eyeling 1.5.41 → 1.5.42
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/examples/output/saffron-slopeworks.n3 +1470 -0
- package/examples/saffron-slopeworks.n3 +216 -0
- package/eyeling.js +61 -15
- package/package.json +2 -2
|
@@ -0,0 +1,1470 @@
|
|
|
1
|
+
@prefix : <http://example.org/saffron-slopeworks#> .
|
|
2
|
+
|
|
3
|
+
# ----------------------------------------------------------------------
|
|
4
|
+
# Proof for derived triple:
|
|
5
|
+
# :Reg1 :n 8 .
|
|
6
|
+
# It holds because the following instance of the rule body is provable:
|
|
7
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
8
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
|
|
9
|
+
# (?x {
|
|
10
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
11
|
+
# ?p :x ?x .
|
|
12
|
+
# } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
|
|
13
|
+
# (?y {
|
|
14
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
15
|
+
# ?p :y ?y .
|
|
16
|
+
# } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
|
|
17
|
+
# (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
|
|
18
|
+
# (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
|
|
19
|
+
# (?x2 {
|
|
20
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
21
|
+
# ?p :x ?x .
|
|
22
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
23
|
+
# } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
|
|
24
|
+
# (64 49 36 25 16 9 4 1) math:sum 204 .
|
|
25
|
+
# (?y2 {
|
|
26
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
27
|
+
# ?p :y ?y .
|
|
28
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
29
|
+
# } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
|
|
30
|
+
# (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
|
|
31
|
+
# (?xy {
|
|
32
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
33
|
+
# ?p :x ?x .
|
|
34
|
+
# ?p :y ?y .
|
|
35
|
+
# (?x ?y) math:product ?xy .
|
|
36
|
+
# } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
|
|
37
|
+
# (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
|
|
38
|
+
# via the schematic forward rule:
|
|
39
|
+
# {
|
|
40
|
+
# :Reg1 :points ?pts .
|
|
41
|
+
# ?pts list:length ?n .
|
|
42
|
+
# (?x {
|
|
43
|
+
# ?pts list:member ?p .
|
|
44
|
+
# ?p :x ?x .
|
|
45
|
+
# } ?xs) log:collectAllIn ?_b1 .
|
|
46
|
+
# (?y {
|
|
47
|
+
# ?pts list:member ?p .
|
|
48
|
+
# ?p :y ?y .
|
|
49
|
+
# } ?ys) log:collectAllIn ?_b1 .
|
|
50
|
+
# ?xs math:sum ?sumX .
|
|
51
|
+
# ?ys math:sum ?sumY .
|
|
52
|
+
# (?x2 {
|
|
53
|
+
# ?pts list:member ?p .
|
|
54
|
+
# ?p :x ?x .
|
|
55
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
56
|
+
# } ?x2s) log:collectAllIn ?_b1 .
|
|
57
|
+
# ?x2s math:sum ?sumXX .
|
|
58
|
+
# (?y2 {
|
|
59
|
+
# ?pts list:member ?p .
|
|
60
|
+
# ?p :y ?y .
|
|
61
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
62
|
+
# } ?y2s) log:collectAllIn ?_b1 .
|
|
63
|
+
# ?y2s math:sum ?sumYY .
|
|
64
|
+
# (?xy {
|
|
65
|
+
# ?pts list:member ?p .
|
|
66
|
+
# ?p :x ?x .
|
|
67
|
+
# ?p :y ?y .
|
|
68
|
+
# (?x ?y) math:product ?xy .
|
|
69
|
+
# } ?xys) log:collectAllIn ?_b1 .
|
|
70
|
+
# ?xys math:sum ?sumXY .
|
|
71
|
+
# } => {
|
|
72
|
+
# :Reg1 :n ?n .
|
|
73
|
+
# :Reg1 :sumX ?sumX .
|
|
74
|
+
# :Reg1 :sumY ?sumY .
|
|
75
|
+
# :Reg1 :sumXX ?sumXX .
|
|
76
|
+
# :Reg1 :sumYY ?sumYY .
|
|
77
|
+
# :Reg1 :sumXY ?sumXY .
|
|
78
|
+
# } .
|
|
79
|
+
# with substitution (on rule variables):
|
|
80
|
+
# ?n = 8
|
|
81
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
82
|
+
# ?sumX = 36
|
|
83
|
+
# ?sumXX = 204
|
|
84
|
+
# ?sumXY = 266.00000000000006
|
|
85
|
+
# ?sumY = 46
|
|
86
|
+
# ?sumYY = 379.72
|
|
87
|
+
# ?x2s = (64 49 36 25 16 9 4 1)
|
|
88
|
+
# ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
|
|
89
|
+
# ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
|
|
90
|
+
# ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
|
|
91
|
+
# ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
|
|
92
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
93
|
+
# ----------------------------------------------------------------------
|
|
94
|
+
|
|
95
|
+
:Reg1 :n 8 .
|
|
96
|
+
|
|
97
|
+
# ----------------------------------------------------------------------
|
|
98
|
+
# Proof for derived triple:
|
|
99
|
+
# :Reg1 :sumX 36 .
|
|
100
|
+
# It holds because the following instance of the rule body is provable:
|
|
101
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
102
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
|
|
103
|
+
# (?x {
|
|
104
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
105
|
+
# ?p :x ?x .
|
|
106
|
+
# } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
|
|
107
|
+
# (?y {
|
|
108
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
109
|
+
# ?p :y ?y .
|
|
110
|
+
# } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
|
|
111
|
+
# (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
|
|
112
|
+
# (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
|
|
113
|
+
# (?x2 {
|
|
114
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
115
|
+
# ?p :x ?x .
|
|
116
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
117
|
+
# } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
|
|
118
|
+
# (64 49 36 25 16 9 4 1) math:sum 204 .
|
|
119
|
+
# (?y2 {
|
|
120
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
121
|
+
# ?p :y ?y .
|
|
122
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
123
|
+
# } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
|
|
124
|
+
# (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
|
|
125
|
+
# (?xy {
|
|
126
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
127
|
+
# ?p :x ?x .
|
|
128
|
+
# ?p :y ?y .
|
|
129
|
+
# (?x ?y) math:product ?xy .
|
|
130
|
+
# } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
|
|
131
|
+
# (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
|
|
132
|
+
# via the schematic forward rule:
|
|
133
|
+
# {
|
|
134
|
+
# :Reg1 :points ?pts .
|
|
135
|
+
# ?pts list:length ?n .
|
|
136
|
+
# (?x {
|
|
137
|
+
# ?pts list:member ?p .
|
|
138
|
+
# ?p :x ?x .
|
|
139
|
+
# } ?xs) log:collectAllIn ?_b1 .
|
|
140
|
+
# (?y {
|
|
141
|
+
# ?pts list:member ?p .
|
|
142
|
+
# ?p :y ?y .
|
|
143
|
+
# } ?ys) log:collectAllIn ?_b1 .
|
|
144
|
+
# ?xs math:sum ?sumX .
|
|
145
|
+
# ?ys math:sum ?sumY .
|
|
146
|
+
# (?x2 {
|
|
147
|
+
# ?pts list:member ?p .
|
|
148
|
+
# ?p :x ?x .
|
|
149
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
150
|
+
# } ?x2s) log:collectAllIn ?_b1 .
|
|
151
|
+
# ?x2s math:sum ?sumXX .
|
|
152
|
+
# (?y2 {
|
|
153
|
+
# ?pts list:member ?p .
|
|
154
|
+
# ?p :y ?y .
|
|
155
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
156
|
+
# } ?y2s) log:collectAllIn ?_b1 .
|
|
157
|
+
# ?y2s math:sum ?sumYY .
|
|
158
|
+
# (?xy {
|
|
159
|
+
# ?pts list:member ?p .
|
|
160
|
+
# ?p :x ?x .
|
|
161
|
+
# ?p :y ?y .
|
|
162
|
+
# (?x ?y) math:product ?xy .
|
|
163
|
+
# } ?xys) log:collectAllIn ?_b1 .
|
|
164
|
+
# ?xys math:sum ?sumXY .
|
|
165
|
+
# } => {
|
|
166
|
+
# :Reg1 :n ?n .
|
|
167
|
+
# :Reg1 :sumX ?sumX .
|
|
168
|
+
# :Reg1 :sumY ?sumY .
|
|
169
|
+
# :Reg1 :sumXX ?sumXX .
|
|
170
|
+
# :Reg1 :sumYY ?sumYY .
|
|
171
|
+
# :Reg1 :sumXY ?sumXY .
|
|
172
|
+
# } .
|
|
173
|
+
# with substitution (on rule variables):
|
|
174
|
+
# ?n = 8
|
|
175
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
176
|
+
# ?sumX = 36
|
|
177
|
+
# ?sumXX = 204
|
|
178
|
+
# ?sumXY = 266.00000000000006
|
|
179
|
+
# ?sumY = 46
|
|
180
|
+
# ?sumYY = 379.72
|
|
181
|
+
# ?x2s = (64 49 36 25 16 9 4 1)
|
|
182
|
+
# ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
|
|
183
|
+
# ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
|
|
184
|
+
# ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
|
|
185
|
+
# ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
|
|
186
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
187
|
+
# ----------------------------------------------------------------------
|
|
188
|
+
|
|
189
|
+
:Reg1 :sumX 36 .
|
|
190
|
+
|
|
191
|
+
# ----------------------------------------------------------------------
|
|
192
|
+
# Proof for derived triple:
|
|
193
|
+
# :Reg1 :sumY 46 .
|
|
194
|
+
# It holds because the following instance of the rule body is provable:
|
|
195
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
196
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
|
|
197
|
+
# (?x {
|
|
198
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
199
|
+
# ?p :x ?x .
|
|
200
|
+
# } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
|
|
201
|
+
# (?y {
|
|
202
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
203
|
+
# ?p :y ?y .
|
|
204
|
+
# } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
|
|
205
|
+
# (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
|
|
206
|
+
# (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
|
|
207
|
+
# (?x2 {
|
|
208
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
209
|
+
# ?p :x ?x .
|
|
210
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
211
|
+
# } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
|
|
212
|
+
# (64 49 36 25 16 9 4 1) math:sum 204 .
|
|
213
|
+
# (?y2 {
|
|
214
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
215
|
+
# ?p :y ?y .
|
|
216
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
217
|
+
# } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
|
|
218
|
+
# (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
|
|
219
|
+
# (?xy {
|
|
220
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
221
|
+
# ?p :x ?x .
|
|
222
|
+
# ?p :y ?y .
|
|
223
|
+
# (?x ?y) math:product ?xy .
|
|
224
|
+
# } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
|
|
225
|
+
# (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
|
|
226
|
+
# via the schematic forward rule:
|
|
227
|
+
# {
|
|
228
|
+
# :Reg1 :points ?pts .
|
|
229
|
+
# ?pts list:length ?n .
|
|
230
|
+
# (?x {
|
|
231
|
+
# ?pts list:member ?p .
|
|
232
|
+
# ?p :x ?x .
|
|
233
|
+
# } ?xs) log:collectAllIn ?_b1 .
|
|
234
|
+
# (?y {
|
|
235
|
+
# ?pts list:member ?p .
|
|
236
|
+
# ?p :y ?y .
|
|
237
|
+
# } ?ys) log:collectAllIn ?_b1 .
|
|
238
|
+
# ?xs math:sum ?sumX .
|
|
239
|
+
# ?ys math:sum ?sumY .
|
|
240
|
+
# (?x2 {
|
|
241
|
+
# ?pts list:member ?p .
|
|
242
|
+
# ?p :x ?x .
|
|
243
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
244
|
+
# } ?x2s) log:collectAllIn ?_b1 .
|
|
245
|
+
# ?x2s math:sum ?sumXX .
|
|
246
|
+
# (?y2 {
|
|
247
|
+
# ?pts list:member ?p .
|
|
248
|
+
# ?p :y ?y .
|
|
249
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
250
|
+
# } ?y2s) log:collectAllIn ?_b1 .
|
|
251
|
+
# ?y2s math:sum ?sumYY .
|
|
252
|
+
# (?xy {
|
|
253
|
+
# ?pts list:member ?p .
|
|
254
|
+
# ?p :x ?x .
|
|
255
|
+
# ?p :y ?y .
|
|
256
|
+
# (?x ?y) math:product ?xy .
|
|
257
|
+
# } ?xys) log:collectAllIn ?_b1 .
|
|
258
|
+
# ?xys math:sum ?sumXY .
|
|
259
|
+
# } => {
|
|
260
|
+
# :Reg1 :n ?n .
|
|
261
|
+
# :Reg1 :sumX ?sumX .
|
|
262
|
+
# :Reg1 :sumY ?sumY .
|
|
263
|
+
# :Reg1 :sumXX ?sumXX .
|
|
264
|
+
# :Reg1 :sumYY ?sumYY .
|
|
265
|
+
# :Reg1 :sumXY ?sumXY .
|
|
266
|
+
# } .
|
|
267
|
+
# with substitution (on rule variables):
|
|
268
|
+
# ?n = 8
|
|
269
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
270
|
+
# ?sumX = 36
|
|
271
|
+
# ?sumXX = 204
|
|
272
|
+
# ?sumXY = 266.00000000000006
|
|
273
|
+
# ?sumY = 46
|
|
274
|
+
# ?sumYY = 379.72
|
|
275
|
+
# ?x2s = (64 49 36 25 16 9 4 1)
|
|
276
|
+
# ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
|
|
277
|
+
# ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
|
|
278
|
+
# ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
|
|
279
|
+
# ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
|
|
280
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
281
|
+
# ----------------------------------------------------------------------
|
|
282
|
+
|
|
283
|
+
:Reg1 :sumY 46 .
|
|
284
|
+
|
|
285
|
+
# ----------------------------------------------------------------------
|
|
286
|
+
# Proof for derived triple:
|
|
287
|
+
# :Reg1 :sumXX 204 .
|
|
288
|
+
# It holds because the following instance of the rule body is provable:
|
|
289
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
290
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
|
|
291
|
+
# (?x {
|
|
292
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
293
|
+
# ?p :x ?x .
|
|
294
|
+
# } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
|
|
295
|
+
# (?y {
|
|
296
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
297
|
+
# ?p :y ?y .
|
|
298
|
+
# } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
|
|
299
|
+
# (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
|
|
300
|
+
# (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
|
|
301
|
+
# (?x2 {
|
|
302
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
303
|
+
# ?p :x ?x .
|
|
304
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
305
|
+
# } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
|
|
306
|
+
# (64 49 36 25 16 9 4 1) math:sum 204 .
|
|
307
|
+
# (?y2 {
|
|
308
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
309
|
+
# ?p :y ?y .
|
|
310
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
311
|
+
# } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
|
|
312
|
+
# (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
|
|
313
|
+
# (?xy {
|
|
314
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
315
|
+
# ?p :x ?x .
|
|
316
|
+
# ?p :y ?y .
|
|
317
|
+
# (?x ?y) math:product ?xy .
|
|
318
|
+
# } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
|
|
319
|
+
# (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
|
|
320
|
+
# via the schematic forward rule:
|
|
321
|
+
# {
|
|
322
|
+
# :Reg1 :points ?pts .
|
|
323
|
+
# ?pts list:length ?n .
|
|
324
|
+
# (?x {
|
|
325
|
+
# ?pts list:member ?p .
|
|
326
|
+
# ?p :x ?x .
|
|
327
|
+
# } ?xs) log:collectAllIn ?_b1 .
|
|
328
|
+
# (?y {
|
|
329
|
+
# ?pts list:member ?p .
|
|
330
|
+
# ?p :y ?y .
|
|
331
|
+
# } ?ys) log:collectAllIn ?_b1 .
|
|
332
|
+
# ?xs math:sum ?sumX .
|
|
333
|
+
# ?ys math:sum ?sumY .
|
|
334
|
+
# (?x2 {
|
|
335
|
+
# ?pts list:member ?p .
|
|
336
|
+
# ?p :x ?x .
|
|
337
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
338
|
+
# } ?x2s) log:collectAllIn ?_b1 .
|
|
339
|
+
# ?x2s math:sum ?sumXX .
|
|
340
|
+
# (?y2 {
|
|
341
|
+
# ?pts list:member ?p .
|
|
342
|
+
# ?p :y ?y .
|
|
343
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
344
|
+
# } ?y2s) log:collectAllIn ?_b1 .
|
|
345
|
+
# ?y2s math:sum ?sumYY .
|
|
346
|
+
# (?xy {
|
|
347
|
+
# ?pts list:member ?p .
|
|
348
|
+
# ?p :x ?x .
|
|
349
|
+
# ?p :y ?y .
|
|
350
|
+
# (?x ?y) math:product ?xy .
|
|
351
|
+
# } ?xys) log:collectAllIn ?_b1 .
|
|
352
|
+
# ?xys math:sum ?sumXY .
|
|
353
|
+
# } => {
|
|
354
|
+
# :Reg1 :n ?n .
|
|
355
|
+
# :Reg1 :sumX ?sumX .
|
|
356
|
+
# :Reg1 :sumY ?sumY .
|
|
357
|
+
# :Reg1 :sumXX ?sumXX .
|
|
358
|
+
# :Reg1 :sumYY ?sumYY .
|
|
359
|
+
# :Reg1 :sumXY ?sumXY .
|
|
360
|
+
# } .
|
|
361
|
+
# with substitution (on rule variables):
|
|
362
|
+
# ?n = 8
|
|
363
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
364
|
+
# ?sumX = 36
|
|
365
|
+
# ?sumXX = 204
|
|
366
|
+
# ?sumXY = 266.00000000000006
|
|
367
|
+
# ?sumY = 46
|
|
368
|
+
# ?sumYY = 379.72
|
|
369
|
+
# ?x2s = (64 49 36 25 16 9 4 1)
|
|
370
|
+
# ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
|
|
371
|
+
# ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
|
|
372
|
+
# ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
|
|
373
|
+
# ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
|
|
374
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
375
|
+
# ----------------------------------------------------------------------
|
|
376
|
+
|
|
377
|
+
:Reg1 :sumXX 204 .
|
|
378
|
+
|
|
379
|
+
# ----------------------------------------------------------------------
|
|
380
|
+
# Proof for derived triple:
|
|
381
|
+
# :Reg1 :sumYY 379.72 .
|
|
382
|
+
# It holds because the following instance of the rule body is provable:
|
|
383
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
384
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
|
|
385
|
+
# (?x {
|
|
386
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
387
|
+
# ?p :x ?x .
|
|
388
|
+
# } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
|
|
389
|
+
# (?y {
|
|
390
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
391
|
+
# ?p :y ?y .
|
|
392
|
+
# } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
|
|
393
|
+
# (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
|
|
394
|
+
# (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
|
|
395
|
+
# (?x2 {
|
|
396
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
397
|
+
# ?p :x ?x .
|
|
398
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
399
|
+
# } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
|
|
400
|
+
# (64 49 36 25 16 9 4 1) math:sum 204 .
|
|
401
|
+
# (?y2 {
|
|
402
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
403
|
+
# ?p :y ?y .
|
|
404
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
405
|
+
# } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
|
|
406
|
+
# (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
|
|
407
|
+
# (?xy {
|
|
408
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
409
|
+
# ?p :x ?x .
|
|
410
|
+
# ?p :y ?y .
|
|
411
|
+
# (?x ?y) math:product ?xy .
|
|
412
|
+
# } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
|
|
413
|
+
# (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
|
|
414
|
+
# via the schematic forward rule:
|
|
415
|
+
# {
|
|
416
|
+
# :Reg1 :points ?pts .
|
|
417
|
+
# ?pts list:length ?n .
|
|
418
|
+
# (?x {
|
|
419
|
+
# ?pts list:member ?p .
|
|
420
|
+
# ?p :x ?x .
|
|
421
|
+
# } ?xs) log:collectAllIn ?_b1 .
|
|
422
|
+
# (?y {
|
|
423
|
+
# ?pts list:member ?p .
|
|
424
|
+
# ?p :y ?y .
|
|
425
|
+
# } ?ys) log:collectAllIn ?_b1 .
|
|
426
|
+
# ?xs math:sum ?sumX .
|
|
427
|
+
# ?ys math:sum ?sumY .
|
|
428
|
+
# (?x2 {
|
|
429
|
+
# ?pts list:member ?p .
|
|
430
|
+
# ?p :x ?x .
|
|
431
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
432
|
+
# } ?x2s) log:collectAllIn ?_b1 .
|
|
433
|
+
# ?x2s math:sum ?sumXX .
|
|
434
|
+
# (?y2 {
|
|
435
|
+
# ?pts list:member ?p .
|
|
436
|
+
# ?p :y ?y .
|
|
437
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
438
|
+
# } ?y2s) log:collectAllIn ?_b1 .
|
|
439
|
+
# ?y2s math:sum ?sumYY .
|
|
440
|
+
# (?xy {
|
|
441
|
+
# ?pts list:member ?p .
|
|
442
|
+
# ?p :x ?x .
|
|
443
|
+
# ?p :y ?y .
|
|
444
|
+
# (?x ?y) math:product ?xy .
|
|
445
|
+
# } ?xys) log:collectAllIn ?_b1 .
|
|
446
|
+
# ?xys math:sum ?sumXY .
|
|
447
|
+
# } => {
|
|
448
|
+
# :Reg1 :n ?n .
|
|
449
|
+
# :Reg1 :sumX ?sumX .
|
|
450
|
+
# :Reg1 :sumY ?sumY .
|
|
451
|
+
# :Reg1 :sumXX ?sumXX .
|
|
452
|
+
# :Reg1 :sumYY ?sumYY .
|
|
453
|
+
# :Reg1 :sumXY ?sumXY .
|
|
454
|
+
# } .
|
|
455
|
+
# with substitution (on rule variables):
|
|
456
|
+
# ?n = 8
|
|
457
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
458
|
+
# ?sumX = 36
|
|
459
|
+
# ?sumXX = 204
|
|
460
|
+
# ?sumXY = 266.00000000000006
|
|
461
|
+
# ?sumY = 46
|
|
462
|
+
# ?sumYY = 379.72
|
|
463
|
+
# ?x2s = (64 49 36 25 16 9 4 1)
|
|
464
|
+
# ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
|
|
465
|
+
# ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
|
|
466
|
+
# ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
|
|
467
|
+
# ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
|
|
468
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
469
|
+
# ----------------------------------------------------------------------
|
|
470
|
+
|
|
471
|
+
:Reg1 :sumYY 379.72 .
|
|
472
|
+
|
|
473
|
+
# ----------------------------------------------------------------------
|
|
474
|
+
# Proof for derived triple:
|
|
475
|
+
# :Reg1 :sumXY 266.00000000000006 .
|
|
476
|
+
# It holds because the following instance of the rule body is provable:
|
|
477
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
478
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
|
|
479
|
+
# (?x {
|
|
480
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
481
|
+
# ?p :x ?x .
|
|
482
|
+
# } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
|
|
483
|
+
# (?y {
|
|
484
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
485
|
+
# ?p :y ?y .
|
|
486
|
+
# } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
|
|
487
|
+
# (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum 36 .
|
|
488
|
+
# (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum 46 .
|
|
489
|
+
# (?x2 {
|
|
490
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
491
|
+
# ?p :x ?x .
|
|
492
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
493
|
+
# } (64 49 36 25 16 9 4 1)) log:collectAllIn ?_b1 .
|
|
494
|
+
# (64 49 36 25 16 9 4 1) math:sum 204 .
|
|
495
|
+
# (?y2 {
|
|
496
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
497
|
+
# ?p :y ?y .
|
|
498
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
499
|
+
# } (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)) log:collectAllIn ?_b1 .
|
|
500
|
+
# (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41) math:sum 379.72 .
|
|
501
|
+
# (?xy {
|
|
502
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
503
|
+
# ?p :x ?x .
|
|
504
|
+
# ?p :y ?y .
|
|
505
|
+
# (?x ?y) math:product ?xy .
|
|
506
|
+
# } (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)) log:collectAllIn ?_b1 .
|
|
507
|
+
# (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1) math:sum 266.00000000000006 .
|
|
508
|
+
# via the schematic forward rule:
|
|
509
|
+
# {
|
|
510
|
+
# :Reg1 :points ?pts .
|
|
511
|
+
# ?pts list:length ?n .
|
|
512
|
+
# (?x {
|
|
513
|
+
# ?pts list:member ?p .
|
|
514
|
+
# ?p :x ?x .
|
|
515
|
+
# } ?xs) log:collectAllIn ?_b1 .
|
|
516
|
+
# (?y {
|
|
517
|
+
# ?pts list:member ?p .
|
|
518
|
+
# ?p :y ?y .
|
|
519
|
+
# } ?ys) log:collectAllIn ?_b1 .
|
|
520
|
+
# ?xs math:sum ?sumX .
|
|
521
|
+
# ?ys math:sum ?sumY .
|
|
522
|
+
# (?x2 {
|
|
523
|
+
# ?pts list:member ?p .
|
|
524
|
+
# ?p :x ?x .
|
|
525
|
+
# (?x 2.0) math:exponentiation ?x2 .
|
|
526
|
+
# } ?x2s) log:collectAllIn ?_b1 .
|
|
527
|
+
# ?x2s math:sum ?sumXX .
|
|
528
|
+
# (?y2 {
|
|
529
|
+
# ?pts list:member ?p .
|
|
530
|
+
# ?p :y ?y .
|
|
531
|
+
# (?y 2.0) math:exponentiation ?y2 .
|
|
532
|
+
# } ?y2s) log:collectAllIn ?_b1 .
|
|
533
|
+
# ?y2s math:sum ?sumYY .
|
|
534
|
+
# (?xy {
|
|
535
|
+
# ?pts list:member ?p .
|
|
536
|
+
# ?p :x ?x .
|
|
537
|
+
# ?p :y ?y .
|
|
538
|
+
# (?x ?y) math:product ?xy .
|
|
539
|
+
# } ?xys) log:collectAllIn ?_b1 .
|
|
540
|
+
# ?xys math:sum ?sumXY .
|
|
541
|
+
# } => {
|
|
542
|
+
# :Reg1 :n ?n .
|
|
543
|
+
# :Reg1 :sumX ?sumX .
|
|
544
|
+
# :Reg1 :sumY ?sumY .
|
|
545
|
+
# :Reg1 :sumXX ?sumXX .
|
|
546
|
+
# :Reg1 :sumYY ?sumYY .
|
|
547
|
+
# :Reg1 :sumXY ?sumXY .
|
|
548
|
+
# } .
|
|
549
|
+
# with substitution (on rule variables):
|
|
550
|
+
# ?n = 8
|
|
551
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
552
|
+
# ?sumX = 36
|
|
553
|
+
# ?sumXX = 204
|
|
554
|
+
# ?sumXY = 266.00000000000006
|
|
555
|
+
# ?sumY = 46
|
|
556
|
+
# ?sumYY = 379.72
|
|
557
|
+
# ?x2s = (64 49 36 25 16 9 4 1)
|
|
558
|
+
# ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
|
|
559
|
+
# ?xys = (120 49 35.400000000000006 25.5 16.8 11.399999999999999 5.8 2.1)
|
|
560
|
+
# ?y2s = (225 49 34.81 26.009999999999998 17.64 14.44 8.41 4.41)
|
|
561
|
+
# ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
|
|
562
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
563
|
+
# ----------------------------------------------------------------------
|
|
564
|
+
|
|
565
|
+
:Reg1 :sumXY 266.00000000000006 .
|
|
566
|
+
|
|
567
|
+
# ----------------------------------------------------------------------
|
|
568
|
+
# Proof for derived triple:
|
|
569
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
570
|
+
# It holds because the following instance of the rule body is provable:
|
|
571
|
+
# :Reg1 :n 8 .
|
|
572
|
+
# :Reg1 :sumX 36 .
|
|
573
|
+
# :Reg1 :sumY 46 .
|
|
574
|
+
# :Reg1 :sumXX 204 .
|
|
575
|
+
# :Reg1 :sumYY 379.72 .
|
|
576
|
+
# :Reg1 :sumXY 266.00000000000006 .
|
|
577
|
+
# (8 266.00000000000006) math:product 2128.0000000000005 .
|
|
578
|
+
# (36 46) math:product 1656 .
|
|
579
|
+
# (2128.0000000000005 1656) math:difference 472.00000000000045 .
|
|
580
|
+
# (8 204) math:product 1632 .
|
|
581
|
+
# (36 2.0) math:exponentiation 1296 .
|
|
582
|
+
# (1632 1296) math:difference 336 .
|
|
583
|
+
# (472.00000000000045 336) math:quotient 1.4047619047619062 .
|
|
584
|
+
# (1.4047619047619062 36) math:product 50.571428571428626 .
|
|
585
|
+
# (46 50.571428571428626) math:difference -4.571428571428626 .
|
|
586
|
+
# (-4.571428571428626 8) math:quotient -0.5714285714285783 .
|
|
587
|
+
# (8 379.72) math:product 3037.76 .
|
|
588
|
+
# (46 2.0) math:exponentiation 2116 .
|
|
589
|
+
# (3037.76 2116) math:difference 921.7600000000002 .
|
|
590
|
+
# (336 921.7600000000002) math:product 309711.3600000001 .
|
|
591
|
+
# (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
|
|
592
|
+
# (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
|
|
593
|
+
# (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
|
|
594
|
+
# via the schematic forward rule:
|
|
595
|
+
# {
|
|
596
|
+
# :Reg1 :n ?n .
|
|
597
|
+
# :Reg1 :sumX ?sx .
|
|
598
|
+
# :Reg1 :sumY ?sy .
|
|
599
|
+
# :Reg1 :sumXX ?sxx .
|
|
600
|
+
# :Reg1 :sumYY ?syy .
|
|
601
|
+
# :Reg1 :sumXY ?sxy .
|
|
602
|
+
# (?n ?sxy) math:product ?n_sxy .
|
|
603
|
+
# (?sx ?sy) math:product ?sx_sy .
|
|
604
|
+
# (?n_sxy ?sx_sy) math:difference ?num .
|
|
605
|
+
# (?n ?sxx) math:product ?n_sxx .
|
|
606
|
+
# (?sx 2.0) math:exponentiation ?sx2 .
|
|
607
|
+
# (?n_sxx ?sx2) math:difference ?denX .
|
|
608
|
+
# (?num ?denX) math:quotient ?b .
|
|
609
|
+
# (?b ?sx) math:product ?b_sx .
|
|
610
|
+
# (?sy ?b_sx) math:difference ?tmpA .
|
|
611
|
+
# (?tmpA ?n) math:quotient ?a .
|
|
612
|
+
# (?n ?syy) math:product ?n_syy .
|
|
613
|
+
# (?sy 2.0) math:exponentiation ?sy2 .
|
|
614
|
+
# (?n_syy ?sy2) math:difference ?denY .
|
|
615
|
+
# (?denX ?denY) math:product ?denXY .
|
|
616
|
+
# (?denXY 0.5) math:exponentiation ?sqrtDen .
|
|
617
|
+
# (?num ?sqrtDen) math:quotient ?r .
|
|
618
|
+
# (?r 2.0) math:exponentiation ?r2 .
|
|
619
|
+
# } => {
|
|
620
|
+
# :Reg1 :slope ?b .
|
|
621
|
+
# :Reg1 :intercept ?a .
|
|
622
|
+
# :Reg1 :pearsonR ?r .
|
|
623
|
+
# :Reg1 :rSquared ?r2 .
|
|
624
|
+
# } .
|
|
625
|
+
# with substitution (on rule variables):
|
|
626
|
+
# ?a = -0.5714285714285783
|
|
627
|
+
# ?b = 1.4047619047619062
|
|
628
|
+
# ?b_sx = 50.571428571428626
|
|
629
|
+
# ?denX = 336
|
|
630
|
+
# ?denXY = 309711.3600000001
|
|
631
|
+
# ?denY = 921.7600000000002
|
|
632
|
+
# ?n = 8
|
|
633
|
+
# ?n_sxx = 1632
|
|
634
|
+
# ?n_sxy = 2128.0000000000005
|
|
635
|
+
# ?n_syy = 3037.76
|
|
636
|
+
# ?num = 472.00000000000045
|
|
637
|
+
# ?r = 0.8481319639871393
|
|
638
|
+
# ?r2 = 0.7193278283366822
|
|
639
|
+
# ?sqrtDen = 556.5171695464571
|
|
640
|
+
# ?sx = 36
|
|
641
|
+
# ?sx2 = 1296
|
|
642
|
+
# ?sx_sy = 1656
|
|
643
|
+
# ?sxx = 204
|
|
644
|
+
# ?sxy = 266.00000000000006
|
|
645
|
+
# ?sy = 46
|
|
646
|
+
# ?sy2 = 2116
|
|
647
|
+
# ?syy = 379.72
|
|
648
|
+
# ?tmpA = -4.571428571428626
|
|
649
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
650
|
+
# ----------------------------------------------------------------------
|
|
651
|
+
|
|
652
|
+
:Reg1 :slope 1.4047619047619062 .
|
|
653
|
+
|
|
654
|
+
# ----------------------------------------------------------------------
|
|
655
|
+
# Proof for derived triple:
|
|
656
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
657
|
+
# It holds because the following instance of the rule body is provable:
|
|
658
|
+
# :Reg1 :n 8 .
|
|
659
|
+
# :Reg1 :sumX 36 .
|
|
660
|
+
# :Reg1 :sumY 46 .
|
|
661
|
+
# :Reg1 :sumXX 204 .
|
|
662
|
+
# :Reg1 :sumYY 379.72 .
|
|
663
|
+
# :Reg1 :sumXY 266.00000000000006 .
|
|
664
|
+
# (8 266.00000000000006) math:product 2128.0000000000005 .
|
|
665
|
+
# (36 46) math:product 1656 .
|
|
666
|
+
# (2128.0000000000005 1656) math:difference 472.00000000000045 .
|
|
667
|
+
# (8 204) math:product 1632 .
|
|
668
|
+
# (36 2.0) math:exponentiation 1296 .
|
|
669
|
+
# (1632 1296) math:difference 336 .
|
|
670
|
+
# (472.00000000000045 336) math:quotient 1.4047619047619062 .
|
|
671
|
+
# (1.4047619047619062 36) math:product 50.571428571428626 .
|
|
672
|
+
# (46 50.571428571428626) math:difference -4.571428571428626 .
|
|
673
|
+
# (-4.571428571428626 8) math:quotient -0.5714285714285783 .
|
|
674
|
+
# (8 379.72) math:product 3037.76 .
|
|
675
|
+
# (46 2.0) math:exponentiation 2116 .
|
|
676
|
+
# (3037.76 2116) math:difference 921.7600000000002 .
|
|
677
|
+
# (336 921.7600000000002) math:product 309711.3600000001 .
|
|
678
|
+
# (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
|
|
679
|
+
# (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
|
|
680
|
+
# (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
|
|
681
|
+
# via the schematic forward rule:
|
|
682
|
+
# {
|
|
683
|
+
# :Reg1 :n ?n .
|
|
684
|
+
# :Reg1 :sumX ?sx .
|
|
685
|
+
# :Reg1 :sumY ?sy .
|
|
686
|
+
# :Reg1 :sumXX ?sxx .
|
|
687
|
+
# :Reg1 :sumYY ?syy .
|
|
688
|
+
# :Reg1 :sumXY ?sxy .
|
|
689
|
+
# (?n ?sxy) math:product ?n_sxy .
|
|
690
|
+
# (?sx ?sy) math:product ?sx_sy .
|
|
691
|
+
# (?n_sxy ?sx_sy) math:difference ?num .
|
|
692
|
+
# (?n ?sxx) math:product ?n_sxx .
|
|
693
|
+
# (?sx 2.0) math:exponentiation ?sx2 .
|
|
694
|
+
# (?n_sxx ?sx2) math:difference ?denX .
|
|
695
|
+
# (?num ?denX) math:quotient ?b .
|
|
696
|
+
# (?b ?sx) math:product ?b_sx .
|
|
697
|
+
# (?sy ?b_sx) math:difference ?tmpA .
|
|
698
|
+
# (?tmpA ?n) math:quotient ?a .
|
|
699
|
+
# (?n ?syy) math:product ?n_syy .
|
|
700
|
+
# (?sy 2.0) math:exponentiation ?sy2 .
|
|
701
|
+
# (?n_syy ?sy2) math:difference ?denY .
|
|
702
|
+
# (?denX ?denY) math:product ?denXY .
|
|
703
|
+
# (?denXY 0.5) math:exponentiation ?sqrtDen .
|
|
704
|
+
# (?num ?sqrtDen) math:quotient ?r .
|
|
705
|
+
# (?r 2.0) math:exponentiation ?r2 .
|
|
706
|
+
# } => {
|
|
707
|
+
# :Reg1 :slope ?b .
|
|
708
|
+
# :Reg1 :intercept ?a .
|
|
709
|
+
# :Reg1 :pearsonR ?r .
|
|
710
|
+
# :Reg1 :rSquared ?r2 .
|
|
711
|
+
# } .
|
|
712
|
+
# with substitution (on rule variables):
|
|
713
|
+
# ?a = -0.5714285714285783
|
|
714
|
+
# ?b = 1.4047619047619062
|
|
715
|
+
# ?b_sx = 50.571428571428626
|
|
716
|
+
# ?denX = 336
|
|
717
|
+
# ?denXY = 309711.3600000001
|
|
718
|
+
# ?denY = 921.7600000000002
|
|
719
|
+
# ?n = 8
|
|
720
|
+
# ?n_sxx = 1632
|
|
721
|
+
# ?n_sxy = 2128.0000000000005
|
|
722
|
+
# ?n_syy = 3037.76
|
|
723
|
+
# ?num = 472.00000000000045
|
|
724
|
+
# ?r = 0.8481319639871393
|
|
725
|
+
# ?r2 = 0.7193278283366822
|
|
726
|
+
# ?sqrtDen = 556.5171695464571
|
|
727
|
+
# ?sx = 36
|
|
728
|
+
# ?sx2 = 1296
|
|
729
|
+
# ?sx_sy = 1656
|
|
730
|
+
# ?sxx = 204
|
|
731
|
+
# ?sxy = 266.00000000000006
|
|
732
|
+
# ?sy = 46
|
|
733
|
+
# ?sy2 = 2116
|
|
734
|
+
# ?syy = 379.72
|
|
735
|
+
# ?tmpA = -4.571428571428626
|
|
736
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
737
|
+
# ----------------------------------------------------------------------
|
|
738
|
+
|
|
739
|
+
:Reg1 :intercept -0.5714285714285783 .
|
|
740
|
+
|
|
741
|
+
# ----------------------------------------------------------------------
|
|
742
|
+
# Proof for derived triple:
|
|
743
|
+
# :Reg1 :pearsonR 0.8481319639871393 .
|
|
744
|
+
# It holds because the following instance of the rule body is provable:
|
|
745
|
+
# :Reg1 :n 8 .
|
|
746
|
+
# :Reg1 :sumX 36 .
|
|
747
|
+
# :Reg1 :sumY 46 .
|
|
748
|
+
# :Reg1 :sumXX 204 .
|
|
749
|
+
# :Reg1 :sumYY 379.72 .
|
|
750
|
+
# :Reg1 :sumXY 266.00000000000006 .
|
|
751
|
+
# (8 266.00000000000006) math:product 2128.0000000000005 .
|
|
752
|
+
# (36 46) math:product 1656 .
|
|
753
|
+
# (2128.0000000000005 1656) math:difference 472.00000000000045 .
|
|
754
|
+
# (8 204) math:product 1632 .
|
|
755
|
+
# (36 2.0) math:exponentiation 1296 .
|
|
756
|
+
# (1632 1296) math:difference 336 .
|
|
757
|
+
# (472.00000000000045 336) math:quotient 1.4047619047619062 .
|
|
758
|
+
# (1.4047619047619062 36) math:product 50.571428571428626 .
|
|
759
|
+
# (46 50.571428571428626) math:difference -4.571428571428626 .
|
|
760
|
+
# (-4.571428571428626 8) math:quotient -0.5714285714285783 .
|
|
761
|
+
# (8 379.72) math:product 3037.76 .
|
|
762
|
+
# (46 2.0) math:exponentiation 2116 .
|
|
763
|
+
# (3037.76 2116) math:difference 921.7600000000002 .
|
|
764
|
+
# (336 921.7600000000002) math:product 309711.3600000001 .
|
|
765
|
+
# (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
|
|
766
|
+
# (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
|
|
767
|
+
# (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
|
|
768
|
+
# via the schematic forward rule:
|
|
769
|
+
# {
|
|
770
|
+
# :Reg1 :n ?n .
|
|
771
|
+
# :Reg1 :sumX ?sx .
|
|
772
|
+
# :Reg1 :sumY ?sy .
|
|
773
|
+
# :Reg1 :sumXX ?sxx .
|
|
774
|
+
# :Reg1 :sumYY ?syy .
|
|
775
|
+
# :Reg1 :sumXY ?sxy .
|
|
776
|
+
# (?n ?sxy) math:product ?n_sxy .
|
|
777
|
+
# (?sx ?sy) math:product ?sx_sy .
|
|
778
|
+
# (?n_sxy ?sx_sy) math:difference ?num .
|
|
779
|
+
# (?n ?sxx) math:product ?n_sxx .
|
|
780
|
+
# (?sx 2.0) math:exponentiation ?sx2 .
|
|
781
|
+
# (?n_sxx ?sx2) math:difference ?denX .
|
|
782
|
+
# (?num ?denX) math:quotient ?b .
|
|
783
|
+
# (?b ?sx) math:product ?b_sx .
|
|
784
|
+
# (?sy ?b_sx) math:difference ?tmpA .
|
|
785
|
+
# (?tmpA ?n) math:quotient ?a .
|
|
786
|
+
# (?n ?syy) math:product ?n_syy .
|
|
787
|
+
# (?sy 2.0) math:exponentiation ?sy2 .
|
|
788
|
+
# (?n_syy ?sy2) math:difference ?denY .
|
|
789
|
+
# (?denX ?denY) math:product ?denXY .
|
|
790
|
+
# (?denXY 0.5) math:exponentiation ?sqrtDen .
|
|
791
|
+
# (?num ?sqrtDen) math:quotient ?r .
|
|
792
|
+
# (?r 2.0) math:exponentiation ?r2 .
|
|
793
|
+
# } => {
|
|
794
|
+
# :Reg1 :slope ?b .
|
|
795
|
+
# :Reg1 :intercept ?a .
|
|
796
|
+
# :Reg1 :pearsonR ?r .
|
|
797
|
+
# :Reg1 :rSquared ?r2 .
|
|
798
|
+
# } .
|
|
799
|
+
# with substitution (on rule variables):
|
|
800
|
+
# ?a = -0.5714285714285783
|
|
801
|
+
# ?b = 1.4047619047619062
|
|
802
|
+
# ?b_sx = 50.571428571428626
|
|
803
|
+
# ?denX = 336
|
|
804
|
+
# ?denXY = 309711.3600000001
|
|
805
|
+
# ?denY = 921.7600000000002
|
|
806
|
+
# ?n = 8
|
|
807
|
+
# ?n_sxx = 1632
|
|
808
|
+
# ?n_sxy = 2128.0000000000005
|
|
809
|
+
# ?n_syy = 3037.76
|
|
810
|
+
# ?num = 472.00000000000045
|
|
811
|
+
# ?r = 0.8481319639871393
|
|
812
|
+
# ?r2 = 0.7193278283366822
|
|
813
|
+
# ?sqrtDen = 556.5171695464571
|
|
814
|
+
# ?sx = 36
|
|
815
|
+
# ?sx2 = 1296
|
|
816
|
+
# ?sx_sy = 1656
|
|
817
|
+
# ?sxx = 204
|
|
818
|
+
# ?sxy = 266.00000000000006
|
|
819
|
+
# ?sy = 46
|
|
820
|
+
# ?sy2 = 2116
|
|
821
|
+
# ?syy = 379.72
|
|
822
|
+
# ?tmpA = -4.571428571428626
|
|
823
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
824
|
+
# ----------------------------------------------------------------------
|
|
825
|
+
|
|
826
|
+
:Reg1 :pearsonR 0.8481319639871393 .
|
|
827
|
+
|
|
828
|
+
# ----------------------------------------------------------------------
|
|
829
|
+
# Proof for derived triple:
|
|
830
|
+
# :Reg1 :rSquared 0.7193278283366822 .
|
|
831
|
+
# It holds because the following instance of the rule body is provable:
|
|
832
|
+
# :Reg1 :n 8 .
|
|
833
|
+
# :Reg1 :sumX 36 .
|
|
834
|
+
# :Reg1 :sumY 46 .
|
|
835
|
+
# :Reg1 :sumXX 204 .
|
|
836
|
+
# :Reg1 :sumYY 379.72 .
|
|
837
|
+
# :Reg1 :sumXY 266.00000000000006 .
|
|
838
|
+
# (8 266.00000000000006) math:product 2128.0000000000005 .
|
|
839
|
+
# (36 46) math:product 1656 .
|
|
840
|
+
# (2128.0000000000005 1656) math:difference 472.00000000000045 .
|
|
841
|
+
# (8 204) math:product 1632 .
|
|
842
|
+
# (36 2.0) math:exponentiation 1296 .
|
|
843
|
+
# (1632 1296) math:difference 336 .
|
|
844
|
+
# (472.00000000000045 336) math:quotient 1.4047619047619062 .
|
|
845
|
+
# (1.4047619047619062 36) math:product 50.571428571428626 .
|
|
846
|
+
# (46 50.571428571428626) math:difference -4.571428571428626 .
|
|
847
|
+
# (-4.571428571428626 8) math:quotient -0.5714285714285783 .
|
|
848
|
+
# (8 379.72) math:product 3037.76 .
|
|
849
|
+
# (46 2.0) math:exponentiation 2116 .
|
|
850
|
+
# (3037.76 2116) math:difference 921.7600000000002 .
|
|
851
|
+
# (336 921.7600000000002) math:product 309711.3600000001 .
|
|
852
|
+
# (309711.3600000001 0.5) math:exponentiation 556.5171695464571 .
|
|
853
|
+
# (472.00000000000045 556.5171695464571) math:quotient 0.8481319639871393 .
|
|
854
|
+
# (0.8481319639871393 2.0) math:exponentiation 0.7193278283366822 .
|
|
855
|
+
# via the schematic forward rule:
|
|
856
|
+
# {
|
|
857
|
+
# :Reg1 :n ?n .
|
|
858
|
+
# :Reg1 :sumX ?sx .
|
|
859
|
+
# :Reg1 :sumY ?sy .
|
|
860
|
+
# :Reg1 :sumXX ?sxx .
|
|
861
|
+
# :Reg1 :sumYY ?syy .
|
|
862
|
+
# :Reg1 :sumXY ?sxy .
|
|
863
|
+
# (?n ?sxy) math:product ?n_sxy .
|
|
864
|
+
# (?sx ?sy) math:product ?sx_sy .
|
|
865
|
+
# (?n_sxy ?sx_sy) math:difference ?num .
|
|
866
|
+
# (?n ?sxx) math:product ?n_sxx .
|
|
867
|
+
# (?sx 2.0) math:exponentiation ?sx2 .
|
|
868
|
+
# (?n_sxx ?sx2) math:difference ?denX .
|
|
869
|
+
# (?num ?denX) math:quotient ?b .
|
|
870
|
+
# (?b ?sx) math:product ?b_sx .
|
|
871
|
+
# (?sy ?b_sx) math:difference ?tmpA .
|
|
872
|
+
# (?tmpA ?n) math:quotient ?a .
|
|
873
|
+
# (?n ?syy) math:product ?n_syy .
|
|
874
|
+
# (?sy 2.0) math:exponentiation ?sy2 .
|
|
875
|
+
# (?n_syy ?sy2) math:difference ?denY .
|
|
876
|
+
# (?denX ?denY) math:product ?denXY .
|
|
877
|
+
# (?denXY 0.5) math:exponentiation ?sqrtDen .
|
|
878
|
+
# (?num ?sqrtDen) math:quotient ?r .
|
|
879
|
+
# (?r 2.0) math:exponentiation ?r2 .
|
|
880
|
+
# } => {
|
|
881
|
+
# :Reg1 :slope ?b .
|
|
882
|
+
# :Reg1 :intercept ?a .
|
|
883
|
+
# :Reg1 :pearsonR ?r .
|
|
884
|
+
# :Reg1 :rSquared ?r2 .
|
|
885
|
+
# } .
|
|
886
|
+
# with substitution (on rule variables):
|
|
887
|
+
# ?a = -0.5714285714285783
|
|
888
|
+
# ?b = 1.4047619047619062
|
|
889
|
+
# ?b_sx = 50.571428571428626
|
|
890
|
+
# ?denX = 336
|
|
891
|
+
# ?denXY = 309711.3600000001
|
|
892
|
+
# ?denY = 921.7600000000002
|
|
893
|
+
# ?n = 8
|
|
894
|
+
# ?n_sxx = 1632
|
|
895
|
+
# ?n_sxy = 2128.0000000000005
|
|
896
|
+
# ?n_syy = 3037.76
|
|
897
|
+
# ?num = 472.00000000000045
|
|
898
|
+
# ?r = 0.8481319639871393
|
|
899
|
+
# ?r2 = 0.7193278283366822
|
|
900
|
+
# ?sqrtDen = 556.5171695464571
|
|
901
|
+
# ?sx = 36
|
|
902
|
+
# ?sx2 = 1296
|
|
903
|
+
# ?sx_sy = 1656
|
|
904
|
+
# ?sxx = 204
|
|
905
|
+
# ?sxy = 266.00000000000006
|
|
906
|
+
# ?sy = 46
|
|
907
|
+
# ?sy2 = 2116
|
|
908
|
+
# ?syy = 379.72
|
|
909
|
+
# ?tmpA = -4.571428571428626
|
|
910
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
911
|
+
# ----------------------------------------------------------------------
|
|
912
|
+
|
|
913
|
+
:Reg1 :rSquared 0.7193278283366822 .
|
|
914
|
+
|
|
915
|
+
# ----------------------------------------------------------------------
|
|
916
|
+
# Proof for derived triple:
|
|
917
|
+
# :Reg1 :sse 32.33904761904761 .
|
|
918
|
+
# It holds because the following instance of the rule body is provable:
|
|
919
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
920
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
921
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
922
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
|
|
923
|
+
# (?e2 {
|
|
924
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
925
|
+
# ?p :x ?x .
|
|
926
|
+
# ?p :y ?y .
|
|
927
|
+
# (1.4047619047619062 ?x) math:product ?bx .
|
|
928
|
+
# (-0.5714285714285783 ?bx) math:sum ?yhat .
|
|
929
|
+
# (?y ?yhat) math:difference ?e .
|
|
930
|
+
# (?e 2.0) math:exponentiation ?e2 .
|
|
931
|
+
# } (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)) log:collectAllIn ?_b1 .
|
|
932
|
+
# (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583) math:sum 32.33904761904761 .
|
|
933
|
+
# (32.33904761904761 8) math:quotient 4.0423809523809515 .
|
|
934
|
+
# (4.0423809523809515 0.5) math:exponentiation 2.010567321026817 .
|
|
935
|
+
# via the schematic forward rule:
|
|
936
|
+
# {
|
|
937
|
+
# :Reg1 :points ?pts .
|
|
938
|
+
# :Reg1 :slope ?b .
|
|
939
|
+
# :Reg1 :intercept ?a .
|
|
940
|
+
# ?pts list:length ?n .
|
|
941
|
+
# (?e2 {
|
|
942
|
+
# ?pts list:member ?p .
|
|
943
|
+
# ?p :x ?x .
|
|
944
|
+
# ?p :y ?y .
|
|
945
|
+
# (?b ?x) math:product ?bx .
|
|
946
|
+
# (?a ?bx) math:sum ?yhat .
|
|
947
|
+
# (?y ?yhat) math:difference ?e .
|
|
948
|
+
# (?e 2.0) math:exponentiation ?e2 .
|
|
949
|
+
# } ?e2s) log:collectAllIn ?_b1 .
|
|
950
|
+
# ?e2s math:sum ?sse .
|
|
951
|
+
# (?sse ?n) math:quotient ?mse .
|
|
952
|
+
# (?mse 0.5) math:exponentiation ?rmse .
|
|
953
|
+
# } => {
|
|
954
|
+
# :Reg1 :sse ?sse .
|
|
955
|
+
# :Reg1 :rmse ?rmse .
|
|
956
|
+
# } .
|
|
957
|
+
# with substitution (on rule variables):
|
|
958
|
+
# ?a = -0.5714285714285783
|
|
959
|
+
# ?b = 1.4047619047619062
|
|
960
|
+
# ?e2s = (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)
|
|
961
|
+
# ?mse = 4.0423809523809515
|
|
962
|
+
# ?n = 8
|
|
963
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
964
|
+
# ?rmse = 2.010567321026817
|
|
965
|
+
# ?sse = 32.33904761904761
|
|
966
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
967
|
+
# ----------------------------------------------------------------------
|
|
968
|
+
|
|
969
|
+
:Reg1 :sse 32.33904761904761 .
|
|
970
|
+
|
|
971
|
+
# ----------------------------------------------------------------------
|
|
972
|
+
# Proof for derived triple:
|
|
973
|
+
# :Reg1 :rmse 2.010567321026817 .
|
|
974
|
+
# It holds because the following instance of the rule body is provable:
|
|
975
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
976
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
977
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
978
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
|
|
979
|
+
# (?e2 {
|
|
980
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
|
|
981
|
+
# ?p :x ?x .
|
|
982
|
+
# ?p :y ?y .
|
|
983
|
+
# (1.4047619047619062 ?x) math:product ?bx .
|
|
984
|
+
# (-0.5714285714285783 ?bx) math:sum ?yhat .
|
|
985
|
+
# (?y ?yhat) math:difference ?e .
|
|
986
|
+
# (?e 2.0) math:exponentiation ?e2 .
|
|
987
|
+
# } (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)) log:collectAllIn ?_b1 .
|
|
988
|
+
# (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583) math:sum 32.33904761904761 .
|
|
989
|
+
# (32.33904761904761 8) math:quotient 4.0423809523809515 .
|
|
990
|
+
# (4.0423809523809515 0.5) math:exponentiation 2.010567321026817 .
|
|
991
|
+
# via the schematic forward rule:
|
|
992
|
+
# {
|
|
993
|
+
# :Reg1 :points ?pts .
|
|
994
|
+
# :Reg1 :slope ?b .
|
|
995
|
+
# :Reg1 :intercept ?a .
|
|
996
|
+
# ?pts list:length ?n .
|
|
997
|
+
# (?e2 {
|
|
998
|
+
# ?pts list:member ?p .
|
|
999
|
+
# ?p :x ?x .
|
|
1000
|
+
# ?p :y ?y .
|
|
1001
|
+
# (?b ?x) math:product ?bx .
|
|
1002
|
+
# (?a ?bx) math:sum ?yhat .
|
|
1003
|
+
# (?y ?yhat) math:difference ?e .
|
|
1004
|
+
# (?e 2.0) math:exponentiation ?e2 .
|
|
1005
|
+
# } ?e2s) log:collectAllIn ?_b1 .
|
|
1006
|
+
# ?e2s math:sum ?sse .
|
|
1007
|
+
# (?sse ?n) math:quotient ?mse .
|
|
1008
|
+
# (?mse 0.5) math:exponentiation ?rmse .
|
|
1009
|
+
# } => {
|
|
1010
|
+
# :Reg1 :sse ?sse .
|
|
1011
|
+
# :Reg1 :rmse ?rmse .
|
|
1012
|
+
# } .
|
|
1013
|
+
# with substitution (on rule variables):
|
|
1014
|
+
# ?a = -0.5714285714285783
|
|
1015
|
+
# ?b = 1.4047619047619062
|
|
1016
|
+
# ?e2s = (18.777777777777736 5.116213151927449 3.8304081632653135 1.8289342403628133 0.7184580498866192 0.02469387755102107 0.43811791383220466 1.6044444444444583)
|
|
1017
|
+
# ?mse = 4.0423809523809515
|
|
1018
|
+
# ?n = 8
|
|
1019
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
1020
|
+
# ?rmse = 2.010567321026817
|
|
1021
|
+
# ?sse = 32.33904761904761
|
|
1022
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1023
|
+
# ----------------------------------------------------------------------
|
|
1024
|
+
|
|
1025
|
+
:Reg1 :rmse 2.010567321026817 .
|
|
1026
|
+
|
|
1027
|
+
# ----------------------------------------------------------------------
|
|
1028
|
+
# Proof for derived triple:
|
|
1029
|
+
# _:sk_0 :point _:b8 .
|
|
1030
|
+
# It holds because the following instance of the rule body is provable:
|
|
1031
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
1032
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
1033
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
1034
|
+
# :Reg1 :rmse 2.010567321026817 .
|
|
1035
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
|
|
1036
|
+
# _:b8 :x 8.0 .
|
|
1037
|
+
# _:b8 :y 15.0 .
|
|
1038
|
+
# (1.4047619047619062 8.0) math:product 11.23809523809525 .
|
|
1039
|
+
# (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
|
|
1040
|
+
# (15.0 10.666666666666671) math:difference 4.333333333333329 .
|
|
1041
|
+
# 4.333333333333329 math:absoluteValue 4.333333333333329 .
|
|
1042
|
+
# (2.0 2.010567321026817) math:product 4.021134642053634 .
|
|
1043
|
+
# 4.333333333333329 math:greaterThan 4.021134642053634 .
|
|
1044
|
+
# via the schematic forward rule:
|
|
1045
|
+
# {
|
|
1046
|
+
# :Reg1 :points ?pts .
|
|
1047
|
+
# :Reg1 :slope ?b .
|
|
1048
|
+
# :Reg1 :intercept ?a .
|
|
1049
|
+
# :Reg1 :rmse ?rmse .
|
|
1050
|
+
# ?pts list:member ?p .
|
|
1051
|
+
# ?p :x ?x .
|
|
1052
|
+
# ?p :y ?y .
|
|
1053
|
+
# (?b ?x) math:product ?bx .
|
|
1054
|
+
# (?a ?bx) math:sum ?yhat .
|
|
1055
|
+
# (?y ?yhat) math:difference ?e .
|
|
1056
|
+
# ?e math:absoluteValue ?ae .
|
|
1057
|
+
# (2.0 ?rmse) math:product ?thr .
|
|
1058
|
+
# ?ae math:greaterThan ?thr .
|
|
1059
|
+
# } => {
|
|
1060
|
+
# _:b9 :point ?p .
|
|
1061
|
+
# _:b9 :x ?x .
|
|
1062
|
+
# _:b9 :y ?y .
|
|
1063
|
+
# _:b9 :yhat ?yhat .
|
|
1064
|
+
# _:b9 :residual ?e .
|
|
1065
|
+
# :Reg1 :highResidual _:b9 .
|
|
1066
|
+
# } .
|
|
1067
|
+
# with substitution (on rule variables):
|
|
1068
|
+
# ?a = -0.5714285714285783
|
|
1069
|
+
# ?ae = 4.333333333333329
|
|
1070
|
+
# ?b = 1.4047619047619062
|
|
1071
|
+
# ?bx = 11.23809523809525
|
|
1072
|
+
# ?e = 4.333333333333329
|
|
1073
|
+
# ?p = _:b8
|
|
1074
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
1075
|
+
# ?rmse = 2.010567321026817
|
|
1076
|
+
# ?thr = 4.021134642053634
|
|
1077
|
+
# ?x = 8.0
|
|
1078
|
+
# ?y = 15.0
|
|
1079
|
+
# ?yhat = 10.666666666666671
|
|
1080
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1081
|
+
# ----------------------------------------------------------------------
|
|
1082
|
+
|
|
1083
|
+
_:sk_0 :point _:b8 .
|
|
1084
|
+
|
|
1085
|
+
# ----------------------------------------------------------------------
|
|
1086
|
+
# Proof for derived triple:
|
|
1087
|
+
# _:sk_0 :x 8.0 .
|
|
1088
|
+
# It holds because the following instance of the rule body is provable:
|
|
1089
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
1090
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
1091
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
1092
|
+
# :Reg1 :rmse 2.010567321026817 .
|
|
1093
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
|
|
1094
|
+
# _:b8 :x 8.0 .
|
|
1095
|
+
# _:b8 :y 15.0 .
|
|
1096
|
+
# (1.4047619047619062 8.0) math:product 11.23809523809525 .
|
|
1097
|
+
# (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
|
|
1098
|
+
# (15.0 10.666666666666671) math:difference 4.333333333333329 .
|
|
1099
|
+
# 4.333333333333329 math:absoluteValue 4.333333333333329 .
|
|
1100
|
+
# (2.0 2.010567321026817) math:product 4.021134642053634 .
|
|
1101
|
+
# 4.333333333333329 math:greaterThan 4.021134642053634 .
|
|
1102
|
+
# via the schematic forward rule:
|
|
1103
|
+
# {
|
|
1104
|
+
# :Reg1 :points ?pts .
|
|
1105
|
+
# :Reg1 :slope ?b .
|
|
1106
|
+
# :Reg1 :intercept ?a .
|
|
1107
|
+
# :Reg1 :rmse ?rmse .
|
|
1108
|
+
# ?pts list:member ?p .
|
|
1109
|
+
# ?p :x ?x .
|
|
1110
|
+
# ?p :y ?y .
|
|
1111
|
+
# (?b ?x) math:product ?bx .
|
|
1112
|
+
# (?a ?bx) math:sum ?yhat .
|
|
1113
|
+
# (?y ?yhat) math:difference ?e .
|
|
1114
|
+
# ?e math:absoluteValue ?ae .
|
|
1115
|
+
# (2.0 ?rmse) math:product ?thr .
|
|
1116
|
+
# ?ae math:greaterThan ?thr .
|
|
1117
|
+
# } => {
|
|
1118
|
+
# _:b9 :point ?p .
|
|
1119
|
+
# _:b9 :x ?x .
|
|
1120
|
+
# _:b9 :y ?y .
|
|
1121
|
+
# _:b9 :yhat ?yhat .
|
|
1122
|
+
# _:b9 :residual ?e .
|
|
1123
|
+
# :Reg1 :highResidual _:b9 .
|
|
1124
|
+
# } .
|
|
1125
|
+
# with substitution (on rule variables):
|
|
1126
|
+
# ?a = -0.5714285714285783
|
|
1127
|
+
# ?ae = 4.333333333333329
|
|
1128
|
+
# ?b = 1.4047619047619062
|
|
1129
|
+
# ?bx = 11.23809523809525
|
|
1130
|
+
# ?e = 4.333333333333329
|
|
1131
|
+
# ?p = _:b8
|
|
1132
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
1133
|
+
# ?rmse = 2.010567321026817
|
|
1134
|
+
# ?thr = 4.021134642053634
|
|
1135
|
+
# ?x = 8.0
|
|
1136
|
+
# ?y = 15.0
|
|
1137
|
+
# ?yhat = 10.666666666666671
|
|
1138
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1139
|
+
# ----------------------------------------------------------------------
|
|
1140
|
+
|
|
1141
|
+
_:sk_0 :x 8.0 .
|
|
1142
|
+
|
|
1143
|
+
# ----------------------------------------------------------------------
|
|
1144
|
+
# Proof for derived triple:
|
|
1145
|
+
# _:sk_0 :y 15.0 .
|
|
1146
|
+
# It holds because the following instance of the rule body is provable:
|
|
1147
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
1148
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
1149
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
1150
|
+
# :Reg1 :rmse 2.010567321026817 .
|
|
1151
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
|
|
1152
|
+
# _:b8 :x 8.0 .
|
|
1153
|
+
# _:b8 :y 15.0 .
|
|
1154
|
+
# (1.4047619047619062 8.0) math:product 11.23809523809525 .
|
|
1155
|
+
# (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
|
|
1156
|
+
# (15.0 10.666666666666671) math:difference 4.333333333333329 .
|
|
1157
|
+
# 4.333333333333329 math:absoluteValue 4.333333333333329 .
|
|
1158
|
+
# (2.0 2.010567321026817) math:product 4.021134642053634 .
|
|
1159
|
+
# 4.333333333333329 math:greaterThan 4.021134642053634 .
|
|
1160
|
+
# via the schematic forward rule:
|
|
1161
|
+
# {
|
|
1162
|
+
# :Reg1 :points ?pts .
|
|
1163
|
+
# :Reg1 :slope ?b .
|
|
1164
|
+
# :Reg1 :intercept ?a .
|
|
1165
|
+
# :Reg1 :rmse ?rmse .
|
|
1166
|
+
# ?pts list:member ?p .
|
|
1167
|
+
# ?p :x ?x .
|
|
1168
|
+
# ?p :y ?y .
|
|
1169
|
+
# (?b ?x) math:product ?bx .
|
|
1170
|
+
# (?a ?bx) math:sum ?yhat .
|
|
1171
|
+
# (?y ?yhat) math:difference ?e .
|
|
1172
|
+
# ?e math:absoluteValue ?ae .
|
|
1173
|
+
# (2.0 ?rmse) math:product ?thr .
|
|
1174
|
+
# ?ae math:greaterThan ?thr .
|
|
1175
|
+
# } => {
|
|
1176
|
+
# _:b9 :point ?p .
|
|
1177
|
+
# _:b9 :x ?x .
|
|
1178
|
+
# _:b9 :y ?y .
|
|
1179
|
+
# _:b9 :yhat ?yhat .
|
|
1180
|
+
# _:b9 :residual ?e .
|
|
1181
|
+
# :Reg1 :highResidual _:b9 .
|
|
1182
|
+
# } .
|
|
1183
|
+
# with substitution (on rule variables):
|
|
1184
|
+
# ?a = -0.5714285714285783
|
|
1185
|
+
# ?ae = 4.333333333333329
|
|
1186
|
+
# ?b = 1.4047619047619062
|
|
1187
|
+
# ?bx = 11.23809523809525
|
|
1188
|
+
# ?e = 4.333333333333329
|
|
1189
|
+
# ?p = _:b8
|
|
1190
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
1191
|
+
# ?rmse = 2.010567321026817
|
|
1192
|
+
# ?thr = 4.021134642053634
|
|
1193
|
+
# ?x = 8.0
|
|
1194
|
+
# ?y = 15.0
|
|
1195
|
+
# ?yhat = 10.666666666666671
|
|
1196
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1197
|
+
# ----------------------------------------------------------------------
|
|
1198
|
+
|
|
1199
|
+
_:sk_0 :y 15.0 .
|
|
1200
|
+
|
|
1201
|
+
# ----------------------------------------------------------------------
|
|
1202
|
+
# Proof for derived triple:
|
|
1203
|
+
# _:sk_0 :yhat 10.666666666666671 .
|
|
1204
|
+
# It holds because the following instance of the rule body is provable:
|
|
1205
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
1206
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
1207
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
1208
|
+
# :Reg1 :rmse 2.010567321026817 .
|
|
1209
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
|
|
1210
|
+
# _:b8 :x 8.0 .
|
|
1211
|
+
# _:b8 :y 15.0 .
|
|
1212
|
+
# (1.4047619047619062 8.0) math:product 11.23809523809525 .
|
|
1213
|
+
# (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
|
|
1214
|
+
# (15.0 10.666666666666671) math:difference 4.333333333333329 .
|
|
1215
|
+
# 4.333333333333329 math:absoluteValue 4.333333333333329 .
|
|
1216
|
+
# (2.0 2.010567321026817) math:product 4.021134642053634 .
|
|
1217
|
+
# 4.333333333333329 math:greaterThan 4.021134642053634 .
|
|
1218
|
+
# via the schematic forward rule:
|
|
1219
|
+
# {
|
|
1220
|
+
# :Reg1 :points ?pts .
|
|
1221
|
+
# :Reg1 :slope ?b .
|
|
1222
|
+
# :Reg1 :intercept ?a .
|
|
1223
|
+
# :Reg1 :rmse ?rmse .
|
|
1224
|
+
# ?pts list:member ?p .
|
|
1225
|
+
# ?p :x ?x .
|
|
1226
|
+
# ?p :y ?y .
|
|
1227
|
+
# (?b ?x) math:product ?bx .
|
|
1228
|
+
# (?a ?bx) math:sum ?yhat .
|
|
1229
|
+
# (?y ?yhat) math:difference ?e .
|
|
1230
|
+
# ?e math:absoluteValue ?ae .
|
|
1231
|
+
# (2.0 ?rmse) math:product ?thr .
|
|
1232
|
+
# ?ae math:greaterThan ?thr .
|
|
1233
|
+
# } => {
|
|
1234
|
+
# _:b9 :point ?p .
|
|
1235
|
+
# _:b9 :x ?x .
|
|
1236
|
+
# _:b9 :y ?y .
|
|
1237
|
+
# _:b9 :yhat ?yhat .
|
|
1238
|
+
# _:b9 :residual ?e .
|
|
1239
|
+
# :Reg1 :highResidual _:b9 .
|
|
1240
|
+
# } .
|
|
1241
|
+
# with substitution (on rule variables):
|
|
1242
|
+
# ?a = -0.5714285714285783
|
|
1243
|
+
# ?ae = 4.333333333333329
|
|
1244
|
+
# ?b = 1.4047619047619062
|
|
1245
|
+
# ?bx = 11.23809523809525
|
|
1246
|
+
# ?e = 4.333333333333329
|
|
1247
|
+
# ?p = _:b8
|
|
1248
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
1249
|
+
# ?rmse = 2.010567321026817
|
|
1250
|
+
# ?thr = 4.021134642053634
|
|
1251
|
+
# ?x = 8.0
|
|
1252
|
+
# ?y = 15.0
|
|
1253
|
+
# ?yhat = 10.666666666666671
|
|
1254
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1255
|
+
# ----------------------------------------------------------------------
|
|
1256
|
+
|
|
1257
|
+
_:sk_0 :yhat 10.666666666666671 .
|
|
1258
|
+
|
|
1259
|
+
# ----------------------------------------------------------------------
|
|
1260
|
+
# Proof for derived triple:
|
|
1261
|
+
# _:sk_0 :residual 4.333333333333329 .
|
|
1262
|
+
# It holds because the following instance of the rule body is provable:
|
|
1263
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
1264
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
1265
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
1266
|
+
# :Reg1 :rmse 2.010567321026817 .
|
|
1267
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
|
|
1268
|
+
# _:b8 :x 8.0 .
|
|
1269
|
+
# _:b8 :y 15.0 .
|
|
1270
|
+
# (1.4047619047619062 8.0) math:product 11.23809523809525 .
|
|
1271
|
+
# (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
|
|
1272
|
+
# (15.0 10.666666666666671) math:difference 4.333333333333329 .
|
|
1273
|
+
# 4.333333333333329 math:absoluteValue 4.333333333333329 .
|
|
1274
|
+
# (2.0 2.010567321026817) math:product 4.021134642053634 .
|
|
1275
|
+
# 4.333333333333329 math:greaterThan 4.021134642053634 .
|
|
1276
|
+
# via the schematic forward rule:
|
|
1277
|
+
# {
|
|
1278
|
+
# :Reg1 :points ?pts .
|
|
1279
|
+
# :Reg1 :slope ?b .
|
|
1280
|
+
# :Reg1 :intercept ?a .
|
|
1281
|
+
# :Reg1 :rmse ?rmse .
|
|
1282
|
+
# ?pts list:member ?p .
|
|
1283
|
+
# ?p :x ?x .
|
|
1284
|
+
# ?p :y ?y .
|
|
1285
|
+
# (?b ?x) math:product ?bx .
|
|
1286
|
+
# (?a ?bx) math:sum ?yhat .
|
|
1287
|
+
# (?y ?yhat) math:difference ?e .
|
|
1288
|
+
# ?e math:absoluteValue ?ae .
|
|
1289
|
+
# (2.0 ?rmse) math:product ?thr .
|
|
1290
|
+
# ?ae math:greaterThan ?thr .
|
|
1291
|
+
# } => {
|
|
1292
|
+
# _:b9 :point ?p .
|
|
1293
|
+
# _:b9 :x ?x .
|
|
1294
|
+
# _:b9 :y ?y .
|
|
1295
|
+
# _:b9 :yhat ?yhat .
|
|
1296
|
+
# _:b9 :residual ?e .
|
|
1297
|
+
# :Reg1 :highResidual _:b9 .
|
|
1298
|
+
# } .
|
|
1299
|
+
# with substitution (on rule variables):
|
|
1300
|
+
# ?a = -0.5714285714285783
|
|
1301
|
+
# ?ae = 4.333333333333329
|
|
1302
|
+
# ?b = 1.4047619047619062
|
|
1303
|
+
# ?bx = 11.23809523809525
|
|
1304
|
+
# ?e = 4.333333333333329
|
|
1305
|
+
# ?p = _:b8
|
|
1306
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
1307
|
+
# ?rmse = 2.010567321026817
|
|
1308
|
+
# ?thr = 4.021134642053634
|
|
1309
|
+
# ?x = 8.0
|
|
1310
|
+
# ?y = 15.0
|
|
1311
|
+
# ?yhat = 10.666666666666671
|
|
1312
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1313
|
+
# ----------------------------------------------------------------------
|
|
1314
|
+
|
|
1315
|
+
_:sk_0 :residual 4.333333333333329 .
|
|
1316
|
+
|
|
1317
|
+
# ----------------------------------------------------------------------
|
|
1318
|
+
# Proof for derived triple:
|
|
1319
|
+
# :Reg1 :highResidual _:sk_0 .
|
|
1320
|
+
# It holds because the following instance of the rule body is provable:
|
|
1321
|
+
# :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
|
|
1322
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
1323
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
1324
|
+
# :Reg1 :rmse 2.010567321026817 .
|
|
1325
|
+
# (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
|
|
1326
|
+
# _:b8 :x 8.0 .
|
|
1327
|
+
# _:b8 :y 15.0 .
|
|
1328
|
+
# (1.4047619047619062 8.0) math:product 11.23809523809525 .
|
|
1329
|
+
# (-0.5714285714285783 11.23809523809525) math:sum 10.666666666666671 .
|
|
1330
|
+
# (15.0 10.666666666666671) math:difference 4.333333333333329 .
|
|
1331
|
+
# 4.333333333333329 math:absoluteValue 4.333333333333329 .
|
|
1332
|
+
# (2.0 2.010567321026817) math:product 4.021134642053634 .
|
|
1333
|
+
# 4.333333333333329 math:greaterThan 4.021134642053634 .
|
|
1334
|
+
# via the schematic forward rule:
|
|
1335
|
+
# {
|
|
1336
|
+
# :Reg1 :points ?pts .
|
|
1337
|
+
# :Reg1 :slope ?b .
|
|
1338
|
+
# :Reg1 :intercept ?a .
|
|
1339
|
+
# :Reg1 :rmse ?rmse .
|
|
1340
|
+
# ?pts list:member ?p .
|
|
1341
|
+
# ?p :x ?x .
|
|
1342
|
+
# ?p :y ?y .
|
|
1343
|
+
# (?b ?x) math:product ?bx .
|
|
1344
|
+
# (?a ?bx) math:sum ?yhat .
|
|
1345
|
+
# (?y ?yhat) math:difference ?e .
|
|
1346
|
+
# ?e math:absoluteValue ?ae .
|
|
1347
|
+
# (2.0 ?rmse) math:product ?thr .
|
|
1348
|
+
# ?ae math:greaterThan ?thr .
|
|
1349
|
+
# } => {
|
|
1350
|
+
# _:b9 :point ?p .
|
|
1351
|
+
# _:b9 :x ?x .
|
|
1352
|
+
# _:b9 :y ?y .
|
|
1353
|
+
# _:b9 :yhat ?yhat .
|
|
1354
|
+
# _:b9 :residual ?e .
|
|
1355
|
+
# :Reg1 :highResidual _:b9 .
|
|
1356
|
+
# } .
|
|
1357
|
+
# with substitution (on rule variables):
|
|
1358
|
+
# ?a = -0.5714285714285783
|
|
1359
|
+
# ?ae = 4.333333333333329
|
|
1360
|
+
# ?b = 1.4047619047619062
|
|
1361
|
+
# ?bx = 11.23809523809525
|
|
1362
|
+
# ?e = 4.333333333333329
|
|
1363
|
+
# ?p = _:b8
|
|
1364
|
+
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
|
|
1365
|
+
# ?rmse = 2.010567321026817
|
|
1366
|
+
# ?thr = 4.021134642053634
|
|
1367
|
+
# ?x = 8.0
|
|
1368
|
+
# ?y = 15.0
|
|
1369
|
+
# ?yhat = 10.666666666666671
|
|
1370
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1371
|
+
# ----------------------------------------------------------------------
|
|
1372
|
+
|
|
1373
|
+
:Reg1 :highResidual _:sk_0 .
|
|
1374
|
+
|
|
1375
|
+
# ----------------------------------------------------------------------
|
|
1376
|
+
# Proof for derived triple:
|
|
1377
|
+
# _:sk_1 :x 8.5 .
|
|
1378
|
+
# It holds because the following instance of the rule body is provable:
|
|
1379
|
+
# :Reg1 :predictX 8.5 .
|
|
1380
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
1381
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
1382
|
+
# (1.4047619047619062 8.5) math:product 11.940476190476202 .
|
|
1383
|
+
# (-0.5714285714285783 11.940476190476202) math:sum 11.369047619047624 .
|
|
1384
|
+
# via the schematic forward rule:
|
|
1385
|
+
# {
|
|
1386
|
+
# :Reg1 :predictX ?x0 .
|
|
1387
|
+
# :Reg1 :slope ?b .
|
|
1388
|
+
# :Reg1 :intercept ?a .
|
|
1389
|
+
# (?b ?x0) math:product ?bx0 .
|
|
1390
|
+
# (?a ?bx0) math:sum ?y0 .
|
|
1391
|
+
# } => {
|
|
1392
|
+
# _:b10 :x ?x0 .
|
|
1393
|
+
# _:b10 :y ?y0 .
|
|
1394
|
+
# :Reg1 :prediction _:b10 .
|
|
1395
|
+
# } .
|
|
1396
|
+
# with substitution (on rule variables):
|
|
1397
|
+
# ?a = -0.5714285714285783
|
|
1398
|
+
# ?b = 1.4047619047619062
|
|
1399
|
+
# ?bx0 = 11.940476190476202
|
|
1400
|
+
# ?x0 = 8.5
|
|
1401
|
+
# ?y0 = 11.369047619047624
|
|
1402
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1403
|
+
# ----------------------------------------------------------------------
|
|
1404
|
+
|
|
1405
|
+
_:sk_1 :x 8.5 .
|
|
1406
|
+
|
|
1407
|
+
# ----------------------------------------------------------------------
|
|
1408
|
+
# Proof for derived triple:
|
|
1409
|
+
# _:sk_1 :y 11.369047619047624 .
|
|
1410
|
+
# It holds because the following instance of the rule body is provable:
|
|
1411
|
+
# :Reg1 :predictX 8.5 .
|
|
1412
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
1413
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
1414
|
+
# (1.4047619047619062 8.5) math:product 11.940476190476202 .
|
|
1415
|
+
# (-0.5714285714285783 11.940476190476202) math:sum 11.369047619047624 .
|
|
1416
|
+
# via the schematic forward rule:
|
|
1417
|
+
# {
|
|
1418
|
+
# :Reg1 :predictX ?x0 .
|
|
1419
|
+
# :Reg1 :slope ?b .
|
|
1420
|
+
# :Reg1 :intercept ?a .
|
|
1421
|
+
# (?b ?x0) math:product ?bx0 .
|
|
1422
|
+
# (?a ?bx0) math:sum ?y0 .
|
|
1423
|
+
# } => {
|
|
1424
|
+
# _:b10 :x ?x0 .
|
|
1425
|
+
# _:b10 :y ?y0 .
|
|
1426
|
+
# :Reg1 :prediction _:b10 .
|
|
1427
|
+
# } .
|
|
1428
|
+
# with substitution (on rule variables):
|
|
1429
|
+
# ?a = -0.5714285714285783
|
|
1430
|
+
# ?b = 1.4047619047619062
|
|
1431
|
+
# ?bx0 = 11.940476190476202
|
|
1432
|
+
# ?x0 = 8.5
|
|
1433
|
+
# ?y0 = 11.369047619047624
|
|
1434
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1435
|
+
# ----------------------------------------------------------------------
|
|
1436
|
+
|
|
1437
|
+
_:sk_1 :y 11.369047619047624 .
|
|
1438
|
+
|
|
1439
|
+
# ----------------------------------------------------------------------
|
|
1440
|
+
# Proof for derived triple:
|
|
1441
|
+
# :Reg1 :prediction _:sk_1 .
|
|
1442
|
+
# It holds because the following instance of the rule body is provable:
|
|
1443
|
+
# :Reg1 :predictX 8.5 .
|
|
1444
|
+
# :Reg1 :slope 1.4047619047619062 .
|
|
1445
|
+
# :Reg1 :intercept -0.5714285714285783 .
|
|
1446
|
+
# (1.4047619047619062 8.5) math:product 11.940476190476202 .
|
|
1447
|
+
# (-0.5714285714285783 11.940476190476202) math:sum 11.369047619047624 .
|
|
1448
|
+
# via the schematic forward rule:
|
|
1449
|
+
# {
|
|
1450
|
+
# :Reg1 :predictX ?x0 .
|
|
1451
|
+
# :Reg1 :slope ?b .
|
|
1452
|
+
# :Reg1 :intercept ?a .
|
|
1453
|
+
# (?b ?x0) math:product ?bx0 .
|
|
1454
|
+
# (?a ?bx0) math:sum ?y0 .
|
|
1455
|
+
# } => {
|
|
1456
|
+
# _:b10 :x ?x0 .
|
|
1457
|
+
# _:b10 :y ?y0 .
|
|
1458
|
+
# :Reg1 :prediction _:b10 .
|
|
1459
|
+
# } .
|
|
1460
|
+
# with substitution (on rule variables):
|
|
1461
|
+
# ?a = -0.5714285714285783
|
|
1462
|
+
# ?b = 1.4047619047619062
|
|
1463
|
+
# ?bx0 = 11.940476190476202
|
|
1464
|
+
# ?x0 = 8.5
|
|
1465
|
+
# ?y0 = 11.369047619047624
|
|
1466
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
1467
|
+
# ----------------------------------------------------------------------
|
|
1468
|
+
|
|
1469
|
+
:Reg1 :prediction _:sk_1 .
|
|
1470
|
+
|