eyeling 1.5.42 → 1.6.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/examples/cobalt-kepler-kitchen.n3 +220 -0
- package/examples/jade-eigen-loom.n3 +322 -0
- package/examples/not-includes.n3 +32 -0
- package/examples/output/cobalt-kepler-kitchen.n3 +7112 -0
- package/examples/output/cranberry-calculus.n3 +495 -495
- package/examples/output/jade-eigen-loom.n3 +4749 -0
- package/examples/output/not-includes.n3 +69 -0
- package/examples/output/ruby-runge-workshop.n3 +628 -0
- package/examples/output/topaz-markov-mill.n3 +4231 -0
- package/examples/output/traffic-skos-aggregate.n3 +3298 -0
- package/examples/output/ultramarine-simpson-forge.n3 +3936 -0
- package/examples/ruby-runge-workshop.n3 +256 -0
- package/examples/topaz-markov-mill.n3 +260 -0
- package/examples/traffic-skos-aggregate.n3 +319 -0
- package/examples/ultramarine-simpson-forge.n3 +178 -0
- package/eyeling.js +203 -133
- package/package.json +1 -1
|
@@ -1,290 +1,5 @@
|
|
|
1
1
|
@prefix : <http://example.org/cranberry-calculus#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# :DataSet1 :mean 2.642857142857143 .
|
|
6
|
-
# It holds because the following instance of the rule body is provable:
|
|
7
|
-
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
8
|
-
# :DataSet1 :zThreshold 2.0 .
|
|
9
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
|
|
10
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
|
|
11
|
-
# (18.5 7) math:quotient 2.642857142857143 .
|
|
12
|
-
# (?sq {
|
|
13
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
|
|
14
|
-
# (?x 2.642857142857143) math:difference ?d .
|
|
15
|
-
# (?d 2.0) math:exponentiation ?sq .
|
|
16
|
-
# } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
|
|
17
|
-
# (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
|
|
18
|
-
# (63.58214285714286 7) math:quotient 9.083163265306123 .
|
|
19
|
-
# (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
|
|
20
|
-
# via the schematic forward rule:
|
|
21
|
-
# {
|
|
22
|
-
# :DataSet1 :values ?xs .
|
|
23
|
-
# :DataSet1 :zThreshold ?thr .
|
|
24
|
-
# ?xs list:length ?n .
|
|
25
|
-
# ?xs math:sum ?sum .
|
|
26
|
-
# (?sum ?n) math:quotient ?mean .
|
|
27
|
-
# (?sq {
|
|
28
|
-
# ?xs list:member ?x .
|
|
29
|
-
# (?x ?mean) math:difference ?d .
|
|
30
|
-
# (?d 2.0) math:exponentiation ?sq .
|
|
31
|
-
# } ?sqList) log:collectAllIn ?_b1 .
|
|
32
|
-
# ?sqList math:sum ?sse .
|
|
33
|
-
# (?sse ?n) math:quotient ?var .
|
|
34
|
-
# (?var 0.5) math:exponentiation ?std .
|
|
35
|
-
# } => {
|
|
36
|
-
# :DataSet1 :mean ?mean .
|
|
37
|
-
# :DataSet1 :variance ?var .
|
|
38
|
-
# :DataSet1 :stddev ?std .
|
|
39
|
-
# } .
|
|
40
|
-
# with substitution (on rule variables):
|
|
41
|
-
# ?mean = 2.642857142857143
|
|
42
|
-
# ?n = 7
|
|
43
|
-
# ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
|
|
44
|
-
# ?sse = 63.58214285714286
|
|
45
|
-
# ?std = 3.0138286721886036
|
|
46
|
-
# ?sum = 18.5
|
|
47
|
-
# ?thr = 2.0
|
|
48
|
-
# ?var = 9.083163265306123
|
|
49
|
-
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
50
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
51
|
-
# ----------------------------------------------------------------------
|
|
52
|
-
|
|
53
|
-
:DataSet1 :mean 2.642857142857143 .
|
|
54
|
-
|
|
55
|
-
# ----------------------------------------------------------------------
|
|
56
|
-
# Proof for derived triple:
|
|
57
|
-
# :DataSet1 :variance 9.083163265306123 .
|
|
58
|
-
# It holds because the following instance of the rule body is provable:
|
|
59
|
-
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
60
|
-
# :DataSet1 :zThreshold 2.0 .
|
|
61
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
|
|
62
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
|
|
63
|
-
# (18.5 7) math:quotient 2.642857142857143 .
|
|
64
|
-
# (?sq {
|
|
65
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
|
|
66
|
-
# (?x 2.642857142857143) math:difference ?d .
|
|
67
|
-
# (?d 2.0) math:exponentiation ?sq .
|
|
68
|
-
# } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
|
|
69
|
-
# (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
|
|
70
|
-
# (63.58214285714286 7) math:quotient 9.083163265306123 .
|
|
71
|
-
# (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
|
|
72
|
-
# via the schematic forward rule:
|
|
73
|
-
# {
|
|
74
|
-
# :DataSet1 :values ?xs .
|
|
75
|
-
# :DataSet1 :zThreshold ?thr .
|
|
76
|
-
# ?xs list:length ?n .
|
|
77
|
-
# ?xs math:sum ?sum .
|
|
78
|
-
# (?sum ?n) math:quotient ?mean .
|
|
79
|
-
# (?sq {
|
|
80
|
-
# ?xs list:member ?x .
|
|
81
|
-
# (?x ?mean) math:difference ?d .
|
|
82
|
-
# (?d 2.0) math:exponentiation ?sq .
|
|
83
|
-
# } ?sqList) log:collectAllIn ?_b1 .
|
|
84
|
-
# ?sqList math:sum ?sse .
|
|
85
|
-
# (?sse ?n) math:quotient ?var .
|
|
86
|
-
# (?var 0.5) math:exponentiation ?std .
|
|
87
|
-
# } => {
|
|
88
|
-
# :DataSet1 :mean ?mean .
|
|
89
|
-
# :DataSet1 :variance ?var .
|
|
90
|
-
# :DataSet1 :stddev ?std .
|
|
91
|
-
# } .
|
|
92
|
-
# with substitution (on rule variables):
|
|
93
|
-
# ?mean = 2.642857142857143
|
|
94
|
-
# ?n = 7
|
|
95
|
-
# ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
|
|
96
|
-
# ?sse = 63.58214285714286
|
|
97
|
-
# ?std = 3.0138286721886036
|
|
98
|
-
# ?sum = 18.5
|
|
99
|
-
# ?thr = 2.0
|
|
100
|
-
# ?var = 9.083163265306123
|
|
101
|
-
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
102
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
103
|
-
# ----------------------------------------------------------------------
|
|
104
|
-
|
|
105
|
-
:DataSet1 :variance 9.083163265306123 .
|
|
106
|
-
|
|
107
|
-
# ----------------------------------------------------------------------
|
|
108
|
-
# Proof for derived triple:
|
|
109
|
-
# :DataSet1 :stddev 3.0138286721886036 .
|
|
110
|
-
# It holds because the following instance of the rule body is provable:
|
|
111
|
-
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
112
|
-
# :DataSet1 :zThreshold 2.0 .
|
|
113
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
|
|
114
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
|
|
115
|
-
# (18.5 7) math:quotient 2.642857142857143 .
|
|
116
|
-
# (?sq {
|
|
117
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
|
|
118
|
-
# (?x 2.642857142857143) math:difference ?d .
|
|
119
|
-
# (?d 2.0) math:exponentiation ?sq .
|
|
120
|
-
# } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
|
|
121
|
-
# (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
|
|
122
|
-
# (63.58214285714286 7) math:quotient 9.083163265306123 .
|
|
123
|
-
# (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
|
|
124
|
-
# via the schematic forward rule:
|
|
125
|
-
# {
|
|
126
|
-
# :DataSet1 :values ?xs .
|
|
127
|
-
# :DataSet1 :zThreshold ?thr .
|
|
128
|
-
# ?xs list:length ?n .
|
|
129
|
-
# ?xs math:sum ?sum .
|
|
130
|
-
# (?sum ?n) math:quotient ?mean .
|
|
131
|
-
# (?sq {
|
|
132
|
-
# ?xs list:member ?x .
|
|
133
|
-
# (?x ?mean) math:difference ?d .
|
|
134
|
-
# (?d 2.0) math:exponentiation ?sq .
|
|
135
|
-
# } ?sqList) log:collectAllIn ?_b1 .
|
|
136
|
-
# ?sqList math:sum ?sse .
|
|
137
|
-
# (?sse ?n) math:quotient ?var .
|
|
138
|
-
# (?var 0.5) math:exponentiation ?std .
|
|
139
|
-
# } => {
|
|
140
|
-
# :DataSet1 :mean ?mean .
|
|
141
|
-
# :DataSet1 :variance ?var .
|
|
142
|
-
# :DataSet1 :stddev ?std .
|
|
143
|
-
# } .
|
|
144
|
-
# with substitution (on rule variables):
|
|
145
|
-
# ?mean = 2.642857142857143
|
|
146
|
-
# ?n = 7
|
|
147
|
-
# ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
|
|
148
|
-
# ?sse = 63.58214285714286
|
|
149
|
-
# ?std = 3.0138286721886036
|
|
150
|
-
# ?sum = 18.5
|
|
151
|
-
# ?thr = 2.0
|
|
152
|
-
# ?var = 9.083163265306123
|
|
153
|
-
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
154
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
155
|
-
# ----------------------------------------------------------------------
|
|
156
|
-
|
|
157
|
-
:DataSet1 :stddev 3.0138286721886036 .
|
|
158
|
-
|
|
159
|
-
# ----------------------------------------------------------------------
|
|
160
|
-
# Proof for derived triple:
|
|
161
|
-
# _:sk_0 :value 10.0 .
|
|
162
|
-
# It holds because the following instance of the rule body is provable:
|
|
163
|
-
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
164
|
-
# :DataSet1 :mean 2.642857142857143 .
|
|
165
|
-
# :DataSet1 :stddev 3.0138286721886036 .
|
|
166
|
-
# :DataSet1 :zThreshold 2.0 .
|
|
167
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
|
|
168
|
-
# (10.0 2.642857142857143) math:difference 7.357142857142858 .
|
|
169
|
-
# (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
|
|
170
|
-
# 2.44112843076783 math:absoluteValue 2.44112843076783 .
|
|
171
|
-
# 2.44112843076783 math:greaterThan 2.0 .
|
|
172
|
-
# via the schematic forward rule:
|
|
173
|
-
# {
|
|
174
|
-
# :DataSet1 :values ?xs .
|
|
175
|
-
# :DataSet1 :mean ?mean .
|
|
176
|
-
# :DataSet1 :stddev ?std .
|
|
177
|
-
# :DataSet1 :zThreshold ?thr .
|
|
178
|
-
# ?xs list:member ?x .
|
|
179
|
-
# (?x ?mean) math:difference ?d .
|
|
180
|
-
# (?d ?std) math:quotient ?z .
|
|
181
|
-
# ?z math:absoluteValue ?absz .
|
|
182
|
-
# ?absz math:greaterThan ?thr .
|
|
183
|
-
# } => {
|
|
184
|
-
# _:b1 :value ?x .
|
|
185
|
-
# _:b1 :zScore ?z .
|
|
186
|
-
# :DataSet1 :outlier _:b1 .
|
|
187
|
-
# } .
|
|
188
|
-
# with substitution (on rule variables):
|
|
189
|
-
# ?absz = 2.44112843076783
|
|
190
|
-
# ?d = 7.357142857142858
|
|
191
|
-
# ?mean = 2.642857142857143
|
|
192
|
-
# ?std = 3.0138286721886036
|
|
193
|
-
# ?thr = 2.0
|
|
194
|
-
# ?x = 10.0
|
|
195
|
-
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
196
|
-
# ?z = 2.44112843076783
|
|
197
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
198
|
-
# ----------------------------------------------------------------------
|
|
199
|
-
|
|
200
|
-
_:sk_0 :value 10.0 .
|
|
201
|
-
|
|
202
|
-
# ----------------------------------------------------------------------
|
|
203
|
-
# Proof for derived triple:
|
|
204
|
-
# _:sk_0 :zScore 2.44112843076783 .
|
|
205
|
-
# It holds because the following instance of the rule body is provable:
|
|
206
|
-
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
207
|
-
# :DataSet1 :mean 2.642857142857143 .
|
|
208
|
-
# :DataSet1 :stddev 3.0138286721886036 .
|
|
209
|
-
# :DataSet1 :zThreshold 2.0 .
|
|
210
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
|
|
211
|
-
# (10.0 2.642857142857143) math:difference 7.357142857142858 .
|
|
212
|
-
# (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
|
|
213
|
-
# 2.44112843076783 math:absoluteValue 2.44112843076783 .
|
|
214
|
-
# 2.44112843076783 math:greaterThan 2.0 .
|
|
215
|
-
# via the schematic forward rule:
|
|
216
|
-
# {
|
|
217
|
-
# :DataSet1 :values ?xs .
|
|
218
|
-
# :DataSet1 :mean ?mean .
|
|
219
|
-
# :DataSet1 :stddev ?std .
|
|
220
|
-
# :DataSet1 :zThreshold ?thr .
|
|
221
|
-
# ?xs list:member ?x .
|
|
222
|
-
# (?x ?mean) math:difference ?d .
|
|
223
|
-
# (?d ?std) math:quotient ?z .
|
|
224
|
-
# ?z math:absoluteValue ?absz .
|
|
225
|
-
# ?absz math:greaterThan ?thr .
|
|
226
|
-
# } => {
|
|
227
|
-
# _:b1 :value ?x .
|
|
228
|
-
# _:b1 :zScore ?z .
|
|
229
|
-
# :DataSet1 :outlier _:b1 .
|
|
230
|
-
# } .
|
|
231
|
-
# with substitution (on rule variables):
|
|
232
|
-
# ?absz = 2.44112843076783
|
|
233
|
-
# ?d = 7.357142857142858
|
|
234
|
-
# ?mean = 2.642857142857143
|
|
235
|
-
# ?std = 3.0138286721886036
|
|
236
|
-
# ?thr = 2.0
|
|
237
|
-
# ?x = 10.0
|
|
238
|
-
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
239
|
-
# ?z = 2.44112843076783
|
|
240
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
241
|
-
# ----------------------------------------------------------------------
|
|
242
|
-
|
|
243
|
-
_:sk_0 :zScore 2.44112843076783 .
|
|
244
|
-
|
|
245
|
-
# ----------------------------------------------------------------------
|
|
246
|
-
# Proof for derived triple:
|
|
247
|
-
# :DataSet1 :outlier _:sk_0 .
|
|
248
|
-
# It holds because the following instance of the rule body is provable:
|
|
249
|
-
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
250
|
-
# :DataSet1 :mean 2.642857142857143 .
|
|
251
|
-
# :DataSet1 :stddev 3.0138286721886036 .
|
|
252
|
-
# :DataSet1 :zThreshold 2.0 .
|
|
253
|
-
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
|
|
254
|
-
# (10.0 2.642857142857143) math:difference 7.357142857142858 .
|
|
255
|
-
# (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
|
|
256
|
-
# 2.44112843076783 math:absoluteValue 2.44112843076783 .
|
|
257
|
-
# 2.44112843076783 math:greaterThan 2.0 .
|
|
258
|
-
# via the schematic forward rule:
|
|
259
|
-
# {
|
|
260
|
-
# :DataSet1 :values ?xs .
|
|
261
|
-
# :DataSet1 :mean ?mean .
|
|
262
|
-
# :DataSet1 :stddev ?std .
|
|
263
|
-
# :DataSet1 :zThreshold ?thr .
|
|
264
|
-
# ?xs list:member ?x .
|
|
265
|
-
# (?x ?mean) math:difference ?d .
|
|
266
|
-
# (?d ?std) math:quotient ?z .
|
|
267
|
-
# ?z math:absoluteValue ?absz .
|
|
268
|
-
# ?absz math:greaterThan ?thr .
|
|
269
|
-
# } => {
|
|
270
|
-
# _:b1 :value ?x .
|
|
271
|
-
# _:b1 :zScore ?z .
|
|
272
|
-
# :DataSet1 :outlier _:b1 .
|
|
273
|
-
# } .
|
|
274
|
-
# with substitution (on rule variables):
|
|
275
|
-
# ?absz = 2.44112843076783
|
|
276
|
-
# ?d = 7.357142857142858
|
|
277
|
-
# ?mean = 2.642857142857143
|
|
278
|
-
# ?std = 3.0138286721886036
|
|
279
|
-
# ?thr = 2.0
|
|
280
|
-
# ?x = 10.0
|
|
281
|
-
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
282
|
-
# ?z = 2.44112843076783
|
|
283
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
284
|
-
# ----------------------------------------------------------------------
|
|
285
|
-
|
|
286
|
-
:DataSet1 :outlier _:sk_0 .
|
|
287
|
-
|
|
288
3
|
# ----------------------------------------------------------------------
|
|
289
4
|
# Proof for derived triple:
|
|
290
5
|
# :VecA :dotWithVecB 12 .
|
|
@@ -362,7 +77,7 @@ _:sk_0 :zScore 2.44112843076783 .
|
|
|
362
77
|
|
|
363
78
|
# ----------------------------------------------------------------------
|
|
364
79
|
# Proof for derived triple:
|
|
365
|
-
# _:
|
|
80
|
+
# _:sk_0 :radians 0.9272952180016123 .
|
|
366
81
|
# It holds because the following instance of the rule body is provable:
|
|
367
82
|
# :VecA :x 3.0 .
|
|
368
83
|
# :VecA :y 4.0 .
|
|
@@ -433,11 +148,11 @@ _:sk_0 :zScore 2.44112843076783 .
|
|
|
433
148
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
434
149
|
# ----------------------------------------------------------------------
|
|
435
150
|
|
|
436
|
-
_:
|
|
151
|
+
_:sk_0 :radians 0.9272952180016123 .
|
|
437
152
|
|
|
438
153
|
# ----------------------------------------------------------------------
|
|
439
154
|
# Proof for derived triple:
|
|
440
|
-
# _:
|
|
155
|
+
# _:sk_0 :degrees 53.13010235415598 .
|
|
441
156
|
# It holds because the following instance of the rule body is provable:
|
|
442
157
|
# :VecA :x 3.0 .
|
|
443
158
|
# :VecA :y 4.0 .
|
|
@@ -508,11 +223,11 @@ _:sk_1 :radians 0.9272952180016123 .
|
|
|
508
223
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
509
224
|
# ----------------------------------------------------------------------
|
|
510
225
|
|
|
511
|
-
_:
|
|
226
|
+
_:sk_0 :degrees 53.13010235415598 .
|
|
512
227
|
|
|
513
228
|
# ----------------------------------------------------------------------
|
|
514
229
|
# Proof for derived triple:
|
|
515
|
-
# :VecA :angleToVecB _:
|
|
230
|
+
# :VecA :angleToVecB _:sk_0 .
|
|
516
231
|
# It holds because the following instance of the rule body is provable:
|
|
517
232
|
# :VecA :x 3.0 .
|
|
518
233
|
# :VecA :y 4.0 .
|
|
@@ -561,33 +276,199 @@ _:sk_1 :degrees 53.13010235415598 .
|
|
|
561
276
|
# :VecA :angleToVecB _:b2 .
|
|
562
277
|
# } .
|
|
563
278
|
# with substitution (on rule variables):
|
|
564
|
-
# ?a2 = 25
|
|
565
|
-
# ?aNorm = 5
|
|
566
|
-
# ?ax = 3.0
|
|
567
|
-
# ?ax2 = 9
|
|
568
|
-
# ?axbx = 12
|
|
569
|
-
# ?ay = 4.0
|
|
570
|
-
# ?ay2 = 16
|
|
571
|
-
# ?ayby = 0
|
|
572
|
-
# ?b2 = 16
|
|
573
|
-
# ?bNorm = 4
|
|
574
|
-
# ?bx = 4.0
|
|
575
|
-
# ?bx2 = 16
|
|
576
|
-
# ?by = 0.0
|
|
577
|
-
# ?by2 = 0
|
|
578
|
-
# ?cosTheta = 0.6
|
|
579
|
-
# ?den = 20
|
|
580
|
-
# ?dot = 12
|
|
581
|
-
# ?thetaDeg = 53.13010235415598
|
|
582
|
-
# ?thetaRad = 0.9272952180016123
|
|
279
|
+
# ?a2 = 25
|
|
280
|
+
# ?aNorm = 5
|
|
281
|
+
# ?ax = 3.0
|
|
282
|
+
# ?ax2 = 9
|
|
283
|
+
# ?axbx = 12
|
|
284
|
+
# ?ay = 4.0
|
|
285
|
+
# ?ay2 = 16
|
|
286
|
+
# ?ayby = 0
|
|
287
|
+
# ?b2 = 16
|
|
288
|
+
# ?bNorm = 4
|
|
289
|
+
# ?bx = 4.0
|
|
290
|
+
# ?bx2 = 16
|
|
291
|
+
# ?by = 0.0
|
|
292
|
+
# ?by2 = 0
|
|
293
|
+
# ?cosTheta = 0.6
|
|
294
|
+
# ?den = 20
|
|
295
|
+
# ?dot = 12
|
|
296
|
+
# ?thetaDeg = 53.13010235415598
|
|
297
|
+
# ?thetaRad = 0.9272952180016123
|
|
298
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
299
|
+
# ----------------------------------------------------------------------
|
|
300
|
+
|
|
301
|
+
:VecA :angleToVecB _:sk_0 .
|
|
302
|
+
|
|
303
|
+
# ----------------------------------------------------------------------
|
|
304
|
+
# Proof for derived triple:
|
|
305
|
+
# :Shot1 :vx 21.213203435596427 .
|
|
306
|
+
# It holds because the following instance of the rule body is provable:
|
|
307
|
+
# :Shot1 :speed 30.0 .
|
|
308
|
+
# :Shot1 :angleRad 0.7853981633974483 .
|
|
309
|
+
# :Shot1 :g 9.81 .
|
|
310
|
+
# :Shot1 :tSample 2.5 .
|
|
311
|
+
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
312
|
+
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
313
|
+
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
314
|
+
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
315
|
+
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
316
|
+
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
317
|
+
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
318
|
+
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
319
|
+
# (2.0 9.81) math:product 19.62 .
|
|
320
|
+
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
321
|
+
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
322
|
+
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
323
|
+
# (2.5 2.0) math:exponentiation 6.25 .
|
|
324
|
+
# (9.81 6.25) math:product 61.3125 .
|
|
325
|
+
# (0.5 61.3125) math:product 30.65625 .
|
|
326
|
+
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
327
|
+
# via the schematic forward rule:
|
|
328
|
+
# {
|
|
329
|
+
# :Shot1 :speed ?v .
|
|
330
|
+
# :Shot1 :angleRad ?theta .
|
|
331
|
+
# :Shot1 :g ?g .
|
|
332
|
+
# :Shot1 :tSample ?t .
|
|
333
|
+
# ?theta math:sin ?sinT .
|
|
334
|
+
# ?theta math:cos ?cosT .
|
|
335
|
+
# (?v ?cosT) math:product ?vx .
|
|
336
|
+
# (?v ?sinT) math:product ?vy .
|
|
337
|
+
# (2.0 ?vy) math:product ?twoVy .
|
|
338
|
+
# (?twoVy ?g) math:quotient ?tFlight .
|
|
339
|
+
# (?vx ?tFlight) math:product ?range .
|
|
340
|
+
# (?vy 2.0) math:exponentiation ?vy2 .
|
|
341
|
+
# (2.0 ?g) math:product ?twoG .
|
|
342
|
+
# (?vy2 ?twoG) math:quotient ?hMax .
|
|
343
|
+
# (?vx ?t) math:product ?xAtT .
|
|
344
|
+
# (?vy ?t) math:product ?vy_t .
|
|
345
|
+
# (?t 2.0) math:exponentiation ?t2 .
|
|
346
|
+
# (?g ?t2) math:product ?g_t2 .
|
|
347
|
+
# (0.5 ?g_t2) math:product ?half_g_t2 .
|
|
348
|
+
# (?vy_t ?half_g_t2) math:difference ?yAtT .
|
|
349
|
+
# } => {
|
|
350
|
+
# :Shot1 :vx ?vx .
|
|
351
|
+
# :Shot1 :vy ?vy .
|
|
352
|
+
# :Shot1 :timeOfFlight ?tFlight .
|
|
353
|
+
# :Shot1 :range ?range .
|
|
354
|
+
# :Shot1 :maxHeight ?hMax .
|
|
355
|
+
# _:b3 :t ?t .
|
|
356
|
+
# _:b3 :x ?xAtT .
|
|
357
|
+
# _:b3 :y ?yAtT .
|
|
358
|
+
# :Shot1 :positionAtSample _:b3 .
|
|
359
|
+
# } .
|
|
360
|
+
# with substitution (on rule variables):
|
|
361
|
+
# ?cosT = 0.7071067811865476
|
|
362
|
+
# ?g = 9.81
|
|
363
|
+
# ?g_t2 = 61.3125
|
|
364
|
+
# ?hMax = 22.935779816513755
|
|
365
|
+
# ?half_g_t2 = 30.65625
|
|
366
|
+
# ?range = 91.74311926605502
|
|
367
|
+
# ?sinT = 0.7071067811865475
|
|
368
|
+
# ?t = 2.5
|
|
369
|
+
# ?t2 = 6.25
|
|
370
|
+
# ?tFlight = 4.324812117348913
|
|
371
|
+
# ?theta = 0.7853981633974483
|
|
372
|
+
# ?twoG = 19.62
|
|
373
|
+
# ?twoVy = 42.426406871192846
|
|
374
|
+
# ?v = 30.0
|
|
375
|
+
# ?vx = 21.213203435596427
|
|
376
|
+
# ?vy = 21.213203435596423
|
|
377
|
+
# ?vy2 = 449.9999999999999
|
|
378
|
+
# ?vy_t = 53.03300858899106
|
|
379
|
+
# ?xAtT = 53.033008588991066
|
|
380
|
+
# ?yAtT = 22.37675858899106
|
|
381
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
382
|
+
# ----------------------------------------------------------------------
|
|
383
|
+
|
|
384
|
+
:Shot1 :vx 21.213203435596427 .
|
|
385
|
+
|
|
386
|
+
# ----------------------------------------------------------------------
|
|
387
|
+
# Proof for derived triple:
|
|
388
|
+
# :Shot1 :vy 21.213203435596423 .
|
|
389
|
+
# It holds because the following instance of the rule body is provable:
|
|
390
|
+
# :Shot1 :speed 30.0 .
|
|
391
|
+
# :Shot1 :angleRad 0.7853981633974483 .
|
|
392
|
+
# :Shot1 :g 9.81 .
|
|
393
|
+
# :Shot1 :tSample 2.5 .
|
|
394
|
+
# 0.7853981633974483 math:sin 0.7071067811865475 .
|
|
395
|
+
# 0.7853981633974483 math:cos 0.7071067811865476 .
|
|
396
|
+
# (30.0 0.7071067811865476) math:product 21.213203435596427 .
|
|
397
|
+
# (30.0 0.7071067811865475) math:product 21.213203435596423 .
|
|
398
|
+
# (2.0 21.213203435596423) math:product 42.426406871192846 .
|
|
399
|
+
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
400
|
+
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
401
|
+
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
402
|
+
# (2.0 9.81) math:product 19.62 .
|
|
403
|
+
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
404
|
+
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
405
|
+
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
406
|
+
# (2.5 2.0) math:exponentiation 6.25 .
|
|
407
|
+
# (9.81 6.25) math:product 61.3125 .
|
|
408
|
+
# (0.5 61.3125) math:product 30.65625 .
|
|
409
|
+
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
410
|
+
# via the schematic forward rule:
|
|
411
|
+
# {
|
|
412
|
+
# :Shot1 :speed ?v .
|
|
413
|
+
# :Shot1 :angleRad ?theta .
|
|
414
|
+
# :Shot1 :g ?g .
|
|
415
|
+
# :Shot1 :tSample ?t .
|
|
416
|
+
# ?theta math:sin ?sinT .
|
|
417
|
+
# ?theta math:cos ?cosT .
|
|
418
|
+
# (?v ?cosT) math:product ?vx .
|
|
419
|
+
# (?v ?sinT) math:product ?vy .
|
|
420
|
+
# (2.0 ?vy) math:product ?twoVy .
|
|
421
|
+
# (?twoVy ?g) math:quotient ?tFlight .
|
|
422
|
+
# (?vx ?tFlight) math:product ?range .
|
|
423
|
+
# (?vy 2.0) math:exponentiation ?vy2 .
|
|
424
|
+
# (2.0 ?g) math:product ?twoG .
|
|
425
|
+
# (?vy2 ?twoG) math:quotient ?hMax .
|
|
426
|
+
# (?vx ?t) math:product ?xAtT .
|
|
427
|
+
# (?vy ?t) math:product ?vy_t .
|
|
428
|
+
# (?t 2.0) math:exponentiation ?t2 .
|
|
429
|
+
# (?g ?t2) math:product ?g_t2 .
|
|
430
|
+
# (0.5 ?g_t2) math:product ?half_g_t2 .
|
|
431
|
+
# (?vy_t ?half_g_t2) math:difference ?yAtT .
|
|
432
|
+
# } => {
|
|
433
|
+
# :Shot1 :vx ?vx .
|
|
434
|
+
# :Shot1 :vy ?vy .
|
|
435
|
+
# :Shot1 :timeOfFlight ?tFlight .
|
|
436
|
+
# :Shot1 :range ?range .
|
|
437
|
+
# :Shot1 :maxHeight ?hMax .
|
|
438
|
+
# _:b3 :t ?t .
|
|
439
|
+
# _:b3 :x ?xAtT .
|
|
440
|
+
# _:b3 :y ?yAtT .
|
|
441
|
+
# :Shot1 :positionAtSample _:b3 .
|
|
442
|
+
# } .
|
|
443
|
+
# with substitution (on rule variables):
|
|
444
|
+
# ?cosT = 0.7071067811865476
|
|
445
|
+
# ?g = 9.81
|
|
446
|
+
# ?g_t2 = 61.3125
|
|
447
|
+
# ?hMax = 22.935779816513755
|
|
448
|
+
# ?half_g_t2 = 30.65625
|
|
449
|
+
# ?range = 91.74311926605502
|
|
450
|
+
# ?sinT = 0.7071067811865475
|
|
451
|
+
# ?t = 2.5
|
|
452
|
+
# ?t2 = 6.25
|
|
453
|
+
# ?tFlight = 4.324812117348913
|
|
454
|
+
# ?theta = 0.7853981633974483
|
|
455
|
+
# ?twoG = 19.62
|
|
456
|
+
# ?twoVy = 42.426406871192846
|
|
457
|
+
# ?v = 30.0
|
|
458
|
+
# ?vx = 21.213203435596427
|
|
459
|
+
# ?vy = 21.213203435596423
|
|
460
|
+
# ?vy2 = 449.9999999999999
|
|
461
|
+
# ?vy_t = 53.03300858899106
|
|
462
|
+
# ?xAtT = 53.033008588991066
|
|
463
|
+
# ?yAtT = 22.37675858899106
|
|
583
464
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
584
465
|
# ----------------------------------------------------------------------
|
|
585
466
|
|
|
586
|
-
:
|
|
467
|
+
:Shot1 :vy 21.213203435596423 .
|
|
587
468
|
|
|
588
469
|
# ----------------------------------------------------------------------
|
|
589
470
|
# Proof for derived triple:
|
|
590
|
-
# :Shot1 :
|
|
471
|
+
# :Shot1 :timeOfFlight 4.324812117348913 .
|
|
591
472
|
# It holds because the following instance of the rule body is provable:
|
|
592
473
|
# :Shot1 :speed 30.0 .
|
|
593
474
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
@@ -666,11 +547,11 @@ _:sk_1 :degrees 53.13010235415598 .
|
|
|
666
547
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
667
548
|
# ----------------------------------------------------------------------
|
|
668
549
|
|
|
669
|
-
:Shot1 :
|
|
550
|
+
:Shot1 :timeOfFlight 4.324812117348913 .
|
|
670
551
|
|
|
671
552
|
# ----------------------------------------------------------------------
|
|
672
553
|
# Proof for derived triple:
|
|
673
|
-
# :Shot1 :
|
|
554
|
+
# :Shot1 :range 91.74311926605502 .
|
|
674
555
|
# It holds because the following instance of the rule body is provable:
|
|
675
556
|
# :Shot1 :speed 30.0 .
|
|
676
557
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
@@ -749,11 +630,11 @@ _:sk_1 :degrees 53.13010235415598 .
|
|
|
749
630
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
750
631
|
# ----------------------------------------------------------------------
|
|
751
632
|
|
|
752
|
-
:Shot1 :
|
|
633
|
+
:Shot1 :range 91.74311926605502 .
|
|
753
634
|
|
|
754
635
|
# ----------------------------------------------------------------------
|
|
755
636
|
# Proof for derived triple:
|
|
756
|
-
# :Shot1 :
|
|
637
|
+
# :Shot1 :maxHeight 22.935779816513755 .
|
|
757
638
|
# It holds because the following instance of the rule body is provable:
|
|
758
639
|
# :Shot1 :speed 30.0 .
|
|
759
640
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
@@ -832,11 +713,11 @@ _:sk_1 :degrees 53.13010235415598 .
|
|
|
832
713
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
833
714
|
# ----------------------------------------------------------------------
|
|
834
715
|
|
|
835
|
-
:Shot1 :
|
|
716
|
+
:Shot1 :maxHeight 22.935779816513755 .
|
|
836
717
|
|
|
837
718
|
# ----------------------------------------------------------------------
|
|
838
719
|
# Proof for derived triple:
|
|
839
|
-
# :
|
|
720
|
+
# _:sk_1 :t 2.5 .
|
|
840
721
|
# It holds because the following instance of the rule body is provable:
|
|
841
722
|
# :Shot1 :speed 30.0 .
|
|
842
723
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
@@ -915,11 +796,11 @@ _:sk_1 :degrees 53.13010235415598 .
|
|
|
915
796
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
916
797
|
# ----------------------------------------------------------------------
|
|
917
798
|
|
|
918
|
-
:
|
|
799
|
+
_:sk_1 :t 2.5 .
|
|
919
800
|
|
|
920
801
|
# ----------------------------------------------------------------------
|
|
921
802
|
# Proof for derived triple:
|
|
922
|
-
# :
|
|
803
|
+
# _:sk_1 :x 53.033008588991066 .
|
|
923
804
|
# It holds because the following instance of the rule body is provable:
|
|
924
805
|
# :Shot1 :speed 30.0 .
|
|
925
806
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
@@ -998,11 +879,11 @@ _:sk_1 :degrees 53.13010235415598 .
|
|
|
998
879
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
999
880
|
# ----------------------------------------------------------------------
|
|
1000
881
|
|
|
1001
|
-
:
|
|
882
|
+
_:sk_1 :x 53.033008588991066 .
|
|
1002
883
|
|
|
1003
884
|
# ----------------------------------------------------------------------
|
|
1004
885
|
# Proof for derived triple:
|
|
1005
|
-
# _:
|
|
886
|
+
# _:sk_1 :y 22.37675858899106 .
|
|
1006
887
|
# It holds because the following instance of the rule body is provable:
|
|
1007
888
|
# :Shot1 :speed 30.0 .
|
|
1008
889
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
@@ -1081,11 +962,11 @@ _:sk_1 :degrees 53.13010235415598 .
|
|
|
1081
962
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1082
963
|
# ----------------------------------------------------------------------
|
|
1083
964
|
|
|
1084
|
-
_:
|
|
965
|
+
_:sk_1 :y 22.37675858899106 .
|
|
1085
966
|
|
|
1086
967
|
# ----------------------------------------------------------------------
|
|
1087
968
|
# Proof for derived triple:
|
|
1088
|
-
#
|
|
969
|
+
# :Shot1 :positionAtSample _:sk_1 .
|
|
1089
970
|
# It holds because the following instance of the rule body is provable:
|
|
1090
971
|
# :Shot1 :speed 30.0 .
|
|
1091
972
|
# :Shot1 :angleRad 0.7853981633974483 .
|
|
@@ -1130,205 +1011,324 @@ _:sk_2 :t 2.5 .
|
|
|
1130
1011
|
# (0.5 ?g_t2) math:product ?half_g_t2 .
|
|
1131
1012
|
# (?vy_t ?half_g_t2) math:difference ?yAtT .
|
|
1132
1013
|
# } => {
|
|
1133
|
-
# :Shot1 :vx ?vx .
|
|
1134
|
-
# :Shot1 :vy ?vy .
|
|
1135
|
-
# :Shot1 :timeOfFlight ?tFlight .
|
|
1136
|
-
# :Shot1 :range ?range .
|
|
1137
|
-
# :Shot1 :maxHeight ?hMax .
|
|
1138
|
-
# _:b3 :t ?t .
|
|
1139
|
-
# _:b3 :x ?xAtT .
|
|
1140
|
-
# _:b3 :y ?yAtT .
|
|
1141
|
-
# :Shot1 :positionAtSample _:b3 .
|
|
1014
|
+
# :Shot1 :vx ?vx .
|
|
1015
|
+
# :Shot1 :vy ?vy .
|
|
1016
|
+
# :Shot1 :timeOfFlight ?tFlight .
|
|
1017
|
+
# :Shot1 :range ?range .
|
|
1018
|
+
# :Shot1 :maxHeight ?hMax .
|
|
1019
|
+
# _:b3 :t ?t .
|
|
1020
|
+
# _:b3 :x ?xAtT .
|
|
1021
|
+
# _:b3 :y ?yAtT .
|
|
1022
|
+
# :Shot1 :positionAtSample _:b3 .
|
|
1023
|
+
# } .
|
|
1024
|
+
# with substitution (on rule variables):
|
|
1025
|
+
# ?cosT = 0.7071067811865476
|
|
1026
|
+
# ?g = 9.81
|
|
1027
|
+
# ?g_t2 = 61.3125
|
|
1028
|
+
# ?hMax = 22.935779816513755
|
|
1029
|
+
# ?half_g_t2 = 30.65625
|
|
1030
|
+
# ?range = 91.74311926605502
|
|
1031
|
+
# ?sinT = 0.7071067811865475
|
|
1032
|
+
# ?t = 2.5
|
|
1033
|
+
# ?t2 = 6.25
|
|
1034
|
+
# ?tFlight = 4.324812117348913
|
|
1035
|
+
# ?theta = 0.7853981633974483
|
|
1036
|
+
# ?twoG = 19.62
|
|
1037
|
+
# ?twoVy = 42.426406871192846
|
|
1038
|
+
# ?v = 30.0
|
|
1039
|
+
# ?vx = 21.213203435596427
|
|
1040
|
+
# ?vy = 21.213203435596423
|
|
1041
|
+
# ?vy2 = 449.9999999999999
|
|
1042
|
+
# ?vy_t = 53.03300858899106
|
|
1043
|
+
# ?xAtT = 53.033008588991066
|
|
1044
|
+
# ?yAtT = 22.37675858899106
|
|
1045
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1046
|
+
# ----------------------------------------------------------------------
|
|
1047
|
+
|
|
1048
|
+
:Shot1 :positionAtSample _:sk_1 .
|
|
1049
|
+
|
|
1050
|
+
# ----------------------------------------------------------------------
|
|
1051
|
+
# Proof for derived triple:
|
|
1052
|
+
# :DataSet1 :mean 2.642857142857143 .
|
|
1053
|
+
# It holds because the following instance of the rule body is provable:
|
|
1054
|
+
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1055
|
+
# :DataSet1 :zThreshold 2.0 .
|
|
1056
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
|
|
1057
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
|
|
1058
|
+
# (18.5 7) math:quotient 2.642857142857143 .
|
|
1059
|
+
# (?sq {
|
|
1060
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
|
|
1061
|
+
# (?x 2.642857142857143) math:difference ?d .
|
|
1062
|
+
# (?d 2.0) math:exponentiation ?sq .
|
|
1063
|
+
# } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
|
|
1064
|
+
# (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
|
|
1065
|
+
# (63.58214285714286 7) math:quotient 9.083163265306123 .
|
|
1066
|
+
# (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
|
|
1067
|
+
# via the schematic forward rule:
|
|
1068
|
+
# {
|
|
1069
|
+
# :DataSet1 :values ?xs .
|
|
1070
|
+
# :DataSet1 :zThreshold ?thr .
|
|
1071
|
+
# ?xs list:length ?n .
|
|
1072
|
+
# ?xs math:sum ?sum .
|
|
1073
|
+
# (?sum ?n) math:quotient ?mean .
|
|
1074
|
+
# (?sq {
|
|
1075
|
+
# ?xs list:member ?x .
|
|
1076
|
+
# (?x ?mean) math:difference ?d .
|
|
1077
|
+
# (?d 2.0) math:exponentiation ?sq .
|
|
1078
|
+
# } ?sqList) log:collectAllIn ?_b1 .
|
|
1079
|
+
# ?sqList math:sum ?sse .
|
|
1080
|
+
# (?sse ?n) math:quotient ?var .
|
|
1081
|
+
# (?var 0.5) math:exponentiation ?std .
|
|
1082
|
+
# } => {
|
|
1083
|
+
# :DataSet1 :mean ?mean .
|
|
1084
|
+
# :DataSet1 :variance ?var .
|
|
1085
|
+
# :DataSet1 :stddev ?std .
|
|
1086
|
+
# } .
|
|
1087
|
+
# with substitution (on rule variables):
|
|
1088
|
+
# ?mean = 2.642857142857143
|
|
1089
|
+
# ?n = 7
|
|
1090
|
+
# ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
|
|
1091
|
+
# ?sse = 63.58214285714286
|
|
1092
|
+
# ?std = 3.0138286721886036
|
|
1093
|
+
# ?sum = 18.5
|
|
1094
|
+
# ?thr = 2.0
|
|
1095
|
+
# ?var = 9.083163265306123
|
|
1096
|
+
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1097
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1098
|
+
# ----------------------------------------------------------------------
|
|
1099
|
+
|
|
1100
|
+
:DataSet1 :mean 2.642857142857143 .
|
|
1101
|
+
|
|
1102
|
+
# ----------------------------------------------------------------------
|
|
1103
|
+
# Proof for derived triple:
|
|
1104
|
+
# :DataSet1 :variance 9.083163265306123 .
|
|
1105
|
+
# It holds because the following instance of the rule body is provable:
|
|
1106
|
+
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1107
|
+
# :DataSet1 :zThreshold 2.0 .
|
|
1108
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
|
|
1109
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
|
|
1110
|
+
# (18.5 7) math:quotient 2.642857142857143 .
|
|
1111
|
+
# (?sq {
|
|
1112
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
|
|
1113
|
+
# (?x 2.642857142857143) math:difference ?d .
|
|
1114
|
+
# (?d 2.0) math:exponentiation ?sq .
|
|
1115
|
+
# } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
|
|
1116
|
+
# (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
|
|
1117
|
+
# (63.58214285714286 7) math:quotient 9.083163265306123 .
|
|
1118
|
+
# (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
|
|
1119
|
+
# via the schematic forward rule:
|
|
1120
|
+
# {
|
|
1121
|
+
# :DataSet1 :values ?xs .
|
|
1122
|
+
# :DataSet1 :zThreshold ?thr .
|
|
1123
|
+
# ?xs list:length ?n .
|
|
1124
|
+
# ?xs math:sum ?sum .
|
|
1125
|
+
# (?sum ?n) math:quotient ?mean .
|
|
1126
|
+
# (?sq {
|
|
1127
|
+
# ?xs list:member ?x .
|
|
1128
|
+
# (?x ?mean) math:difference ?d .
|
|
1129
|
+
# (?d 2.0) math:exponentiation ?sq .
|
|
1130
|
+
# } ?sqList) log:collectAllIn ?_b1 .
|
|
1131
|
+
# ?sqList math:sum ?sse .
|
|
1132
|
+
# (?sse ?n) math:quotient ?var .
|
|
1133
|
+
# (?var 0.5) math:exponentiation ?std .
|
|
1134
|
+
# } => {
|
|
1135
|
+
# :DataSet1 :mean ?mean .
|
|
1136
|
+
# :DataSet1 :variance ?var .
|
|
1137
|
+
# :DataSet1 :stddev ?std .
|
|
1138
|
+
# } .
|
|
1139
|
+
# with substitution (on rule variables):
|
|
1140
|
+
# ?mean = 2.642857142857143
|
|
1141
|
+
# ?n = 7
|
|
1142
|
+
# ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
|
|
1143
|
+
# ?sse = 63.58214285714286
|
|
1144
|
+
# ?std = 3.0138286721886036
|
|
1145
|
+
# ?sum = 18.5
|
|
1146
|
+
# ?thr = 2.0
|
|
1147
|
+
# ?var = 9.083163265306123
|
|
1148
|
+
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1149
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1150
|
+
# ----------------------------------------------------------------------
|
|
1151
|
+
|
|
1152
|
+
:DataSet1 :variance 9.083163265306123 .
|
|
1153
|
+
|
|
1154
|
+
# ----------------------------------------------------------------------
|
|
1155
|
+
# Proof for derived triple:
|
|
1156
|
+
# :DataSet1 :stddev 3.0138286721886036 .
|
|
1157
|
+
# It holds because the following instance of the rule body is provable:
|
|
1158
|
+
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1159
|
+
# :DataSet1 :zThreshold 2.0 .
|
|
1160
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
|
|
1161
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
|
|
1162
|
+
# (18.5 7) math:quotient 2.642857142857143 .
|
|
1163
|
+
# (?sq {
|
|
1164
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
|
|
1165
|
+
# (?x 2.642857142857143) math:difference ?d .
|
|
1166
|
+
# (?d 2.0) math:exponentiation ?sq .
|
|
1167
|
+
# } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
|
|
1168
|
+
# (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
|
|
1169
|
+
# (63.58214285714286 7) math:quotient 9.083163265306123 .
|
|
1170
|
+
# (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
|
|
1171
|
+
# via the schematic forward rule:
|
|
1172
|
+
# {
|
|
1173
|
+
# :DataSet1 :values ?xs .
|
|
1174
|
+
# :DataSet1 :zThreshold ?thr .
|
|
1175
|
+
# ?xs list:length ?n .
|
|
1176
|
+
# ?xs math:sum ?sum .
|
|
1177
|
+
# (?sum ?n) math:quotient ?mean .
|
|
1178
|
+
# (?sq {
|
|
1179
|
+
# ?xs list:member ?x .
|
|
1180
|
+
# (?x ?mean) math:difference ?d .
|
|
1181
|
+
# (?d 2.0) math:exponentiation ?sq .
|
|
1182
|
+
# } ?sqList) log:collectAllIn ?_b1 .
|
|
1183
|
+
# ?sqList math:sum ?sse .
|
|
1184
|
+
# (?sse ?n) math:quotient ?var .
|
|
1185
|
+
# (?var 0.5) math:exponentiation ?std .
|
|
1186
|
+
# } => {
|
|
1187
|
+
# :DataSet1 :mean ?mean .
|
|
1188
|
+
# :DataSet1 :variance ?var .
|
|
1189
|
+
# :DataSet1 :stddev ?std .
|
|
1190
|
+
# } .
|
|
1191
|
+
# with substitution (on rule variables):
|
|
1192
|
+
# ?mean = 2.642857142857143
|
|
1193
|
+
# ?n = 7
|
|
1194
|
+
# ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
|
|
1195
|
+
# ?sse = 63.58214285714286
|
|
1196
|
+
# ?std = 3.0138286721886036
|
|
1197
|
+
# ?sum = 18.5
|
|
1198
|
+
# ?thr = 2.0
|
|
1199
|
+
# ?var = 9.083163265306123
|
|
1200
|
+
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1201
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1202
|
+
# ----------------------------------------------------------------------
|
|
1203
|
+
|
|
1204
|
+
:DataSet1 :stddev 3.0138286721886036 .
|
|
1205
|
+
|
|
1206
|
+
# ----------------------------------------------------------------------
|
|
1207
|
+
# Proof for derived triple:
|
|
1208
|
+
# _:sk_2 :value 10.0 .
|
|
1209
|
+
# It holds because the following instance of the rule body is provable:
|
|
1210
|
+
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1211
|
+
# :DataSet1 :mean 2.642857142857143 .
|
|
1212
|
+
# :DataSet1 :stddev 3.0138286721886036 .
|
|
1213
|
+
# :DataSet1 :zThreshold 2.0 .
|
|
1214
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
|
|
1215
|
+
# (10.0 2.642857142857143) math:difference 7.357142857142858 .
|
|
1216
|
+
# (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
|
|
1217
|
+
# 2.44112843076783 math:absoluteValue 2.44112843076783 .
|
|
1218
|
+
# 2.44112843076783 math:greaterThan 2.0 .
|
|
1219
|
+
# via the schematic forward rule:
|
|
1220
|
+
# {
|
|
1221
|
+
# :DataSet1 :values ?xs .
|
|
1222
|
+
# :DataSet1 :mean ?mean .
|
|
1223
|
+
# :DataSet1 :stddev ?std .
|
|
1224
|
+
# :DataSet1 :zThreshold ?thr .
|
|
1225
|
+
# ?xs list:member ?x .
|
|
1226
|
+
# (?x ?mean) math:difference ?d .
|
|
1227
|
+
# (?d ?std) math:quotient ?z .
|
|
1228
|
+
# ?z math:absoluteValue ?absz .
|
|
1229
|
+
# ?absz math:greaterThan ?thr .
|
|
1230
|
+
# } => {
|
|
1231
|
+
# _:b1 :value ?x .
|
|
1232
|
+
# _:b1 :zScore ?z .
|
|
1233
|
+
# :DataSet1 :outlier _:b1 .
|
|
1142
1234
|
# } .
|
|
1143
1235
|
# with substitution (on rule variables):
|
|
1144
|
-
# ?
|
|
1145
|
-
# ?
|
|
1146
|
-
# ?
|
|
1147
|
-
# ?
|
|
1148
|
-
# ?
|
|
1149
|
-
# ?
|
|
1150
|
-
# ?
|
|
1151
|
-
# ?
|
|
1152
|
-
# ?t2 = 6.25
|
|
1153
|
-
# ?tFlight = 4.324812117348913
|
|
1154
|
-
# ?theta = 0.7853981633974483
|
|
1155
|
-
# ?twoG = 19.62
|
|
1156
|
-
# ?twoVy = 42.426406871192846
|
|
1157
|
-
# ?v = 30.0
|
|
1158
|
-
# ?vx = 21.213203435596427
|
|
1159
|
-
# ?vy = 21.213203435596423
|
|
1160
|
-
# ?vy2 = 449.9999999999999
|
|
1161
|
-
# ?vy_t = 53.03300858899106
|
|
1162
|
-
# ?xAtT = 53.033008588991066
|
|
1163
|
-
# ?yAtT = 22.37675858899106
|
|
1236
|
+
# ?absz = 2.44112843076783
|
|
1237
|
+
# ?d = 7.357142857142858
|
|
1238
|
+
# ?mean = 2.642857142857143
|
|
1239
|
+
# ?std = 3.0138286721886036
|
|
1240
|
+
# ?thr = 2.0
|
|
1241
|
+
# ?x = 10.0
|
|
1242
|
+
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1243
|
+
# ?z = 2.44112843076783
|
|
1164
1244
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1165
1245
|
# ----------------------------------------------------------------------
|
|
1166
1246
|
|
|
1167
|
-
_:sk_2 :
|
|
1247
|
+
_:sk_2 :value 10.0 .
|
|
1168
1248
|
|
|
1169
1249
|
# ----------------------------------------------------------------------
|
|
1170
1250
|
# Proof for derived triple:
|
|
1171
|
-
# _:sk_2 :
|
|
1251
|
+
# _:sk_2 :zScore 2.44112843076783 .
|
|
1172
1252
|
# It holds because the following instance of the rule body is provable:
|
|
1173
|
-
# :
|
|
1174
|
-
# :
|
|
1175
|
-
# :
|
|
1176
|
-
# :
|
|
1177
|
-
# 0.
|
|
1178
|
-
# 0.
|
|
1179
|
-
# (
|
|
1180
|
-
#
|
|
1181
|
-
#
|
|
1182
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
1183
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
1184
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
1185
|
-
# (2.0 9.81) math:product 19.62 .
|
|
1186
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
1187
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
1188
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
1189
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
1190
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
1191
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
1192
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
1253
|
+
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1254
|
+
# :DataSet1 :mean 2.642857142857143 .
|
|
1255
|
+
# :DataSet1 :stddev 3.0138286721886036 .
|
|
1256
|
+
# :DataSet1 :zThreshold 2.0 .
|
|
1257
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
|
|
1258
|
+
# (10.0 2.642857142857143) math:difference 7.357142857142858 .
|
|
1259
|
+
# (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
|
|
1260
|
+
# 2.44112843076783 math:absoluteValue 2.44112843076783 .
|
|
1261
|
+
# 2.44112843076783 math:greaterThan 2.0 .
|
|
1193
1262
|
# via the schematic forward rule:
|
|
1194
1263
|
# {
|
|
1195
|
-
# :
|
|
1196
|
-
# :
|
|
1197
|
-
# :
|
|
1198
|
-
# :
|
|
1199
|
-
# ?
|
|
1200
|
-
# ?
|
|
1201
|
-
# (?
|
|
1202
|
-
#
|
|
1203
|
-
#
|
|
1204
|
-
# (?twoVy ?g) math:quotient ?tFlight .
|
|
1205
|
-
# (?vx ?tFlight) math:product ?range .
|
|
1206
|
-
# (?vy 2.0) math:exponentiation ?vy2 .
|
|
1207
|
-
# (2.0 ?g) math:product ?twoG .
|
|
1208
|
-
# (?vy2 ?twoG) math:quotient ?hMax .
|
|
1209
|
-
# (?vx ?t) math:product ?xAtT .
|
|
1210
|
-
# (?vy ?t) math:product ?vy_t .
|
|
1211
|
-
# (?t 2.0) math:exponentiation ?t2 .
|
|
1212
|
-
# (?g ?t2) math:product ?g_t2 .
|
|
1213
|
-
# (0.5 ?g_t2) math:product ?half_g_t2 .
|
|
1214
|
-
# (?vy_t ?half_g_t2) math:difference ?yAtT .
|
|
1264
|
+
# :DataSet1 :values ?xs .
|
|
1265
|
+
# :DataSet1 :mean ?mean .
|
|
1266
|
+
# :DataSet1 :stddev ?std .
|
|
1267
|
+
# :DataSet1 :zThreshold ?thr .
|
|
1268
|
+
# ?xs list:member ?x .
|
|
1269
|
+
# (?x ?mean) math:difference ?d .
|
|
1270
|
+
# (?d ?std) math:quotient ?z .
|
|
1271
|
+
# ?z math:absoluteValue ?absz .
|
|
1272
|
+
# ?absz math:greaterThan ?thr .
|
|
1215
1273
|
# } => {
|
|
1216
|
-
# :
|
|
1217
|
-
# :
|
|
1218
|
-
# :
|
|
1219
|
-
# :Shot1 :range ?range .
|
|
1220
|
-
# :Shot1 :maxHeight ?hMax .
|
|
1221
|
-
# _:b3 :t ?t .
|
|
1222
|
-
# _:b3 :x ?xAtT .
|
|
1223
|
-
# _:b3 :y ?yAtT .
|
|
1224
|
-
# :Shot1 :positionAtSample _:b3 .
|
|
1274
|
+
# _:b1 :value ?x .
|
|
1275
|
+
# _:b1 :zScore ?z .
|
|
1276
|
+
# :DataSet1 :outlier _:b1 .
|
|
1225
1277
|
# } .
|
|
1226
1278
|
# with substitution (on rule variables):
|
|
1227
|
-
# ?
|
|
1228
|
-
# ?
|
|
1229
|
-
# ?
|
|
1230
|
-
# ?
|
|
1231
|
-
# ?
|
|
1232
|
-
# ?
|
|
1233
|
-
# ?
|
|
1234
|
-
# ?
|
|
1235
|
-
# ?t2 = 6.25
|
|
1236
|
-
# ?tFlight = 4.324812117348913
|
|
1237
|
-
# ?theta = 0.7853981633974483
|
|
1238
|
-
# ?twoG = 19.62
|
|
1239
|
-
# ?twoVy = 42.426406871192846
|
|
1240
|
-
# ?v = 30.0
|
|
1241
|
-
# ?vx = 21.213203435596427
|
|
1242
|
-
# ?vy = 21.213203435596423
|
|
1243
|
-
# ?vy2 = 449.9999999999999
|
|
1244
|
-
# ?vy_t = 53.03300858899106
|
|
1245
|
-
# ?xAtT = 53.033008588991066
|
|
1246
|
-
# ?yAtT = 22.37675858899106
|
|
1279
|
+
# ?absz = 2.44112843076783
|
|
1280
|
+
# ?d = 7.357142857142858
|
|
1281
|
+
# ?mean = 2.642857142857143
|
|
1282
|
+
# ?std = 3.0138286721886036
|
|
1283
|
+
# ?thr = 2.0
|
|
1284
|
+
# ?x = 10.0
|
|
1285
|
+
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1286
|
+
# ?z = 2.44112843076783
|
|
1247
1287
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1248
1288
|
# ----------------------------------------------------------------------
|
|
1249
1289
|
|
|
1250
|
-
_:sk_2 :
|
|
1290
|
+
_:sk_2 :zScore 2.44112843076783 .
|
|
1251
1291
|
|
|
1252
1292
|
# ----------------------------------------------------------------------
|
|
1253
1293
|
# Proof for derived triple:
|
|
1254
|
-
# :
|
|
1294
|
+
# :DataSet1 :outlier _:sk_2 .
|
|
1255
1295
|
# It holds because the following instance of the rule body is provable:
|
|
1256
|
-
# :
|
|
1257
|
-
# :
|
|
1258
|
-
# :
|
|
1259
|
-
# :
|
|
1260
|
-
# 0.
|
|
1261
|
-
# 0.
|
|
1262
|
-
# (
|
|
1263
|
-
#
|
|
1264
|
-
#
|
|
1265
|
-
# (42.426406871192846 9.81) math:quotient 4.324812117348913 .
|
|
1266
|
-
# (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
|
|
1267
|
-
# (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
|
|
1268
|
-
# (2.0 9.81) math:product 19.62 .
|
|
1269
|
-
# (449.9999999999999 19.62) math:quotient 22.935779816513755 .
|
|
1270
|
-
# (21.213203435596427 2.5) math:product 53.033008588991066 .
|
|
1271
|
-
# (21.213203435596423 2.5) math:product 53.03300858899106 .
|
|
1272
|
-
# (2.5 2.0) math:exponentiation 6.25 .
|
|
1273
|
-
# (9.81 6.25) math:product 61.3125 .
|
|
1274
|
-
# (0.5 61.3125) math:product 30.65625 .
|
|
1275
|
-
# (53.03300858899106 30.65625) math:difference 22.37675858899106 .
|
|
1296
|
+
# :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
|
|
1297
|
+
# :DataSet1 :mean 2.642857142857143 .
|
|
1298
|
+
# :DataSet1 :stddev 3.0138286721886036 .
|
|
1299
|
+
# :DataSet1 :zThreshold 2.0 .
|
|
1300
|
+
# (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
|
|
1301
|
+
# (10.0 2.642857142857143) math:difference 7.357142857142858 .
|
|
1302
|
+
# (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
|
|
1303
|
+
# 2.44112843076783 math:absoluteValue 2.44112843076783 .
|
|
1304
|
+
# 2.44112843076783 math:greaterThan 2.0 .
|
|
1276
1305
|
# via the schematic forward rule:
|
|
1277
1306
|
# {
|
|
1278
|
-
# :
|
|
1279
|
-
# :
|
|
1280
|
-
# :
|
|
1281
|
-
# :
|
|
1282
|
-
# ?
|
|
1283
|
-
# ?
|
|
1284
|
-
# (?
|
|
1285
|
-
#
|
|
1286
|
-
#
|
|
1287
|
-
# (?twoVy ?g) math:quotient ?tFlight .
|
|
1288
|
-
# (?vx ?tFlight) math:product ?range .
|
|
1289
|
-
# (?vy 2.0) math:exponentiation ?vy2 .
|
|
1290
|
-
# (2.0 ?g) math:product ?twoG .
|
|
1291
|
-
# (?vy2 ?twoG) math:quotient ?hMax .
|
|
1292
|
-
# (?vx ?t) math:product ?xAtT .
|
|
1293
|
-
# (?vy ?t) math:product ?vy_t .
|
|
1294
|
-
# (?t 2.0) math:exponentiation ?t2 .
|
|
1295
|
-
# (?g ?t2) math:product ?g_t2 .
|
|
1296
|
-
# (0.5 ?g_t2) math:product ?half_g_t2 .
|
|
1297
|
-
# (?vy_t ?half_g_t2) math:difference ?yAtT .
|
|
1307
|
+
# :DataSet1 :values ?xs .
|
|
1308
|
+
# :DataSet1 :mean ?mean .
|
|
1309
|
+
# :DataSet1 :stddev ?std .
|
|
1310
|
+
# :DataSet1 :zThreshold ?thr .
|
|
1311
|
+
# ?xs list:member ?x .
|
|
1312
|
+
# (?x ?mean) math:difference ?d .
|
|
1313
|
+
# (?d ?std) math:quotient ?z .
|
|
1314
|
+
# ?z math:absoluteValue ?absz .
|
|
1315
|
+
# ?absz math:greaterThan ?thr .
|
|
1298
1316
|
# } => {
|
|
1299
|
-
# :
|
|
1300
|
-
# :
|
|
1301
|
-
# :
|
|
1302
|
-
# :Shot1 :range ?range .
|
|
1303
|
-
# :Shot1 :maxHeight ?hMax .
|
|
1304
|
-
# _:b3 :t ?t .
|
|
1305
|
-
# _:b3 :x ?xAtT .
|
|
1306
|
-
# _:b3 :y ?yAtT .
|
|
1307
|
-
# :Shot1 :positionAtSample _:b3 .
|
|
1317
|
+
# _:b1 :value ?x .
|
|
1318
|
+
# _:b1 :zScore ?z .
|
|
1319
|
+
# :DataSet1 :outlier _:b1 .
|
|
1308
1320
|
# } .
|
|
1309
1321
|
# with substitution (on rule variables):
|
|
1310
|
-
# ?
|
|
1311
|
-
# ?
|
|
1312
|
-
# ?
|
|
1313
|
-
# ?
|
|
1314
|
-
# ?
|
|
1315
|
-
# ?
|
|
1316
|
-
# ?
|
|
1317
|
-
# ?
|
|
1318
|
-
# ?t2 = 6.25
|
|
1319
|
-
# ?tFlight = 4.324812117348913
|
|
1320
|
-
# ?theta = 0.7853981633974483
|
|
1321
|
-
# ?twoG = 19.62
|
|
1322
|
-
# ?twoVy = 42.426406871192846
|
|
1323
|
-
# ?v = 30.0
|
|
1324
|
-
# ?vx = 21.213203435596427
|
|
1325
|
-
# ?vy = 21.213203435596423
|
|
1326
|
-
# ?vy2 = 449.9999999999999
|
|
1327
|
-
# ?vy_t = 53.03300858899106
|
|
1328
|
-
# ?xAtT = 53.033008588991066
|
|
1329
|
-
# ?yAtT = 22.37675858899106
|
|
1322
|
+
# ?absz = 2.44112843076783
|
|
1323
|
+
# ?d = 7.357142857142858
|
|
1324
|
+
# ?mean = 2.642857142857143
|
|
1325
|
+
# ?std = 3.0138286721886036
|
|
1326
|
+
# ?thr = 2.0
|
|
1327
|
+
# ?x = 10.0
|
|
1328
|
+
# ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
|
|
1329
|
+
# ?z = 2.44112843076783
|
|
1330
1330
|
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1331
1331
|
# ----------------------------------------------------------------------
|
|
1332
1332
|
|
|
1333
|
-
:
|
|
1333
|
+
:DataSet1 :outlier _:sk_2 .
|
|
1334
1334
|
|