eyeling 1.5.41 → 1.5.42

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,1470 @@
1
+ @prefix : <http://example.org/saffron-slopeworks#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # :Reg1 :n 8 .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
8
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
9
+ # (?x {
10
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
11
+ # ?p :x ?x .
12
+ # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
13
+ # (?y {
14
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
15
+ # ?p :y ?y .
16
+ # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
17
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
18
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
19
+ # (?x2 {
20
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
21
+ # ?p :x ?x .
22
+ # (?x 2.0) math:exponentiation ?x2 .
23
+ # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
24
+ # (64 49 36 25 16 9 4 1) math:sum 204 .
25
+ # (?y2 {
26
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
27
+ # ?p :y ?y .
28
+ # (?y 2.0) math:exponentiation ?y2 .
29
+ # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
30
+ # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
31
+ # (?xy {
32
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
33
+ # ?p :x ?x .
34
+ # ?p :y ?y .
35
+ # (?x ?y) math:product ?xy .
36
+ # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
37
+ # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
38
+ # via the schematic forward rule:
39
+ # {
40
+ # :Reg1 :points ?pts .
41
+ # ?pts list:length ?n .
42
+ # (?x {
43
+ # ?pts list:member ?p .
44
+ # ?p :x ?x .
45
+ # } ?xs) log:collectAllIn ?_b1 .
46
+ # (?y {
47
+ # ?pts list:member ?p .
48
+ # ?p :y ?y .
49
+ # } ?ys) log:collectAllIn ?_b1 .
50
+ # ?xs math:sum ?sumX .
51
+ # ?ys math:sum ?sumY .
52
+ # (?x2 {
53
+ # ?pts list:member ?p .
54
+ # ?p :x ?x .
55
+ # (?x 2.0) math:exponentiation ?x2 .
56
+ # } ?x2s) log:collectAllIn ?_b1 .
57
+ # ?x2s math:sum ?sumXX .
58
+ # (?y2 {
59
+ # ?pts list:member ?p .
60
+ # ?p :y ?y .
61
+ # (?y 2.0) math:exponentiation ?y2 .
62
+ # } ?y2s) log:collectAllIn ?_b1 .
63
+ # ?y2s math:sum ?sumYY .
64
+ # (?xy {
65
+ # ?pts list:member ?p .
66
+ # ?p :x ?x .
67
+ # ?p :y ?y .
68
+ # (?x ?y) math:product ?xy .
69
+ # } ?xys) log:collectAllIn ?_b1 .
70
+ # ?xys math:sum ?sumXY .
71
+ # } => {
72
+ # :Reg1 :n ?n .
73
+ # :Reg1 :sumX ?sumX .
74
+ # :Reg1 :sumY ?sumY .
75
+ # :Reg1 :sumXX ?sumXX .
76
+ # :Reg1 :sumYY ?sumYY .
77
+ # :Reg1 :sumXY ?sumXY .
78
+ # } .
79
+ # with substitution (on rule variables):
80
+ # ?n = 8
81
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
82
+ # ?sumX = 36
83
+ # ?sumXX = 204
84
+ # ?sumXY = 266.00000000000006
85
+ # ?sumY = 46
86
+ # ?sumYY = 379.72
87
+ # ?x2s = (64 49 36 25 16 9 4 1)
88
+ # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
89
+ # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
90
+ # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
91
+ # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
92
+ # Therefore the derived triple above is entailed by the rules and facts.
93
+ # ----------------------------------------------------------------------
94
+
95
+ :Reg1 :n 8 .
96
+
97
+ # ----------------------------------------------------------------------
98
+ # Proof for derived triple:
99
+ # :Reg1 :sumX 36 .
100
+ # It holds because the following instance of the rule body is provable:
101
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
102
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
103
+ # (?x {
104
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
105
+ # ?p :x ?x .
106
+ # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
107
+ # (?y {
108
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
109
+ # ?p :y ?y .
110
+ # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
111
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
112
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
113
+ # (?x2 {
114
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
115
+ # ?p :x ?x .
116
+ # (?x 2.0) math:exponentiation ?x2 .
117
+ # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
118
+ # (64 49 36 25 16 9 4 1) math:sum 204 .
119
+ # (?y2 {
120
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
121
+ # ?p :y ?y .
122
+ # (?y 2.0) math:exponentiation ?y2 .
123
+ # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
124
+ # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
125
+ # (?xy {
126
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
127
+ # ?p :x ?x .
128
+ # ?p :y ?y .
129
+ # (?x ?y) math:product ?xy .
130
+ # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
131
+ # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
132
+ # via the schematic forward rule:
133
+ # {
134
+ # :Reg1 :points ?pts .
135
+ # ?pts list:length ?n .
136
+ # (?x {
137
+ # ?pts list:member ?p .
138
+ # ?p :x ?x .
139
+ # } ?xs) log:collectAllIn ?_b1 .
140
+ # (?y {
141
+ # ?pts list:member ?p .
142
+ # ?p :y ?y .
143
+ # } ?ys) log:collectAllIn ?_b1 .
144
+ # ?xs math:sum ?sumX .
145
+ # ?ys math:sum ?sumY .
146
+ # (?x2 {
147
+ # ?pts list:member ?p .
148
+ # ?p :x ?x .
149
+ # (?x 2.0) math:exponentiation ?x2 .
150
+ # } ?x2s) log:collectAllIn ?_b1 .
151
+ # ?x2s math:sum ?sumXX .
152
+ # (?y2 {
153
+ # ?pts list:member ?p .
154
+ # ?p :y ?y .
155
+ # (?y 2.0) math:exponentiation ?y2 .
156
+ # } ?y2s) log:collectAllIn ?_b1 .
157
+ # ?y2s math:sum ?sumYY .
158
+ # (?xy {
159
+ # ?pts list:member ?p .
160
+ # ?p :x ?x .
161
+ # ?p :y ?y .
162
+ # (?x ?y) math:product ?xy .
163
+ # } ?xys) log:collectAllIn ?_b1 .
164
+ # ?xys math:sum ?sumXY .
165
+ # } => {
166
+ # :Reg1 :n ?n .
167
+ # :Reg1 :sumX ?sumX .
168
+ # :Reg1 :sumY ?sumY .
169
+ # :Reg1 :sumXX ?sumXX .
170
+ # :Reg1 :sumYY ?sumYY .
171
+ # :Reg1 :sumXY ?sumXY .
172
+ # } .
173
+ # with substitution (on rule variables):
174
+ # ?n = 8
175
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
176
+ # ?sumX = 36
177
+ # ?sumXX = 204
178
+ # ?sumXY = 266.00000000000006
179
+ # ?sumY = 46
180
+ # ?sumYY = 379.72
181
+ # ?x2s = (64 49 36 25 16 9 4 1)
182
+ # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
183
+ # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
184
+ # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
185
+ # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
186
+ # Therefore the derived triple above is entailed by the rules and facts.
187
+ # ----------------------------------------------------------------------
188
+
189
+ :Reg1 :sumX 36 .
190
+
191
+ # ----------------------------------------------------------------------
192
+ # Proof for derived triple:
193
+ # :Reg1 :sumY 46 .
194
+ # It holds because the following instance of the rule body is provable:
195
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
196
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
197
+ # (?x {
198
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
199
+ # ?p :x ?x .
200
+ # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
201
+ # (?y {
202
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
203
+ # ?p :y ?y .
204
+ # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
205
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
206
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
207
+ # (?x2 {
208
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
209
+ # ?p :x ?x .
210
+ # (?x 2.0) math:exponentiation ?x2 .
211
+ # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
212
+ # (64 49 36 25 16 9 4 1) math:sum 204 .
213
+ # (?y2 {
214
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
215
+ # ?p :y ?y .
216
+ # (?y 2.0) math:exponentiation ?y2 .
217
+ # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
218
+ # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
219
+ # (?xy {
220
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
221
+ # ?p :x ?x .
222
+ # ?p :y ?y .
223
+ # (?x ?y) math:product ?xy .
224
+ # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
225
+ # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
226
+ # via the schematic forward rule:
227
+ # {
228
+ # :Reg1 :points ?pts .
229
+ # ?pts list:length ?n .
230
+ # (?x {
231
+ # ?pts list:member ?p .
232
+ # ?p :x ?x .
233
+ # } ?xs) log:collectAllIn ?_b1 .
234
+ # (?y {
235
+ # ?pts list:member ?p .
236
+ # ?p :y ?y .
237
+ # } ?ys) log:collectAllIn ?_b1 .
238
+ # ?xs math:sum ?sumX .
239
+ # ?ys math:sum ?sumY .
240
+ # (?x2 {
241
+ # ?pts list:member ?p .
242
+ # ?p :x ?x .
243
+ # (?x 2.0) math:exponentiation ?x2 .
244
+ # } ?x2s) log:collectAllIn ?_b1 .
245
+ # ?x2s math:sum ?sumXX .
246
+ # (?y2 {
247
+ # ?pts list:member ?p .
248
+ # ?p :y ?y .
249
+ # (?y 2.0) math:exponentiation ?y2 .
250
+ # } ?y2s) log:collectAllIn ?_b1 .
251
+ # ?y2s math:sum ?sumYY .
252
+ # (?xy {
253
+ # ?pts list:member ?p .
254
+ # ?p :x ?x .
255
+ # ?p :y ?y .
256
+ # (?x ?y) math:product ?xy .
257
+ # } ?xys) log:collectAllIn ?_b1 .
258
+ # ?xys math:sum ?sumXY .
259
+ # } => {
260
+ # :Reg1 :n ?n .
261
+ # :Reg1 :sumX ?sumX .
262
+ # :Reg1 :sumY ?sumY .
263
+ # :Reg1 :sumXX ?sumXX .
264
+ # :Reg1 :sumYY ?sumYY .
265
+ # :Reg1 :sumXY ?sumXY .
266
+ # } .
267
+ # with substitution (on rule variables):
268
+ # ?n = 8
269
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
270
+ # ?sumX = 36
271
+ # ?sumXX = 204
272
+ # ?sumXY = 266.00000000000006
273
+ # ?sumY = 46
274
+ # ?sumYY = 379.72
275
+ # ?x2s = (64 49 36 25 16 9 4 1)
276
+ # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
277
+ # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
278
+ # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
279
+ # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
280
+ # Therefore the derived triple above is entailed by the rules and facts.
281
+ # ----------------------------------------------------------------------
282
+
283
+ :Reg1 :sumY 46 .
284
+
285
+ # ----------------------------------------------------------------------
286
+ # Proof for derived triple:
287
+ # :Reg1 :sumXX 204 .
288
+ # It holds because the following instance of the rule body is provable:
289
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
290
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
291
+ # (?x {
292
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
293
+ # ?p :x ?x .
294
+ # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
295
+ # (?y {
296
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
297
+ # ?p :y ?y .
298
+ # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
299
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
300
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
301
+ # (?x2 {
302
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
303
+ # ?p :x ?x .
304
+ # (?x 2.0) math:exponentiation ?x2 .
305
+ # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
306
+ # (64 49 36 25 16 9 4 1) math:sum 204 .
307
+ # (?y2 {
308
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
309
+ # ?p :y ?y .
310
+ # (?y 2.0) math:exponentiation ?y2 .
311
+ # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
312
+ # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
313
+ # (?xy {
314
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
315
+ # ?p :x ?x .
316
+ # ?p :y ?y .
317
+ # (?x ?y) math:product ?xy .
318
+ # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
319
+ # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
320
+ # via the schematic forward rule:
321
+ # {
322
+ # :Reg1 :points ?pts .
323
+ # ?pts list:length ?n .
324
+ # (?x {
325
+ # ?pts list:member ?p .
326
+ # ?p :x ?x .
327
+ # } ?xs) log:collectAllIn ?_b1 .
328
+ # (?y {
329
+ # ?pts list:member ?p .
330
+ # ?p :y ?y .
331
+ # } ?ys) log:collectAllIn ?_b1 .
332
+ # ?xs math:sum ?sumX .
333
+ # ?ys math:sum ?sumY .
334
+ # (?x2 {
335
+ # ?pts list:member ?p .
336
+ # ?p :x ?x .
337
+ # (?x 2.0) math:exponentiation ?x2 .
338
+ # } ?x2s) log:collectAllIn ?_b1 .
339
+ # ?x2s math:sum ?sumXX .
340
+ # (?y2 {
341
+ # ?pts list:member ?p .
342
+ # ?p :y ?y .
343
+ # (?y 2.0) math:exponentiation ?y2 .
344
+ # } ?y2s) log:collectAllIn ?_b1 .
345
+ # ?y2s math:sum ?sumYY .
346
+ # (?xy {
347
+ # ?pts list:member ?p .
348
+ # ?p :x ?x .
349
+ # ?p :y ?y .
350
+ # (?x ?y) math:product ?xy .
351
+ # } ?xys) log:collectAllIn ?_b1 .
352
+ # ?xys math:sum ?sumXY .
353
+ # } => {
354
+ # :Reg1 :n ?n .
355
+ # :Reg1 :sumX ?sumX .
356
+ # :Reg1 :sumY ?sumY .
357
+ # :Reg1 :sumXX ?sumXX .
358
+ # :Reg1 :sumYY ?sumYY .
359
+ # :Reg1 :sumXY ?sumXY .
360
+ # } .
361
+ # with substitution (on rule variables):
362
+ # ?n = 8
363
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
364
+ # ?sumX = 36
365
+ # ?sumXX = 204
366
+ # ?sumXY = 266.00000000000006
367
+ # ?sumY = 46
368
+ # ?sumYY = 379.72
369
+ # ?x2s = (64 49 36 25 16 9 4 1)
370
+ # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
371
+ # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
372
+ # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
373
+ # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
374
+ # Therefore the derived triple above is entailed by the rules and facts.
375
+ # ----------------------------------------------------------------------
376
+
377
+ :Reg1 :sumXX 204 .
378
+
379
+ # ----------------------------------------------------------------------
380
+ # Proof for derived triple:
381
+ # :Reg1 :sumYY 379.72 .
382
+ # It holds because the following instance of the rule body is provable:
383
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
384
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
385
+ # (?x {
386
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
387
+ # ?p :x ?x .
388
+ # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
389
+ # (?y {
390
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
391
+ # ?p :y ?y .
392
+ # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
393
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
394
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
395
+ # (?x2 {
396
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
397
+ # ?p :x ?x .
398
+ # (?x 2.0) math:exponentiation ?x2 .
399
+ # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
400
+ # (64 49 36 25 16 9 4 1) math:sum 204 .
401
+ # (?y2 {
402
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
403
+ # ?p :y ?y .
404
+ # (?y 2.0) math:exponentiation ?y2 .
405
+ # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
406
+ # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
407
+ # (?xy {
408
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
409
+ # ?p :x ?x .
410
+ # ?p :y ?y .
411
+ # (?x ?y) math:product ?xy .
412
+ # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
413
+ # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
414
+ # via the schematic forward rule:
415
+ # {
416
+ # :Reg1 :points ?pts .
417
+ # ?pts list:length ?n .
418
+ # (?x {
419
+ # ?pts list:member ?p .
420
+ # ?p :x ?x .
421
+ # } ?xs) log:collectAllIn ?_b1 .
422
+ # (?y {
423
+ # ?pts list:member ?p .
424
+ # ?p :y ?y .
425
+ # } ?ys) log:collectAllIn ?_b1 .
426
+ # ?xs math:sum ?sumX .
427
+ # ?ys math:sum ?sumY .
428
+ # (?x2 {
429
+ # ?pts list:member ?p .
430
+ # ?p :x ?x .
431
+ # (?x 2.0) math:exponentiation ?x2 .
432
+ # } ?x2s) log:collectAllIn ?_b1 .
433
+ # ?x2s math:sum ?sumXX .
434
+ # (?y2 {
435
+ # ?pts list:member ?p .
436
+ # ?p :y ?y .
437
+ # (?y 2.0) math:exponentiation ?y2 .
438
+ # } ?y2s) log:collectAllIn ?_b1 .
439
+ # ?y2s math:sum ?sumYY .
440
+ # (?xy {
441
+ # ?pts list:member ?p .
442
+ # ?p :x ?x .
443
+ # ?p :y ?y .
444
+ # (?x ?y) math:product ?xy .
445
+ # } ?xys) log:collectAllIn ?_b1 .
446
+ # ?xys math:sum ?sumXY .
447
+ # } => {
448
+ # :Reg1 :n ?n .
449
+ # :Reg1 :sumX ?sumX .
450
+ # :Reg1 :sumY ?sumY .
451
+ # :Reg1 :sumXX ?sumXX .
452
+ # :Reg1 :sumYY ?sumYY .
453
+ # :Reg1 :sumXY ?sumXY .
454
+ # } .
455
+ # with substitution (on rule variables):
456
+ # ?n = 8
457
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
458
+ # ?sumX = 36
459
+ # ?sumXX = 204
460
+ # ?sumXY = 266.00000000000006
461
+ # ?sumY = 46
462
+ # ?sumYY = 379.72
463
+ # ?x2s = (64 49 36 25 16 9 4 1)
464
+ # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
465
+ # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
466
+ # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
467
+ # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
468
+ # Therefore the derived triple above is entailed by the rules and facts.
469
+ # ----------------------------------------------------------------------
470
+
471
+ :Reg1 :sumYY 379.72 .
472
+
473
+ # ----------------------------------------------------------------------
474
+ # Proof for derived triple:
475
+ # :Reg1 :sumXY 266.00000000000006 .
476
+ # It holds because the following instance of the rule body is provable:
477
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
478
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
479
+ # (?x {
480
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
481
+ # ?p :x ?x .
482
+ # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
483
+ # (?y {
484
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
485
+ # ?p :y ?y .
486
+ # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
487
+ # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
488
+ # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
489
+ # (?x2 {
490
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
491
+ # ?p :x ?x .
492
+ # (?x 2.0) math:exponentiation ?x2 .
493
+ # } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
494
+ # (64 49 36 25 16 9 4 1) math:sum 204 .
495
+ # (?y2 {
496
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
497
+ # ?p :y ?y .
498
+ # (?y 2.0) math:exponentiation ?y2 .
499
+ # } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
500
+ # (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
501
+ # (?xy {
502
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
503
+ # ?p :x ?x .
504
+ # ?p :y ?y .
505
+ # (?x ?y) math:product ?xy .
506
+ # } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
507
+ # (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
508
+ # via the schematic forward rule:
509
+ # {
510
+ # :Reg1 :points ?pts .
511
+ # ?pts list:length ?n .
512
+ # (?x {
513
+ # ?pts list:member ?p .
514
+ # ?p :x ?x .
515
+ # } ?xs) log:collectAllIn ?_b1 .
516
+ # (?y {
517
+ # ?pts list:member ?p .
518
+ # ?p :y ?y .
519
+ # } ?ys) log:collectAllIn ?_b1 .
520
+ # ?xs math:sum ?sumX .
521
+ # ?ys math:sum ?sumY .
522
+ # (?x2 {
523
+ # ?pts list:member ?p .
524
+ # ?p :x ?x .
525
+ # (?x 2.0) math:exponentiation ?x2 .
526
+ # } ?x2s) log:collectAllIn ?_b1 .
527
+ # ?x2s math:sum ?sumXX .
528
+ # (?y2 {
529
+ # ?pts list:member ?p .
530
+ # ?p :y ?y .
531
+ # (?y 2.0) math:exponentiation ?y2 .
532
+ # } ?y2s) log:collectAllIn ?_b1 .
533
+ # ?y2s math:sum ?sumYY .
534
+ # (?xy {
535
+ # ?pts list:member ?p .
536
+ # ?p :x ?x .
537
+ # ?p :y ?y .
538
+ # (?x ?y) math:product ?xy .
539
+ # } ?xys) log:collectAllIn ?_b1 .
540
+ # ?xys math:sum ?sumXY .
541
+ # } => {
542
+ # :Reg1 :n ?n .
543
+ # :Reg1 :sumX ?sumX .
544
+ # :Reg1 :sumY ?sumY .
545
+ # :Reg1 :sumXX ?sumXX .
546
+ # :Reg1 :sumYY ?sumYY .
547
+ # :Reg1 :sumXY ?sumXY .
548
+ # } .
549
+ # with substitution (on rule variables):
550
+ # ?n = 8
551
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
552
+ # ?sumX = 36
553
+ # ?sumXX = 204
554
+ # ?sumXY = 266.00000000000006
555
+ # ?sumY = 46
556
+ # ?sumYY = 379.72
557
+ # ?x2s = (64 49 36 25 16 9 4 1)
558
+ # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
559
+ # ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
560
+ # ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
561
+ # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
562
+ # Therefore the derived triple above is entailed by the rules and facts.
563
+ # ----------------------------------------------------------------------
564
+
565
+ :Reg1 :sumXY 266.00000000000006 .
566
+
567
+ # ----------------------------------------------------------------------
568
+ # Proof for derived triple:
569
+ # :Reg1 :slope 1.4047619047619062 .
570
+ # It holds because the following instance of the rule body is provable:
571
+ # :Reg1 :n 8 .
572
+ # :Reg1 :sumX 36 .
573
+ # :Reg1 :sumY 46 .
574
+ # :Reg1 :sumXX 204 .
575
+ # :Reg1 :sumYY 379.72 .
576
+ # :Reg1 :sumXY 266.00000000000006 .
577
+ # (8 266.00000000000006) math:product 2128.0000000000005 .
578
+ # (36 46) math:product 1656 .
579
+ # (2128.0000000000005 1656) math:difference 472.00000000000045 .
580
+ # (8 204) math:product 1632 .
581
+ # (36 2.0) math:exponentiation 1296 .
582
+ # (1632 1296) math:difference 336 .
583
+ # (472.00000000000045 336) math:quotient 1.4047619047619062 .
584
+ # (1.4047619047619062 36) math:product 50.571428571428626 .
585
+ # (46 50.571428571428626) math:difference -4.571428571428626 .
586
+ # (-4.571428571428626 8) math:quotient -0.5714285714285783 .
587
+ # (8 379.72) math:product 3037.76 .
588
+ # (46 2.0) math:exponentiation 2116 .
589
+ # (3037.76 2116) math:difference 921.7600000000002 .
590
+ # (336 921.7600000000002) math:product 309711.3600000001 .
591
+ # (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
592
+ # (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
593
+ # (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
594
+ # via the schematic forward rule:
595
+ # {
596
+ # :Reg1 :n ?n .
597
+ # :Reg1 :sumX ?sx .
598
+ # :Reg1 :sumY ?sy .
599
+ # :Reg1 :sumXX ?sxx .
600
+ # :Reg1 :sumYY ?syy .
601
+ # :Reg1 :sumXY ?sxy .
602
+ # (?n ?sxy) math:product ?n_sxy .
603
+ # (?sx ?sy) math:product ?sx_sy .
604
+ # (?n_sxy ?sx_sy) math:difference ?num .
605
+ # (?n ?sxx) math:product ?n_sxx .
606
+ # (?sx 2.0) math:exponentiation ?sx2 .
607
+ # (?n_sxx ?sx2) math:difference ?denX .
608
+ # (?num ?denX) math:quotient ?b .
609
+ # (?b ?sx) math:product ?b_sx .
610
+ # (?sy ?b_sx) math:difference ?tmpA .
611
+ # (?tmpA ?n) math:quotient ?a .
612
+ # (?n ?syy) math:product ?n_syy .
613
+ # (?sy 2.0) math:exponentiation ?sy2 .
614
+ # (?n_syy ?sy2) math:difference ?denY .
615
+ # (?denX ?denY) math:product ?denXY .
616
+ # (?denXY 0.5) math:exponentiation ?sqrtDen .
617
+ # (?num ?sqrtDen) math:quotient ?r .
618
+ # (?r 2.0) math:exponentiation ?r2 .
619
+ # } => {
620
+ # :Reg1 :slope ?b .
621
+ # :Reg1 :intercept ?a .
622
+ # :Reg1 :pearsonR ?r .
623
+ # :Reg1 :rSquared ?r2 .
624
+ # } .
625
+ # with substitution (on rule variables):
626
+ # ?a = -0.5714285714285783
627
+ # ?b = 1.4047619047619062
628
+ # ?b_sx = 50.571428571428626
629
+ # ?denX = 336
630
+ # ?denXY = 309711.3600000001
631
+ # ?denY = 921.7600000000002
632
+ # ?n = 8
633
+ # ?n_sxx = 1632
634
+ # ?n_sxy = 2128.0000000000005
635
+ # ?n_syy = 3037.76
636
+ # ?num = 472.00000000000045
637
+ # ?r = 0.8481319639871393
638
+ # ?r2 = 0.7193278283366822
639
+ # ?sqrtDen = 556.5171695464571
640
+ # ?sx = 36
641
+ # ?sx2 = 1296
642
+ # ?sx_sy = 1656
643
+ # ?sxx = 204
644
+ # ?sxy = 266.00000000000006
645
+ # ?sy = 46
646
+ # ?sy2 = 2116
647
+ # ?syy = 379.72
648
+ # ?tmpA = -4.571428571428626
649
+ # Therefore the derived triple above is entailed by the rules and facts.
650
+ # ----------------------------------------------------------------------
651
+
652
+ :Reg1 :slope 1.4047619047619062 .
653
+
654
+ # ----------------------------------------------------------------------
655
+ # Proof for derived triple:
656
+ # :Reg1 :intercept -0.5714285714285783 .
657
+ # It holds because the following instance of the rule body is provable:
658
+ # :Reg1 :n 8 .
659
+ # :Reg1 :sumX 36 .
660
+ # :Reg1 :sumY 46 .
661
+ # :Reg1 :sumXX 204 .
662
+ # :Reg1 :sumYY 379.72 .
663
+ # :Reg1 :sumXY 266.00000000000006 .
664
+ # (8 266.00000000000006) math:product 2128.0000000000005 .
665
+ # (36 46) math:product 1656 .
666
+ # (2128.0000000000005 1656) math:difference 472.00000000000045 .
667
+ # (8 204) math:product 1632 .
668
+ # (36 2.0) math:exponentiation 1296 .
669
+ # (1632 1296) math:difference 336 .
670
+ # (472.00000000000045 336) math:quotient 1.4047619047619062 .
671
+ # (1.4047619047619062 36) math:product 50.571428571428626 .
672
+ # (46 50.571428571428626) math:difference -4.571428571428626 .
673
+ # (-4.571428571428626 8) math:quotient -0.5714285714285783 .
674
+ # (8 379.72) math:product 3037.76 .
675
+ # (46 2.0) math:exponentiation 2116 .
676
+ # (3037.76 2116) math:difference 921.7600000000002 .
677
+ # (336 921.7600000000002) math:product 309711.3600000001 .
678
+ # (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
679
+ # (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
680
+ # (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
681
+ # via the schematic forward rule:
682
+ # {
683
+ # :Reg1 :n ?n .
684
+ # :Reg1 :sumX ?sx .
685
+ # :Reg1 :sumY ?sy .
686
+ # :Reg1 :sumXX ?sxx .
687
+ # :Reg1 :sumYY ?syy .
688
+ # :Reg1 :sumXY ?sxy .
689
+ # (?n ?sxy) math:product ?n_sxy .
690
+ # (?sx ?sy) math:product ?sx_sy .
691
+ # (?n_sxy ?sx_sy) math:difference ?num .
692
+ # (?n ?sxx) math:product ?n_sxx .
693
+ # (?sx 2.0) math:exponentiation ?sx2 .
694
+ # (?n_sxx ?sx2) math:difference ?denX .
695
+ # (?num ?denX) math:quotient ?b .
696
+ # (?b ?sx) math:product ?b_sx .
697
+ # (?sy ?b_sx) math:difference ?tmpA .
698
+ # (?tmpA ?n) math:quotient ?a .
699
+ # (?n ?syy) math:product ?n_syy .
700
+ # (?sy 2.0) math:exponentiation ?sy2 .
701
+ # (?n_syy ?sy2) math:difference ?denY .
702
+ # (?denX ?denY) math:product ?denXY .
703
+ # (?denXY 0.5) math:exponentiation ?sqrtDen .
704
+ # (?num ?sqrtDen) math:quotient ?r .
705
+ # (?r 2.0) math:exponentiation ?r2 .
706
+ # } => {
707
+ # :Reg1 :slope ?b .
708
+ # :Reg1 :intercept ?a .
709
+ # :Reg1 :pearsonR ?r .
710
+ # :Reg1 :rSquared ?r2 .
711
+ # } .
712
+ # with substitution (on rule variables):
713
+ # ?a = -0.5714285714285783
714
+ # ?b = 1.4047619047619062
715
+ # ?b_sx = 50.571428571428626
716
+ # ?denX = 336
717
+ # ?denXY = 309711.3600000001
718
+ # ?denY = 921.7600000000002
719
+ # ?n = 8
720
+ # ?n_sxx = 1632
721
+ # ?n_sxy = 2128.0000000000005
722
+ # ?n_syy = 3037.76
723
+ # ?num = 472.00000000000045
724
+ # ?r = 0.8481319639871393
725
+ # ?r2 = 0.7193278283366822
726
+ # ?sqrtDen = 556.5171695464571
727
+ # ?sx = 36
728
+ # ?sx2 = 1296
729
+ # ?sx_sy = 1656
730
+ # ?sxx = 204
731
+ # ?sxy = 266.00000000000006
732
+ # ?sy = 46
733
+ # ?sy2 = 2116
734
+ # ?syy = 379.72
735
+ # ?tmpA = -4.571428571428626
736
+ # Therefore the derived triple above is entailed by the rules and facts.
737
+ # ----------------------------------------------------------------------
738
+
739
+ :Reg1 :intercept -0.5714285714285783 .
740
+
741
+ # ----------------------------------------------------------------------
742
+ # Proof for derived triple:
743
+ # :Reg1 :pearsonR 0.8481319639871393 .
744
+ # It holds because the following instance of the rule body is provable:
745
+ # :Reg1 :n 8 .
746
+ # :Reg1 :sumX 36 .
747
+ # :Reg1 :sumY 46 .
748
+ # :Reg1 :sumXX 204 .
749
+ # :Reg1 :sumYY 379.72 .
750
+ # :Reg1 :sumXY 266.00000000000006 .
751
+ # (8 266.00000000000006) math:product 2128.0000000000005 .
752
+ # (36 46) math:product 1656 .
753
+ # (2128.0000000000005 1656) math:difference 472.00000000000045 .
754
+ # (8 204) math:product 1632 .
755
+ # (36 2.0) math:exponentiation 1296 .
756
+ # (1632 1296) math:difference 336 .
757
+ # (472.00000000000045 336) math:quotient 1.4047619047619062 .
758
+ # (1.4047619047619062 36) math:product 50.571428571428626 .
759
+ # (46 50.571428571428626) math:difference -4.571428571428626 .
760
+ # (-4.571428571428626 8) math:quotient -0.5714285714285783 .
761
+ # (8 379.72) math:product 3037.76 .
762
+ # (46 2.0) math:exponentiation 2116 .
763
+ # (3037.76 2116) math:difference 921.7600000000002 .
764
+ # (336 921.7600000000002) math:product 309711.3600000001 .
765
+ # (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
766
+ # (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
767
+ # (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
768
+ # via the schematic forward rule:
769
+ # {
770
+ # :Reg1 :n ?n .
771
+ # :Reg1 :sumX ?sx .
772
+ # :Reg1 :sumY ?sy .
773
+ # :Reg1 :sumXX ?sxx .
774
+ # :Reg1 :sumYY ?syy .
775
+ # :Reg1 :sumXY ?sxy .
776
+ # (?n ?sxy) math:product ?n_sxy .
777
+ # (?sx ?sy) math:product ?sx_sy .
778
+ # (?n_sxy ?sx_sy) math:difference ?num .
779
+ # (?n ?sxx) math:product ?n_sxx .
780
+ # (?sx 2.0) math:exponentiation ?sx2 .
781
+ # (?n_sxx ?sx2) math:difference ?denX .
782
+ # (?num ?denX) math:quotient ?b .
783
+ # (?b ?sx) math:product ?b_sx .
784
+ # (?sy ?b_sx) math:difference ?tmpA .
785
+ # (?tmpA ?n) math:quotient ?a .
786
+ # (?n ?syy) math:product ?n_syy .
787
+ # (?sy 2.0) math:exponentiation ?sy2 .
788
+ # (?n_syy ?sy2) math:difference ?denY .
789
+ # (?denX ?denY) math:product ?denXY .
790
+ # (?denXY 0.5) math:exponentiation ?sqrtDen .
791
+ # (?num ?sqrtDen) math:quotient ?r .
792
+ # (?r 2.0) math:exponentiation ?r2 .
793
+ # } => {
794
+ # :Reg1 :slope ?b .
795
+ # :Reg1 :intercept ?a .
796
+ # :Reg1 :pearsonR ?r .
797
+ # :Reg1 :rSquared ?r2 .
798
+ # } .
799
+ # with substitution (on rule variables):
800
+ # ?a = -0.5714285714285783
801
+ # ?b = 1.4047619047619062
802
+ # ?b_sx = 50.571428571428626
803
+ # ?denX = 336
804
+ # ?denXY = 309711.3600000001
805
+ # ?denY = 921.7600000000002
806
+ # ?n = 8
807
+ # ?n_sxx = 1632
808
+ # ?n_sxy = 2128.0000000000005
809
+ # ?n_syy = 3037.76
810
+ # ?num = 472.00000000000045
811
+ # ?r = 0.8481319639871393
812
+ # ?r2 = 0.7193278283366822
813
+ # ?sqrtDen = 556.5171695464571
814
+ # ?sx = 36
815
+ # ?sx2 = 1296
816
+ # ?sx_sy = 1656
817
+ # ?sxx = 204
818
+ # ?sxy = 266.00000000000006
819
+ # ?sy = 46
820
+ # ?sy2 = 2116
821
+ # ?syy = 379.72
822
+ # ?tmpA = -4.571428571428626
823
+ # Therefore the derived triple above is entailed by the rules and facts.
824
+ # ----------------------------------------------------------------------
825
+
826
+ :Reg1 :pearsonR 0.8481319639871393 .
827
+
828
+ # ----------------------------------------------------------------------
829
+ # Proof for derived triple:
830
+ # :Reg1 :rSquared 0.7193278283366822 .
831
+ # It holds because the following instance of the rule body is provable:
832
+ # :Reg1 :n 8 .
833
+ # :Reg1 :sumX 36 .
834
+ # :Reg1 :sumY 46 .
835
+ # :Reg1 :sumXX 204 .
836
+ # :Reg1 :sumYY 379.72 .
837
+ # :Reg1 :sumXY 266.00000000000006 .
838
+ # (8 266.00000000000006) math:product 2128.0000000000005 .
839
+ # (36 46) math:product 1656 .
840
+ # (2128.0000000000005 1656) math:difference 472.00000000000045 .
841
+ # (8 204) math:product 1632 .
842
+ # (36 2.0) math:exponentiation 1296 .
843
+ # (1632 1296) math:difference 336 .
844
+ # (472.00000000000045 336) math:quotient 1.4047619047619062 .
845
+ # (1.4047619047619062 36) math:product 50.571428571428626 .
846
+ # (46 50.571428571428626) math:difference -4.571428571428626 .
847
+ # (-4.571428571428626 8) math:quotient -0.5714285714285783 .
848
+ # (8 379.72) math:product 3037.76 .
849
+ # (46 2.0) math:exponentiation 2116 .
850
+ # (3037.76 2116) math:difference 921.7600000000002 .
851
+ # (336 921.7600000000002) math:product 309711.3600000001 .
852
+ # (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
853
+ # (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
854
+ # (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
855
+ # via the schematic forward rule:
856
+ # {
857
+ # :Reg1 :n ?n .
858
+ # :Reg1 :sumX ?sx .
859
+ # :Reg1 :sumY ?sy .
860
+ # :Reg1 :sumXX ?sxx .
861
+ # :Reg1 :sumYY ?syy .
862
+ # :Reg1 :sumXY ?sxy .
863
+ # (?n ?sxy) math:product ?n_sxy .
864
+ # (?sx ?sy) math:product ?sx_sy .
865
+ # (?n_sxy ?sx_sy) math:difference ?num .
866
+ # (?n ?sxx) math:product ?n_sxx .
867
+ # (?sx 2.0) math:exponentiation ?sx2 .
868
+ # (?n_sxx ?sx2) math:difference ?denX .
869
+ # (?num ?denX) math:quotient ?b .
870
+ # (?b ?sx) math:product ?b_sx .
871
+ # (?sy ?b_sx) math:difference ?tmpA .
872
+ # (?tmpA ?n) math:quotient ?a .
873
+ # (?n ?syy) math:product ?n_syy .
874
+ # (?sy 2.0) math:exponentiation ?sy2 .
875
+ # (?n_syy ?sy2) math:difference ?denY .
876
+ # (?denX ?denY) math:product ?denXY .
877
+ # (?denXY 0.5) math:exponentiation ?sqrtDen .
878
+ # (?num ?sqrtDen) math:quotient ?r .
879
+ # (?r 2.0) math:exponentiation ?r2 .
880
+ # } => {
881
+ # :Reg1 :slope ?b .
882
+ # :Reg1 :intercept ?a .
883
+ # :Reg1 :pearsonR ?r .
884
+ # :Reg1 :rSquared ?r2 .
885
+ # } .
886
+ # with substitution (on rule variables):
887
+ # ?a = -0.5714285714285783
888
+ # ?b = 1.4047619047619062
889
+ # ?b_sx = 50.571428571428626
890
+ # ?denX = 336
891
+ # ?denXY = 309711.3600000001
892
+ # ?denY = 921.7600000000002
893
+ # ?n = 8
894
+ # ?n_sxx = 1632
895
+ # ?n_sxy = 2128.0000000000005
896
+ # ?n_syy = 3037.76
897
+ # ?num = 472.00000000000045
898
+ # ?r = 0.8481319639871393
899
+ # ?r2 = 0.7193278283366822
900
+ # ?sqrtDen = 556.5171695464571
901
+ # ?sx = 36
902
+ # ?sx2 = 1296
903
+ # ?sx_sy = 1656
904
+ # ?sxx = 204
905
+ # ?sxy = 266.00000000000006
906
+ # ?sy = 46
907
+ # ?sy2 = 2116
908
+ # ?syy = 379.72
909
+ # ?tmpA = -4.571428571428626
910
+ # Therefore the derived triple above is entailed by the rules and facts.
911
+ # ----------------------------------------------------------------------
912
+
913
+ :Reg1 :rSquared 0.7193278283366822 .
914
+
915
+ # ----------------------------------------------------------------------
916
+ # Proof for derived triple:
917
+ # :Reg1 :sse 32.33904761904761 .
918
+ # It holds because the following instance of the rule body is provable:
919
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
920
+ # :Reg1 :slope 1.4047619047619062 .
921
+ # :Reg1 :intercept -0.5714285714285783 .
922
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
923
+ # (?e2 {
924
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
925
+ # ?p :x ?x .
926
+ # ?p :y ?y .
927
+ # (1.4047619047619062 ?x) math:product ?bx .
928
+ # (-0.5714285714285783 ?bx) math:sum ?yhat .
929
+ # (?y ?yhat) math:difference ?e .
930
+ # (?e 2.0) math:exponentiation ?e2 .
931
+ # } (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)) log:collectAllIn ?_b1 .
932
+ # (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583) math:sum 32.33904761904761 .
933
+ # (32.33904761904761 8) math:quotient 4.0423809523809515 .
934
+ # (4.0423809523809515 0.5) math:exponentiation 2.010567321026817 .
935
+ # via the schematic forward rule:
936
+ # {
937
+ # :Reg1 :points ?pts .
938
+ # :Reg1 :slope ?b .
939
+ # :Reg1 :intercept ?a .
940
+ # ?pts list:length ?n .
941
+ # (?e2 {
942
+ # ?pts list:member ?p .
943
+ # ?p :x ?x .
944
+ # ?p :y ?y .
945
+ # (?b ?x) math:product ?bx .
946
+ # (?a ?bx) math:sum ?yhat .
947
+ # (?y ?yhat) math:difference ?e .
948
+ # (?e 2.0) math:exponentiation ?e2 .
949
+ # } ?e2s) log:collectAllIn ?_b1 .
950
+ # ?e2s math:sum ?sse .
951
+ # (?sse ?n) math:quotient ?mse .
952
+ # (?mse 0.5) math:exponentiation ?rmse .
953
+ # } => {
954
+ # :Reg1 :sse ?sse .
955
+ # :Reg1 :rmse ?rmse .
956
+ # } .
957
+ # with substitution (on rule variables):
958
+ # ?a = -0.5714285714285783
959
+ # ?b = 1.4047619047619062
960
+ # ?e2s = (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)
961
+ # ?mse = 4.0423809523809515
962
+ # ?n = 8
963
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
964
+ # ?rmse = 2.010567321026817
965
+ # ?sse = 32.33904761904761
966
+ # Therefore the derived triple above is entailed by the rules and facts.
967
+ # ----------------------------------------------------------------------
968
+
969
+ :Reg1 :sse 32.33904761904761 .
970
+
971
+ # ----------------------------------------------------------------------
972
+ # Proof for derived triple:
973
+ # :Reg1 :rmse 2.010567321026817 .
974
+ # It holds because the following instance of the rule body is provable:
975
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
976
+ # :Reg1 :slope 1.4047619047619062 .
977
+ # :Reg1 :intercept -0.5714285714285783 .
978
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
979
+ # (?e2 {
980
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
981
+ # ?p :x ?x .
982
+ # ?p :y ?y .
983
+ # (1.4047619047619062 ?x) math:product ?bx .
984
+ # (-0.5714285714285783 ?bx) math:sum ?yhat .
985
+ # (?y ?yhat) math:difference ?e .
986
+ # (?e 2.0) math:exponentiation ?e2 .
987
+ # } (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)) log:collectAllIn ?_b1 .
988
+ # (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583) math:sum 32.33904761904761 .
989
+ # (32.33904761904761 8) math:quotient 4.0423809523809515 .
990
+ # (4.0423809523809515 0.5) math:exponentiation 2.010567321026817 .
991
+ # via the schematic forward rule:
992
+ # {
993
+ # :Reg1 :points ?pts .
994
+ # :Reg1 :slope ?b .
995
+ # :Reg1 :intercept ?a .
996
+ # ?pts list:length ?n .
997
+ # (?e2 {
998
+ # ?pts list:member ?p .
999
+ # ?p :x ?x .
1000
+ # ?p :y ?y .
1001
+ # (?b ?x) math:product ?bx .
1002
+ # (?a ?bx) math:sum ?yhat .
1003
+ # (?y ?yhat) math:difference ?e .
1004
+ # (?e 2.0) math:exponentiation ?e2 .
1005
+ # } ?e2s) log:collectAllIn ?_b1 .
1006
+ # ?e2s math:sum ?sse .
1007
+ # (?sse ?n) math:quotient ?mse .
1008
+ # (?mse 0.5) math:exponentiation ?rmse .
1009
+ # } => {
1010
+ # :Reg1 :sse ?sse .
1011
+ # :Reg1 :rmse ?rmse .
1012
+ # } .
1013
+ # with substitution (on rule variables):
1014
+ # ?a = -0.5714285714285783
1015
+ # ?b = 1.4047619047619062
1016
+ # ?e2s = (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)
1017
+ # ?mse = 4.0423809523809515
1018
+ # ?n = 8
1019
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1020
+ # ?rmse = 2.010567321026817
1021
+ # ?sse = 32.33904761904761
1022
+ # Therefore the derived triple above is entailed by the rules and facts.
1023
+ # ----------------------------------------------------------------------
1024
+
1025
+ :Reg1 :rmse 2.010567321026817 .
1026
+
1027
+ # ----------------------------------------------------------------------
1028
+ # Proof for derived triple:
1029
+ # _:sk_0 :point _:b8 .
1030
+ # It holds because the following instance of the rule body is provable:
1031
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1032
+ # :Reg1 :slope 1.4047619047619062 .
1033
+ # :Reg1 :intercept -0.5714285714285783 .
1034
+ # :Reg1 :rmse 2.010567321026817 .
1035
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1036
+ # _:b8 :x 8.0 .
1037
+ # _:b8 :y 15.0 .
1038
+ # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1039
+ # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1040
+ # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1041
+ # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1042
+ # (2.0 2.010567321026817) math:product 4.021134642053634 .
1043
+ # 4.333333333333329 math:greaterThan 4.021134642053634 .
1044
+ # via the schematic forward rule:
1045
+ # {
1046
+ # :Reg1 :points ?pts .
1047
+ # :Reg1 :slope ?b .
1048
+ # :Reg1 :intercept ?a .
1049
+ # :Reg1 :rmse ?rmse .
1050
+ # ?pts list:member ?p .
1051
+ # ?p :x ?x .
1052
+ # ?p :y ?y .
1053
+ # (?b ?x) math:product ?bx .
1054
+ # (?a ?bx) math:sum ?yhat .
1055
+ # (?y ?yhat) math:difference ?e .
1056
+ # ?e math:absoluteValue ?ae .
1057
+ # (2.0 ?rmse) math:product ?thr .
1058
+ # ?ae math:greaterThan ?thr .
1059
+ # } => {
1060
+ # _:b9 :point ?p .
1061
+ # _:b9 :x ?x .
1062
+ # _:b9 :y ?y .
1063
+ # _:b9 :yhat ?yhat .
1064
+ # _:b9 :residual ?e .
1065
+ # :Reg1 :highResidual _:b9 .
1066
+ # } .
1067
+ # with substitution (on rule variables):
1068
+ # ?a = -0.5714285714285783
1069
+ # ?ae = 4.333333333333329
1070
+ # ?b = 1.4047619047619062
1071
+ # ?bx = 11.23809523809525
1072
+ # ?e = 4.333333333333329
1073
+ # ?p = _:b8
1074
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1075
+ # ?rmse = 2.010567321026817
1076
+ # ?thr = 4.021134642053634
1077
+ # ?x = 8.0
1078
+ # ?y = 15.0
1079
+ # ?yhat = 10.666666666666671
1080
+ # Therefore the derived triple above is entailed by the rules and facts.
1081
+ # ----------------------------------------------------------------------
1082
+
1083
+ _:sk_0 :point _:b8 .
1084
+
1085
+ # ----------------------------------------------------------------------
1086
+ # Proof for derived triple:
1087
+ # _:sk_0 :x 8.0 .
1088
+ # It holds because the following instance of the rule body is provable:
1089
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1090
+ # :Reg1 :slope 1.4047619047619062 .
1091
+ # :Reg1 :intercept -0.5714285714285783 .
1092
+ # :Reg1 :rmse 2.010567321026817 .
1093
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1094
+ # _:b8 :x 8.0 .
1095
+ # _:b8 :y 15.0 .
1096
+ # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1097
+ # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1098
+ # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1099
+ # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1100
+ # (2.0 2.010567321026817) math:product 4.021134642053634 .
1101
+ # 4.333333333333329 math:greaterThan 4.021134642053634 .
1102
+ # via the schematic forward rule:
1103
+ # {
1104
+ # :Reg1 :points ?pts .
1105
+ # :Reg1 :slope ?b .
1106
+ # :Reg1 :intercept ?a .
1107
+ # :Reg1 :rmse ?rmse .
1108
+ # ?pts list:member ?p .
1109
+ # ?p :x ?x .
1110
+ # ?p :y ?y .
1111
+ # (?b ?x) math:product ?bx .
1112
+ # (?a ?bx) math:sum ?yhat .
1113
+ # (?y ?yhat) math:difference ?e .
1114
+ # ?e math:absoluteValue ?ae .
1115
+ # (2.0 ?rmse) math:product ?thr .
1116
+ # ?ae math:greaterThan ?thr .
1117
+ # } => {
1118
+ # _:b9 :point ?p .
1119
+ # _:b9 :x ?x .
1120
+ # _:b9 :y ?y .
1121
+ # _:b9 :yhat ?yhat .
1122
+ # _:b9 :residual ?e .
1123
+ # :Reg1 :highResidual _:b9 .
1124
+ # } .
1125
+ # with substitution (on rule variables):
1126
+ # ?a = -0.5714285714285783
1127
+ # ?ae = 4.333333333333329
1128
+ # ?b = 1.4047619047619062
1129
+ # ?bx = 11.23809523809525
1130
+ # ?e = 4.333333333333329
1131
+ # ?p = _:b8
1132
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1133
+ # ?rmse = 2.010567321026817
1134
+ # ?thr = 4.021134642053634
1135
+ # ?x = 8.0
1136
+ # ?y = 15.0
1137
+ # ?yhat = 10.666666666666671
1138
+ # Therefore the derived triple above is entailed by the rules and facts.
1139
+ # ----------------------------------------------------------------------
1140
+
1141
+ _:sk_0 :x 8.0 .
1142
+
1143
+ # ----------------------------------------------------------------------
1144
+ # Proof for derived triple:
1145
+ # _:sk_0 :y 15.0 .
1146
+ # It holds because the following instance of the rule body is provable:
1147
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1148
+ # :Reg1 :slope 1.4047619047619062 .
1149
+ # :Reg1 :intercept -0.5714285714285783 .
1150
+ # :Reg1 :rmse 2.010567321026817 .
1151
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1152
+ # _:b8 :x 8.0 .
1153
+ # _:b8 :y 15.0 .
1154
+ # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1155
+ # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1156
+ # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1157
+ # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1158
+ # (2.0 2.010567321026817) math:product 4.021134642053634 .
1159
+ # 4.333333333333329 math:greaterThan 4.021134642053634 .
1160
+ # via the schematic forward rule:
1161
+ # {
1162
+ # :Reg1 :points ?pts .
1163
+ # :Reg1 :slope ?b .
1164
+ # :Reg1 :intercept ?a .
1165
+ # :Reg1 :rmse ?rmse .
1166
+ # ?pts list:member ?p .
1167
+ # ?p :x ?x .
1168
+ # ?p :y ?y .
1169
+ # (?b ?x) math:product ?bx .
1170
+ # (?a ?bx) math:sum ?yhat .
1171
+ # (?y ?yhat) math:difference ?e .
1172
+ # ?e math:absoluteValue ?ae .
1173
+ # (2.0 ?rmse) math:product ?thr .
1174
+ # ?ae math:greaterThan ?thr .
1175
+ # } => {
1176
+ # _:b9 :point ?p .
1177
+ # _:b9 :x ?x .
1178
+ # _:b9 :y ?y .
1179
+ # _:b9 :yhat ?yhat .
1180
+ # _:b9 :residual ?e .
1181
+ # :Reg1 :highResidual _:b9 .
1182
+ # } .
1183
+ # with substitution (on rule variables):
1184
+ # ?a = -0.5714285714285783
1185
+ # ?ae = 4.333333333333329
1186
+ # ?b = 1.4047619047619062
1187
+ # ?bx = 11.23809523809525
1188
+ # ?e = 4.333333333333329
1189
+ # ?p = _:b8
1190
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1191
+ # ?rmse = 2.010567321026817
1192
+ # ?thr = 4.021134642053634
1193
+ # ?x = 8.0
1194
+ # ?y = 15.0
1195
+ # ?yhat = 10.666666666666671
1196
+ # Therefore the derived triple above is entailed by the rules and facts.
1197
+ # ----------------------------------------------------------------------
1198
+
1199
+ _:sk_0 :y 15.0 .
1200
+
1201
+ # ----------------------------------------------------------------------
1202
+ # Proof for derived triple:
1203
+ # _:sk_0 :yhat 10.666666666666671 .
1204
+ # It holds because the following instance of the rule body is provable:
1205
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1206
+ # :Reg1 :slope 1.4047619047619062 .
1207
+ # :Reg1 :intercept -0.5714285714285783 .
1208
+ # :Reg1 :rmse 2.010567321026817 .
1209
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1210
+ # _:b8 :x 8.0 .
1211
+ # _:b8 :y 15.0 .
1212
+ # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1213
+ # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1214
+ # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1215
+ # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1216
+ # (2.0 2.010567321026817) math:product 4.021134642053634 .
1217
+ # 4.333333333333329 math:greaterThan 4.021134642053634 .
1218
+ # via the schematic forward rule:
1219
+ # {
1220
+ # :Reg1 :points ?pts .
1221
+ # :Reg1 :slope ?b .
1222
+ # :Reg1 :intercept ?a .
1223
+ # :Reg1 :rmse ?rmse .
1224
+ # ?pts list:member ?p .
1225
+ # ?p :x ?x .
1226
+ # ?p :y ?y .
1227
+ # (?b ?x) math:product ?bx .
1228
+ # (?a ?bx) math:sum ?yhat .
1229
+ # (?y ?yhat) math:difference ?e .
1230
+ # ?e math:absoluteValue ?ae .
1231
+ # (2.0 ?rmse) math:product ?thr .
1232
+ # ?ae math:greaterThan ?thr .
1233
+ # } => {
1234
+ # _:b9 :point ?p .
1235
+ # _:b9 :x ?x .
1236
+ # _:b9 :y ?y .
1237
+ # _:b9 :yhat ?yhat .
1238
+ # _:b9 :residual ?e .
1239
+ # :Reg1 :highResidual _:b9 .
1240
+ # } .
1241
+ # with substitution (on rule variables):
1242
+ # ?a = -0.5714285714285783
1243
+ # ?ae = 4.333333333333329
1244
+ # ?b = 1.4047619047619062
1245
+ # ?bx = 11.23809523809525
1246
+ # ?e = 4.333333333333329
1247
+ # ?p = _:b8
1248
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1249
+ # ?rmse = 2.010567321026817
1250
+ # ?thr = 4.021134642053634
1251
+ # ?x = 8.0
1252
+ # ?y = 15.0
1253
+ # ?yhat = 10.666666666666671
1254
+ # Therefore the derived triple above is entailed by the rules and facts.
1255
+ # ----------------------------------------------------------------------
1256
+
1257
+ _:sk_0 :yhat 10.666666666666671 .
1258
+
1259
+ # ----------------------------------------------------------------------
1260
+ # Proof for derived triple:
1261
+ # _:sk_0 :residual 4.333333333333329 .
1262
+ # It holds because the following instance of the rule body is provable:
1263
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1264
+ # :Reg1 :slope 1.4047619047619062 .
1265
+ # :Reg1 :intercept -0.5714285714285783 .
1266
+ # :Reg1 :rmse 2.010567321026817 .
1267
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1268
+ # _:b8 :x 8.0 .
1269
+ # _:b8 :y 15.0 .
1270
+ # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1271
+ # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1272
+ # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1273
+ # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1274
+ # (2.0 2.010567321026817) math:product 4.021134642053634 .
1275
+ # 4.333333333333329 math:greaterThan 4.021134642053634 .
1276
+ # via the schematic forward rule:
1277
+ # {
1278
+ # :Reg1 :points ?pts .
1279
+ # :Reg1 :slope ?b .
1280
+ # :Reg1 :intercept ?a .
1281
+ # :Reg1 :rmse ?rmse .
1282
+ # ?pts list:member ?p .
1283
+ # ?p :x ?x .
1284
+ # ?p :y ?y .
1285
+ # (?b ?x) math:product ?bx .
1286
+ # (?a ?bx) math:sum ?yhat .
1287
+ # (?y ?yhat) math:difference ?e .
1288
+ # ?e math:absoluteValue ?ae .
1289
+ # (2.0 ?rmse) math:product ?thr .
1290
+ # ?ae math:greaterThan ?thr .
1291
+ # } => {
1292
+ # _:b9 :point ?p .
1293
+ # _:b9 :x ?x .
1294
+ # _:b9 :y ?y .
1295
+ # _:b9 :yhat ?yhat .
1296
+ # _:b9 :residual ?e .
1297
+ # :Reg1 :highResidual _:b9 .
1298
+ # } .
1299
+ # with substitution (on rule variables):
1300
+ # ?a = -0.5714285714285783
1301
+ # ?ae = 4.333333333333329
1302
+ # ?b = 1.4047619047619062
1303
+ # ?bx = 11.23809523809525
1304
+ # ?e = 4.333333333333329
1305
+ # ?p = _:b8
1306
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1307
+ # ?rmse = 2.010567321026817
1308
+ # ?thr = 4.021134642053634
1309
+ # ?x = 8.0
1310
+ # ?y = 15.0
1311
+ # ?yhat = 10.666666666666671
1312
+ # Therefore the derived triple above is entailed by the rules and facts.
1313
+ # ----------------------------------------------------------------------
1314
+
1315
+ _:sk_0 :residual 4.333333333333329 .
1316
+
1317
+ # ----------------------------------------------------------------------
1318
+ # Proof for derived triple:
1319
+ # :Reg1 :highResidual _:sk_0 .
1320
+ # It holds because the following instance of the rule body is provable:
1321
+ # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1322
+ # :Reg1 :slope 1.4047619047619062 .
1323
+ # :Reg1 :intercept -0.5714285714285783 .
1324
+ # :Reg1 :rmse 2.010567321026817 .
1325
+ # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1326
+ # _:b8 :x 8.0 .
1327
+ # _:b8 :y 15.0 .
1328
+ # (1.4047619047619062 8.0) math:product 11.23809523809525 .
1329
+ # (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
1330
+ # (15.0 10.666666666666671) math:difference 4.333333333333329 .
1331
+ # 4.333333333333329 math:absoluteValue 4.333333333333329 .
1332
+ # (2.0 2.010567321026817) math:product 4.021134642053634 .
1333
+ # 4.333333333333329 math:greaterThan 4.021134642053634 .
1334
+ # via the schematic forward rule:
1335
+ # {
1336
+ # :Reg1 :points ?pts .
1337
+ # :Reg1 :slope ?b .
1338
+ # :Reg1 :intercept ?a .
1339
+ # :Reg1 :rmse ?rmse .
1340
+ # ?pts list:member ?p .
1341
+ # ?p :x ?x .
1342
+ # ?p :y ?y .
1343
+ # (?b ?x) math:product ?bx .
1344
+ # (?a ?bx) math:sum ?yhat .
1345
+ # (?y ?yhat) math:difference ?e .
1346
+ # ?e math:absoluteValue ?ae .
1347
+ # (2.0 ?rmse) math:product ?thr .
1348
+ # ?ae math:greaterThan ?thr .
1349
+ # } => {
1350
+ # _:b9 :point ?p .
1351
+ # _:b9 :x ?x .
1352
+ # _:b9 :y ?y .
1353
+ # _:b9 :yhat ?yhat .
1354
+ # _:b9 :residual ?e .
1355
+ # :Reg1 :highResidual _:b9 .
1356
+ # } .
1357
+ # with substitution (on rule variables):
1358
+ # ?a = -0.5714285714285783
1359
+ # ?ae = 4.333333333333329
1360
+ # ?b = 1.4047619047619062
1361
+ # ?bx = 11.23809523809525
1362
+ # ?e = 4.333333333333329
1363
+ # ?p = _:b8
1364
+ # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1365
+ # ?rmse = 2.010567321026817
1366
+ # ?thr = 4.021134642053634
1367
+ # ?x = 8.0
1368
+ # ?y = 15.0
1369
+ # ?yhat = 10.666666666666671
1370
+ # Therefore the derived triple above is entailed by the rules and facts.
1371
+ # ----------------------------------------------------------------------
1372
+
1373
+ :Reg1 :highResidual _:sk_0 .
1374
+
1375
+ # ----------------------------------------------------------------------
1376
+ # Proof for derived triple:
1377
+ # _:sk_1 :x 8.5 .
1378
+ # It holds because the following instance of the rule body is provable:
1379
+ # :Reg1 :predictX 8.5 .
1380
+ # :Reg1 :slope 1.4047619047619062 .
1381
+ # :Reg1 :intercept -0.5714285714285783 .
1382
+ # (1.4047619047619062 8.5) math:product 11.940476190476202 .
1383
+ # (-0.5714285714285783 11.940476190476202) math:sum 11.369047619047624 .
1384
+ # via the schematic forward rule:
1385
+ # {
1386
+ # :Reg1 :predictX ?x0 .
1387
+ # :Reg1 :slope ?b .
1388
+ # :Reg1 :intercept ?a .
1389
+ # (?b ?x0) math:product ?bx0 .
1390
+ # (?a ?bx0) math:sum ?y0 .
1391
+ # } => {
1392
+ # _:b10 :x ?x0 .
1393
+ # _:b10 :y ?y0 .
1394
+ # :Reg1 :prediction _:b10 .
1395
+ # } .
1396
+ # with substitution (on rule variables):
1397
+ # ?a = -0.5714285714285783
1398
+ # ?b = 1.4047619047619062
1399
+ # ?bx0 = 11.940476190476202
1400
+ # ?x0 = 8.5
1401
+ # ?y0 = 11.369047619047624
1402
+ # Therefore the derived triple above is entailed by the rules and facts.
1403
+ # ----------------------------------------------------------------------
1404
+
1405
+ _:sk_1 :x 8.5 .
1406
+
1407
+ # ----------------------------------------------------------------------
1408
+ # Proof for derived triple:
1409
+ # _:sk_1 :y 11.369047619047624 .
1410
+ # It holds because the following instance of the rule body is provable:
1411
+ # :Reg1 :predictX 8.5 .
1412
+ # :Reg1 :slope 1.4047619047619062 .
1413
+ # :Reg1 :intercept -0.5714285714285783 .
1414
+ # (1.4047619047619062 8.5) math:product 11.940476190476202 .
1415
+ # (-0.5714285714285783 11.940476190476202) math:sum 11.369047619047624 .
1416
+ # via the schematic forward rule:
1417
+ # {
1418
+ # :Reg1 :predictX ?x0 .
1419
+ # :Reg1 :slope ?b .
1420
+ # :Reg1 :intercept ?a .
1421
+ # (?b ?x0) math:product ?bx0 .
1422
+ # (?a ?bx0) math:sum ?y0 .
1423
+ # } => {
1424
+ # _:b10 :x ?x0 .
1425
+ # _:b10 :y ?y0 .
1426
+ # :Reg1 :prediction _:b10 .
1427
+ # } .
1428
+ # with substitution (on rule variables):
1429
+ # ?a = -0.5714285714285783
1430
+ # ?b = 1.4047619047619062
1431
+ # ?bx0 = 11.940476190476202
1432
+ # ?x0 = 8.5
1433
+ # ?y0 = 11.369047619047624
1434
+ # Therefore the derived triple above is entailed by the rules and facts.
1435
+ # ----------------------------------------------------------------------
1436
+
1437
+ _:sk_1 :y 11.369047619047624 .
1438
+
1439
+ # ----------------------------------------------------------------------
1440
+ # Proof for derived triple:
1441
+ # :Reg1 :prediction _:sk_1 .
1442
+ # It holds because the following instance of the rule body is provable:
1443
+ # :Reg1 :predictX 8.5 .
1444
+ # :Reg1 :slope 1.4047619047619062 .
1445
+ # :Reg1 :intercept -0.5714285714285783 .
1446
+ # (1.4047619047619062 8.5) math:product 11.940476190476202 .
1447
+ # (-0.5714285714285783 11.940476190476202) math:sum 11.369047619047624 .
1448
+ # via the schematic forward rule:
1449
+ # {
1450
+ # :Reg1 :predictX ?x0 .
1451
+ # :Reg1 :slope ?b .
1452
+ # :Reg1 :intercept ?a .
1453
+ # (?b ?x0) math:product ?bx0 .
1454
+ # (?a ?bx0) math:sum ?y0 .
1455
+ # } => {
1456
+ # _:b10 :x ?x0 .
1457
+ # _:b10 :y ?y0 .
1458
+ # :Reg1 :prediction _:b10 .
1459
+ # } .
1460
+ # with substitution (on rule variables):
1461
+ # ?a = -0.5714285714285783
1462
+ # ?b = 1.4047619047619062
1463
+ # ?bx0 = 11.940476190476202
1464
+ # ?x0 = 8.5
1465
+ # ?y0 = 11.369047619047624
1466
+ # Therefore the derived triple above is entailed by the rules and facts.
1467
+ # ----------------------------------------------------------------------
1468
+
1469
+ :Reg1 :prediction _:sk_1 .
1470
+