forward rule:
1172
+ # {
1173
+ # :DataSet1 :values ?xs .
1174
+ # :DataSet1 :zThreshold ?thr .
1175
+ # ?xs list:length ?n .
1176
+ # ?xs math:sum ?sum .
1177
+ # (?sum ?n) math:quotient ?mean .
1178
+ # (?sq {
1179
+ # ?xs list:member ?x .
1180
+ # (?x ?mean) math:difference ?d .
1181
+ # (?d 2.0) math:exponentiation ?sq .
1182
+ # } ?sqList) log:collectAllIn ?_b1 .
1183
+ # ?sqList math:sum ?sse .
1184
+ # (?sse ?n) math:quotient ?var .
1185
+ # (?var 0.5) math:exponentiation ?std .
1186
+ # } => {
1187
+ # :DataSet1 :mean ?mean .
1188
+ # :DataSet1 :variance ?var .
1189
+ # :DataSet1 :stddev ?std .
1190
+ # } .
1191
+ # with substitution (on rule variables):
1192
+ # ?mean = 2.642857142857143
1193
+ # ?n = 7
1194
+ # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
1195
+ # ?sse = 63.58214285714286
1196
+ # ?std = 3.0138286721886036
1197
+ # ?sum = 18.5
1198
+ # ?thr = 2.0
1199
+ # ?var = 9.083163265306123
1200
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1201
+ # Therefore the derived triple above is entailed by the rules and facts.
1202
+ # ----------------------------------------------------------------------
1203
+
1204
+ :DataSet1 :stddev 3.0138286721886036 .
1205
+
1206
+ # ----------------------------------------------------------------------
1207
+ # Proof for derived triple:
1208
+ # _:sk_2 :value 10.0 .
1209
+ # It holds because the following instance of the rule body is provable:
1210
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1211
+ # :DataSet1 :mean 2.642857142857143 .
1212
+ # :DataSet1 :stddev 3.0138286721886036 .
1213
+ # :DataSet1 :zThreshold 2.0 .
1214
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
1215
+ # (10.0 2.642857142857143) math:difference 7.357142857142858 .
1216
+ # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
1217
+ # 2.44112843076783 math:absoluteValue 2.44112843076783 .
1218
+ # 2.44112843076783 math:greaterThan 2.0 .
1219
+ # via the schematic forward rule:
1220
+ # {
1221
+ # :DataSet1 :values ?xs .
1222
+ # :DataSet1 :mean ?mean .
1223
+ # :DataSet1 :stddev ?std .
1224
+ # :DataSet1 :zThreshold ?thr .
1225
+ # ?xs list:member ?x .
1226
+ # (?x ?mean) math:difference ?d .
1227
+ # (?d ?std) math:quotient ?z .
1228
+ # ?z math:absoluteValue ?absz .
1229
+ # ?absz math:greaterThan ?thr .
1230
+ # } => {
1231
+ # _:b1 :value ?x .
1232
+ # _:b1 :zScore ?z .
1233
+ # :DataSet1 :outlier _:b1 .
1142
1234
  # } .
1143
1235
  # with substitution (on rule variables):
1144
- # ?cosT = 0.7071067811865476
1145
- # ?g = 9.81
1146
- # ?g_t2 = 61.3125
1147
- # ?hMax = 22.935779816513755
1148
- # ?half_g_t2 = 30.65625
1149
- # ?range = 91.74311926605502
1150
- # ?sinT = 0.7071067811865475
1151
- # ?t = 2.5
1152
- # ?t2 = 6.25
1153
- # ?tFlight = 4.324812117348913
1154
- # ?theta = 0.7853981633974483
1155
- # ?twoG = 19.62
1156
- # ?twoVy = 42.426406871192846
1157
- # ?v = 30.0
1158
- # ?vx = 21.213203435596427
1159
- # ?vy = 21.213203435596423
1160
- # ?vy2 = 449.9999999999999
1161
- # ?vy_t = 53.03300858899106
1162
- # ?xAtT = 53.033008588991066
1163
- # ?yAtT = 22.37675858899106
1236
+ # ?absz = 2.44112843076783
1237
+ # ?d = 7.357142857142858
1238
+ # ?mean = 2.642857142857143
1239
+ # ?std = 3.0138286721886036
1240
+ # ?thr = 2.0
1241
+ # ?x = 10.0
1242
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1243
+ # ?z = 2.44112843076783
1164
1244
  # Therefore the derived triple above is entailed by the rules and facts.
1165
1245
  # ----------------------------------------------------------------------
1166
1246
 
1167
- _:sk_2 :x 53.033008588991066 .
1247
+ _:sk_2 :value 10.0 .
1168
1248
 
1169
1249
  # ----------------------------------------------------------------------
1170
1250
  # Proof for derived triple:
1171
- # _:sk_2 :y 22.37675858899106 .
1251
+ # _:sk_2 :zScore 2.44112843076783 .
1172
1252
  # It holds because the following instance of the rule body is provable:
1173
- # :Shot1 :speed 30.0 .
1174
- # :Shot1 :angleRad 0.7853981633974483 .
1175
- # :Shot1 :g 9.81 .
1176
- # :Shot1 :tSample 2.5 .
1177
- # 0.7853981633974483 math:sin 0.7071067811865475 .
1178
- # 0.7853981633974483 math:cos 0.7071067811865476 .
1179
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
1180
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
1181
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
1182
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
1183
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
1184
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
1185
- # (2.0 9.81) math:product 19.62 .
1186
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
1187
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
1188
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
1189
- # (2.5 2.0) math:exponentiation 6.25 .
1190
- # (9.81 6.25) math:product 61.3125 .
1191
- # (0.5 61.3125) math:product 30.65625 .
1192
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
1253
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1254
+ # :DataSet1 :mean 2.642857142857143 .
1255
+ # :DataSet1 :stddev 3.0138286721886036 .
1256
+ # :DataSet1 :zThreshold 2.0 .
1257
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
1258
+ # (10.0 2.642857142857143) math:difference 7.357142857142858 .
1259
+ # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
1260
+ # 2.44112843076783 math:absoluteValue 2.44112843076783 .
1261
+ # 2.44112843076783 math:greaterThan 2.0 .
1193
1262
  # via the schematic forward rule:
1194
1263
  # {
1195
- # :Shot1 :speed ?v .
1196
- # :Shot1 :angleRad ?theta .
1197
- # :Shot1 :g ?g .
1198
- # :Shot1 :tSample ?t .
1199
- # ?theta math:sin ?sinT .
1200
- # ?theta math:cos ?cosT .
1201
- # (?v ?cosT) math:product ?vx .
1202
- # (?v ?sinT) math:product ?vy .
1203
- # (2.0 ?vy) math:product ?twoVy .
1204
- # (?twoVy ?g) math:quotient ?tFlight .
1205
- # (?vx ?tFlight) math:product ?range .
1206
- # (?vy 2.0) math:exponentiation ?vy2 .
1207
- # (2.0 ?g) math:product ?twoG .
1208
- # (?vy2 ?twoG) math:quotient ?hMax .
1209
- # (?vx ?t) math:product ?xAtT .
1210
- # (?vy ?t) math:product ?vy_t .
1211
- # (?t 2.0) math:exponentiation ?t2 .
1212
- # (?g ?t2) math:product ?g_t2 .
1213
- # (0.5 ?g_t2) math:product ?half_g_t2 .
1214
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
1264
+ # :DataSet1 :values ?xs .
1265
+ # :DataSet1 :mean ?mean .
1266
+ # :DataSet1 :stddev ?std .
1267
+ # :DataSet1 :zThreshold ?thr .
1268
+ # ?xs list:member ?x .
1269
+ # (?x ?mean) math:difference ?d .
1270
+ # (?d ?std) math:quotient ?z .
1271
+ # ?z math:absoluteValue ?absz .
1272
+ # ?absz math:greaterThan ?thr .
1215
1273
  # } => {
1216
- # :Shot1 :vx ?vx .
1217
- # :Shot1 :vy ?vy .
1218
- # :Shot1 :timeOfFlight ?tFlight .
1219
- # :Shot1 :range ?range .
1220
- # :Shot1 :maxHeight ?hMax .
1221
- # _:b3 :t ?t .
1222
- # _:b3 :x ?xAtT .
1223
- # _:b3 :y ?yAtT .
1224
- # :Shot1 :positionAtSample _:b3 .
1274
+ # _:b1 :value ?x .
1275
+ # _:b1 :zScore ?z .
1276
+ # :DataSet1 :outlier _:b1 .
1225
1277
  # } .
1226
1278
  # with substitution (on rule variables):
1227
- # ?cosT = 0.7071067811865476
1228
- # ?g = 9.81
1229
- # ?g_t2 = 61.3125
1230
- # ?hMax = 22.935779816513755
1231
- # ?half_g_t2 = 30.65625
1232
- # ?range = 91.74311926605502
1233
- # ?sinT = 0.7071067811865475
1234
- # ?t = 2.5
1235
- # ?t2 = 6.25
1236
- # ?tFlight = 4.324812117348913
1237
- # ?theta = 0.7853981633974483
1238
- # ?twoG = 19.62
1239
- # ?twoVy = 42.426406871192846
1240
- # ?v = 30.0
1241
- # ?vx = 21.213203435596427
1242
- # ?vy = 21.213203435596423
1243
- # ?vy2 = 449.9999999999999
1244
- # ?vy_t = 53.03300858899106
1245
- # ?xAtT = 53.033008588991066
1246
- # ?yAtT = 22.37675858899106
1279
+ # ?absz = 2.44112843076783
1280
+ # ?d = 7.357142857142858
1281
+ # ?mean = 2.642857142857143
1282
+ # ?std = 3.0138286721886036
1283
+ # ?thr = 2.0
1284
+ # ?x = 10.0
1285
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1286
+ # ?z = 2.44112843076783
1247
1287
  # Therefore the derived triple above is entailed by the rules and facts.
1248
1288
  # ----------------------------------------------------------------------
1249
1289
 
1250
- _:sk_2 :y 22.37675858899106 .
1290
+ _:sk_2 :zScore 2.44112843076783 .
1251
1291
 
1252
1292
  # ----------------------------------------------------------------------
1253
1293
  # Proof for derived triple:
1254
- # :Shot1 :positionAtSample _:sk_2 .
1294
+ # :DataSet1 :outlier _:sk_2 .
1255
1295
  # It holds because the following instance of the rule body is provable:
1256
- # :Shot1 :speed 30.0 .
1257
- # :Shot1 :angleRad 0.7853981633974483 .
1258
- # :Shot1 :g 9.81 .
1259
- # :Shot1 :tSample 2.5 .
1260
- # 0.7853981633974483 math:sin 0.7071067811865475 .
1261
- # 0.7853981633974483 math:cos 0.7071067811865476 .
1262
- # (30.0 0.7071067811865476) math:product 21.213203435596427 .
1263
- # (30.0 0.7071067811865475) math:product 21.213203435596423 .
1264
- # (2.0 21.213203435596423) math:product 42.426406871192846 .
1265
- # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
1266
- # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
1267
- # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
1268
- # (2.0 9.81) math:product 19.62 .
1269
- # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
1270
- # (21.213203435596427 2.5) math:product 53.033008588991066 .
1271
- # (21.213203435596423 2.5) math:product 53.03300858899106 .
1272
- # (2.5 2.0) math:exponentiation 6.25 .
1273
- # (9.81 6.25) math:product 61.3125 .
1274
- # (0.5 61.3125) math:product 30.65625 .
1275
- # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
1296
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1297
+ # :DataSet1 :mean 2.642857142857143 .
1298
+ # :DataSet1 :stddev 3.0138286721886036 .
1299
+ # :DataSet1 :zThreshold 2.0 .
1300
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
1301
+ # (10.0 2.642857142857143) math:difference 7.357142857142858 .
1302
+ # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
1303
+ # 2.44112843076783 math:absoluteValue 2.44112843076783 .
1304
+ # 2.44112843076783 math:greaterThan 2.0 .
1276
1305
  # via the schematic forward rule:
1277
1306
  # {
1278
- # :Shot1 :speed ?v .
1279
- # :Shot1 :angleRad ?theta .
1280
- # :Shot1 :g ?g .
1281
- # :Shot1 :tSample ?t .
1282
- # ?theta math:sin ?sinT .
1283
- # ?theta math:cos ?cosT .
1284
- # (?v ?cosT) math:product ?vx .
1285
- # (?v ?sinT) math:product ?vy .
1286
- # (2.0 ?vy) math:product ?twoVy .
1287
- # (?twoVy ?g) math:quotient ?tFlight .
1288
- # (?vx ?tFlight) math:product ?range .
1289
- # (?vy 2.0) math:exponentiation ?vy2 .
1290
- # (2.0 ?g) math:product ?twoG .
1291
- # (?vy2 ?twoG) math:quotient ?hMax .
1292
- # (?vx ?t) math:product ?xAtT .
1293
- # (?vy ?t) math:product ?vy_t .
1294
- # (?t 2.0) math:exponentiation ?t2 .
1295
- # (?g ?t2) math:product ?g_t2 .
1296
- # (0.5 ?g_t2) math:product ?half_g_t2 .
1297
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
1307
+ # :DataSet1 :values ?xs .
1308
+ # :DataSet1 :mean ?mean .
1309
+ # :DataSet1 :stddev ?std .
1310
+ # :DataSet1 :zThreshold ?thr .
1311
+ # ?xs list:member ?x .
1312
+ # (?x ?mean) math:difference ?d .
1313
+ # (?d ?std) math:quotient ?z .
1314
+ # ?z math:absoluteValue ?absz .
1315
+ # ?absz math:greaterThan ?thr .
1298
1316
  # } => {
1299
- # :Shot1 :vx ?vx .
1300
- # :Shot1 :vy ?vy .
1301
- # :Shot1 :timeOfFlight ?tFlight .
1302
- # :Shot1 :range ?range .
1303
- # :Shot1 :maxHeight ?hMax .
1304
- # _:b3 :t ?t .
1305
- # _:b3 :x ?xAtT .
1306
- # _:b3 :y ?yAtT .
1307
- # :Shot1 :positionAtSample _:b3 .
1317
+ # _:b1 :value ?x .
1318
+ # _:b1 :zScore ?z .
1319
+ # :DataSet1 :outlier _:b1 .
1308
1320
  # } .
1309
1321
  # with substitution (on rule variables):
1310
- # ?cosT = 0.7071067811865476
1311
- # ?g = 9.81
1312
- # ?g_t2 = 61.3125
1313
- # ?hMax = 22.935779816513755
1314
- # ?half_g_t2 = 30.65625
1315
- # ?range = 91.74311926605502
1316
- # ?sinT = 0.7071067811865475
1317
- # ?t = 2.5
1318
- # ?t2 = 6.25
1319
- # ?tFlight = 4.324812117348913
1320
- # ?theta = 0.7853981633974483
1321
- # ?twoG = 19.62
1322
- # ?twoVy = 42.426406871192846
1323
- # ?v = 30.0
1324
- # ?vx = 21.213203435596427
1325
- # ?vy = 21.213203435596423
1326
- # ?vy2 = 449.9999999999999
1327
- # ?vy_t = 53.03300858899106
1328
- # ?xAtT = 53.033008588991066
1329
- # ?yAtT = 22.37675858899106
1322
+ # ?absz = 2.44112843076783
1323
+ # ?d = 7.357142857142858
1324
+ # ?mean = 2.642857142857143
1325
+ # ?std = 3.0138286721886036
1326
+ # ?thr = 2.0
1327
+ # ?x = 10.0
1328
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1329
+ # ?z = 2.44112843076783
1330
1330
  # Therefore the derived triple above is entailed by the rules and facts.
1331
1331
  # ----------------------------------------------------------------------
1332
1332
 
1333
- :Shot1 :positionAtSample _:sk_2 .
1333
+ :DataSet1 :outlier _:sk_2 .
1334
1334