eyeling 1.5.40 → 1.5.41

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,1334 @@
1
+ @prefix : <http://example.org/cranberry-calculus#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # :DataSet1 :mean 2.642857142857143 .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
8
+ # :DataSet1 :zThreshold 2.0 .
9
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
10
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
11
+ # (18.5 7) math:quotient 2.642857142857143 .
12
+ # (?sq {
13
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
14
+ # (?x 2.642857142857143) math:difference ?d .
15
+ # (?d 2.0) math:exponentiation ?sq .
16
+ # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
17
+ # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
18
+ # (63.58214285714286 7) math:quotient 9.083163265306123 .
19
+ # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
20
+ # via the schematic forward rule:
21
+ # {
22
+ # :DataSet1 :values ?xs .
23
+ # :DataSet1 :zThreshold ?thr .
24
+ # ?xs list:length ?n .
25
+ # ?xs math:sum ?sum .
26
+ # (?sum ?n) math:quotient ?mean .
27
+ # (?sq {
28
+ # ?xs list:member ?x .
29
+ # (?x ?mean) math:difference ?d .
30
+ # (?d 2.0) math:exponentiation ?sq .
31
+ # } ?sqList) log:collectAllIn ?_b1 .
32
+ # ?sqList math:sum ?sse .
33
+ # (?sse ?n) math:quotient ?var .
34
+ # (?var 0.5) math:exponentiation ?std .
35
+ # } => {
36
+ # :DataSet1 :mean ?mean .
37
+ # :DataSet1 :variance ?var .
38
+ # :DataSet1 :stddev ?std .
39
+ # } .
40
+ # with substitution (on rule variables):
41
+ # ?mean = 2.642857142857143
42
+ # ?n = 7
43
+ # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
44
+ # ?sse = 63.58214285714286
45
+ # ?std = 3.0138286721886036
46
+ # ?sum = 18.5
47
+ # ?thr = 2.0
48
+ # ?var = 9.083163265306123
49
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
50
+ # Therefore the derived triple above is entailed by the rules and facts.
51
+ # ----------------------------------------------------------------------
52
+
53
+ :DataSet1 :mean 2.642857142857143 .
54
+
55
+ # ----------------------------------------------------------------------
56
+ # Proof for derived triple:
57
+ # :DataSet1 :variance 9.083163265306123 .
58
+ # It holds because the following instance of the rule body is provable:
59
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
60
+ # :DataSet1 :zThreshold 2.0 .
61
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
62
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
63
+ # (18.5 7) math:quotient 2.642857142857143 .
64
+ # (?sq {
65
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
66
+ # (?x 2.642857142857143) math:difference ?d .
67
+ # (?d 2.0) math:exponentiation ?sq .
68
+ # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
69
+ # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
70
+ # (63.58214285714286 7) math:quotient 9.083163265306123 .
71
+ # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
72
+ # via the schematic forward rule:
73
+ # {
74
+ # :DataSet1 :values ?xs .
75
+ # :DataSet1 :zThreshold ?thr .
76
+ # ?xs list:length ?n .
77
+ # ?xs math:sum ?sum .
78
+ # (?sum ?n) math:quotient ?mean .
79
+ # (?sq {
80
+ # ?xs list:member ?x .
81
+ # (?x ?mean) math:difference ?d .
82
+ # (?d 2.0) math:exponentiation ?sq .
83
+ # } ?sqList) log:collectAllIn ?_b1 .
84
+ # ?sqList math:sum ?sse .
85
+ # (?sse ?n) math:quotient ?var .
86
+ # (?var 0.5) math:exponentiation ?std .
87
+ # } => {
88
+ # :DataSet1 :mean ?mean .
89
+ # :DataSet1 :variance ?var .
90
+ # :DataSet1 :stddev ?std .
91
+ # } .
92
+ # with substitution (on rule variables):
93
+ # ?mean = 2.642857142857143
94
+ # ?n = 7
95
+ # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
96
+ # ?sse = 63.58214285714286
97
+ # ?std = 3.0138286721886036
98
+ # ?sum = 18.5
99
+ # ?thr = 2.0
100
+ # ?var = 9.083163265306123
101
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
102
+ # Therefore the derived triple above is entailed by the rules and facts.
103
+ # ----------------------------------------------------------------------
104
+
105
+ :DataSet1 :variance 9.083163265306123 .
106
+
107
+ # ----------------------------------------------------------------------
108
+ # Proof for derived triple:
109
+ # :DataSet1 :stddev 3.0138286721886036 .
110
+ # It holds because the following instance of the rule body is provable:
111
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
112
+ # :DataSet1 :zThreshold 2.0 .
113
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
114
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum 18.5 .
115
+ # (18.5 7) math:quotient 2.642857142857143 .
116
+ # (?sq {
117
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
118
+ # (?x 2.642857142857143) math:difference ?d .
119
+ # (?d 2.0) math:exponentiation ?sq .
120
+ # } (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)) log:collectAllIn ?_b1 .
121
+ # (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773) math:sum 63.58214285714286 .
122
+ # (63.58214285714286 7) math:quotient 9.083163265306123 .
123
+ # (9.083163265306123 0.5) math:exponentiation 3.0138286721886036 .
124
+ # via the schematic forward rule:
125
+ # {
126
+ # :DataSet1 :values ?xs .
127
+ # :DataSet1 :zThreshold ?thr .
128
+ # ?xs list:length ?n .
129
+ # ?xs math:sum ?sum .
130
+ # (?sum ?n) math:quotient ?mean .
131
+ # (?sq {
132
+ # ?xs list:member ?x .
133
+ # (?x ?mean) math:difference ?d .
134
+ # (?d 2.0) math:exponentiation ?sq .
135
+ # } ?sqList) log:collectAllIn ?_b1 .
136
+ # ?sqList math:sum ?sse .
137
+ # (?sse ?n) math:quotient ?var .
138
+ # (?var 0.5) math:exponentiation ?std .
139
+ # } => {
140
+ # :DataSet1 :mean ?mean .
141
+ # :DataSet1 :variance ?var .
142
+ # :DataSet1 :stddev ?std .
143
+ # } .
144
+ # with substitution (on rule variables):
145
+ # ?mean = 2.642857142857143
146
+ # ?n = 7
147
+ # ?sqList = (54.12755102040817 0.4132653061224489 1.6714795918367342 1.9400510204081631 1.5446938775510204 1.8032653061224486 2.0818367346938773)
148
+ # ?sse = 63.58214285714286
149
+ # ?std = 3.0138286721886036
150
+ # ?sum = 18.5
151
+ # ?thr = 2.0
152
+ # ?var = 9.083163265306123
153
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
154
+ # Therefore the derived triple above is entailed by the rules and facts.
155
+ # ----------------------------------------------------------------------
156
+
157
+ :DataSet1 :stddev 3.0138286721886036 .
158
+
159
+ # ----------------------------------------------------------------------
160
+ # Proof for derived triple:
161
+ # _:sk_0 :value 10.0 .
162
+ # It holds because the following instance of the rule body is provable:
163
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
164
+ # :DataSet1 :mean 2.642857142857143 .
165
+ # :DataSet1 :stddev 3.0138286721886036 .
166
+ # :DataSet1 :zThreshold 2.0 .
167
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
168
+ # (10.0 2.642857142857143) math:difference 7.357142857142858 .
169
+ # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
170
+ # 2.44112843076783 math:absoluteValue 2.44112843076783 .
171
+ # 2.44112843076783 math:greaterThan 2.0 .
172
+ # via the schematic forward rule:
173
+ # {
174
+ # :DataSet1 :values ?xs .
175
+ # :DataSet1 :mean ?mean .
176
+ # :DataSet1 :stddev ?std .
177
+ # :DataSet1 :zThreshold ?thr .
178
+ # ?xs list:member ?x .
179
+ # (?x ?mean) math:difference ?d .
180
+ # (?d ?std) math:quotient ?z .
181
+ # ?z math:absoluteValue ?absz .
182
+ # ?absz math:greaterThan ?thr .
183
+ # } => {
184
+ # _:b1 :value ?x .
185
+ # _:b1 :zScore ?z .
186
+ # :DataSet1 :outlier _:b1 .
187
+ # } .
188
+ # with substitution (on rule variables):
189
+ # ?absz = 2.44112843076783
190
+ # ?d = 7.357142857142858
191
+ # ?mean = 2.642857142857143
192
+ # ?std = 3.0138286721886036
193
+ # ?thr = 2.0
194
+ # ?x = 10.0
195
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
196
+ # ?z = 2.44112843076783
197
+ # Therefore the derived triple above is entailed by the rules and facts.
198
+ # ----------------------------------------------------------------------
199
+
200
+ _:sk_0 :value 10.0 .
201
+
202
+ # ----------------------------------------------------------------------
203
+ # Proof for derived triple:
204
+ # _:sk_0 :zScore 2.44112843076783 .
205
+ # It holds because the following instance of the rule body is provable:
206
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
207
+ # :DataSet1 :mean 2.642857142857143 .
208
+ # :DataSet1 :stddev 3.0138286721886036 .
209
+ # :DataSet1 :zThreshold 2.0 .
210
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
211
+ # (10.0 2.642857142857143) math:difference 7.357142857142858 .
212
+ # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
213
+ # 2.44112843076783 math:absoluteValue 2.44112843076783 .
214
+ # 2.44112843076783 math:greaterThan 2.0 .
215
+ # via the schematic forward rule:
216
+ # {
217
+ # :DataSet1 :values ?xs .
218
+ # :DataSet1 :mean ?mean .
219
+ # :DataSet1 :stddev ?std .
220
+ # :DataSet1 :zThreshold ?thr .
221
+ # ?xs list:member ?x .
222
+ # (?x ?mean) math:difference ?d .
223
+ # (?d ?std) math:quotient ?z .
224
+ # ?z math:absoluteValue ?absz .
225
+ # ?absz math:greaterThan ?thr .
226
+ # } => {
227
+ # _:b1 :value ?x .
228
+ # _:b1 :zScore ?z .
229
+ # :DataSet1 :outlier _:b1 .
230
+ # } .
231
+ # with substitution (on rule variables):
232
+ # ?absz = 2.44112843076783
233
+ # ?d = 7.357142857142858
234
+ # ?mean = 2.642857142857143
235
+ # ?std = 3.0138286721886036
236
+ # ?thr = 2.0
237
+ # ?x = 10.0
238
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
239
+ # ?z = 2.44112843076783
240
+ # Therefore the derived triple above is entailed by the rules and facts.
241
+ # ----------------------------------------------------------------------
242
+
243
+ _:sk_0 :zScore 2.44112843076783 .
244
+
245
+ # ----------------------------------------------------------------------
246
+ # Proof for derived triple:
247
+ # :DataSet1 :outlier _:sk_0 .
248
+ # It holds because the following instance of the rule body is provable:
249
+ # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
250
+ # :DataSet1 :mean 2.642857142857143 .
251
+ # :DataSet1 :stddev 3.0138286721886036 .
252
+ # :DataSet1 :zThreshold 2.0 .
253
+ # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
254
+ # (10.0 2.642857142857143) math:difference 7.357142857142858 .
255
+ # (7.357142857142858 3.0138286721886036) math:quotient 2.44112843076783 .
256
+ # 2.44112843076783 math:absoluteValue 2.44112843076783 .
257
+ # 2.44112843076783 math:greaterThan 2.0 .
258
+ # via the schematic forward rule:
259
+ # {
260
+ # :DataSet1 :values ?xs .
261
+ # :DataSet1 :mean ?mean .
262
+ # :DataSet1 :stddev ?std .
263
+ # :DataSet1 :zThreshold ?thr .
264
+ # ?xs list:member ?x .
265
+ # (?x ?mean) math:difference ?d .
266
+ # (?d ?std) math:quotient ?z .
267
+ # ?z math:absoluteValue ?absz .
268
+ # ?absz math:greaterThan ?thr .
269
+ # } => {
270
+ # _:b1 :value ?x .
271
+ # _:b1 :zScore ?z .
272
+ # :DataSet1 :outlier _:b1 .
273
+ # } .
274
+ # with substitution (on rule variables):
275
+ # ?absz = 2.44112843076783
276
+ # ?d = 7.357142857142858
277
+ # ?mean = 2.642857142857143
278
+ # ?std = 3.0138286721886036
279
+ # ?thr = 2.0
280
+ # ?x = 10.0
281
+ # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
282
+ # ?z = 2.44112843076783
283
+ # Therefore the derived triple above is entailed by the rules and facts.
284
+ # ----------------------------------------------------------------------
285
+
286
+ :DataSet1 :outlier _:sk_0 .
287
+
288
+ # ----------------------------------------------------------------------
289
+ # Proof for derived triple:
290
+ # :VecA :dotWithVecB 12 .
291
+ # It holds because the following instance of the rule body is provable:
292
+ # :VecA :x 3.0 .
293
+ # :VecA :y 4.0 .
294
+ # :VecB :x 4.0 .
295
+ # :VecB :y 0.0 .
296
+ # (3.0 4.0) math:product 12 .
297
+ # (4.0 0.0) math:product 0 .
298
+ # (12 0) math:sum 12 .
299
+ # (3.0 2.0) math:exponentiation 9 .
300
+ # (4.0 2.0) math:exponentiation 16 .
301
+ # (9 16) math:sum 25 .
302
+ # (25 0.5) math:exponentiation 5 .
303
+ # (4.0 2.0) math:exponentiation 16 .
304
+ # (0.0 2.0) math:exponentiation 0 .
305
+ # (16 0) math:sum 16 .
306
+ # (16 0.5) math:exponentiation 4 .
307
+ # (5 4) math:product 20 .
308
+ # (12 20) math:quotient 0.6 .
309
+ # 0.6 math:acos 0.9272952180016123 .
310
+ # 0.9272952180016123 math:degrees 53.13010235415598 .
311
+ # via the schematic forward rule:
312
+ # {
313
+ # :VecA :x ?ax .
314
+ # :VecA :y ?ay .
315
+ # :VecB :x ?bx .
316
+ # :VecB :y ?by .
317
+ # (?ax ?bx) math:product ?axbx .
318
+ # (?ay ?by) math:product ?ayby .
319
+ # (?axbx ?ayby) math:sum ?dot .
320
+ # (?ax 2.0) math:exponentiation ?ax2 .
321
+ # (?ay 2.0) math:exponentiation ?ay2 .
322
+ # (?ax2 ?ay2) math:sum ?a2 .
323
+ # (?a2 0.5) math:exponentiation ?aNorm .
324
+ # (?bx 2.0) math:exponentiation ?bx2 .
325
+ # (?by 2.0) math:exponentiation ?by2 .
326
+ # (?bx2 ?by2) math:sum ?b2 .
327
+ # (?b2 0.5) math:exponentiation ?bNorm .
328
+ # (?aNorm ?bNorm) math:product ?den .
329
+ # (?dot ?den) math:quotient ?cosTheta .
330
+ # ?cosTheta math:acos ?thetaRad .
331
+ # ?thetaRad math:degrees ?thetaDeg .
332
+ # } => {
333
+ # :VecA :dotWithVecB ?dot .
334
+ # _:b2 :radians ?thetaRad .
335
+ # _:b2 :degrees ?thetaDeg .
336
+ # :VecA :angleToVecB _:b2 .
337
+ # } .
338
+ # with substitution (on rule variables):
339
+ # ?a2 = 25
340
+ # ?aNorm = 5
341
+ # ?ax = 3.0
342
+ # ?ax2 = 9
343
+ # ?axbx = 12
344
+ # ?ay = 4.0
345
+ # ?ay2 = 16
346
+ # ?ayby = 0
347
+ # ?b2 = 16
348
+ # ?bNorm = 4
349
+ # ?bx = 4.0
350
+ # ?bx2 = 16
351
+ # ?by = 0.0
352
+ # ?by2 = 0
353
+ # ?cosTheta = 0.6
354
+ # ?den = 20
355
+ # ?dot = 12
356
+ # ?thetaDeg = 53.13010235415598
357
+ # ?thetaRad = 0.9272952180016123
358
+ # Therefore the derived triple above is entailed by the rules and facts.
359
+ # ----------------------------------------------------------------------
360
+
361
+ :VecA :dotWithVecB 12 .
362
+
363
+ # ----------------------------------------------------------------------
364
+ # Proof for derived triple:
365
+ # _:sk_1 :radians 0.9272952180016123 .
366
+ # It holds because the following instance of the rule body is provable:
367
+ # :VecA :x 3.0 .
368
+ # :VecA :y 4.0 .
369
+ # :VecB :x 4.0 .
370
+ # :VecB :y 0.0 .
371
+ # (3.0 4.0) math:product 12 .
372
+ # (4.0 0.0) math:product 0 .
373
+ # (12 0) math:sum 12 .
374
+ # (3.0 2.0) math:exponentiation 9 .
375
+ # (4.0 2.0) math:exponentiation 16 .
376
+ # (9 16) math:sum 25 .
377
+ # (25 0.5) math:exponentiation 5 .
378
+ # (4.0 2.0) math:exponentiation 16 .
379
+ # (0.0 2.0) math:exponentiation 0 .
380
+ # (16 0) math:sum 16 .
381
+ # (16 0.5) math:exponentiation 4 .
382
+ # (5 4) math:product 20 .
383
+ # (12 20) math:quotient 0.6 .
384
+ # 0.6 math:acos 0.9272952180016123 .
385
+ # 0.9272952180016123 math:degrees 53.13010235415598 .
386
+ # via the schematic forward rule:
387
+ # {
388
+ # :VecA :x ?ax .
389
+ # :VecA :y ?ay .
390
+ # :VecB :x ?bx .
391
+ # :VecB :y ?by .
392
+ # (?ax ?bx) math:product ?axbx .
393
+ # (?ay ?by) math:product ?ayby .
394
+ # (?axbx ?ayby) math:sum ?dot .
395
+ # (?ax 2.0) math:exponentiation ?ax2 .
396
+ # (?ay 2.0) math:exponentiation ?ay2 .
397
+ # (?ax2 ?ay2) math:sum ?a2 .
398
+ # (?a2 0.5) math:exponentiation ?aNorm .
399
+ # (?bx 2.0) math:exponentiation ?bx2 .
400
+ # (?by 2.0) math:exponentiation ?by2 .
401
+ # (?bx2 ?by2) math:sum ?b2 .
402
+ # (?b2 0.5) math:exponentiation ?bNorm .
403
+ # (?aNorm ?bNorm) math:product ?den .
404
+ # (?dot ?den) math:quotient ?cosTheta .
405
+ # ?cosTheta math:acos ?thetaRad .
406
+ # ?thetaRad math:degrees ?thetaDeg .
407
+ # } => {
408
+ # :VecA :dotWithVecB ?dot .
409
+ # _:b2 :radians ?thetaRad .
410
+ # _:b2 :degrees ?thetaDeg .
411
+ # :VecA :angleToVecB _:b2 .
412
+ # } .
413
+ # with substitution (on rule variables):
414
+ # ?a2 = 25
415
+ # ?aNorm = 5
416
+ # ?ax = 3.0
417
+ # ?ax2 = 9
418
+ # ?axbx = 12
419
+ # ?ay = 4.0
420
+ # ?ay2 = 16
421
+ # ?ayby = 0
422
+ # ?b2 = 16
423
+ # ?bNorm = 4
424
+ # ?bx = 4.0
425
+ # ?bx2 = 16
426
+ # ?by = 0.0
427
+ # ?by2 = 0
428
+ # ?cosTheta = 0.6
429
+ # ?den = 20
430
+ # ?dot = 12
431
+ # ?thetaDeg = 53.13010235415598
432
+ # ?thetaRad = 0.9272952180016123
433
+ # Therefore the derived triple above is entailed by the rules and facts.
434
+ # ----------------------------------------------------------------------
435
+
436
+ _:sk_1 :radians 0.9272952180016123 .
437
+
438
+ # ----------------------------------------------------------------------
439
+ # Proof for derived triple:
440
+ # _:sk_1 :degrees 53.13010235415598 .
441
+ # It holds because the following instance of the rule body is provable:
442
+ # :VecA :x 3.0 .
443
+ # :VecA :y 4.0 .
444
+ # :VecB :x 4.0 .
445
+ # :VecB :y 0.0 .
446
+ # (3.0 4.0) math:product 12 .
447
+ # (4.0 0.0) math:product 0 .
448
+ # (12 0) math:sum 12 .
449
+ # (3.0 2.0) math:exponentiation 9 .
450
+ # (4.0 2.0) math:exponentiation 16 .
451
+ # (9 16) math:sum 25 .
452
+ # (25 0.5) math:exponentiation 5 .
453
+ # (4.0 2.0) math:exponentiation 16 .
454
+ # (0.0 2.0) math:exponentiation 0 .
455
+ # (16 0) math:sum 16 .
456
+ # (16 0.5) math:exponentiation 4 .
457
+ # (5 4) math:product 20 .
458
+ # (12 20) math:quotient 0.6 .
459
+ # 0.6 math:acos 0.9272952180016123 .
460
+ # 0.9272952180016123 math:degrees 53.13010235415598 .
461
+ # via the schematic forward rule:
462
+ # {
463
+ # :VecA :x ?ax .
464
+ # :VecA :y ?ay .
465
+ # :VecB :x ?bx .
466
+ # :VecB :y ?by .
467
+ # (?ax ?bx) math:product ?axbx .
468
+ # (?ay ?by) math:product ?ayby .
469
+ # (?axbx ?ayby) math:sum ?dot .
470
+ # (?ax 2.0) math:exponentiation ?ax2 .
471
+ # (?ay 2.0) math:exponentiation ?ay2 .
472
+ # (?ax2 ?ay2) math:sum ?a2 .
473
+ # (?a2 0.5) math:exponentiation ?aNorm .
474
+ # (?bx 2.0) math:exponentiation ?bx2 .
475
+ # (?by 2.0) math:exponentiation ?by2 .
476
+ # (?bx2 ?by2) math:sum ?b2 .
477
+ # (?b2 0.5) math:exponentiation ?bNorm .
478
+ # (?aNorm ?bNorm) math:product ?den .
479
+ # (?dot ?den) math:quotient ?cosTheta .
480
+ # ?cosTheta math:acos ?thetaRad .
481
+ # ?thetaRad math:degrees ?thetaDeg .
482
+ # } => {
483
+ # :VecA :dotWithVecB ?dot .
484
+ # _:b2 :radians ?thetaRad .
485
+ # _:b2 :degrees ?thetaDeg .
486
+ # :VecA :angleToVecB _:b2 .
487
+ # } .
488
+ # with substitution (on rule variables):
489
+ # ?a2 = 25
490
+ # ?aNorm = 5
491
+ # ?ax = 3.0
492
+ # ?ax2 = 9
493
+ # ?axbx = 12
494
+ # ?ay = 4.0
495
+ # ?ay2 = 16
496
+ # ?ayby = 0
497
+ # ?b2 = 16
498
+ # ?bNorm = 4
499
+ # ?bx = 4.0
500
+ # ?bx2 = 16
501
+ # ?by = 0.0
502
+ # ?by2 = 0
503
+ # ?cosTheta = 0.6
504
+ # ?den = 20
505
+ # ?dot = 12
506
+ # ?thetaDeg = 53.13010235415598
507
+ # ?thetaRad = 0.9272952180016123
508
+ # Therefore the derived triple above is entailed by the rules and facts.
509
+ # ----------------------------------------------------------------------
510
+
511
+ _:sk_1 :degrees 53.13010235415598 .
512
+
513
+ # ----------------------------------------------------------------------
514
+ # Proof for derived triple:
515
+ # :VecA :angleToVecB _:sk_1 .
516
+ # It holds because the following instance of the rule body is provable:
517
+ # :VecA :x 3.0 .
518
+ # :VecA :y 4.0 .
519
+ # :VecB :x 4.0 .
520
+ # :VecB :y 0.0 .
521
+ # (3.0 4.0) math:product 12 .
522
+ # (4.0 0.0) math:product 0 .
523
+ # (12 0) math:sum 12 .
524
+ # (3.0 2.0) math:exponentiation 9 .
525
+ # (4.0 2.0) math:exponentiation 16 .
526
+ # (9 16) math:sum 25 .
527
+ # (25 0.5) math:exponentiation 5 .
528
+ # (4.0 2.0) math:exponentiation 16 .
529
+ # (0.0 2.0) math:exponentiation 0 .
530
+ # (16 0) math:sum 16 .
531
+ # (16 0.5) math:exponentiation 4 .
532
+ # (5 4) math:product 20 .
533
+ # (12 20) math:quotient 0.6 .
534
+ # 0.6 math:acos 0.9272952180016123 .
535
+ # 0.9272952180016123 math:degrees 53.13010235415598 .
536
+ # via the schematic forward rule:
537
+ # {
538
+ # :VecA :x ?ax .
539
+ # :VecA :y ?ay .
540
+ # :VecB :x ?bx .
541
+ # :VecB :y ?by .
542
+ # (?ax ?bx) math:product ?axbx .
543
+ # (?ay ?by) math:product ?ayby .
544
+ # (?axbx ?ayby) math:sum ?dot .
545
+ # (?ax 2.0) math:exponentiation ?ax2 .
546
+ # (?ay 2.0) math:exponentiation ?ay2 .
547
+ # (?ax2 ?ay2) math:sum ?a2 .
548
+ # (?a2 0.5) math:exponentiation ?aNorm .
549
+ # (?bx 2.0) math:exponentiation ?bx2 .
550
+ # (?by 2.0) math:exponentiation ?by2 .
551
+ # (?bx2 ?by2) math:sum ?b2 .
552
+ # (?b2 0.5) math:exponentiation ?bNorm .
553
+ # (?aNorm ?bNorm) math:product ?den .
554
+ # (?dot ?den) math:quotient ?cosTheta .
555
+ # ?cosTheta math:acos ?thetaRad .
556
+ # ?thetaRad math:degrees ?thetaDeg .
557
+ # } => {
558
+ # :VecA :dotWithVecB ?dot .
559
+ # _:b2 :radians ?thetaRad .
560
+ # _:b2 :degrees ?thetaDeg .
561
+ # :VecA :angleToVecB _:b2 .
562
+ # } .
563
+ # with substitution (on rule variables):
564
+ # ?a2 = 25
565
+ # ?aNorm = 5
566
+ # ?ax = 3.0
567
+ # ?ax2 = 9
568
+ # ?axbx = 12
569
+ # ?ay = 4.0
570
+ # ?ay2 = 16
571
+ # ?ayby = 0
572
+ # ?b2 = 16
573
+ # ?bNorm = 4
574
+ # ?bx = 4.0
575
+ # ?bx2 = 16
576
+ # ?by = 0.0
577
+ # ?by2 = 0
578
+ # ?cosTheta = 0.6
579
+ # ?den = 20
580
+ # ?dot = 12
581
+ # ?thetaDeg = 53.13010235415598
582
+ # ?thetaRad = 0.9272952180016123
583
+ # Therefore the derived triple above is entailed by the rules and facts.
584
+ # ----------------------------------------------------------------------
585
+
586
+ :VecA :angleToVecB _:sk_1 .
587
+
588
+ # ----------------------------------------------------------------------
589
+ # Proof for derived triple:
590
+ # :Shot1 :vx 21.213203435596427 .
591
+ # It holds because the following instance of the rule body is provable:
592
+ # :Shot1 :speed 30.0 .
593
+ # :Shot1 :angleRad 0.7853981633974483 .
594
+ # :Shot1 :g 9.81 .
595
+ # :Shot1 :tSample 2.5 .
596
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
597
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
598
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
599
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
600
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
601
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
602
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
603
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
604
+ # (2.0 9.81) math:product 19.62 .
605
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
606
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
607
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
608
+ # (2.5 2.0) math:exponentiation 6.25 .
609
+ # (9.81 6.25) math:product 61.3125 .
610
+ # (0.5 61.3125) math:product 30.65625 .
611
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
612
+ # via the schematic forward rule:
613
+ # {
614
+ # :Shot1 :speed ?v .
615
+ # :Shot1 :angleRad ?theta .
616
+ # :Shot1 :g ?g .
617
+ # :Shot1 :tSample ?t .
618
+ # ?theta math:sin ?sinT .
619
+ # ?theta math:cos ?cosT .
620
+ # (?v ?cosT) math:product ?vx .
621
+ # (?v ?sinT) math:product ?vy .
622
+ # (2.0 ?vy) math:product ?twoVy .
623
+ # (?twoVy ?g) math:quotient ?tFlight .
624
+ # (?vx ?tFlight) math:product ?range .
625
+ # (?vy 2.0) math:exponentiation ?vy2 .
626
+ # (2.0 ?g) math:product ?twoG .
627
+ # (?vy2 ?twoG) math:quotient ?hMax .
628
+ # (?vx ?t) math:product ?xAtT .
629
+ # (?vy ?t) math:product ?vy_t .
630
+ # (?t 2.0) math:exponentiation ?t2 .
631
+ # (?g ?t2) math:product ?g_t2 .
632
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
633
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
634
+ # } => {
635
+ # :Shot1 :vx ?vx .
636
+ # :Shot1 :vy ?vy .
637
+ # :Shot1 :timeOfFlight ?tFlight .
638
+ # :Shot1 :range ?range .
639
+ # :Shot1 :maxHeight ?hMax .
640
+ # _:b3 :t ?t .
641
+ # _:b3 :x ?xAtT .
642
+ # _:b3 :y ?yAtT .
643
+ # :Shot1 :positionAtSample _:b3 .
644
+ # } .
645
+ # with substitution (on rule variables):
646
+ # ?cosT = 0.7071067811865476
647
+ # ?g = 9.81
648
+ # ?g_t2 = 61.3125
649
+ # ?hMax = 22.935779816513755
650
+ # ?half_g_t2 = 30.65625
651
+ # ?range = 91.74311926605502
652
+ # ?sinT = 0.7071067811865475
653
+ # ?t = 2.5
654
+ # ?t2 = 6.25
655
+ # ?tFlight = 4.324812117348913
656
+ # ?theta = 0.7853981633974483
657
+ # ?twoG = 19.62
658
+ # ?twoVy = 42.426406871192846
659
+ # ?v = 30.0
660
+ # ?vx = 21.213203435596427
661
+ # ?vy = 21.213203435596423
662
+ # ?vy2 = 449.9999999999999
663
+ # ?vy_t = 53.03300858899106
664
+ # ?xAtT = 53.033008588991066
665
+ # ?yAtT = 22.37675858899106
666
+ # Therefore the derived triple above is entailed by the rules and facts.
667
+ # ----------------------------------------------------------------------
668
+
669
+ :Shot1 :vx 21.213203435596427 .
670
+
671
+ # ----------------------------------------------------------------------
672
+ # Proof for derived triple:
673
+ # :Shot1 :vy 21.213203435596423 .
674
+ # It holds because the following instance of the rule body is provable:
675
+ # :Shot1 :speed 30.0 .
676
+ # :Shot1 :angleRad 0.7853981633974483 .
677
+ # :Shot1 :g 9.81 .
678
+ # :Shot1 :tSample 2.5 .
679
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
680
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
681
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
682
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
683
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
684
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
685
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
686
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
687
+ # (2.0 9.81) math:product 19.62 .
688
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
689
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
690
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
691
+ # (2.5 2.0) math:exponentiation 6.25 .
692
+ # (9.81 6.25) math:product 61.3125 .
693
+ # (0.5 61.3125) math:product 30.65625 .
694
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
695
+ # via the schematic forward rule:
696
+ # {
697
+ # :Shot1 :speed ?v .
698
+ # :Shot1 :angleRad ?theta .
699
+ # :Shot1 :g ?g .
700
+ # :Shot1 :tSample ?t .
701
+ # ?theta math:sin ?sinT .
702
+ # ?theta math:cos ?cosT .
703
+ # (?v ?cosT) math:product ?vx .
704
+ # (?v ?sinT) math:product ?vy .
705
+ # (2.0 ?vy) math:product ?twoVy .
706
+ # (?twoVy ?g) math:quotient ?tFlight .
707
+ # (?vx ?tFlight) math:product ?range .
708
+ # (?vy 2.0) math:exponentiation ?vy2 .
709
+ # (2.0 ?g) math:product ?twoG .
710
+ # (?vy2 ?twoG) math:quotient ?hMax .
711
+ # (?vx ?t) math:product ?xAtT .
712
+ # (?vy ?t) math:product ?vy_t .
713
+ # (?t 2.0) math:exponentiation ?t2 .
714
+ # (?g ?t2) math:product ?g_t2 .
715
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
716
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
717
+ # } => {
718
+ # :Shot1 :vx ?vx .
719
+ # :Shot1 :vy ?vy .
720
+ # :Shot1 :timeOfFlight ?tFlight .
721
+ # :Shot1 :range ?range .
722
+ # :Shot1 :maxHeight ?hMax .
723
+ # _:b3 :t ?t .
724
+ # _:b3 :x ?xAtT .
725
+ # _:b3 :y ?yAtT .
726
+ # :Shot1 :positionAtSample _:b3 .
727
+ # } .
728
+ # with substitution (on rule variables):
729
+ # ?cosT = 0.7071067811865476
730
+ # ?g = 9.81
731
+ # ?g_t2 = 61.3125
732
+ # ?hMax = 22.935779816513755
733
+ # ?half_g_t2 = 30.65625
734
+ # ?range = 91.74311926605502
735
+ # ?sinT = 0.7071067811865475
736
+ # ?t = 2.5
737
+ # ?t2 = 6.25
738
+ # ?tFlight = 4.324812117348913
739
+ # ?theta = 0.7853981633974483
740
+ # ?twoG = 19.62
741
+ # ?twoVy = 42.426406871192846
742
+ # ?v = 30.0
743
+ # ?vx = 21.213203435596427
744
+ # ?vy = 21.213203435596423
745
+ # ?vy2 = 449.9999999999999
746
+ # ?vy_t = 53.03300858899106
747
+ # ?xAtT = 53.033008588991066
748
+ # ?yAtT = 22.37675858899106
749
+ # Therefore the derived triple above is entailed by the rules and facts.
750
+ # ----------------------------------------------------------------------
751
+
752
+ :Shot1 :vy 21.213203435596423 .
753
+
754
+ # ----------------------------------------------------------------------
755
+ # Proof for derived triple:
756
+ # :Shot1 :timeOfFlight 4.324812117348913 .
757
+ # It holds because the following instance of the rule body is provable:
758
+ # :Shot1 :speed 30.0 .
759
+ # :Shot1 :angleRad 0.7853981633974483 .
760
+ # :Shot1 :g 9.81 .
761
+ # :Shot1 :tSample 2.5 .
762
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
763
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
764
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
765
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
766
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
767
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
768
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
769
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
770
+ # (2.0 9.81) math:product 19.62 .
771
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
772
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
773
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
774
+ # (2.5 2.0) math:exponentiation 6.25 .
775
+ # (9.81 6.25) math:product 61.3125 .
776
+ # (0.5 61.3125) math:product 30.65625 .
777
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
778
+ # via the schematic forward rule:
779
+ # {
780
+ # :Shot1 :speed ?v .
781
+ # :Shot1 :angleRad ?theta .
782
+ # :Shot1 :g ?g .
783
+ # :Shot1 :tSample ?t .
784
+ # ?theta math:sin ?sinT .
785
+ # ?theta math:cos ?cosT .
786
+ # (?v ?cosT) math:product ?vx .
787
+ # (?v ?sinT) math:product ?vy .
788
+ # (2.0 ?vy) math:product ?twoVy .
789
+ # (?twoVy ?g) math:quotient ?tFlight .
790
+ # (?vx ?tFlight) math:product ?range .
791
+ # (?vy 2.0) math:exponentiation ?vy2 .
792
+ # (2.0 ?g) math:product ?twoG .
793
+ # (?vy2 ?twoG) math:quotient ?hMax .
794
+ # (?vx ?t) math:product ?xAtT .
795
+ # (?vy ?t) math:product ?vy_t .
796
+ # (?t 2.0) math:exponentiation ?t2 .
797
+ # (?g ?t2) math:product ?g_t2 .
798
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
799
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
800
+ # } => {
801
+ # :Shot1 :vx ?vx .
802
+ # :Shot1 :vy ?vy .
803
+ # :Shot1 :timeOfFlight ?tFlight .
804
+ # :Shot1 :range ?range .
805
+ # :Shot1 :maxHeight ?hMax .
806
+ # _:b3 :t ?t .
807
+ # _:b3 :x ?xAtT .
808
+ # _:b3 :y ?yAtT .
809
+ # :Shot1 :positionAtSample _:b3 .
810
+ # } .
811
+ # with substitution (on rule variables):
812
+ # ?cosT = 0.7071067811865476
813
+ # ?g = 9.81
814
+ # ?g_t2 = 61.3125
815
+ # ?hMax = 22.935779816513755
816
+ # ?half_g_t2 = 30.65625
817
+ # ?range = 91.74311926605502
818
+ # ?sinT = 0.7071067811865475
819
+ # ?t = 2.5
820
+ # ?t2 = 6.25
821
+ # ?tFlight = 4.324812117348913
822
+ # ?theta = 0.7853981633974483
823
+ # ?twoG = 19.62
824
+ # ?twoVy = 42.426406871192846
825
+ # ?v = 30.0
826
+ # ?vx = 21.213203435596427
827
+ # ?vy = 21.213203435596423
828
+ # ?vy2 = 449.9999999999999
829
+ # ?vy_t = 53.03300858899106
830
+ # ?xAtT = 53.033008588991066
831
+ # ?yAtT = 22.37675858899106
832
+ # Therefore the derived triple above is entailed by the rules and facts.
833
+ # ----------------------------------------------------------------------
834
+
835
+ :Shot1 :timeOfFlight 4.324812117348913 .
836
+
837
+ # ----------------------------------------------------------------------
838
+ # Proof for derived triple:
839
+ # :Shot1 :range 91.74311926605502 .
840
+ # It holds because the following instance of the rule body is provable:
841
+ # :Shot1 :speed 30.0 .
842
+ # :Shot1 :angleRad 0.7853981633974483 .
843
+ # :Shot1 :g 9.81 .
844
+ # :Shot1 :tSample 2.5 .
845
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
846
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
847
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
848
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
849
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
850
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
851
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
852
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
853
+ # (2.0 9.81) math:product 19.62 .
854
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
855
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
856
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
857
+ # (2.5 2.0) math:exponentiation 6.25 .
858
+ # (9.81 6.25) math:product 61.3125 .
859
+ # (0.5 61.3125) math:product 30.65625 .
860
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
861
+ # via the schematic forward rule:
862
+ # {
863
+ # :Shot1 :speed ?v .
864
+ # :Shot1 :angleRad ?theta .
865
+ # :Shot1 :g ?g .
866
+ # :Shot1 :tSample ?t .
867
+ # ?theta math:sin ?sinT .
868
+ # ?theta math:cos ?cosT .
869
+ # (?v ?cosT) math:product ?vx .
870
+ # (?v ?sinT) math:product ?vy .
871
+ # (2.0 ?vy) math:product ?twoVy .
872
+ # (?twoVy ?g) math:quotient ?tFlight .
873
+ # (?vx ?tFlight) math:product ?range .
874
+ # (?vy 2.0) math:exponentiation ?vy2 .
875
+ # (2.0 ?g) math:product ?twoG .
876
+ # (?vy2 ?twoG) math:quotient ?hMax .
877
+ # (?vx ?t) math:product ?xAtT .
878
+ # (?vy ?t) math:product ?vy_t .
879
+ # (?t 2.0) math:exponentiation ?t2 .
880
+ # (?g ?t2) math:product ?g_t2 .
881
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
882
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
883
+ # } => {
884
+ # :Shot1 :vx ?vx .
885
+ # :Shot1 :vy ?vy .
886
+ # :Shot1 :timeOfFlight ?tFlight .
887
+ # :Shot1 :range ?range .
888
+ # :Shot1 :maxHeight ?hMax .
889
+ # _:b3 :t ?t .
890
+ # _:b3 :x ?xAtT .
891
+ # _:b3 :y ?yAtT .
892
+ # :Shot1 :positionAtSample _:b3 .
893
+ # } .
894
+ # with substitution (on rule variables):
895
+ # ?cosT = 0.7071067811865476
896
+ # ?g = 9.81
897
+ # ?g_t2 = 61.3125
898
+ # ?hMax = 22.935779816513755
899
+ # ?half_g_t2 = 30.65625
900
+ # ?range = 91.74311926605502
901
+ # ?sinT = 0.7071067811865475
902
+ # ?t = 2.5
903
+ # ?t2 = 6.25
904
+ # ?tFlight = 4.324812117348913
905
+ # ?theta = 0.7853981633974483
906
+ # ?twoG = 19.62
907
+ # ?twoVy = 42.426406871192846
908
+ # ?v = 30.0
909
+ # ?vx = 21.213203435596427
910
+ # ?vy = 21.213203435596423
911
+ # ?vy2 = 449.9999999999999
912
+ # ?vy_t = 53.03300858899106
913
+ # ?xAtT = 53.033008588991066
914
+ # ?yAtT = 22.37675858899106
915
+ # Therefore the derived triple above is entailed by the rules and facts.
916
+ # ----------------------------------------------------------------------
917
+
918
+ :Shot1 :range 91.74311926605502 .
919
+
920
+ # ----------------------------------------------------------------------
921
+ # Proof for derived triple:
922
+ # :Shot1 :maxHeight 22.935779816513755 .
923
+ # It holds because the following instance of the rule body is provable:
924
+ # :Shot1 :speed 30.0 .
925
+ # :Shot1 :angleRad 0.7853981633974483 .
926
+ # :Shot1 :g 9.81 .
927
+ # :Shot1 :tSample 2.5 .
928
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
929
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
930
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
931
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
932
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
933
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
934
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
935
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
936
+ # (2.0 9.81) math:product 19.62 .
937
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
938
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
939
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
940
+ # (2.5 2.0) math:exponentiation 6.25 .
941
+ # (9.81 6.25) math:product 61.3125 .
942
+ # (0.5 61.3125) math:product 30.65625 .
943
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
944
+ # via the schematic forward rule:
945
+ # {
946
+ # :Shot1 :speed ?v .
947
+ # :Shot1 :angleRad ?theta .
948
+ # :Shot1 :g ?g .
949
+ # :Shot1 :tSample ?t .
950
+ # ?theta math:sin ?sinT .
951
+ # ?theta math:cos ?cosT .
952
+ # (?v ?cosT) math:product ?vx .
953
+ # (?v ?sinT) math:product ?vy .
954
+ # (2.0 ?vy) math:product ?twoVy .
955
+ # (?twoVy ?g) math:quotient ?tFlight .
956
+ # (?vx ?tFlight) math:product ?range .
957
+ # (?vy 2.0) math:exponentiation ?vy2 .
958
+ # (2.0 ?g) math:product ?twoG .
959
+ # (?vy2 ?twoG) math:quotient ?hMax .
960
+ # (?vx ?t) math:product ?xAtT .
961
+ # (?vy ?t) math:product ?vy_t .
962
+ # (?t 2.0) math:exponentiation ?t2 .
963
+ # (?g ?t2) math:product ?g_t2 .
964
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
965
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
966
+ # } => {
967
+ # :Shot1 :vx ?vx .
968
+ # :Shot1 :vy ?vy .
969
+ # :Shot1 :timeOfFlight ?tFlight .
970
+ # :Shot1 :range ?range .
971
+ # :Shot1 :maxHeight ?hMax .
972
+ # _:b3 :t ?t .
973
+ # _:b3 :x ?xAtT .
974
+ # _:b3 :y ?yAtT .
975
+ # :Shot1 :positionAtSample _:b3 .
976
+ # } .
977
+ # with substitution (on rule variables):
978
+ # ?cosT = 0.7071067811865476
979
+ # ?g = 9.81
980
+ # ?g_t2 = 61.3125
981
+ # ?hMax = 22.935779816513755
982
+ # ?half_g_t2 = 30.65625
983
+ # ?range = 91.74311926605502
984
+ # ?sinT = 0.7071067811865475
985
+ # ?t = 2.5
986
+ # ?t2 = 6.25
987
+ # ?tFlight = 4.324812117348913
988
+ # ?theta = 0.7853981633974483
989
+ # ?twoG = 19.62
990
+ # ?twoVy = 42.426406871192846
991
+ # ?v = 30.0
992
+ # ?vx = 21.213203435596427
993
+ # ?vy = 21.213203435596423
994
+ # ?vy2 = 449.9999999999999
995
+ # ?vy_t = 53.03300858899106
996
+ # ?xAtT = 53.033008588991066
997
+ # ?yAtT = 22.37675858899106
998
+ # Therefore the derived triple above is entailed by the rules and facts.
999
+ # ----------------------------------------------------------------------
1000
+
1001
+ :Shot1 :maxHeight 22.935779816513755 .
1002
+
1003
+ # ----------------------------------------------------------------------
1004
+ # Proof for derived triple:
1005
+ # _:sk_2 :t 2.5 .
1006
+ # It holds because the following instance of the rule body is provable:
1007
+ # :Shot1 :speed 30.0 .
1008
+ # :Shot1 :angleRad 0.7853981633974483 .
1009
+ # :Shot1 :g 9.81 .
1010
+ # :Shot1 :tSample 2.5 .
1011
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
1012
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
1013
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
1014
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
1015
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
1016
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
1017
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
1018
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
1019
+ # (2.0 9.81) math:product 19.62 .
1020
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
1021
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
1022
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
1023
+ # (2.5 2.0) math:exponentiation 6.25 .
1024
+ # (9.81 6.25) math:product 61.3125 .
1025
+ # (0.5 61.3125) math:product 30.65625 .
1026
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
1027
+ # via the schematic forward rule:
1028
+ # {
1029
+ # :Shot1 :speed ?v .
1030
+ # :Shot1 :angleRad ?theta .
1031
+ # :Shot1 :g ?g .
1032
+ # :Shot1 :tSample ?t .
1033
+ # ?theta math:sin ?sinT .
1034
+ # ?theta math:cos ?cosT .
1035
+ # (?v ?cosT) math:product ?vx .
1036
+ # (?v ?sinT) math:product ?vy .
1037
+ # (2.0 ?vy) math:product ?twoVy .
1038
+ # (?twoVy ?g) math:quotient ?tFlight .
1039
+ # (?vx ?tFlight) math:product ?range .
1040
+ # (?vy 2.0) math:exponentiation ?vy2 .
1041
+ # (2.0 ?g) math:product ?twoG .
1042
+ # (?vy2 ?twoG) math:quotient ?hMax .
1043
+ # (?vx ?t) math:product ?xAtT .
1044
+ # (?vy ?t) math:product ?vy_t .
1045
+ # (?t 2.0) math:exponentiation ?t2 .
1046
+ # (?g ?t2) math:product ?g_t2 .
1047
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
1048
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
1049
+ # } => {
1050
+ # :Shot1 :vx ?vx .
1051
+ # :Shot1 :vy ?vy .
1052
+ # :Shot1 :timeOfFlight ?tFlight .
1053
+ # :Shot1 :range ?range .
1054
+ # :Shot1 :maxHeight ?hMax .
1055
+ # _:b3 :t ?t .
1056
+ # _:b3 :x ?xAtT .
1057
+ # _:b3 :y ?yAtT .
1058
+ # :Shot1 :positionAtSample _:b3 .
1059
+ # } .
1060
+ # with substitution (on rule variables):
1061
+ # ?cosT = 0.7071067811865476
1062
+ # ?g = 9.81
1063
+ # ?g_t2 = 61.3125
1064
+ # ?hMax = 22.935779816513755
1065
+ # ?half_g_t2 = 30.65625
1066
+ # ?range = 91.74311926605502
1067
+ # ?sinT = 0.7071067811865475
1068
+ # ?t = 2.5
1069
+ # ?t2 = 6.25
1070
+ # ?tFlight = 4.324812117348913
1071
+ # ?theta = 0.7853981633974483
1072
+ # ?twoG = 19.62
1073
+ # ?twoVy = 42.426406871192846
1074
+ # ?v = 30.0
1075
+ # ?vx = 21.213203435596427
1076
+ # ?vy = 21.213203435596423
1077
+ # ?vy2 = 449.9999999999999
1078
+ # ?vy_t = 53.03300858899106
1079
+ # ?xAtT = 53.033008588991066
1080
+ # ?yAtT = 22.37675858899106
1081
+ # Therefore the derived triple above is entailed by the rules and facts.
1082
+ # ----------------------------------------------------------------------
1083
+
1084
+ _:sk_2 :t 2.5 .
1085
+
1086
+ # ----------------------------------------------------------------------
1087
+ # Proof for derived triple:
1088
+ # _:sk_2 :x 53.033008588991066 .
1089
+ # It holds because the following instance of the rule body is provable:
1090
+ # :Shot1 :speed 30.0 .
1091
+ # :Shot1 :angleRad 0.7853981633974483 .
1092
+ # :Shot1 :g 9.81 .
1093
+ # :Shot1 :tSample 2.5 .
1094
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
1095
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
1096
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
1097
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
1098
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
1099
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
1100
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
1101
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
1102
+ # (2.0 9.81) math:product 19.62 .
1103
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
1104
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
1105
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
1106
+ # (2.5 2.0) math:exponentiation 6.25 .
1107
+ # (9.81 6.25) math:product 61.3125 .
1108
+ # (0.5 61.3125) math:product 30.65625 .
1109
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
1110
+ # via the schematic forward rule:
1111
+ # {
1112
+ # :Shot1 :speed ?v .
1113
+ # :Shot1 :angleRad ?theta .
1114
+ # :Shot1 :g ?g .
1115
+ # :Shot1 :tSample ?t .
1116
+ # ?theta math:sin ?sinT .
1117
+ # ?theta math:cos ?cosT .
1118
+ # (?v ?cosT) math:product ?vx .
1119
+ # (?v ?sinT) math:product ?vy .
1120
+ # (2.0 ?vy) math:product ?twoVy .
1121
+ # (?twoVy ?g) math:quotient ?tFlight .
1122
+ # (?vx ?tFlight) math:product ?range .
1123
+ # (?vy 2.0) math:exponentiation ?vy2 .
1124
+ # (2.0 ?g) math:product ?twoG .
1125
+ # (?vy2 ?twoG) math:quotient ?hMax .
1126
+ # (?vx ?t) math:product ?xAtT .
1127
+ # (?vy ?t) math:product ?vy_t .
1128
+ # (?t 2.0) math:exponentiation ?t2 .
1129
+ # (?g ?t2) math:product ?g_t2 .
1130
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
1131
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
1132
+ # } => {
1133
+ # :Shot1 :vx ?vx .
1134
+ # :Shot1 :vy ?vy .
1135
+ # :Shot1 :timeOfFlight ?tFlight .
1136
+ # :Shot1 :range ?range .
1137
+ # :Shot1 :maxHeight ?hMax .
1138
+ # _:b3 :t ?t .
1139
+ # _:b3 :x ?xAtT .
1140
+ # _:b3 :y ?yAtT .
1141
+ # :Shot1 :positionAtSample _:b3 .
1142
+ # } .
1143
+ # with substitution (on rule variables):
1144
+ # ?cosT = 0.7071067811865476
1145
+ # ?g = 9.81
1146
+ # ?g_t2 = 61.3125
1147
+ # ?hMax = 22.935779816513755
1148
+ # ?half_g_t2 = 30.65625
1149
+ # ?range = 91.74311926605502
1150
+ # ?sinT = 0.7071067811865475
1151
+ # ?t = 2.5
1152
+ # ?t2 = 6.25
1153
+ # ?tFlight = 4.324812117348913
1154
+ # ?theta = 0.7853981633974483
1155
+ # ?twoG = 19.62
1156
+ # ?twoVy = 42.426406871192846
1157
+ # ?v = 30.0
1158
+ # ?vx = 21.213203435596427
1159
+ # ?vy = 21.213203435596423
1160
+ # ?vy2 = 449.9999999999999
1161
+ # ?vy_t = 53.03300858899106
1162
+ # ?xAtT = 53.033008588991066
1163
+ # ?yAtT = 22.37675858899106
1164
+ # Therefore the derived triple above is entailed by the rules and facts.
1165
+ # ----------------------------------------------------------------------
1166
+
1167
+ _:sk_2 :x 53.033008588991066 .
1168
+
1169
+ # ----------------------------------------------------------------------
1170
+ # Proof for derived triple:
1171
+ # _:sk_2 :y 22.37675858899106 .
1172
+ # It holds because the following instance of the rule body is provable:
1173
+ # :Shot1 :speed 30.0 .
1174
+ # :Shot1 :angleRad 0.7853981633974483 .
1175
+ # :Shot1 :g 9.81 .
1176
+ # :Shot1 :tSample 2.5 .
1177
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
1178
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
1179
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
1180
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
1181
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
1182
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
1183
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
1184
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
1185
+ # (2.0 9.81) math:product 19.62 .
1186
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
1187
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
1188
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
1189
+ # (2.5 2.0) math:exponentiation 6.25 .
1190
+ # (9.81 6.25) math:product 61.3125 .
1191
+ # (0.5 61.3125) math:product 30.65625 .
1192
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
1193
+ # via the schematic forward rule:
1194
+ # {
1195
+ # :Shot1 :speed ?v .
1196
+ # :Shot1 :angleRad ?theta .
1197
+ # :Shot1 :g ?g .
1198
+ # :Shot1 :tSample ?t .
1199
+ # ?theta math:sin ?sinT .
1200
+ # ?theta math:cos ?cosT .
1201
+ # (?v ?cosT) math:product ?vx .
1202
+ # (?v ?sinT) math:product ?vy .
1203
+ # (2.0 ?vy) math:product ?twoVy .
1204
+ # (?twoVy ?g) math:quotient ?tFlight .
1205
+ # (?vx ?tFlight) math:product ?range .
1206
+ # (?vy 2.0) math:exponentiation ?vy2 .
1207
+ # (2.0 ?g) math:product ?twoG .
1208
+ # (?vy2 ?twoG) math:quotient ?hMax .
1209
+ # (?vx ?t) math:product ?xAtT .
1210
+ # (?vy ?t) math:product ?vy_t .
1211
+ # (?t 2.0) math:exponentiation ?t2 .
1212
+ # (?g ?t2) math:product ?g_t2 .
1213
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
1214
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
1215
+ # } => {
1216
+ # :Shot1 :vx ?vx .
1217
+ # :Shot1 :vy ?vy .
1218
+ # :Shot1 :timeOfFlight ?tFlight .
1219
+ # :Shot1 :range ?range .
1220
+ # :Shot1 :maxHeight ?hMax .
1221
+ # _:b3 :t ?t .
1222
+ # _:b3 :x ?xAtT .
1223
+ # _:b3 :y ?yAtT .
1224
+ # :Shot1 :positionAtSample _:b3 .
1225
+ # } .
1226
+ # with substitution (on rule variables):
1227
+ # ?cosT = 0.7071067811865476
1228
+ # ?g = 9.81
1229
+ # ?g_t2 = 61.3125
1230
+ # ?hMax = 22.935779816513755
1231
+ # ?half_g_t2 = 30.65625
1232
+ # ?range = 91.74311926605502
1233
+ # ?sinT = 0.7071067811865475
1234
+ # ?t = 2.5
1235
+ # ?t2 = 6.25
1236
+ # ?tFlight = 4.324812117348913
1237
+ # ?theta = 0.7853981633974483
1238
+ # ?twoG = 19.62
1239
+ # ?twoVy = 42.426406871192846
1240
+ # ?v = 30.0
1241
+ # ?vx = 21.213203435596427
1242
+ # ?vy = 21.213203435596423
1243
+ # ?vy2 = 449.9999999999999
1244
+ # ?vy_t = 53.03300858899106
1245
+ # ?xAtT = 53.033008588991066
1246
+ # ?yAtT = 22.37675858899106
1247
+ # Therefore the derived triple above is entailed by the rules and facts.
1248
+ # ----------------------------------------------------------------------
1249
+
1250
+ _:sk_2 :y 22.37675858899106 .
1251
+
1252
+ # ----------------------------------------------------------------------
1253
+ # Proof for derived triple:
1254
+ # :Shot1 :positionAtSample _:sk_2 .
1255
+ # It holds because the following instance of the rule body is provable:
1256
+ # :Shot1 :speed 30.0 .
1257
+ # :Shot1 :angleRad 0.7853981633974483 .
1258
+ # :Shot1 :g 9.81 .
1259
+ # :Shot1 :tSample 2.5 .
1260
+ # 0.7853981633974483 math:sin 0.7071067811865475 .
1261
+ # 0.7853981633974483 math:cos 0.7071067811865476 .
1262
+ # (30.0 0.7071067811865476) math:product 21.213203435596427 .
1263
+ # (30.0 0.7071067811865475) math:product 21.213203435596423 .
1264
+ # (2.0 21.213203435596423) math:product 42.426406871192846 .
1265
+ # (42.426406871192846 9.81) math:quotient 4.324812117348913 .
1266
+ # (21.213203435596427 4.324812117348913) math:product 91.74311926605502 .
1267
+ # (21.213203435596423 2.0) math:exponentiation 449.9999999999999 .
1268
+ # (2.0 9.81) math:product 19.62 .
1269
+ # (449.9999999999999 19.62) math:quotient 22.935779816513755 .
1270
+ # (21.213203435596427 2.5) math:product 53.033008588991066 .
1271
+ # (21.213203435596423 2.5) math:product 53.03300858899106 .
1272
+ # (2.5 2.0) math:exponentiation 6.25 .
1273
+ # (9.81 6.25) math:product 61.3125 .
1274
+ # (0.5 61.3125) math:product 30.65625 .
1275
+ # (53.03300858899106 30.65625) math:difference 22.37675858899106 .
1276
+ # via the schematic forward rule:
1277
+ # {
1278
+ # :Shot1 :speed ?v .
1279
+ # :Shot1 :angleRad ?theta .
1280
+ # :Shot1 :g ?g .
1281
+ # :Shot1 :tSample ?t .
1282
+ # ?theta math:sin ?sinT .
1283
+ # ?theta math:cos ?cosT .
1284
+ # (?v ?cosT) math:product ?vx .
1285
+ # (?v ?sinT) math:product ?vy .
1286
+ # (2.0 ?vy) math:product ?twoVy .
1287
+ # (?twoVy ?g) math:quotient ?tFlight .
1288
+ # (?vx ?tFlight) math:product ?range .
1289
+ # (?vy 2.0) math:exponentiation ?vy2 .
1290
+ # (2.0 ?g) math:product ?twoG .
1291
+ # (?vy2 ?twoG) math:quotient ?hMax .
1292
+ # (?vx ?t) math:product ?xAtT .
1293
+ # (?vy ?t) math:product ?vy_t .
1294
+ # (?t 2.0) math:exponentiation ?t2 .
1295
+ # (?g ?t2) math:product ?g_t2 .
1296
+ # (0.5 ?g_t2) math:product ?half_g_t2 .
1297
+ # (?vy_t ?half_g_t2) math:difference ?yAtT .
1298
+ # } => {
1299
+ # :Shot1 :vx ?vx .
1300
+ # :Shot1 :vy ?vy .
1301
+ # :Shot1 :timeOfFlight ?tFlight .
1302
+ # :Shot1 :range ?range .
1303
+ # :Shot1 :maxHeight ?hMax .
1304
+ # _:b3 :t ?t .
1305
+ # _:b3 :x ?xAtT .
1306
+ # _:b3 :y ?yAtT .
1307
+ # :Shot1 :positionAtSample _:b3 .
1308
+ # } .
1309
+ # with substitution (on rule variables):
1310
+ # ?cosT = 0.7071067811865476
1311
+ # ?g = 9.81
1312
+ # ?g_t2 = 61.3125
1313
+ # ?hMax = 22.935779816513755
1314
+ # ?half_g_t2 = 30.65625
1315
+ # ?range = 91.74311926605502
1316
+ # ?sinT = 0.7071067811865475
1317
+ # ?t = 2.5
1318
+ # ?t2 = 6.25
1319
+ # ?tFlight = 4.324812117348913
1320
+ # ?theta = 0.7853981633974483
1321
+ # ?twoG = 19.62
1322
+ # ?twoVy = 42.426406871192846
1323
+ # ?v = 30.0
1324
+ # ?vx = 21.213203435596427
1325
+ # ?vy = 21.213203435596423
1326
+ # ?vy2 = 449.9999999999999
1327
+ # ?vy_t = 53.03300858899106
1328
+ # ?xAtT = 53.033008588991066
1329
+ # ?yAtT = 22.37675858899106
1330
+ # Therefore the derived triple above is entailed by the rules and facts.
1331
+ # ----------------------------------------------------------------------
1332
+
1333
+ :Shot1 :positionAtSample _:sk_2 .
1334
+