eyeling 1.5.28 → 1.5.30

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,3602 @@
1
+ @prefix : <http://www.agfa.com/w3c/euler/easterP#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # (10 4) :easterFor 2050 .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # 2050 a :Year .
8
+ # (2050 19) math:remainder 17 .
9
+ # (2050 100) math:integerQuotient 20 .
10
+ # (2050 100) math:remainder 50 .
11
+ # (20 4) math:integerQuotient 5 .
12
+ # (20 4) math:remainder 0 .
13
+ # (20 8) math:sum 28 .
14
+ # (28 25) math:integerQuotient 1 .
15
+ # (20 1) math:difference 19 .
16
+ # (19 1) math:sum 20 .
17
+ # (20 3) math:integerQuotient 6 .
18
+ # (19 17) math:product 323 .
19
+ # (323 20) math:sum 343 .
20
+ # (343 5) math:difference 338 .
21
+ # (338 6) math:difference 332 .
22
+ # (332 15) math:sum 347 .
23
+ # (347 30) math:remainder 17 .
24
+ # (50 4) math:integerQuotient 12 .
25
+ # (50 4) math:remainder 2 .
26
+ # (2 0) math:product 0 .
27
+ # (2 12) math:product 24 .
28
+ # 17 math:negation -17 .
29
+ # 2 math:negation -2 .
30
+ # (32 0 24 -17 -2) math:sum 37 .
31
+ # (37 7) math:remainder 2 .
32
+ # (11 17) math:product 187 .
33
+ # (22 2) math:product 44 .
34
+ # (17 187 44) math:sum 248 .
35
+ # (248 451) math:integerQuotient 0 .
36
+ # (7 0) math:product 0 .
37
+ # 0 math:negation 0 .
38
+ # (17 2 0 114) math:sum 133 .
39
+ # (133 31) math:integerQuotient 4 .
40
+ # (133 31) math:remainder 9 .
41
+ # (9 1) math:sum 10 .
42
+ # via the schematic forward rule:
43
+ # {
44
+ # ?Y a :Year .
45
+ # (?Y 19) math:remainder ?J .
46
+ # (?Y 100) math:integerQuotient ?K .
47
+ # (?Y 100) math:remainder ?H .
48
+ # (?K 4) math:integerQuotient ?M .
49
+ # (?K 4) math:remainder ?N .
50
+ # (?K 8) math:sum ?_b1 .
51
+ # (?_b1 25) math:integerQuotient ?P .
52
+ # (?K ?P) math:difference ?_b2 .
53
+ # (?_b2 1) math:sum ?_b3 .
54
+ # (?_b3 3) math:integerQuotient ?Q .
55
+ # (19 ?J) math:product ?_b4 .
56
+ # (?_b4 ?K) math:sum ?_b5 .
57
+ # (?_b5 ?M) math:difference ?_b6 .
58
+ # (?_b6 ?Q) math:difference ?_b7 .
59
+ # (?_b7 15) math:sum ?_b8 .
60
+ # (?_b8 30) math:remainder ?R .
61
+ # (?H 4) math:integerQuotient ?S .
62
+ # (?H 4) math:remainder ?U .
63
+ # (2 ?N) math:product ?_b9 .
64
+ # (2 ?S) math:product ?_b10 .
65
+ # ?R math:negation ?_b11 .
66
+ # ?U math:negation ?_b12 .
67
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
68
+ # (?_b13 7) math:remainder ?V .
69
+ # (11 ?R) math:product ?_b14 .
70
+ # (22 ?V) math:product ?_b15 .
71
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
72
+ # (?_b16 451) math:integerQuotient ?W .
73
+ # (7 ?W) math:product ?_b17 .
74
+ # ?_b17 math:negation ?_b18 .
75
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
76
+ # (?_b19 31) math:integerQuotient ?X .
77
+ # (?_b19 31) math:remainder ?Z .
78
+ # (?Z 1) math:sum ?DAY .
79
+ # } => {
80
+ # (?DAY ?X) :easterFor ?Y .
81
+ # } .
82
+ # with substitution (on rule variables):
83
+ # ?DAY = 10
84
+ # ?H = 50
85
+ # ?J = 17
86
+ # ?K = 20
87
+ # ?M = 5
88
+ # ?N = 0
89
+ # ?P = 1
90
+ # ?Q = 6
91
+ # ?R = 17
92
+ # ?S = 12
93
+ # ?U = 2
94
+ # ?V = 2
95
+ # ?W = 0
96
+ # ?X = 4
97
+ # ?Y = 2050
98
+ # ?Z = 9
99
+ # ?_b1 = 28
100
+ # ?_b10 = 24
101
+ # ?_b11 = -17
102
+ # ?_b12 = -2
103
+ # ?_b13 = 37
104
+ # ?_b14 = 187
105
+ # ?_b15 = 44
106
+ # ?_b16 = 248
107
+ # ?_b17 = 0
108
+ # ?_b18 = 0
109
+ # ?_b19 = 133
110
+ # ?_b2 = 19
111
+ # ?_b3 = 20
112
+ # ?_b4 = 323
113
+ # ?_b5 = 343
114
+ # ?_b6 = 338
115
+ # ?_b7 = 332
116
+ # ?_b8 = 347
117
+ # ?_b9 = 0
118
+ # Therefore the derived triple above is entailed by the rules and facts.
119
+ # ----------------------------------------------------------------------
120
+
121
+ (10 4) :easterFor 2050 .
122
+
123
+ # ----------------------------------------------------------------------
124
+ # Proof for derived triple:
125
+ # (18 4) :easterFor 2049 .
126
+ # It holds because the following instance of the rule body is provable:
127
+ # 2049 a :Year .
128
+ # (2049 19) math:remainder 16 .
129
+ # (2049 100) math:integerQuotient 20 .
130
+ # (2049 100) math:remainder 49 .
131
+ # (20 4) math:integerQuotient 5 .
132
+ # (20 4) math:remainder 0 .
133
+ # (20 8) math:sum 28 .
134
+ # (28 25) math:integerQuotient 1 .
135
+ # (20 1) math:difference 19 .
136
+ # (19 1) math:sum 20 .
137
+ # (20 3) math:integerQuotient 6 .
138
+ # (19 16) math:product 304 .
139
+ # (304 20) math:sum 324 .
140
+ # (324 5) math:difference 319 .
141
+ # (319 6) math:difference 313 .
142
+ # (313 15) math:sum 328 .
143
+ # (328 30) math:remainder 28 .
144
+ # (49 4) math:integerQuotient 12 .
145
+ # (49 4) math:remainder 1 .
146
+ # (2 0) math:product 0 .
147
+ # (2 12) math:product 24 .
148
+ # 28 math:negation -28 .
149
+ # 1 math:negation -1 .
150
+ # (32 0 24 -28 -1) math:sum 27 .
151
+ # (27 7) math:remainder 6 .
152
+ # (11 28) math:product 308 .
153
+ # (22 6) math:product 132 .
154
+ # (16 308 132) math:sum 456 .
155
+ # (456 451) math:integerQuotient 1 .
156
+ # (7 1) math:product 7 .
157
+ # 7 math:negation -7 .
158
+ # (28 6 -7 114) math:sum 141 .
159
+ # (141 31) math:integerQuotient 4 .
160
+ # (141 31) math:remainder 17 .
161
+ # (17 1) math:sum 18 .
162
+ # via the schematic forward rule:
163
+ # {
164
+ # ?Y a :Year .
165
+ # (?Y 19) math:remainder ?J .
166
+ # (?Y 100) math:integerQuotient ?K .
167
+ # (?Y 100) math:remainder ?H .
168
+ # (?K 4) math:integerQuotient ?M .
169
+ # (?K 4) math:remainder ?N .
170
+ # (?K 8) math:sum ?_b1 .
171
+ # (?_b1 25) math:integerQuotient ?P .
172
+ # (?K ?P) math:difference ?_b2 .
173
+ # (?_b2 1) math:sum ?_b3 .
174
+ # (?_b3 3) math:integerQuotient ?Q .
175
+ # (19 ?J) math:product ?_b4 .
176
+ # (?_b4 ?K) math:sum ?_b5 .
177
+ # (?_b5 ?M) math:difference ?_b6 .
178
+ # (?_b6 ?Q) math:difference ?_b7 .
179
+ # (?_b7 15) math:sum ?_b8 .
180
+ # (?_b8 30) math:remainder ?R .
181
+ # (?H 4) math:integerQuotient ?S .
182
+ # (?H 4) math:remainder ?U .
183
+ # (2 ?N) math:product ?_b9 .
184
+ # (2 ?S) math:product ?_b10 .
185
+ # ?R math:negation ?_b11 .
186
+ # ?U math:negation ?_b12 .
187
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
188
+ # (?_b13 7) math:remainder ?V .
189
+ # (11 ?R) math:product ?_b14 .
190
+ # (22 ?V) math:product ?_b15 .
191
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
192
+ # (?_b16 451) math:integerQuotient ?W .
193
+ # (7 ?W) math:product ?_b17 .
194
+ # ?_b17 math:negation ?_b18 .
195
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
196
+ # (?_b19 31) math:integerQuotient ?X .
197
+ # (?_b19 31) math:remainder ?Z .
198
+ # (?Z 1) math:sum ?DAY .
199
+ # } => {
200
+ # (?DAY ?X) :easterFor ?Y .
201
+ # } .
202
+ # with substitution (on rule variables):
203
+ # ?DAY = 18
204
+ # ?H = 49
205
+ # ?J = 16
206
+ # ?K = 20
207
+ # ?M = 5
208
+ # ?N = 0
209
+ # ?P = 1
210
+ # ?Q = 6
211
+ # ?R = 28
212
+ # ?S = 12
213
+ # ?U = 1
214
+ # ?V = 6
215
+ # ?W = 1
216
+ # ?X = 4
217
+ # ?Y = 2049
218
+ # ?Z = 17
219
+ # ?_b1 = 28
220
+ # ?_b10 = 24
221
+ # ?_b11 = -28
222
+ # ?_b12 = -1
223
+ # ?_b13 = 27
224
+ # ?_b14 = 308
225
+ # ?_b15 = 132
226
+ # ?_b16 = 456
227
+ # ?_b17 = 7
228
+ # ?_b18 = -7
229
+ # ?_b19 = 141
230
+ # ?_b2 = 19
231
+ # ?_b3 = 20
232
+ # ?_b4 = 304
233
+ # ?_b5 = 324
234
+ # ?_b6 = 319
235
+ # ?_b7 = 313
236
+ # ?_b8 = 328
237
+ # ?_b9 = 0
238
+ # Therefore the derived triple above is entailed by the rules and facts.
239
+ # ----------------------------------------------------------------------
240
+
241
+ (18 4) :easterFor 2049 .
242
+
243
+ # ----------------------------------------------------------------------
244
+ # Proof for derived triple:
245
+ # (5 4) :easterFor 2048 .
246
+ # It holds because the following instance of the rule body is provable:
247
+ # 2048 a :Year .
248
+ # (2048 19) math:remainder 15 .
249
+ # (2048 100) math:integerQuotient 20 .
250
+ # (2048 100) math:remainder 48 .
251
+ # (20 4) math:integerQuotient 5 .
252
+ # (20 4) math:remainder 0 .
253
+ # (20 8) math:sum 28 .
254
+ # (28 25) math:integerQuotient 1 .
255
+ # (20 1) math:difference 19 .
256
+ # (19 1) math:sum 20 .
257
+ # (20 3) math:integerQuotient 6 .
258
+ # (19 15) math:product 285 .
259
+ # (285 20) math:sum 305 .
260
+ # (305 5) math:difference 300 .
261
+ # (300 6) math:difference 294 .
262
+ # (294 15) math:sum 309 .
263
+ # (309 30) math:remainder 9 .
264
+ # (48 4) math:integerQuotient 12 .
265
+ # (48 4) math:remainder 0 .
266
+ # (2 0) math:product 0 .
267
+ # (2 12) math:product 24 .
268
+ # 9 math:negation -9 .
269
+ # 0 math:negation 0 .
270
+ # (32 0 24 -9 0) math:sum 47 .
271
+ # (47 7) math:remainder 5 .
272
+ # (11 9) math:product 99 .
273
+ # (22 5) math:product 110 .
274
+ # (15 99 110) math:sum 224 .
275
+ # (224 451) math:integerQuotient 0 .
276
+ # (7 0) math:product 0 .
277
+ # 0 math:negation 0 .
278
+ # (9 5 0 114) math:sum 128 .
279
+ # (128 31) math:integerQuotient 4 .
280
+ # (128 31) math:remainder 4 .
281
+ # (4 1) math:sum 5 .
282
+ # via the schematic forward rule:
283
+ # {
284
+ # ?Y a :Year .
285
+ # (?Y 19) math:remainder ?J .
286
+ # (?Y 100) math:integerQuotient ?K .
287
+ # (?Y 100) math:remainder ?H .
288
+ # (?K 4) math:integerQuotient ?M .
289
+ # (?K 4) math:remainder ?N .
290
+ # (?K 8) math:sum ?_b1 .
291
+ # (?_b1 25) math:integerQuotient ?P .
292
+ # (?K ?P) math:difference ?_b2 .
293
+ # (?_b2 1) math:sum ?_b3 .
294
+ # (?_b3 3) math:integerQuotient ?Q .
295
+ # (19 ?J) math:product ?_b4 .
296
+ # (?_b4 ?K) math:sum ?_b5 .
297
+ # (?_b5 ?M) math:difference ?_b6 .
298
+ # (?_b6 ?Q) math:difference ?_b7 .
299
+ # (?_b7 15) math:sum ?_b8 .
300
+ # (?_b8 30) math:remainder ?R .
301
+ # (?H 4) math:integerQuotient ?S .
302
+ # (?H 4) math:remainder ?U .
303
+ # (2 ?N) math:product ?_b9 .
304
+ # (2 ?S) math:product ?_b10 .
305
+ # ?R math:negation ?_b11 .
306
+ # ?U math:negation ?_b12 .
307
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
308
+ # (?_b13 7) math:remainder ?V .
309
+ # (11 ?R) math:product ?_b14 .
310
+ # (22 ?V) math:product ?_b15 .
311
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
312
+ # (?_b16 451) math:integerQuotient ?W .
313
+ # (7 ?W) math:product ?_b17 .
314
+ # ?_b17 math:negation ?_b18 .
315
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
316
+ # (?_b19 31) math:integerQuotient ?X .
317
+ # (?_b19 31) math:remainder ?Z .
318
+ # (?Z 1) math:sum ?DAY .
319
+ # } => {
320
+ # (?DAY ?X) :easterFor ?Y .
321
+ # } .
322
+ # with substitution (on rule variables):
323
+ # ?DAY = 5
324
+ # ?H = 48
325
+ # ?J = 15
326
+ # ?K = 20
327
+ # ?M = 5
328
+ # ?N = 0
329
+ # ?P = 1
330
+ # ?Q = 6
331
+ # ?R = 9
332
+ # ?S = 12
333
+ # ?U = 0
334
+ # ?V = 5
335
+ # ?W = 0
336
+ # ?X = 4
337
+ # ?Y = 2048
338
+ # ?Z = 4
339
+ # ?_b1 = 28
340
+ # ?_b10 = 24
341
+ # ?_b11 = -9
342
+ # ?_b12 = 0
343
+ # ?_b13 = 47
344
+ # ?_b14 = 99
345
+ # ?_b15 = 110
346
+ # ?_b16 = 224
347
+ # ?_b17 = 0
348
+ # ?_b18 = 0
349
+ # ?_b19 = 128
350
+ # ?_b2 = 19
351
+ # ?_b3 = 20
352
+ # ?_b4 = 285
353
+ # ?_b5 = 305
354
+ # ?_b6 = 300
355
+ # ?_b7 = 294
356
+ # ?_b8 = 309
357
+ # ?_b9 = 0
358
+ # Therefore the derived triple above is entailed by the rules and facts.
359
+ # ----------------------------------------------------------------------
360
+
361
+ (5 4) :easterFor 2048 .
362
+
363
+ # ----------------------------------------------------------------------
364
+ # Proof for derived triple:
365
+ # (14 4) :easterFor 2047 .
366
+ # It holds because the following instance of the rule body is provable:
367
+ # 2047 a :Year .
368
+ # (2047 19) math:remainder 14 .
369
+ # (2047 100) math:integerQuotient 20 .
370
+ # (2047 100) math:remainder 47 .
371
+ # (20 4) math:integerQuotient 5 .
372
+ # (20 4) math:remainder 0 .
373
+ # (20 8) math:sum 28 .
374
+ # (28 25) math:integerQuotient 1 .
375
+ # (20 1) math:difference 19 .
376
+ # (19 1) math:sum 20 .
377
+ # (20 3) math:integerQuotient 6 .
378
+ # (19 14) math:product 266 .
379
+ # (266 20) math:sum 286 .
380
+ # (286 5) math:difference 281 .
381
+ # (281 6) math:difference 275 .
382
+ # (275 15) math:sum 290 .
383
+ # (290 30) math:remainder 20 .
384
+ # (47 4) math:integerQuotient 11 .
385
+ # (47 4) math:remainder 3 .
386
+ # (2 0) math:product 0 .
387
+ # (2 11) math:product 22 .
388
+ # 20 math:negation -20 .
389
+ # 3 math:negation -3 .
390
+ # (32 0 22 -20 -3) math:sum 31 .
391
+ # (31 7) math:remainder 3 .
392
+ # (11 20) math:product 220 .
393
+ # (22 3) math:product 66 .
394
+ # (14 220 66) math:sum 300 .
395
+ # (300 451) math:integerQuotient 0 .
396
+ # (7 0) math:product 0 .
397
+ # 0 math:negation 0 .
398
+ # (20 3 0 114) math:sum 137 .
399
+ # (137 31) math:integerQuotient 4 .
400
+ # (137 31) math:remainder 13 .
401
+ # (13 1) math:sum 14 .
402
+ # via the schematic forward rule:
403
+ # {
404
+ # ?Y a :Year .
405
+ # (?Y 19) math:remainder ?J .
406
+ # (?Y 100) math:integerQuotient ?K .
407
+ # (?Y 100) math:remainder ?H .
408
+ # (?K 4) math:integerQuotient ?M .
409
+ # (?K 4) math:remainder ?N .
410
+ # (?K 8) math:sum ?_b1 .
411
+ # (?_b1 25) math:integerQuotient ?P .
412
+ # (?K ?P) math:difference ?_b2 .
413
+ # (?_b2 1) math:sum ?_b3 .
414
+ # (?_b3 3) math:integerQuotient ?Q .
415
+ # (19 ?J) math:product ?_b4 .
416
+ # (?_b4 ?K) math:sum ?_b5 .
417
+ # (?_b5 ?M) math:difference ?_b6 .
418
+ # (?_b6 ?Q) math:difference ?_b7 .
419
+ # (?_b7 15) math:sum ?_b8 .
420
+ # (?_b8 30) math:remainder ?R .
421
+ # (?H 4) math:integerQuotient ?S .
422
+ # (?H 4) math:remainder ?U .
423
+ # (2 ?N) math:product ?_b9 .
424
+ # (2 ?S) math:product ?_b10 .
425
+ # ?R math:negation ?_b11 .
426
+ # ?U math:negation ?_b12 .
427
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
428
+ # (?_b13 7) math:remainder ?V .
429
+ # (11 ?R) math:product ?_b14 .
430
+ # (22 ?V) math:product ?_b15 .
431
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
432
+ # (?_b16 451) math:integerQuotient ?W .
433
+ # (7 ?W) math:product ?_b17 .
434
+ # ?_b17 math:negation ?_b18 .
435
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
436
+ # (?_b19 31) math:integerQuotient ?X .
437
+ # (?_b19 31) math:remainder ?Z .
438
+ # (?Z 1) math:sum ?DAY .
439
+ # } => {
440
+ # (?DAY ?X) :easterFor ?Y .
441
+ # } .
442
+ # with substitution (on rule variables):
443
+ # ?DAY = 14
444
+ # ?H = 47
445
+ # ?J = 14
446
+ # ?K = 20
447
+ # ?M = 5
448
+ # ?N = 0
449
+ # ?P = 1
450
+ # ?Q = 6
451
+ # ?R = 20
452
+ # ?S = 11
453
+ # ?U = 3
454
+ # ?V = 3
455
+ # ?W = 0
456
+ # ?X = 4
457
+ # ?Y = 2047
458
+ # ?Z = 13
459
+ # ?_b1 = 28
460
+ # ?_b10 = 22
461
+ # ?_b11 = -20
462
+ # ?_b12 = -3
463
+ # ?_b13 = 31
464
+ # ?_b14 = 220
465
+ # ?_b15 = 66
466
+ # ?_b16 = 300
467
+ # ?_b17 = 0
468
+ # ?_b18 = 0
469
+ # ?_b19 = 137
470
+ # ?_b2 = 19
471
+ # ?_b3 = 20
472
+ # ?_b4 = 266
473
+ # ?_b5 = 286
474
+ # ?_b6 = 281
475
+ # ?_b7 = 275
476
+ # ?_b8 = 290
477
+ # ?_b9 = 0
478
+ # Therefore the derived triple above is entailed by the rules and facts.
479
+ # ----------------------------------------------------------------------
480
+
481
+ (14 4) :easterFor 2047 .
482
+
483
+ # ----------------------------------------------------------------------
484
+ # Proof for derived triple:
485
+ # (25 3) :easterFor 2046 .
486
+ # It holds because the following instance of the rule body is provable:
487
+ # 2046 a :Year .
488
+ # (2046 19) math:remainder 13 .
489
+ # (2046 100) math:integerQuotient 20 .
490
+ # (2046 100) math:remainder 46 .
491
+ # (20 4) math:integerQuotient 5 .
492
+ # (20 4) math:remainder 0 .
493
+ # (20 8) math:sum 28 .
494
+ # (28 25) math:integerQuotient 1 .
495
+ # (20 1) math:difference 19 .
496
+ # (19 1) math:sum 20 .
497
+ # (20 3) math:integerQuotient 6 .
498
+ # (19 13) math:product 247 .
499
+ # (247 20) math:sum 267 .
500
+ # (267 5) math:difference 262 .
501
+ # (262 6) math:difference 256 .
502
+ # (256 15) math:sum 271 .
503
+ # (271 30) math:remainder 1 .
504
+ # (46 4) math:integerQuotient 11 .
505
+ # (46 4) math:remainder 2 .
506
+ # (2 0) math:product 0 .
507
+ # (2 11) math:product 22 .
508
+ # 1 math:negation -1 .
509
+ # 2 math:negation -2 .
510
+ # (32 0 22 -1 -2) math:sum 51 .
511
+ # (51 7) math:remainder 2 .
512
+ # (11 1) math:product 11 .
513
+ # (22 2) math:product 44 .
514
+ # (13 11 44) math:sum 68 .
515
+ # (68 451) math:integerQuotient 0 .
516
+ # (7 0) math:product 0 .
517
+ # 0 math:negation 0 .
518
+ # (1 2 0 114) math:sum 117 .
519
+ # (117 31) math:integerQuotient 3 .
520
+ # (117 31) math:remainder 24 .
521
+ # (24 1) math:sum 25 .
522
+ # via the schematic forward rule:
523
+ # {
524
+ # ?Y a :Year .
525
+ # (?Y 19) math:remainder ?J .
526
+ # (?Y 100) math:integerQuotient ?K .
527
+ # (?Y 100) math:remainder ?H .
528
+ # (?K 4) math:integerQuotient ?M .
529
+ # (?K 4) math:remainder ?N .
530
+ # (?K 8) math:sum ?_b1 .
531
+ # (?_b1 25) math:integerQuotient ?P .
532
+ # (?K ?P) math:difference ?_b2 .
533
+ # (?_b2 1) math:sum ?_b3 .
534
+ # (?_b3 3) math:integerQuotient ?Q .
535
+ # (19 ?J) math:product ?_b4 .
536
+ # (?_b4 ?K) math:sum ?_b5 .
537
+ # (?_b5 ?M) math:difference ?_b6 .
538
+ # (?_b6 ?Q) math:difference ?_b7 .
539
+ # (?_b7 15) math:sum ?_b8 .
540
+ # (?_b8 30) math:remainder ?R .
541
+ # (?H 4) math:integerQuotient ?S .
542
+ # (?H 4) math:remainder ?U .
543
+ # (2 ?N) math:product ?_b9 .
544
+ # (2 ?S) math:product ?_b10 .
545
+ # ?R math:negation ?_b11 .
546
+ # ?U math:negation ?_b12 .
547
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
548
+ # (?_b13 7) math:remainder ?V .
549
+ # (11 ?R) math:product ?_b14 .
550
+ # (22 ?V) math:product ?_b15 .
551
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
552
+ # (?_b16 451) math:integerQuotient ?W .
553
+ # (7 ?W) math:product ?_b17 .
554
+ # ?_b17 math:negation ?_b18 .
555
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
556
+ # (?_b19 31) math:integerQuotient ?X .
557
+ # (?_b19 31) math:remainder ?Z .
558
+ # (?Z 1) math:sum ?DAY .
559
+ # } => {
560
+ # (?DAY ?X) :easterFor ?Y .
561
+ # } .
562
+ # with substitution (on rule variables):
563
+ # ?DAY = 25
564
+ # ?H = 46
565
+ # ?J = 13
566
+ # ?K = 20
567
+ # ?M = 5
568
+ # ?N = 0
569
+ # ?P = 1
570
+ # ?Q = 6
571
+ # ?R = 1
572
+ # ?S = 11
573
+ # ?U = 2
574
+ # ?V = 2
575
+ # ?W = 0
576
+ # ?X = 3
577
+ # ?Y = 2046
578
+ # ?Z = 24
579
+ # ?_b1 = 28
580
+ # ?_b10 = 22
581
+ # ?_b11 = -1
582
+ # ?_b12 = -2
583
+ # ?_b13 = 51
584
+ # ?_b14 = 11
585
+ # ?_b15 = 44
586
+ # ?_b16 = 68
587
+ # ?_b17 = 0
588
+ # ?_b18 = 0
589
+ # ?_b19 = 117
590
+ # ?_b2 = 19
591
+ # ?_b3 = 20
592
+ # ?_b4 = 247
593
+ # ?_b5 = 267
594
+ # ?_b6 = 262
595
+ # ?_b7 = 256
596
+ # ?_b8 = 271
597
+ # ?_b9 = 0
598
+ # Therefore the derived triple above is entailed by the rules and facts.
599
+ # ----------------------------------------------------------------------
600
+
601
+ (25 3) :easterFor 2046 .
602
+
603
+ # ----------------------------------------------------------------------
604
+ # Proof for derived triple:
605
+ # (9 4) :easterFor 2045 .
606
+ # It holds because the following instance of the rule body is provable:
607
+ # 2045 a :Year .
608
+ # (2045 19) math:remainder 12 .
609
+ # (2045 100) math:integerQuotient 20 .
610
+ # (2045 100) math:remainder 45 .
611
+ # (20 4) math:integerQuotient 5 .
612
+ # (20 4) math:remainder 0 .
613
+ # (20 8) math:sum 28 .
614
+ # (28 25) math:integerQuotient 1 .
615
+ # (20 1) math:difference 19 .
616
+ # (19 1) math:sum 20 .
617
+ # (20 3) math:integerQuotient 6 .
618
+ # (19 12) math:product 228 .
619
+ # (228 20) math:sum 248 .
620
+ # (248 5) math:difference 243 .
621
+ # (243 6) math:difference 237 .
622
+ # (237 15) math:sum 252 .
623
+ # (252 30) math:remainder 12 .
624
+ # (45 4) math:integerQuotient 11 .
625
+ # (45 4) math:remainder 1 .
626
+ # (2 0) math:product 0 .
627
+ # (2 11) math:product 22 .
628
+ # 12 math:negation -12 .
629
+ # 1 math:negation -1 .
630
+ # (32 0 22 -12 -1) math:sum 41 .
631
+ # (41 7) math:remainder 6 .
632
+ # (11 12) math:product 132 .
633
+ # (22 6) math:product 132 .
634
+ # (12 132 132) math:sum 276 .
635
+ # (276 451) math:integerQuotient 0 .
636
+ # (7 0) math:product 0 .
637
+ # 0 math:negation 0 .
638
+ # (12 6 0 114) math:sum 132 .
639
+ # (132 31) math:integerQuotient 4 .
640
+ # (132 31) math:remainder 8 .
641
+ # (8 1) math:sum 9 .
642
+ # via the schematic forward rule:
643
+ # {
644
+ # ?Y a :Year .
645
+ # (?Y 19) math:remainder ?J .
646
+ # (?Y 100) math:integerQuotient ?K .
647
+ # (?Y 100) math:remainder ?H .
648
+ # (?K 4) math:integerQuotient ?M .
649
+ # (?K 4) math:remainder ?N .
650
+ # (?K 8) math:sum ?_b1 .
651
+ # (?_b1 25) math:integerQuotient ?P .
652
+ # (?K ?P) math:difference ?_b2 .
653
+ # (?_b2 1) math:sum ?_b3 .
654
+ # (?_b3 3) math:integerQuotient ?Q .
655
+ # (19 ?J) math:product ?_b4 .
656
+ # (?_b4 ?K) math:sum ?_b5 .
657
+ # (?_b5 ?M) math:difference ?_b6 .
658
+ # (?_b6 ?Q) math:difference ?_b7 .
659
+ # (?_b7 15) math:sum ?_b8 .
660
+ # (?_b8 30) math:remainder ?R .
661
+ # (?H 4) math:integerQuotient ?S .
662
+ # (?H 4) math:remainder ?U .
663
+ # (2 ?N) math:product ?_b9 .
664
+ # (2 ?S) math:product ?_b10 .
665
+ # ?R math:negation ?_b11 .
666
+ # ?U math:negation ?_b12 .
667
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
668
+ # (?_b13 7) math:remainder ?V .
669
+ # (11 ?R) math:product ?_b14 .
670
+ # (22 ?V) math:product ?_b15 .
671
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
672
+ # (?_b16 451) math:integerQuotient ?W .
673
+ # (7 ?W) math:product ?_b17 .
674
+ # ?_b17 math:negation ?_b18 .
675
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
676
+ # (?_b19 31) math:integerQuotient ?X .
677
+ # (?_b19 31) math:remainder ?Z .
678
+ # (?Z 1) math:sum ?DAY .
679
+ # } => {
680
+ # (?DAY ?X) :easterFor ?Y .
681
+ # } .
682
+ # with substitution (on rule variables):
683
+ # ?DAY = 9
684
+ # ?H = 45
685
+ # ?J = 12
686
+ # ?K = 20
687
+ # ?M = 5
688
+ # ?N = 0
689
+ # ?P = 1
690
+ # ?Q = 6
691
+ # ?R = 12
692
+ # ?S = 11
693
+ # ?U = 1
694
+ # ?V = 6
695
+ # ?W = 0
696
+ # ?X = 4
697
+ # ?Y = 2045
698
+ # ?Z = 8
699
+ # ?_b1 = 28
700
+ # ?_b10 = 22
701
+ # ?_b11 = -12
702
+ # ?_b12 = -1
703
+ # ?_b13 = 41
704
+ # ?_b14 = 132
705
+ # ?_b15 = 132
706
+ # ?_b16 = 276
707
+ # ?_b17 = 0
708
+ # ?_b18 = 0
709
+ # ?_b19 = 132
710
+ # ?_b2 = 19
711
+ # ?_b3 = 20
712
+ # ?_b4 = 228
713
+ # ?_b5 = 248
714
+ # ?_b6 = 243
715
+ # ?_b7 = 237
716
+ # ?_b8 = 252
717
+ # ?_b9 = 0
718
+ # Therefore the derived triple above is entailed by the rules and facts.
719
+ # ----------------------------------------------------------------------
720
+
721
+ (9 4) :easterFor 2045 .
722
+
723
+ # ----------------------------------------------------------------------
724
+ # Proof for derived triple:
725
+ # (17 4) :easterFor 2044 .
726
+ # It holds because the following instance of the rule body is provable:
727
+ # 2044 a :Year .
728
+ # (2044 19) math:remainder 11 .
729
+ # (2044 100) math:integerQuotient 20 .
730
+ # (2044 100) math:remainder 44 .
731
+ # (20 4) math:integerQuotient 5 .
732
+ # (20 4) math:remainder 0 .
733
+ # (20 8) math:sum 28 .
734
+ # (28 25) math:integerQuotient 1 .
735
+ # (20 1) math:difference 19 .
736
+ # (19 1) math:sum 20 .
737
+ # (20 3) math:integerQuotient 6 .
738
+ # (19 11) math:product 209 .
739
+ # (209 20) math:sum 229 .
740
+ # (229 5) math:difference 224 .
741
+ # (224 6) math:difference 218 .
742
+ # (218 15) math:sum 233 .
743
+ # (233 30) math:remainder 23 .
744
+ # (44 4) math:integerQuotient 11 .
745
+ # (44 4) math:remainder 0 .
746
+ # (2 0) math:product 0 .
747
+ # (2 11) math:product 22 .
748
+ # 23 math:negation -23 .
749
+ # 0 math:negation 0 .
750
+ # (32 0 22 -23 0) math:sum 31 .
751
+ # (31 7) math:remainder 3 .
752
+ # (11 23) math:product 253 .
753
+ # (22 3) math:product 66 .
754
+ # (11 253 66) math:sum 330 .
755
+ # (330 451) math:integerQuotient 0 .
756
+ # (7 0) math:product 0 .
757
+ # 0 math:negation 0 .
758
+ # (23 3 0 114) math:sum 140 .
759
+ # (140 31) math:integerQuotient 4 .
760
+ # (140 31) math:remainder 16 .
761
+ # (16 1) math:sum 17 .
762
+ # via the schematic forward rule:
763
+ # {
764
+ # ?Y a :Year .
765
+ # (?Y 19) math:remainder ?J .
766
+ # (?Y 100) math:integerQuotient ?K .
767
+ # (?Y 100) math:remainder ?H .
768
+ # (?K 4) math:integerQuotient ?M .
769
+ # (?K 4) math:remainder ?N .
770
+ # (?K 8) math:sum ?_b1 .
771
+ # (?_b1 25) math:integerQuotient ?P .
772
+ # (?K ?P) math:difference ?_b2 .
773
+ # (?_b2 1) math:sum ?_b3 .
774
+ # (?_b3 3) math:integerQuotient ?Q .
775
+ # (19 ?J) math:product ?_b4 .
776
+ # (?_b4 ?K) math:sum ?_b5 .
777
+ # (?_b5 ?M) math:difference ?_b6 .
778
+ # (?_b6 ?Q) math:difference ?_b7 .
779
+ # (?_b7 15) math:sum ?_b8 .
780
+ # (?_b8 30) math:remainder ?R .
781
+ # (?H 4) math:integerQuotient ?S .
782
+ # (?H 4) math:remainder ?U .
783
+ # (2 ?N) math:product ?_b9 .
784
+ # (2 ?S) math:product ?_b10 .
785
+ # ?R math:negation ?_b11 .
786
+ # ?U math:negation ?_b12 .
787
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
788
+ # (?_b13 7) math:remainder ?V .
789
+ # (11 ?R) math:product ?_b14 .
790
+ # (22 ?V) math:product ?_b15 .
791
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
792
+ # (?_b16 451) math:integerQuotient ?W .
793
+ # (7 ?W) math:product ?_b17 .
794
+ # ?_b17 math:negation ?_b18 .
795
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
796
+ # (?_b19 31) math:integerQuotient ?X .
797
+ # (?_b19 31) math:remainder ?Z .
798
+ # (?Z 1) math:sum ?DAY .
799
+ # } => {
800
+ # (?DAY ?X) :easterFor ?Y .
801
+ # } .
802
+ # with substitution (on rule variables):
803
+ # ?DAY = 17
804
+ # ?H = 44
805
+ # ?J = 11
806
+ # ?K = 20
807
+ # ?M = 5
808
+ # ?N = 0
809
+ # ?P = 1
810
+ # ?Q = 6
811
+ # ?R = 23
812
+ # ?S = 11
813
+ # ?U = 0
814
+ # ?V = 3
815
+ # ?W = 0
816
+ # ?X = 4
817
+ # ?Y = 2044
818
+ # ?Z = 16
819
+ # ?_b1 = 28
820
+ # ?_b10 = 22
821
+ # ?_b11 = -23
822
+ # ?_b12 = 0
823
+ # ?_b13 = 31
824
+ # ?_b14 = 253
825
+ # ?_b15 = 66
826
+ # ?_b16 = 330
827
+ # ?_b17 = 0
828
+ # ?_b18 = 0
829
+ # ?_b19 = 140
830
+ # ?_b2 = 19
831
+ # ?_b3 = 20
832
+ # ?_b4 = 209
833
+ # ?_b5 = 229
834
+ # ?_b6 = 224
835
+ # ?_b7 = 218
836
+ # ?_b8 = 233
837
+ # ?_b9 = 0
838
+ # Therefore the derived triple above is entailed by the rules and facts.
839
+ # ----------------------------------------------------------------------
840
+
841
+ (17 4) :easterFor 2044 .
842
+
843
+ # ----------------------------------------------------------------------
844
+ # Proof for derived triple:
845
+ # (29 3) :easterFor 2043 .
846
+ # It holds because the following instance of the rule body is provable:
847
+ # 2043 a :Year .
848
+ # (2043 19) math:remainder 10 .
849
+ # (2043 100) math:integerQuotient 20 .
850
+ # (2043 100) math:remainder 43 .
851
+ # (20 4) math:integerQuotient 5 .
852
+ # (20 4) math:remainder 0 .
853
+ # (20 8) math:sum 28 .
854
+ # (28 25) math:integerQuotient 1 .
855
+ # (20 1) math:difference 19 .
856
+ # (19 1) math:sum 20 .
857
+ # (20 3) math:integerQuotient 6 .
858
+ # (19 10) math:product 190 .
859
+ # (190 20) math:sum 210 .
860
+ # (210 5) math:difference 205 .
861
+ # (205 6) math:difference 199 .
862
+ # (199 15) math:sum 214 .
863
+ # (214 30) math:remainder 4 .
864
+ # (43 4) math:integerQuotient 10 .
865
+ # (43 4) math:remainder 3 .
866
+ # (2 0) math:product 0 .
867
+ # (2 10) math:product 20 .
868
+ # 4 math:negation -4 .
869
+ # 3 math:negation -3 .
870
+ # (32 0 20 -4 -3) math:sum 45 .
871
+ # (45 7) math:remainder 3 .
872
+ # (11 4) math:product 44 .
873
+ # (22 3) math:product 66 .
874
+ # (10 44 66) math:sum 120 .
875
+ # (120 451) math:integerQuotient 0 .
876
+ # (7 0) math:product 0 .
877
+ # 0 math:negation 0 .
878
+ # (4 3 0 114) math:sum 121 .
879
+ # (121 31) math:integerQuotient 3 .
880
+ # (121 31) math:remainder 28 .
881
+ # (28 1) math:sum 29 .
882
+ # via the schematic forward rule:
883
+ # {
884
+ # ?Y a :Year .
885
+ # (?Y 19) math:remainder ?J .
886
+ # (?Y 100) math:integerQuotient ?K .
887
+ # (?Y 100) math:remainder ?H .
888
+ # (?K 4) math:integerQuotient ?M .
889
+ # (?K 4) math:remainder ?N .
890
+ # (?K 8) math:sum ?_b1 .
891
+ # (?_b1 25) math:integerQuotient ?P .
892
+ # (?K ?P) math:difference ?_b2 .
893
+ # (?_b2 1) math:sum ?_b3 .
894
+ # (?_b3 3) math:integerQuotient ?Q .
895
+ # (19 ?J) math:product ?_b4 .
896
+ # (?_b4 ?K) math:sum ?_b5 .
897
+ # (?_b5 ?M) math:difference ?_b6 .
898
+ # (?_b6 ?Q) math:difference ?_b7 .
899
+ # (?_b7 15) math:sum ?_b8 .
900
+ # (?_b8 30) math:remainder ?R .
901
+ # (?H 4) math:integerQuotient ?S .
902
+ # (?H 4) math:remainder ?U .
903
+ # (2 ?N) math:product ?_b9 .
904
+ # (2 ?S) math:product ?_b10 .
905
+ # ?R math:negation ?_b11 .
906
+ # ?U math:negation ?_b12 .
907
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
908
+ # (?_b13 7) math:remainder ?V .
909
+ # (11 ?R) math:product ?_b14 .
910
+ # (22 ?V) math:product ?_b15 .
911
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
912
+ # (?_b16 451) math:integerQuotient ?W .
913
+ # (7 ?W) math:product ?_b17 .
914
+ # ?_b17 math:negation ?_b18 .
915
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
916
+ # (?_b19 31) math:integerQuotient ?X .
917
+ # (?_b19 31) math:remainder ?Z .
918
+ # (?Z 1) math:sum ?DAY .
919
+ # } => {
920
+ # (?DAY ?X) :easterFor ?Y .
921
+ # } .
922
+ # with substitution (on rule variables):
923
+ # ?DAY = 29
924
+ # ?H = 43
925
+ # ?J = 10
926
+ # ?K = 20
927
+ # ?M = 5
928
+ # ?N = 0
929
+ # ?P = 1
930
+ # ?Q = 6
931
+ # ?R = 4
932
+ # ?S = 10
933
+ # ?U = 3
934
+ # ?V = 3
935
+ # ?W = 0
936
+ # ?X = 3
937
+ # ?Y = 2043
938
+ # ?Z = 28
939
+ # ?_b1 = 28
940
+ # ?_b10 = 20
941
+ # ?_b11 = -4
942
+ # ?_b12 = -3
943
+ # ?_b13 = 45
944
+ # ?_b14 = 44
945
+ # ?_b15 = 66
946
+ # ?_b16 = 120
947
+ # ?_b17 = 0
948
+ # ?_b18 = 0
949
+ # ?_b19 = 121
950
+ # ?_b2 = 19
951
+ # ?_b3 = 20
952
+ # ?_b4 = 190
953
+ # ?_b5 = 210
954
+ # ?_b6 = 205
955
+ # ?_b7 = 199
956
+ # ?_b8 = 214
957
+ # ?_b9 = 0
958
+ # Therefore the derived triple above is entailed by the rules and facts.
959
+ # ----------------------------------------------------------------------
960
+
961
+ (29 3) :easterFor 2043 .
962
+
963
+ # ----------------------------------------------------------------------
964
+ # Proof for derived triple:
965
+ # (6 4) :easterFor 2042 .
966
+ # It holds because the following instance of the rule body is provable:
967
+ # 2042 a :Year .
968
+ # (2042 19) math:remainder 9 .
969
+ # (2042 100) math:integerQuotient 20 .
970
+ # (2042 100) math:remainder 42 .
971
+ # (20 4) math:integerQuotient 5 .
972
+ # (20 4) math:remainder 0 .
973
+ # (20 8) math:sum 28 .
974
+ # (28 25) math:integerQuotient 1 .
975
+ # (20 1) math:difference 19 .
976
+ # (19 1) math:sum 20 .
977
+ # (20 3) math:integerQuotient 6 .
978
+ # (19 9) math:product 171 .
979
+ # (171 20) math:sum 191 .
980
+ # (191 5) math:difference 186 .
981
+ # (186 6) math:difference 180 .
982
+ # (180 15) math:sum 195 .
983
+ # (195 30) math:remainder 15 .
984
+ # (42 4) math:integerQuotient 10 .
985
+ # (42 4) math:remainder 2 .
986
+ # (2 0) math:product 0 .
987
+ # (2 10) math:product 20 .
988
+ # 15 math:negation -15 .
989
+ # 2 math:negation -2 .
990
+ # (32 0 20 -15 -2) math:sum 35 .
991
+ # (35 7) math:remainder 0 .
992
+ # (11 15) math:product 165 .
993
+ # (22 0) math:product 0 .
994
+ # (9 165 0) math:sum 174 .
995
+ # (174 451) math:integerQuotient 0 .
996
+ # (7 0) math:product 0 .
997
+ # 0 math:negation 0 .
998
+ # (15 0 0 114) math:sum 129 .
999
+ # (129 31) math:integerQuotient 4 .
1000
+ # (129 31) math:remainder 5 .
1001
+ # (5 1) math:sum 6 .
1002
+ # via the schematic forward rule:
1003
+ # {
1004
+ # ?Y a :Year .
1005
+ # (?Y 19) math:remainder ?J .
1006
+ # (?Y 100) math:integerQuotient ?K .
1007
+ # (?Y 100) math:remainder ?H .
1008
+ # (?K 4) math:integerQuotient ?M .
1009
+ # (?K 4) math:remainder ?N .
1010
+ # (?K 8) math:sum ?_b1 .
1011
+ # (?_b1 25) math:integerQuotient ?P .
1012
+ # (?K ?P) math:difference ?_b2 .
1013
+ # (?_b2 1) math:sum ?_b3 .
1014
+ # (?_b3 3) math:integerQuotient ?Q .
1015
+ # (19 ?J) math:product ?_b4 .
1016
+ # (?_b4 ?K) math:sum ?_b5 .
1017
+ # (?_b5 ?M) math:difference ?_b6 .
1018
+ # (?_b6 ?Q) math:difference ?_b7 .
1019
+ # (?_b7 15) math:sum ?_b8 .
1020
+ # (?_b8 30) math:remainder ?R .
1021
+ # (?H 4) math:integerQuotient ?S .
1022
+ # (?H 4) math:remainder ?U .
1023
+ # (2 ?N) math:product ?_b9 .
1024
+ # (2 ?S) math:product ?_b10 .
1025
+ # ?R math:negation ?_b11 .
1026
+ # ?U math:negation ?_b12 .
1027
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
1028
+ # (?_b13 7) math:remainder ?V .
1029
+ # (11 ?R) math:product ?_b14 .
1030
+ # (22 ?V) math:product ?_b15 .
1031
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
1032
+ # (?_b16 451) math:integerQuotient ?W .
1033
+ # (7 ?W) math:product ?_b17 .
1034
+ # ?_b17 math:negation ?_b18 .
1035
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
1036
+ # (?_b19 31) math:integerQuotient ?X .
1037
+ # (?_b19 31) math:remainder ?Z .
1038
+ # (?Z 1) math:sum ?DAY .
1039
+ # } => {
1040
+ # (?DAY ?X) :easterFor ?Y .
1041
+ # } .
1042
+ # with substitution (on rule variables):
1043
+ # ?DAY = 6
1044
+ # ?H = 42
1045
+ # ?J = 9
1046
+ # ?K = 20
1047
+ # ?M = 5
1048
+ # ?N = 0
1049
+ # ?P = 1
1050
+ # ?Q = 6
1051
+ # ?R = 15
1052
+ # ?S = 10
1053
+ # ?U = 2
1054
+ # ?V = 0
1055
+ # ?W = 0
1056
+ # ?X = 4
1057
+ # ?Y = 2042
1058
+ # ?Z = 5
1059
+ # ?_b1 = 28
1060
+ # ?_b10 = 20
1061
+ # ?_b11 = -15
1062
+ # ?_b12 = -2
1063
+ # ?_b13 = 35
1064
+ # ?_b14 = 165
1065
+ # ?_b15 = 0
1066
+ # ?_b16 = 174
1067
+ # ?_b17 = 0
1068
+ # ?_b18 = 0
1069
+ # ?_b19 = 129
1070
+ # ?_b2 = 19
1071
+ # ?_b3 = 20
1072
+ # ?_b4 = 171
1073
+ # ?_b5 = 191
1074
+ # ?_b6 = 186
1075
+ # ?_b7 = 180
1076
+ # ?_b8 = 195
1077
+ # ?_b9 = 0
1078
+ # Therefore the derived triple above is entailed by the rules and facts.
1079
+ # ----------------------------------------------------------------------
1080
+
1081
+ (6 4) :easterFor 2042 .
1082
+
1083
+ # ----------------------------------------------------------------------
1084
+ # Proof for derived triple:
1085
+ # (21 4) :easterFor 2041 .
1086
+ # It holds because the following instance of the rule body is provable:
1087
+ # 2041 a :Year .
1088
+ # (2041 19) math:remainder 8 .
1089
+ # (2041 100) math:integerQuotient 20 .
1090
+ # (2041 100) math:remainder 41 .
1091
+ # (20 4) math:integerQuotient 5 .
1092
+ # (20 4) math:remainder 0 .
1093
+ # (20 8) math:sum 28 .
1094
+ # (28 25) math:integerQuotient 1 .
1095
+ # (20 1) math:difference 19 .
1096
+ # (19 1) math:sum 20 .
1097
+ # (20 3) math:integerQuotient 6 .
1098
+ # (19 8) math:product 152 .
1099
+ # (152 20) math:sum 172 .
1100
+ # (172 5) math:difference 167 .
1101
+ # (167 6) math:difference 161 .
1102
+ # (161 15) math:sum 176 .
1103
+ # (176 30) math:remainder 26 .
1104
+ # (41 4) math:integerQuotient 10 .
1105
+ # (41 4) math:remainder 1 .
1106
+ # (2 0) math:product 0 .
1107
+ # (2 10) math:product 20 .
1108
+ # 26 math:negation -26 .
1109
+ # 1 math:negation -1 .
1110
+ # (32 0 20 -26 -1) math:sum 25 .
1111
+ # (25 7) math:remainder 4 .
1112
+ # (11 26) math:product 286 .
1113
+ # (22 4) math:product 88 .
1114
+ # (8 286 88) math:sum 382 .
1115
+ # (382 451) math:integerQuotient 0 .
1116
+ # (7 0) math:product 0 .
1117
+ # 0 math:negation 0 .
1118
+ # (26 4 0 114) math:sum 144 .
1119
+ # (144 31) math:integerQuotient 4 .
1120
+ # (144 31) math:remainder 20 .
1121
+ # (20 1) math:sum 21 .
1122
+ # via the schematic forward rule:
1123
+ # {
1124
+ # ?Y a :Year .
1125
+ # (?Y 19) math:remainder ?J .
1126
+ # (?Y 100) math:integerQuotient ?K .
1127
+ # (?Y 100) math:remainder ?H .
1128
+ # (?K 4) math:integerQuotient ?M .
1129
+ # (?K 4) math:remainder ?N .
1130
+ # (?K 8) math:sum ?_b1 .
1131
+ # (?_b1 25) math:integerQuotient ?P .
1132
+ # (?K ?P) math:difference ?_b2 .
1133
+ # (?_b2 1) math:sum ?_b3 .
1134
+ # (?_b3 3) math:integerQuotient ?Q .
1135
+ # (19 ?J) math:product ?_b4 .
1136
+ # (?_b4 ?K) math:sum ?_b5 .
1137
+ # (?_b5 ?M) math:difference ?_b6 .
1138
+ # (?_b6 ?Q) math:difference ?_b7 .
1139
+ # (?_b7 15) math:sum ?_b8 .
1140
+ # (?_b8 30) math:remainder ?R .
1141
+ # (?H 4) math:integerQuotient ?S .
1142
+ # (?H 4) math:remainder ?U .
1143
+ # (2 ?N) math:product ?_b9 .
1144
+ # (2 ?S) math:product ?_b10 .
1145
+ # ?R math:negation ?_b11 .
1146
+ # ?U math:negation ?_b12 .
1147
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
1148
+ # (?_b13 7) math:remainder ?V .
1149
+ # (11 ?R) math:product ?_b14 .
1150
+ # (22 ?V) math:product ?_b15 .
1151
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
1152
+ # (?_b16 451) math:integerQuotient ?W .
1153
+ # (7 ?W) math:product ?_b17 .
1154
+ # ?_b17 math:negation ?_b18 .
1155
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
1156
+ # (?_b19 31) math:integerQuotient ?X .
1157
+ # (?_b19 31) math:remainder ?Z .
1158
+ # (?Z 1) math:sum ?DAY .
1159
+ # } => {
1160
+ # (?DAY ?X) :easterFor ?Y .
1161
+ # } .
1162
+ # with substitution (on rule variables):
1163
+ # ?DAY = 21
1164
+ # ?H = 41
1165
+ # ?J = 8
1166
+ # ?K = 20
1167
+ # ?M = 5
1168
+ # ?N = 0
1169
+ # ?P = 1
1170
+ # ?Q = 6
1171
+ # ?R = 26
1172
+ # ?S = 10
1173
+ # ?U = 1
1174
+ # ?V = 4
1175
+ # ?W = 0
1176
+ # ?X = 4
1177
+ # ?Y = 2041
1178
+ # ?Z = 20
1179
+ # ?_b1 = 28
1180
+ # ?_b10 = 20
1181
+ # ?_b11 = -26
1182
+ # ?_b12 = -1
1183
+ # ?_b13 = 25
1184
+ # ?_b14 = 286
1185
+ # ?_b15 = 88
1186
+ # ?_b16 = 382
1187
+ # ?_b17 = 0
1188
+ # ?_b18 = 0
1189
+ # ?_b19 = 144
1190
+ # ?_b2 = 19
1191
+ # ?_b3 = 20
1192
+ # ?_b4 = 152
1193
+ # ?_b5 = 172
1194
+ # ?_b6 = 167
1195
+ # ?_b7 = 161
1196
+ # ?_b8 = 176
1197
+ # ?_b9 = 0
1198
+ # Therefore the derived triple above is entailed by the rules and facts.
1199
+ # ----------------------------------------------------------------------
1200
+
1201
+ (21 4) :easterFor 2041 .
1202
+
1203
+ # ----------------------------------------------------------------------
1204
+ # Proof for derived triple:
1205
+ # (1 4) :easterFor 2040 .
1206
+ # It holds because the following instance of the rule body is provable:
1207
+ # 2040 a :Year .
1208
+ # (2040 19) math:remainder 7 .
1209
+ # (2040 100) math:integerQuotient 20 .
1210
+ # (2040 100) math:remainder 40 .
1211
+ # (20 4) math:integerQuotient 5 .
1212
+ # (20 4) math:remainder 0 .
1213
+ # (20 8) math:sum 28 .
1214
+ # (28 25) math:integerQuotient 1 .
1215
+ # (20 1) math:difference 19 .
1216
+ # (19 1) math:sum 20 .
1217
+ # (20 3) math:integerQuotient 6 .
1218
+ # (19 7) math:product 133 .
1219
+ # (133 20) math:sum 153 .
1220
+ # (153 5) math:difference 148 .
1221
+ # (148 6) math:difference 142 .
1222
+ # (142 15) math:sum 157 .
1223
+ # (157 30) math:remainder 7 .
1224
+ # (40 4) math:integerQuotient 10 .
1225
+ # (40 4) math:remainder 0 .
1226
+ # (2 0) math:product 0 .
1227
+ # (2 10) math:product 20 .
1228
+ # 7 math:negation -7 .
1229
+ # 0 math:negation 0 .
1230
+ # (32 0 20 -7 0) math:sum 45 .
1231
+ # (45 7) math:remainder 3 .
1232
+ # (11 7) math:product 77 .
1233
+ # (22 3) math:product 66 .
1234
+ # (7 77 66) math:sum 150 .
1235
+ # (150 451) math:integerQuotient 0 .
1236
+ # (7 0) math:product 0 .
1237
+ # 0 math:negation 0 .
1238
+ # (7 3 0 114) math:sum 124 .
1239
+ # (124 31) math:integerQuotient 4 .
1240
+ # (124 31) math:remainder 0 .
1241
+ # (0 1) math:sum 1 .
1242
+ # via the schematic forward rule:
1243
+ # {
1244
+ # ?Y a :Year .
1245
+ # (?Y 19) math:remainder ?J .
1246
+ # (?Y 100) math:integerQuotient ?K .
1247
+ # (?Y 100) math:remainder ?H .
1248
+ # (?K 4) math:integerQuotient ?M .
1249
+ # (?K 4) math:remainder ?N .
1250
+ # (?K 8) math:sum ?_b1 .
1251
+ # (?_b1 25) math:integerQuotient ?P .
1252
+ # (?K ?P) math:difference ?_b2 .
1253
+ # (?_b2 1) math:sum ?_b3 .
1254
+ # (?_b3 3) math:integerQuotient ?Q .
1255
+ # (19 ?J) math:product ?_b4 .
1256
+ # (?_b4 ?K) math:sum ?_b5 .
1257
+ # (?_b5 ?M) math:difference ?_b6 .
1258
+ # (?_b6 ?Q) math:difference ?_b7 .
1259
+ # (?_b7 15) math:sum ?_b8 .
1260
+ # (?_b8 30) math:remainder ?R .
1261
+ # (?H 4) math:integerQuotient ?S .
1262
+ # (?H 4) math:remainder ?U .
1263
+ # (2 ?N) math:product ?_b9 .
1264
+ # (2 ?S) math:product ?_b10 .
1265
+ # ?R math:negation ?_b11 .
1266
+ # ?U math:negation ?_b12 .
1267
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
1268
+ # (?_b13 7) math:remainder ?V .
1269
+ # (11 ?R) math:product ?_b14 .
1270
+ # (22 ?V) math:product ?_b15 .
1271
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
1272
+ # (?_b16 451) math:integerQuotient ?W .
1273
+ # (7 ?W) math:product ?_b17 .
1274
+ # ?_b17 math:negation ?_b18 .
1275
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
1276
+ # (?_b19 31) math:integerQuotient ?X .
1277
+ # (?_b19 31) math:remainder ?Z .
1278
+ # (?Z 1) math:sum ?DAY .
1279
+ # } => {
1280
+ # (?DAY ?X) :easterFor ?Y .
1281
+ # } .
1282
+ # with substitution (on rule variables):
1283
+ # ?DAY = 1
1284
+ # ?H = 40
1285
+ # ?J = 7
1286
+ # ?K = 20
1287
+ # ?M = 5
1288
+ # ?N = 0
1289
+ # ?P = 1
1290
+ # ?Q = 6
1291
+ # ?R = 7
1292
+ # ?S = 10
1293
+ # ?U = 0
1294
+ # ?V = 3
1295
+ # ?W = 0
1296
+ # ?X = 4
1297
+ # ?Y = 2040
1298
+ # ?Z = 0
1299
+ # ?_b1 = 28
1300
+ # ?_b10 = 20
1301
+ # ?_b11 = -7
1302
+ # ?_b12 = 0
1303
+ # ?_b13 = 45
1304
+ # ?_b14 = 77
1305
+ # ?_b15 = 66
1306
+ # ?_b16 = 150
1307
+ # ?_b17 = 0
1308
+ # ?_b18 = 0
1309
+ # ?_b19 = 124
1310
+ # ?_b2 = 19
1311
+ # ?_b3 = 20
1312
+ # ?_b4 = 133
1313
+ # ?_b5 = 153
1314
+ # ?_b6 = 148
1315
+ # ?_b7 = 142
1316
+ # ?_b8 = 157
1317
+ # ?_b9 = 0
1318
+ # Therefore the derived triple above is entailed by the rules and facts.
1319
+ # ----------------------------------------------------------------------
1320
+
1321
+ (1 4) :easterFor 2040 .
1322
+
1323
+ # ----------------------------------------------------------------------
1324
+ # Proof for derived triple:
1325
+ # (10 4) :easterFor 2039 .
1326
+ # It holds because the following instance of the rule body is provable:
1327
+ # 2039 a :Year .
1328
+ # (2039 19) math:remainder 6 .
1329
+ # (2039 100) math:integerQuotient 20 .
1330
+ # (2039 100) math:remainder 39 .
1331
+ # (20 4) math:integerQuotient 5 .
1332
+ # (20 4) math:remainder 0 .
1333
+ # (20 8) math:sum 28 .
1334
+ # (28 25) math:integerQuotient 1 .
1335
+ # (20 1) math:difference 19 .
1336
+ # (19 1) math:sum 20 .
1337
+ # (20 3) math:integerQuotient 6 .
1338
+ # (19 6) math:product 114 .
1339
+ # (114 20) math:sum 134 .
1340
+ # (134 5) math:difference 129 .
1341
+ # (129 6) math:difference 123 .
1342
+ # (123 15) math:sum 138 .
1343
+ # (138 30) math:remainder 18 .
1344
+ # (39 4) math:integerQuotient 9 .
1345
+ # (39 4) math:remainder 3 .
1346
+ # (2 0) math:product 0 .
1347
+ # (2 9) math:product 18 .
1348
+ # 18 math:negation -18 .
1349
+ # 3 math:negation -3 .
1350
+ # (32 0 18 -18 -3) math:sum 29 .
1351
+ # (29 7) math:remainder 1 .
1352
+ # (11 18) math:product 198 .
1353
+ # (22 1) math:product 22 .
1354
+ # (6 198 22) math:sum 226 .
1355
+ # (226 451) math:integerQuotient 0 .
1356
+ # (7 0) math:product 0 .
1357
+ # 0 math:negation 0 .
1358
+ # (18 1 0 114) math:sum 133 .
1359
+ # (133 31) math:integerQuotient 4 .
1360
+ # (133 31) math:remainder 9 .
1361
+ # (9 1) math:sum 10 .
1362
+ # via the schematic forward rule:
1363
+ # {
1364
+ # ?Y a :Year .
1365
+ # (?Y 19) math:remainder ?J .
1366
+ # (?Y 100) math:integerQuotient ?K .
1367
+ # (?Y 100) math:remainder ?H .
1368
+ # (?K 4) math:integerQuotient ?M .
1369
+ # (?K 4) math:remainder ?N .
1370
+ # (?K 8) math:sum ?_b1 .
1371
+ # (?_b1 25) math:integerQuotient ?P .
1372
+ # (?K ?P) math:difference ?_b2 .
1373
+ # (?_b2 1) math:sum ?_b3 .
1374
+ # (?_b3 3) math:integerQuotient ?Q .
1375
+ # (19 ?J) math:product ?_b4 .
1376
+ # (?_b4 ?K) math:sum ?_b5 .
1377
+ # (?_b5 ?M) math:difference ?_b6 .
1378
+ # (?_b6 ?Q) math:difference ?_b7 .
1379
+ # (?_b7 15) math:sum ?_b8 .
1380
+ # (?_b8 30) math:remainder ?R .
1381
+ # (?H 4) math:integerQuotient ?S .
1382
+ # (?H 4) math:remainder ?U .
1383
+ # (2 ?N) math:product ?_b9 .
1384
+ # (2 ?S) math:product ?_b10 .
1385
+ # ?R math:negation ?_b11 .
1386
+ # ?U math:negation ?_b12 .
1387
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
1388
+ # (?_b13 7) math:remainder ?V .
1389
+ # (11 ?R) math:product ?_b14 .
1390
+ # (22 ?V) math:product ?_b15 .
1391
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
1392
+ # (?_b16 451) math:integerQuotient ?W .
1393
+ # (7 ?W) math:product ?_b17 .
1394
+ # ?_b17 math:negation ?_b18 .
1395
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
1396
+ # (?_b19 31) math:integerQuotient ?X .
1397
+ # (?_b19 31) math:remainder ?Z .
1398
+ # (?Z 1) math:sum ?DAY .
1399
+ # } => {
1400
+ # (?DAY ?X) :easterFor ?Y .
1401
+ # } .
1402
+ # with substitution (on rule variables):
1403
+ # ?DAY = 10
1404
+ # ?H = 39
1405
+ # ?J = 6
1406
+ # ?K = 20
1407
+ # ?M = 5
1408
+ # ?N = 0
1409
+ # ?P = 1
1410
+ # ?Q = 6
1411
+ # ?R = 18
1412
+ # ?S = 9
1413
+ # ?U = 3
1414
+ # ?V = 1
1415
+ # ?W = 0
1416
+ # ?X = 4
1417
+ # ?Y = 2039
1418
+ # ?Z = 9
1419
+ # ?_b1 = 28
1420
+ # ?_b10 = 18
1421
+ # ?_b11 = -18
1422
+ # ?_b12 = -3
1423
+ # ?_b13 = 29
1424
+ # ?_b14 = 198
1425
+ # ?_b15 = 22
1426
+ # ?_b16 = 226
1427
+ # ?_b17 = 0
1428
+ # ?_b18 = 0
1429
+ # ?_b19 = 133
1430
+ # ?_b2 = 19
1431
+ # ?_b3 = 20
1432
+ # ?_b4 = 114
1433
+ # ?_b5 = 134
1434
+ # ?_b6 = 129
1435
+ # ?_b7 = 123
1436
+ # ?_b8 = 138
1437
+ # ?_b9 = 0
1438
+ # Therefore the derived triple above is entailed by the rules and facts.
1439
+ # ----------------------------------------------------------------------
1440
+
1441
+ (10 4) :easterFor 2039 .
1442
+
1443
+ # ----------------------------------------------------------------------
1444
+ # Proof for derived triple:
1445
+ # (25 4) :easterFor 2038 .
1446
+ # It holds because the following instance of the rule body is provable:
1447
+ # 2038 a :Year .
1448
+ # (2038 19) math:remainder 5 .
1449
+ # (2038 100) math:integerQuotient 20 .
1450
+ # (2038 100) math:remainder 38 .
1451
+ # (20 4) math:integerQuotient 5 .
1452
+ # (20 4) math:remainder 0 .
1453
+ # (20 8) math:sum 28 .
1454
+ # (28 25) math:integerQuotient 1 .
1455
+ # (20 1) math:difference 19 .
1456
+ # (19 1) math:sum 20 .
1457
+ # (20 3) math:integerQuotient 6 .
1458
+ # (19 5) math:product 95 .
1459
+ # (95 20) math:sum 115 .
1460
+ # (115 5) math:difference 110 .
1461
+ # (110 6) math:difference 104 .
1462
+ # (104 15) math:sum 119 .
1463
+ # (119 30) math:remainder 29 .
1464
+ # (38 4) math:integerQuotient 9 .
1465
+ # (38 4) math:remainder 2 .
1466
+ # (2 0) math:product 0 .
1467
+ # (2 9) math:product 18 .
1468
+ # 29 math:negation -29 .
1469
+ # 2 math:negation -2 .
1470
+ # (32 0 18 -29 -2) math:sum 19 .
1471
+ # (19 7) math:remainder 5 .
1472
+ # (11 29) math:product 319 .
1473
+ # (22 5) math:product 110 .
1474
+ # (5 319 110) math:sum 434 .
1475
+ # (434 451) math:integerQuotient 0 .
1476
+ # (7 0) math:product 0 .
1477
+ # 0 math:negation 0 .
1478
+ # (29 5 0 114) math:sum 148 .
1479
+ # (148 31) math:integerQuotient 4 .
1480
+ # (148 31) math:remainder 24 .
1481
+ # (24 1) math:sum 25 .
1482
+ # via the schematic forward rule:
1483
+ # {
1484
+ # ?Y a :Year .
1485
+ # (?Y 19) math:remainder ?J .
1486
+ # (?Y 100) math:integerQuotient ?K .
1487
+ # (?Y 100) math:remainder ?H .
1488
+ # (?K 4) math:integerQuotient ?M .
1489
+ # (?K 4) math:remainder ?N .
1490
+ # (?K 8) math:sum ?_b1 .
1491
+ # (?_b1 25) math:integerQuotient ?P .
1492
+ # (?K ?P) math:difference ?_b2 .
1493
+ # (?_b2 1) math:sum ?_b3 .
1494
+ # (?_b3 3) math:integerQuotient ?Q .
1495
+ # (19 ?J) math:product ?_b4 .
1496
+ # (?_b4 ?K) math:sum ?_b5 .
1497
+ # (?_b5 ?M) math:difference ?_b6 .
1498
+ # (?_b6 ?Q) math:difference ?_b7 .
1499
+ # (?_b7 15) math:sum ?_b8 .
1500
+ # (?_b8 30) math:remainder ?R .
1501
+ # (?H 4) math:integerQuotient ?S .
1502
+ # (?H 4) math:remainder ?U .
1503
+ # (2 ?N) math:product ?_b9 .
1504
+ # (2 ?S) math:product ?_b10 .
1505
+ # ?R math:negation ?_b11 .
1506
+ # ?U math:negation ?_b12 .
1507
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
1508
+ # (?_b13 7) math:remainder ?V .
1509
+ # (11 ?R) math:product ?_b14 .
1510
+ # (22 ?V) math:product ?_b15 .
1511
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
1512
+ # (?_b16 451) math:integerQuotient ?W .
1513
+ # (7 ?W) math:product ?_b17 .
1514
+ # ?_b17 math:negation ?_b18 .
1515
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
1516
+ # (?_b19 31) math:integerQuotient ?X .
1517
+ # (?_b19 31) math:remainder ?Z .
1518
+ # (?Z 1) math:sum ?DAY .
1519
+ # } => {
1520
+ # (?DAY ?X) :easterFor ?Y .
1521
+ # } .
1522
+ # with substitution (on rule variables):
1523
+ # ?DAY = 25
1524
+ # ?H = 38
1525
+ # ?J = 5
1526
+ # ?K = 20
1527
+ # ?M = 5
1528
+ # ?N = 0
1529
+ # ?P = 1
1530
+ # ?Q = 6
1531
+ # ?R = 29
1532
+ # ?S = 9
1533
+ # ?U = 2
1534
+ # ?V = 5
1535
+ # ?W = 0
1536
+ # ?X = 4
1537
+ # ?Y = 2038
1538
+ # ?Z = 24
1539
+ # ?_b1 = 28
1540
+ # ?_b10 = 18
1541
+ # ?_b11 = -29
1542
+ # ?_b12 = -2
1543
+ # ?_b13 = 19
1544
+ # ?_b14 = 319
1545
+ # ?_b15 = 110
1546
+ # ?_b16 = 434
1547
+ # ?_b17 = 0
1548
+ # ?_b18 = 0
1549
+ # ?_b19 = 148
1550
+ # ?_b2 = 19
1551
+ # ?_b3 = 20
1552
+ # ?_b4 = 95
1553
+ # ?_b5 = 115
1554
+ # ?_b6 = 110
1555
+ # ?_b7 = 104
1556
+ # ?_b8 = 119
1557
+ # ?_b9 = 0
1558
+ # Therefore the derived triple above is entailed by the rules and facts.
1559
+ # ----------------------------------------------------------------------
1560
+
1561
+ (25 4) :easterFor 2038 .
1562
+
1563
+ # ----------------------------------------------------------------------
1564
+ # Proof for derived triple:
1565
+ # (5 4) :easterFor 2037 .
1566
+ # It holds because the following instance of the rule body is provable:
1567
+ # 2037 a :Year .
1568
+ # (2037 19) math:remainder 4 .
1569
+ # (2037 100) math:integerQuotient 20 .
1570
+ # (2037 100) math:remainder 37 .
1571
+ # (20 4) math:integerQuotient 5 .
1572
+ # (20 4) math:remainder 0 .
1573
+ # (20 8) math:sum 28 .
1574
+ # (28 25) math:integerQuotient 1 .
1575
+ # (20 1) math:difference 19 .
1576
+ # (19 1) math:sum 20 .
1577
+ # (20 3) math:integerQuotient 6 .
1578
+ # (19 4) math:product 76 .
1579
+ # (76 20) math:sum 96 .
1580
+ # (96 5) math:difference 91 .
1581
+ # (91 6) math:difference 85 .
1582
+ # (85 15) math:sum 100 .
1583
+ # (100 30) math:remainder 10 .
1584
+ # (37 4) math:integerQuotient 9 .
1585
+ # (37 4) math:remainder 1 .
1586
+ # (2 0) math:product 0 .
1587
+ # (2 9) math:product 18 .
1588
+ # 10 math:negation -10 .
1589
+ # 1 math:negation -1 .
1590
+ # (32 0 18 -10 -1) math:sum 39 .
1591
+ # (39 7) math:remainder 4 .
1592
+ # (11 10) math:product 110 .
1593
+ # (22 4) math:product 88 .
1594
+ # (4 110 88) math:sum 202 .
1595
+ # (202 451) math:integerQuotient 0 .
1596
+ # (7 0) math:product 0 .
1597
+ # 0 math:negation 0 .
1598
+ # (10 4 0 114) math:sum 128 .
1599
+ # (128 31) math:integerQuotient 4 .
1600
+ # (128 31) math:remainder 4 .
1601
+ # (4 1) math:sum 5 .
1602
+ # via the schematic forward rule:
1603
+ # {
1604
+ # ?Y a :Year .
1605
+ # (?Y 19) math:remainder ?J .
1606
+ # (?Y 100) math:integerQuotient ?K .
1607
+ # (?Y 100) math:remainder ?H .
1608
+ # (?K 4) math:integerQuotient ?M .
1609
+ # (?K 4) math:remainder ?N .
1610
+ # (?K 8) math:sum ?_b1 .
1611
+ # (?_b1 25) math:integerQuotient ?P .
1612
+ # (?K ?P) math:difference ?_b2 .
1613
+ # (?_b2 1) math:sum ?_b3 .
1614
+ # (?_b3 3) math:integerQuotient ?Q .
1615
+ # (19 ?J) math:product ?_b4 .
1616
+ # (?_b4 ?K) math:sum ?_b5 .
1617
+ # (?_b5 ?M) math:difference ?_b6 .
1618
+ # (?_b6 ?Q) math:difference ?_b7 .
1619
+ # (?_b7 15) math:sum ?_b8 .
1620
+ # (?_b8 30) math:remainder ?R .
1621
+ # (?H 4) math:integerQuotient ?S .
1622
+ # (?H 4) math:remainder ?U .
1623
+ # (2 ?N) math:product ?_b9 .
1624
+ # (2 ?S) math:product ?_b10 .
1625
+ # ?R math:negation ?_b11 .
1626
+ # ?U math:negation ?_b12 .
1627
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
1628
+ # (?_b13 7) math:remainder ?V .
1629
+ # (11 ?R) math:product ?_b14 .
1630
+ # (22 ?V) math:product ?_b15 .
1631
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
1632
+ # (?_b16 451) math:integerQuotient ?W .
1633
+ # (7 ?W) math:product ?_b17 .
1634
+ # ?_b17 math:negation ?_b18 .
1635
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
1636
+ # (?_b19 31) math:integerQuotient ?X .
1637
+ # (?_b19 31) math:remainder ?Z .
1638
+ # (?Z 1) math:sum ?DAY .
1639
+ # } => {
1640
+ # (?DAY ?X) :easterFor ?Y .
1641
+ # } .
1642
+ # with substitution (on rule variables):
1643
+ # ?DAY = 5
1644
+ # ?H = 37
1645
+ # ?J = 4
1646
+ # ?K = 20
1647
+ # ?M = 5
1648
+ # ?N = 0
1649
+ # ?P = 1
1650
+ # ?Q = 6
1651
+ # ?R = 10
1652
+ # ?S = 9
1653
+ # ?U = 1
1654
+ # ?V = 4
1655
+ # ?W = 0
1656
+ # ?X = 4
1657
+ # ?Y = 2037
1658
+ # ?Z = 4
1659
+ # ?_b1 = 28
1660
+ # ?_b10 = 18
1661
+ # ?_b11 = -10
1662
+ # ?_b12 = -1
1663
+ # ?_b13 = 39
1664
+ # ?_b14 = 110
1665
+ # ?_b15 = 88
1666
+ # ?_b16 = 202
1667
+ # ?_b17 = 0
1668
+ # ?_b18 = 0
1669
+ # ?_b19 = 128
1670
+ # ?_b2 = 19
1671
+ # ?_b3 = 20
1672
+ # ?_b4 = 76
1673
+ # ?_b5 = 96
1674
+ # ?_b6 = 91
1675
+ # ?_b7 = 85
1676
+ # ?_b8 = 100
1677
+ # ?_b9 = 0
1678
+ # Therefore the derived triple above is entailed by the rules and facts.
1679
+ # ----------------------------------------------------------------------
1680
+
1681
+ (5 4) :easterFor 2037 .
1682
+
1683
+ # ----------------------------------------------------------------------
1684
+ # Proof for derived triple:
1685
+ # (13 4) :easterFor 2036 .
1686
+ # It holds because the following instance of the rule body is provable:
1687
+ # 2036 a :Year .
1688
+ # (2036 19) math:remainder 3 .
1689
+ # (2036 100) math:integerQuotient 20 .
1690
+ # (2036 100) math:remainder 36 .
1691
+ # (20 4) math:integerQuotient 5 .
1692
+ # (20 4) math:remainder 0 .
1693
+ # (20 8) math:sum 28 .
1694
+ # (28 25) math:integerQuotient 1 .
1695
+ # (20 1) math:difference 19 .
1696
+ # (19 1) math:sum 20 .
1697
+ # (20 3) math:integerQuotient 6 .
1698
+ # (19 3) math:product 57 .
1699
+ # (57 20) math:sum 77 .
1700
+ # (77 5) math:difference 72 .
1701
+ # (72 6) math:difference 66 .
1702
+ # (66 15) math:sum 81 .
1703
+ # (81 30) math:remainder 21 .
1704
+ # (36 4) math:integerQuotient 9 .
1705
+ # (36 4) math:remainder 0 .
1706
+ # (2 0) math:product 0 .
1707
+ # (2 9) math:product 18 .
1708
+ # 21 math:negation -21 .
1709
+ # 0 math:negation 0 .
1710
+ # (32 0 18 -21 0) math:sum 29 .
1711
+ # (29 7) math:remainder 1 .
1712
+ # (11 21) math:product 231 .
1713
+ # (22 1) math:product 22 .
1714
+ # (3 231 22) math:sum 256 .
1715
+ # (256 451) math:integerQuotient 0 .
1716
+ # (7 0) math:product 0 .
1717
+ # 0 math:negation 0 .
1718
+ # (21 1 0 114) math:sum 136 .
1719
+ # (136 31) math:integerQuotient 4 .
1720
+ # (136 31) math:remainder 12 .
1721
+ # (12 1) math:sum 13 .
1722
+ # via the schematic forward rule:
1723
+ # {
1724
+ # ?Y a :Year .
1725
+ # (?Y 19) math:remainder ?J .
1726
+ # (?Y 100) math:integerQuotient ?K .
1727
+ # (?Y 100) math:remainder ?H .
1728
+ # (?K 4) math:integerQuotient ?M .
1729
+ # (?K 4) math:remainder ?N .
1730
+ # (?K 8) math:sum ?_b1 .
1731
+ # (?_b1 25) math:integerQuotient ?P .
1732
+ # (?K ?P) math:difference ?_b2 .
1733
+ # (?_b2 1) math:sum ?_b3 .
1734
+ # (?_b3 3) math:integerQuotient ?Q .
1735
+ # (19 ?J) math:product ?_b4 .
1736
+ # (?_b4 ?K) math:sum ?_b5 .
1737
+ # (?_b5 ?M) math:difference ?_b6 .
1738
+ # (?_b6 ?Q) math:difference ?_b7 .
1739
+ # (?_b7 15) math:sum ?_b8 .
1740
+ # (?_b8 30) math:remainder ?R .
1741
+ # (?H 4) math:integerQuotient ?S .
1742
+ # (?H 4) math:remainder ?U .
1743
+ # (2 ?N) math:product ?_b9 .
1744
+ # (2 ?S) math:product ?_b10 .
1745
+ # ?R math:negation ?_b11 .
1746
+ # ?U math:negation ?_b12 .
1747
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
1748
+ # (?_b13 7) math:remainder ?V .
1749
+ # (11 ?R) math:product ?_b14 .
1750
+ # (22 ?V) math:product ?_b15 .
1751
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
1752
+ # (?_b16 451) math:integerQuotient ?W .
1753
+ # (7 ?W) math:product ?_b17 .
1754
+ # ?_b17 math:negation ?_b18 .
1755
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
1756
+ # (?_b19 31) math:integerQuotient ?X .
1757
+ # (?_b19 31) math:remainder ?Z .
1758
+ # (?Z 1) math:sum ?DAY .
1759
+ # } => {
1760
+ # (?DAY ?X) :easterFor ?Y .
1761
+ # } .
1762
+ # with substitution (on rule variables):
1763
+ # ?DAY = 13
1764
+ # ?H = 36
1765
+ # ?J = 3
1766
+ # ?K = 20
1767
+ # ?M = 5
1768
+ # ?N = 0
1769
+ # ?P = 1
1770
+ # ?Q = 6
1771
+ # ?R = 21
1772
+ # ?S = 9
1773
+ # ?U = 0
1774
+ # ?V = 1
1775
+ # ?W = 0
1776
+ # ?X = 4
1777
+ # ?Y = 2036
1778
+ # ?Z = 12
1779
+ # ?_b1 = 28
1780
+ # ?_b10 = 18
1781
+ # ?_b11 = -21
1782
+ # ?_b12 = 0
1783
+ # ?_b13 = 29
1784
+ # ?_b14 = 231
1785
+ # ?_b15 = 22
1786
+ # ?_b16 = 256
1787
+ # ?_b17 = 0
1788
+ # ?_b18 = 0
1789
+ # ?_b19 = 136
1790
+ # ?_b2 = 19
1791
+ # ?_b3 = 20
1792
+ # ?_b4 = 57
1793
+ # ?_b5 = 77
1794
+ # ?_b6 = 72
1795
+ # ?_b7 = 66
1796
+ # ?_b8 = 81
1797
+ # ?_b9 = 0
1798
+ # Therefore the derived triple above is entailed by the rules and facts.
1799
+ # ----------------------------------------------------------------------
1800
+
1801
+ (13 4) :easterFor 2036 .
1802
+
1803
+ # ----------------------------------------------------------------------
1804
+ # Proof for derived triple:
1805
+ # (25 3) :easterFor 2035 .
1806
+ # It holds because the following instance of the rule body is provable:
1807
+ # 2035 a :Year .
1808
+ # (2035 19) math:remainder 2 .
1809
+ # (2035 100) math:integerQuotient 20 .
1810
+ # (2035 100) math:remainder 35 .
1811
+ # (20 4) math:integerQuotient 5 .
1812
+ # (20 4) math:remainder 0 .
1813
+ # (20 8) math:sum 28 .
1814
+ # (28 25) math:integerQuotient 1 .
1815
+ # (20 1) math:difference 19 .
1816
+ # (19 1) math:sum 20 .
1817
+ # (20 3) math:integerQuotient 6 .
1818
+ # (19 2) math:product 38 .
1819
+ # (38 20) math:sum 58 .
1820
+ # (58 5) math:difference 53 .
1821
+ # (53 6) math:difference 47 .
1822
+ # (47 15) math:sum 62 .
1823
+ # (62 30) math:remainder 2 .
1824
+ # (35 4) math:integerQuotient 8 .
1825
+ # (35 4) math:remainder 3 .
1826
+ # (2 0) math:product 0 .
1827
+ # (2 8) math:product 16 .
1828
+ # 2 math:negation -2 .
1829
+ # 3 math:negation -3 .
1830
+ # (32 0 16 -2 -3) math:sum 43 .
1831
+ # (43 7) math:remainder 1 .
1832
+ # (11 2) math:product 22 .
1833
+ # (22 1) math:product 22 .
1834
+ # (2 22 22) math:sum 46 .
1835
+ # (46 451) math:integerQuotient 0 .
1836
+ # (7 0) math:product 0 .
1837
+ # 0 math:negation 0 .
1838
+ # (2 1 0 114) math:sum 117 .
1839
+ # (117 31) math:integerQuotient 3 .
1840
+ # (117 31) math:remainder 24 .
1841
+ # (24 1) math:sum 25 .
1842
+ # via the schematic forward rule:
1843
+ # {
1844
+ # ?Y a :Year .
1845
+ # (?Y 19) math:remainder ?J .
1846
+ # (?Y 100) math:integerQuotient ?K .
1847
+ # (?Y 100) math:remainder ?H .
1848
+ # (?K 4) math:integerQuotient ?M .
1849
+ # (?K 4) math:remainder ?N .
1850
+ # (?K 8) math:sum ?_b1 .
1851
+ # (?_b1 25) math:integerQuotient ?P .
1852
+ # (?K ?P) math:difference ?_b2 .
1853
+ # (?_b2 1) math:sum ?_b3 .
1854
+ # (?_b3 3) math:integerQuotient ?Q .
1855
+ # (19 ?J) math:product ?_b4 .
1856
+ # (?_b4 ?K) math:sum ?_b5 .
1857
+ # (?_b5 ?M) math:difference ?_b6 .
1858
+ # (?_b6 ?Q) math:difference ?_b7 .
1859
+ # (?_b7 15) math:sum ?_b8 .
1860
+ # (?_b8 30) math:remainder ?R .
1861
+ # (?H 4) math:integerQuotient ?S .
1862
+ # (?H 4) math:remainder ?U .
1863
+ # (2 ?N) math:product ?_b9 .
1864
+ # (2 ?S) math:product ?_b10 .
1865
+ # ?R math:negation ?_b11 .
1866
+ # ?U math:negation ?_b12 .
1867
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
1868
+ # (?_b13 7) math:remainder ?V .
1869
+ # (11 ?R) math:product ?_b14 .
1870
+ # (22 ?V) math:product ?_b15 .
1871
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
1872
+ # (?_b16 451) math:integerQuotient ?W .
1873
+ # (7 ?W) math:product ?_b17 .
1874
+ # ?_b17 math:negation ?_b18 .
1875
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
1876
+ # (?_b19 31) math:integerQuotient ?X .
1877
+ # (?_b19 31) math:remainder ?Z .
1878
+ # (?Z 1) math:sum ?DAY .
1879
+ # } => {
1880
+ # (?DAY ?X) :easterFor ?Y .
1881
+ # } .
1882
+ # with substitution (on rule variables):
1883
+ # ?DAY = 25
1884
+ # ?H = 35
1885
+ # ?J = 2
1886
+ # ?K = 20
1887
+ # ?M = 5
1888
+ # ?N = 0
1889
+ # ?P = 1
1890
+ # ?Q = 6
1891
+ # ?R = 2
1892
+ # ?S = 8
1893
+ # ?U = 3
1894
+ # ?V = 1
1895
+ # ?W = 0
1896
+ # ?X = 3
1897
+ # ?Y = 2035
1898
+ # ?Z = 24
1899
+ # ?_b1 = 28
1900
+ # ?_b10 = 16
1901
+ # ?_b11 = -2
1902
+ # ?_b12 = -3
1903
+ # ?_b13 = 43
1904
+ # ?_b14 = 22
1905
+ # ?_b15 = 22
1906
+ # ?_b16 = 46
1907
+ # ?_b17 = 0
1908
+ # ?_b18 = 0
1909
+ # ?_b19 = 117
1910
+ # ?_b2 = 19
1911
+ # ?_b3 = 20
1912
+ # ?_b4 = 38
1913
+ # ?_b5 = 58
1914
+ # ?_b6 = 53
1915
+ # ?_b7 = 47
1916
+ # ?_b8 = 62
1917
+ # ?_b9 = 0
1918
+ # Therefore the derived triple above is entailed by the rules and facts.
1919
+ # ----------------------------------------------------------------------
1920
+
1921
+ (25 3) :easterFor 2035 .
1922
+
1923
+ # ----------------------------------------------------------------------
1924
+ # Proof for derived triple:
1925
+ # (9 4) :easterFor 2034 .
1926
+ # It holds because the following instance of the rule body is provable:
1927
+ # 2034 a :Year .
1928
+ # (2034 19) math:remainder 1 .
1929
+ # (2034 100) math:integerQuotient 20 .
1930
+ # (2034 100) math:remainder 34 .
1931
+ # (20 4) math:integerQuotient 5 .
1932
+ # (20 4) math:remainder 0 .
1933
+ # (20 8) math:sum 28 .
1934
+ # (28 25) math:integerQuotient 1 .
1935
+ # (20 1) math:difference 19 .
1936
+ # (19 1) math:sum 20 .
1937
+ # (20 3) math:integerQuotient 6 .
1938
+ # (19 1) math:product 19 .
1939
+ # (19 20) math:sum 39 .
1940
+ # (39 5) math:difference 34 .
1941
+ # (34 6) math:difference 28 .
1942
+ # (28 15) math:sum 43 .
1943
+ # (43 30) math:remainder 13 .
1944
+ # (34 4) math:integerQuotient 8 .
1945
+ # (34 4) math:remainder 2 .
1946
+ # (2 0) math:product 0 .
1947
+ # (2 8) math:product 16 .
1948
+ # 13 math:negation -13 .
1949
+ # 2 math:negation -2 .
1950
+ # (32 0 16 -13 -2) math:sum 33 .
1951
+ # (33 7) math:remainder 5 .
1952
+ # (11 13) math:product 143 .
1953
+ # (22 5) math:product 110 .
1954
+ # (1 143 110) math:sum 254 .
1955
+ # (254 451) math:integerQuotient 0 .
1956
+ # (7 0) math:product 0 .
1957
+ # 0 math:negation 0 .
1958
+ # (13 5 0 114) math:sum 132 .
1959
+ # (132 31) math:integerQuotient 4 .
1960
+ # (132 31) math:remainder 8 .
1961
+ # (8 1) math:sum 9 .
1962
+ # via the schematic forward rule:
1963
+ # {
1964
+ # ?Y a :Year .
1965
+ # (?Y 19) math:remainder ?J .
1966
+ # (?Y 100) math:integerQuotient ?K .
1967
+ # (?Y 100) math:remainder ?H .
1968
+ # (?K 4) math:integerQuotient ?M .
1969
+ # (?K 4) math:remainder ?N .
1970
+ # (?K 8) math:sum ?_b1 .
1971
+ # (?_b1 25) math:integerQuotient ?P .
1972
+ # (?K ?P) math:difference ?_b2 .
1973
+ # (?_b2 1) math:sum ?_b3 .
1974
+ # (?_b3 3) math:integerQuotient ?Q .
1975
+ # (19 ?J) math:product ?_b4 .
1976
+ # (?_b4 ?K) math:sum ?_b5 .
1977
+ # (?_b5 ?M) math:difference ?_b6 .
1978
+ # (?_b6 ?Q) math:difference ?_b7 .
1979
+ # (?_b7 15) math:sum ?_b8 .
1980
+ # (?_b8 30) math:remainder ?R .
1981
+ # (?H 4) math:integerQuotient ?S .
1982
+ # (?H 4) math:remainder ?U .
1983
+ # (2 ?N) math:product ?_b9 .
1984
+ # (2 ?S) math:product ?_b10 .
1985
+ # ?R math:negation ?_b11 .
1986
+ # ?U math:negation ?_b12 .
1987
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
1988
+ # (?_b13 7) math:remainder ?V .
1989
+ # (11 ?R) math:product ?_b14 .
1990
+ # (22 ?V) math:product ?_b15 .
1991
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
1992
+ # (?_b16 451) math:integerQuotient ?W .
1993
+ # (7 ?W) math:product ?_b17 .
1994
+ # ?_b17 math:negation ?_b18 .
1995
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
1996
+ # (?_b19 31) math:integerQuotient ?X .
1997
+ # (?_b19 31) math:remainder ?Z .
1998
+ # (?Z 1) math:sum ?DAY .
1999
+ # } => {
2000
+ # (?DAY ?X) :easterFor ?Y .
2001
+ # } .
2002
+ # with substitution (on rule variables):
2003
+ # ?DAY = 9
2004
+ # ?H = 34
2005
+ # ?J = 1
2006
+ # ?K = 20
2007
+ # ?M = 5
2008
+ # ?N = 0
2009
+ # ?P = 1
2010
+ # ?Q = 6
2011
+ # ?R = 13
2012
+ # ?S = 8
2013
+ # ?U = 2
2014
+ # ?V = 5
2015
+ # ?W = 0
2016
+ # ?X = 4
2017
+ # ?Y = 2034
2018
+ # ?Z = 8
2019
+ # ?_b1 = 28
2020
+ # ?_b10 = 16
2021
+ # ?_b11 = -13
2022
+ # ?_b12 = -2
2023
+ # ?_b13 = 33
2024
+ # ?_b14 = 143
2025
+ # ?_b15 = 110
2026
+ # ?_b16 = 254
2027
+ # ?_b17 = 0
2028
+ # ?_b18 = 0
2029
+ # ?_b19 = 132
2030
+ # ?_b2 = 19
2031
+ # ?_b3 = 20
2032
+ # ?_b4 = 19
2033
+ # ?_b5 = 39
2034
+ # ?_b6 = 34
2035
+ # ?_b7 = 28
2036
+ # ?_b8 = 43
2037
+ # ?_b9 = 0
2038
+ # Therefore the derived triple above is entailed by the rules and facts.
2039
+ # ----------------------------------------------------------------------
2040
+
2041
+ (9 4) :easterFor 2034 .
2042
+
2043
+ # ----------------------------------------------------------------------
2044
+ # Proof for derived triple:
2045
+ # (17 4) :easterFor 2033 .
2046
+ # It holds because the following instance of the rule body is provable:
2047
+ # 2033 a :Year .
2048
+ # (2033 19) math:remainder 0 .
2049
+ # (2033 100) math:integerQuotient 20 .
2050
+ # (2033 100) math:remainder 33 .
2051
+ # (20 4) math:integerQuotient 5 .
2052
+ # (20 4) math:remainder 0 .
2053
+ # (20 8) math:sum 28 .
2054
+ # (28 25) math:integerQuotient 1 .
2055
+ # (20 1) math:difference 19 .
2056
+ # (19 1) math:sum 20 .
2057
+ # (20 3) math:integerQuotient 6 .
2058
+ # (19 0) math:product 0 .
2059
+ # (0 20) math:sum 20 .
2060
+ # (20 5) math:difference 15 .
2061
+ # (15 6) math:difference 9 .
2062
+ # (9 15) math:sum 24 .
2063
+ # (24 30) math:remainder 24 .
2064
+ # (33 4) math:integerQuotient 8 .
2065
+ # (33 4) math:remainder 1 .
2066
+ # (2 0) math:product 0 .
2067
+ # (2 8) math:product 16 .
2068
+ # 24 math:negation -24 .
2069
+ # 1 math:negation -1 .
2070
+ # (32 0 16 -24 -1) math:sum 23 .
2071
+ # (23 7) math:remainder 2 .
2072
+ # (11 24) math:product 264 .
2073
+ # (22 2) math:product 44 .
2074
+ # (0 264 44) math:sum 308 .
2075
+ # (308 451) math:integerQuotient 0 .
2076
+ # (7 0) math:product 0 .
2077
+ # 0 math:negation 0 .
2078
+ # (24 2 0 114) math:sum 140 .
2079
+ # (140 31) math:integerQuotient 4 .
2080
+ # (140 31) math:remainder 16 .
2081
+ # (16 1) math:sum 17 .
2082
+ # via the schematic forward rule:
2083
+ # {
2084
+ # ?Y a :Year .
2085
+ # (?Y 19) math:remainder ?J .
2086
+ # (?Y 100) math:integerQuotient ?K .
2087
+ # (?Y 100) math:remainder ?H .
2088
+ # (?K 4) math:integerQuotient ?M .
2089
+ # (?K 4) math:remainder ?N .
2090
+ # (?K 8) math:sum ?_b1 .
2091
+ # (?_b1 25) math:integerQuotient ?P .
2092
+ # (?K ?P) math:difference ?_b2 .
2093
+ # (?_b2 1) math:sum ?_b3 .
2094
+ # (?_b3 3) math:integerQuotient ?Q .
2095
+ # (19 ?J) math:product ?_b4 .
2096
+ # (?_b4 ?K) math:sum ?_b5 .
2097
+ # (?_b5 ?M) math:difference ?_b6 .
2098
+ # (?_b6 ?Q) math:difference ?_b7 .
2099
+ # (?_b7 15) math:sum ?_b8 .
2100
+ # (?_b8 30) math:remainder ?R .
2101
+ # (?H 4) math:integerQuotient ?S .
2102
+ # (?H 4) math:remainder ?U .
2103
+ # (2 ?N) math:product ?_b9 .
2104
+ # (2 ?S) math:product ?_b10 .
2105
+ # ?R math:negation ?_b11 .
2106
+ # ?U math:negation ?_b12 .
2107
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
2108
+ # (?_b13 7) math:remainder ?V .
2109
+ # (11 ?R) math:product ?_b14 .
2110
+ # (22 ?V) math:product ?_b15 .
2111
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
2112
+ # (?_b16 451) math:integerQuotient ?W .
2113
+ # (7 ?W) math:product ?_b17 .
2114
+ # ?_b17 math:negation ?_b18 .
2115
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
2116
+ # (?_b19 31) math:integerQuotient ?X .
2117
+ # (?_b19 31) math:remainder ?Z .
2118
+ # (?Z 1) math:sum ?DAY .
2119
+ # } => {
2120
+ # (?DAY ?X) :easterFor ?Y .
2121
+ # } .
2122
+ # with substitution (on rule variables):
2123
+ # ?DAY = 17
2124
+ # ?H = 33
2125
+ # ?J = 0
2126
+ # ?K = 20
2127
+ # ?M = 5
2128
+ # ?N = 0
2129
+ # ?P = 1
2130
+ # ?Q = 6
2131
+ # ?R = 24
2132
+ # ?S = 8
2133
+ # ?U = 1
2134
+ # ?V = 2
2135
+ # ?W = 0
2136
+ # ?X = 4
2137
+ # ?Y = 2033
2138
+ # ?Z = 16
2139
+ # ?_b1 = 28
2140
+ # ?_b10 = 16
2141
+ # ?_b11 = -24
2142
+ # ?_b12 = -1
2143
+ # ?_b13 = 23
2144
+ # ?_b14 = 264
2145
+ # ?_b15 = 44
2146
+ # ?_b16 = 308
2147
+ # ?_b17 = 0
2148
+ # ?_b18 = 0
2149
+ # ?_b19 = 140
2150
+ # ?_b2 = 19
2151
+ # ?_b3 = 20
2152
+ # ?_b4 = 0
2153
+ # ?_b5 = 20
2154
+ # ?_b6 = 15
2155
+ # ?_b7 = 9
2156
+ # ?_b8 = 24
2157
+ # ?_b9 = 0
2158
+ # Therefore the derived triple above is entailed by the rules and facts.
2159
+ # ----------------------------------------------------------------------
2160
+
2161
+ (17 4) :easterFor 2033 .
2162
+
2163
+ # ----------------------------------------------------------------------
2164
+ # Proof for derived triple:
2165
+ # (28 3) :easterFor 2032 .
2166
+ # It holds because the following instance of the rule body is provable:
2167
+ # 2032 a :Year .
2168
+ # (2032 19) math:remainder 18 .
2169
+ # (2032 100) math:integerQuotient 20 .
2170
+ # (2032 100) math:remainder 32 .
2171
+ # (20 4) math:integerQuotient 5 .
2172
+ # (20 4) math:remainder 0 .
2173
+ # (20 8) math:sum 28 .
2174
+ # (28 25) math:integerQuotient 1 .
2175
+ # (20 1) math:difference 19 .
2176
+ # (19 1) math:sum 20 .
2177
+ # (20 3) math:integerQuotient 6 .
2178
+ # (19 18) math:product 342 .
2179
+ # (342 20) math:sum 362 .
2180
+ # (362 5) math:difference 357 .
2181
+ # (357 6) math:difference 351 .
2182
+ # (351 15) math:sum 366 .
2183
+ # (366 30) math:remainder 6 .
2184
+ # (32 4) math:integerQuotient 8 .
2185
+ # (32 4) math:remainder 0 .
2186
+ # (2 0) math:product 0 .
2187
+ # (2 8) math:product 16 .
2188
+ # 6 math:negation -6 .
2189
+ # 0 math:negation 0 .
2190
+ # (32 0 16 -6 0) math:sum 42 .
2191
+ # (42 7) math:remainder 0 .
2192
+ # (11 6) math:product 66 .
2193
+ # (22 0) math:product 0 .
2194
+ # (18 66 0) math:sum 84 .
2195
+ # (84 451) math:integerQuotient 0 .
2196
+ # (7 0) math:product 0 .
2197
+ # 0 math:negation 0 .
2198
+ # (6 0 0 114) math:sum 120 .
2199
+ # (120 31) math:integerQuotient 3 .
2200
+ # (120 31) math:remainder 27 .
2201
+ # (27 1) math:sum 28 .
2202
+ # via the schematic forward rule:
2203
+ # {
2204
+ # ?Y a :Year .
2205
+ # (?Y 19) math:remainder ?J .
2206
+ # (?Y 100) math:integerQuotient ?K .
2207
+ # (?Y 100) math:remainder ?H .
2208
+ # (?K 4) math:integerQuotient ?M .
2209
+ # (?K 4) math:remainder ?N .
2210
+ # (?K 8) math:sum ?_b1 .
2211
+ # (?_b1 25) math:integerQuotient ?P .
2212
+ # (?K ?P) math:difference ?_b2 .
2213
+ # (?_b2 1) math:sum ?_b3 .
2214
+ # (?_b3 3) math:integerQuotient ?Q .
2215
+ # (19 ?J) math:product ?_b4 .
2216
+ # (?_b4 ?K) math:sum ?_b5 .
2217
+ # (?_b5 ?M) math:difference ?_b6 .
2218
+ # (?_b6 ?Q) math:difference ?_b7 .
2219
+ # (?_b7 15) math:sum ?_b8 .
2220
+ # (?_b8 30) math:remainder ?R .
2221
+ # (?H 4) math:integerQuotient ?S .
2222
+ # (?H 4) math:remainder ?U .
2223
+ # (2 ?N) math:product ?_b9 .
2224
+ # (2 ?S) math:product ?_b10 .
2225
+ # ?R math:negation ?_b11 .
2226
+ # ?U math:negation ?_b12 .
2227
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
2228
+ # (?_b13 7) math:remainder ?V .
2229
+ # (11 ?R) math:product ?_b14 .
2230
+ # (22 ?V) math:product ?_b15 .
2231
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
2232
+ # (?_b16 451) math:integerQuotient ?W .
2233
+ # (7 ?W) math:product ?_b17 .
2234
+ # ?_b17 math:negation ?_b18 .
2235
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
2236
+ # (?_b19 31) math:integerQuotient ?X .
2237
+ # (?_b19 31) math:remainder ?Z .
2238
+ # (?Z 1) math:sum ?DAY .
2239
+ # } => {
2240
+ # (?DAY ?X) :easterFor ?Y .
2241
+ # } .
2242
+ # with substitution (on rule variables):
2243
+ # ?DAY = 28
2244
+ # ?H = 32
2245
+ # ?J = 18
2246
+ # ?K = 20
2247
+ # ?M = 5
2248
+ # ?N = 0
2249
+ # ?P = 1
2250
+ # ?Q = 6
2251
+ # ?R = 6
2252
+ # ?S = 8
2253
+ # ?U = 0
2254
+ # ?V = 0
2255
+ # ?W = 0
2256
+ # ?X = 3
2257
+ # ?Y = 2032
2258
+ # ?Z = 27
2259
+ # ?_b1 = 28
2260
+ # ?_b10 = 16
2261
+ # ?_b11 = -6
2262
+ # ?_b12 = 0
2263
+ # ?_b13 = 42
2264
+ # ?_b14 = 66
2265
+ # ?_b15 = 0
2266
+ # ?_b16 = 84
2267
+ # ?_b17 = 0
2268
+ # ?_b18 = 0
2269
+ # ?_b19 = 120
2270
+ # ?_b2 = 19
2271
+ # ?_b3 = 20
2272
+ # ?_b4 = 342
2273
+ # ?_b5 = 362
2274
+ # ?_b6 = 357
2275
+ # ?_b7 = 351
2276
+ # ?_b8 = 366
2277
+ # ?_b9 = 0
2278
+ # Therefore the derived triple above is entailed by the rules and facts.
2279
+ # ----------------------------------------------------------------------
2280
+
2281
+ (28 3) :easterFor 2032 .
2282
+
2283
+ # ----------------------------------------------------------------------
2284
+ # Proof for derived triple:
2285
+ # (13 4) :easterFor 2031 .
2286
+ # It holds because the following instance of the rule body is provable:
2287
+ # 2031 a :Year .
2288
+ # (2031 19) math:remainder 17 .
2289
+ # (2031 100) math:integerQuotient 20 .
2290
+ # (2031 100) math:remainder 31 .
2291
+ # (20 4) math:integerQuotient 5 .
2292
+ # (20 4) math:remainder 0 .
2293
+ # (20 8) math:sum 28 .
2294
+ # (28 25) math:integerQuotient 1 .
2295
+ # (20 1) math:difference 19 .
2296
+ # (19 1) math:sum 20 .
2297
+ # (20 3) math:integerQuotient 6 .
2298
+ # (19 17) math:product 323 .
2299
+ # (323 20) math:sum 343 .
2300
+ # (343 5) math:difference 338 .
2301
+ # (338 6) math:difference 332 .
2302
+ # (332 15) math:sum 347 .
2303
+ # (347 30) math:remainder 17 .
2304
+ # (31 4) math:integerQuotient 7 .
2305
+ # (31 4) math:remainder 3 .
2306
+ # (2 0) math:product 0 .
2307
+ # (2 7) math:product 14 .
2308
+ # 17 math:negation -17 .
2309
+ # 3 math:negation -3 .
2310
+ # (32 0 14 -17 -3) math:sum 26 .
2311
+ # (26 7) math:remainder 5 .
2312
+ # (11 17) math:product 187 .
2313
+ # (22 5) math:product 110 .
2314
+ # (17 187 110) math:sum 314 .
2315
+ # (314 451) math:integerQuotient 0 .
2316
+ # (7 0) math:product 0 .
2317
+ # 0 math:negation 0 .
2318
+ # (17 5 0 114) math:sum 136 .
2319
+ # (136 31) math:integerQuotient 4 .
2320
+ # (136 31) math:remainder 12 .
2321
+ # (12 1) math:sum 13 .
2322
+ # via the schematic forward rule:
2323
+ # {
2324
+ # ?Y a :Year .
2325
+ # (?Y 19) math:remainder ?J .
2326
+ # (?Y 100) math:integerQuotient ?K .
2327
+ # (?Y 100) math:remainder ?H .
2328
+ # (?K 4) math:integerQuotient ?M .
2329
+ # (?K 4) math:remainder ?N .
2330
+ # (?K 8) math:sum ?_b1 .
2331
+ # (?_b1 25) math:integerQuotient ?P .
2332
+ # (?K ?P) math:difference ?_b2 .
2333
+ # (?_b2 1) math:sum ?_b3 .
2334
+ # (?_b3 3) math:integerQuotient ?Q .
2335
+ # (19 ?J) math:product ?_b4 .
2336
+ # (?_b4 ?K) math:sum ?_b5 .
2337
+ # (?_b5 ?M) math:difference ?_b6 .
2338
+ # (?_b6 ?Q) math:difference ?_b7 .
2339
+ # (?_b7 15) math:sum ?_b8 .
2340
+ # (?_b8 30) math:remainder ?R .
2341
+ # (?H 4) math:integerQuotient ?S .
2342
+ # (?H 4) math:remainder ?U .
2343
+ # (2 ?N) math:product ?_b9 .
2344
+ # (2 ?S) math:product ?_b10 .
2345
+ # ?R math:negation ?_b11 .
2346
+ # ?U math:negation ?_b12 .
2347
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
2348
+ # (?_b13 7) math:remainder ?V .
2349
+ # (11 ?R) math:product ?_b14 .
2350
+ # (22 ?V) math:product ?_b15 .
2351
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
2352
+ # (?_b16 451) math:integerQuotient ?W .
2353
+ # (7 ?W) math:product ?_b17 .
2354
+ # ?_b17 math:negation ?_b18 .
2355
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
2356
+ # (?_b19 31) math:integerQuotient ?X .
2357
+ # (?_b19 31) math:remainder ?Z .
2358
+ # (?Z 1) math:sum ?DAY .
2359
+ # } => {
2360
+ # (?DAY ?X) :easterFor ?Y .
2361
+ # } .
2362
+ # with substitution (on rule variables):
2363
+ # ?DAY = 13
2364
+ # ?H = 31
2365
+ # ?J = 17
2366
+ # ?K = 20
2367
+ # ?M = 5
2368
+ # ?N = 0
2369
+ # ?P = 1
2370
+ # ?Q = 6
2371
+ # ?R = 17
2372
+ # ?S = 7
2373
+ # ?U = 3
2374
+ # ?V = 5
2375
+ # ?W = 0
2376
+ # ?X = 4
2377
+ # ?Y = 2031
2378
+ # ?Z = 12
2379
+ # ?_b1 = 28
2380
+ # ?_b10 = 14
2381
+ # ?_b11 = -17
2382
+ # ?_b12 = -3
2383
+ # ?_b13 = 26
2384
+ # ?_b14 = 187
2385
+ # ?_b15 = 110
2386
+ # ?_b16 = 314
2387
+ # ?_b17 = 0
2388
+ # ?_b18 = 0
2389
+ # ?_b19 = 136
2390
+ # ?_b2 = 19
2391
+ # ?_b3 = 20
2392
+ # ?_b4 = 323
2393
+ # ?_b5 = 343
2394
+ # ?_b6 = 338
2395
+ # ?_b7 = 332
2396
+ # ?_b8 = 347
2397
+ # ?_b9 = 0
2398
+ # Therefore the derived triple above is entailed by the rules and facts.
2399
+ # ----------------------------------------------------------------------
2400
+
2401
+ (13 4) :easterFor 2031 .
2402
+
2403
+ # ----------------------------------------------------------------------
2404
+ # Proof for derived triple:
2405
+ # (21 4) :easterFor 2030 .
2406
+ # It holds because the following instance of the rule body is provable:
2407
+ # 2030 a :Year .
2408
+ # (2030 19) math:remainder 16 .
2409
+ # (2030 100) math:integerQuotient 20 .
2410
+ # (2030 100) math:remainder 30 .
2411
+ # (20 4) math:integerQuotient 5 .
2412
+ # (20 4) math:remainder 0 .
2413
+ # (20 8) math:sum 28 .
2414
+ # (28 25) math:integerQuotient 1 .
2415
+ # (20 1) math:difference 19 .
2416
+ # (19 1) math:sum 20 .
2417
+ # (20 3) math:integerQuotient 6 .
2418
+ # (19 16) math:product 304 .
2419
+ # (304 20) math:sum 324 .
2420
+ # (324 5) math:difference 319 .
2421
+ # (319 6) math:difference 313 .
2422
+ # (313 15) math:sum 328 .
2423
+ # (328 30) math:remainder 28 .
2424
+ # (30 4) math:integerQuotient 7 .
2425
+ # (30 4) math:remainder 2 .
2426
+ # (2 0) math:product 0 .
2427
+ # (2 7) math:product 14 .
2428
+ # 28 math:negation -28 .
2429
+ # 2 math:negation -2 .
2430
+ # (32 0 14 -28 -2) math:sum 16 .
2431
+ # (16 7) math:remainder 2 .
2432
+ # (11 28) math:product 308 .
2433
+ # (22 2) math:product 44 .
2434
+ # (16 308 44) math:sum 368 .
2435
+ # (368 451) math:integerQuotient 0 .
2436
+ # (7 0) math:product 0 .
2437
+ # 0 math:negation 0 .
2438
+ # (28 2 0 114) math:sum 144 .
2439
+ # (144 31) math:integerQuotient 4 .
2440
+ # (144 31) math:remainder 20 .
2441
+ # (20 1) math:sum 21 .
2442
+ # via the schematic forward rule:
2443
+ # {
2444
+ # ?Y a :Year .
2445
+ # (?Y 19) math:remainder ?J .
2446
+ # (?Y 100) math:integerQuotient ?K .
2447
+ # (?Y 100) math:remainder ?H .
2448
+ # (?K 4) math:integerQuotient ?M .
2449
+ # (?K 4) math:remainder ?N .
2450
+ # (?K 8) math:sum ?_b1 .
2451
+ # (?_b1 25) math:integerQuotient ?P .
2452
+ # (?K ?P) math:difference ?_b2 .
2453
+ # (?_b2 1) math:sum ?_b3 .
2454
+ # (?_b3 3) math:integerQuotient ?Q .
2455
+ # (19 ?J) math:product ?_b4 .
2456
+ # (?_b4 ?K) math:sum ?_b5 .
2457
+ # (?_b5 ?M) math:difference ?_b6 .
2458
+ # (?_b6 ?Q) math:difference ?_b7 .
2459
+ # (?_b7 15) math:sum ?_b8 .
2460
+ # (?_b8 30) math:remainder ?R .
2461
+ # (?H 4) math:integerQuotient ?S .
2462
+ # (?H 4) math:remainder ?U .
2463
+ # (2 ?N) math:product ?_b9 .
2464
+ # (2 ?S) math:product ?_b10 .
2465
+ # ?R math:negation ?_b11 .
2466
+ # ?U math:negation ?_b12 .
2467
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
2468
+ # (?_b13 7) math:remainder ?V .
2469
+ # (11 ?R) math:product ?_b14 .
2470
+ # (22 ?V) math:product ?_b15 .
2471
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
2472
+ # (?_b16 451) math:integerQuotient ?W .
2473
+ # (7 ?W) math:product ?_b17 .
2474
+ # ?_b17 math:negation ?_b18 .
2475
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
2476
+ # (?_b19 31) math:integerQuotient ?X .
2477
+ # (?_b19 31) math:remainder ?Z .
2478
+ # (?Z 1) math:sum ?DAY .
2479
+ # } => {
2480
+ # (?DAY ?X) :easterFor ?Y .
2481
+ # } .
2482
+ # with substitution (on rule variables):
2483
+ # ?DAY = 21
2484
+ # ?H = 30
2485
+ # ?J = 16
2486
+ # ?K = 20
2487
+ # ?M = 5
2488
+ # ?N = 0
2489
+ # ?P = 1
2490
+ # ?Q = 6
2491
+ # ?R = 28
2492
+ # ?S = 7
2493
+ # ?U = 2
2494
+ # ?V = 2
2495
+ # ?W = 0
2496
+ # ?X = 4
2497
+ # ?Y = 2030
2498
+ # ?Z = 20
2499
+ # ?_b1 = 28
2500
+ # ?_b10 = 14
2501
+ # ?_b11 = -28
2502
+ # ?_b12 = -2
2503
+ # ?_b13 = 16
2504
+ # ?_b14 = 308
2505
+ # ?_b15 = 44
2506
+ # ?_b16 = 368
2507
+ # ?_b17 = 0
2508
+ # ?_b18 = 0
2509
+ # ?_b19 = 144
2510
+ # ?_b2 = 19
2511
+ # ?_b3 = 20
2512
+ # ?_b4 = 304
2513
+ # ?_b5 = 324
2514
+ # ?_b6 = 319
2515
+ # ?_b7 = 313
2516
+ # ?_b8 = 328
2517
+ # ?_b9 = 0
2518
+ # Therefore the derived triple above is entailed by the rules and facts.
2519
+ # ----------------------------------------------------------------------
2520
+
2521
+ (21 4) :easterFor 2030 .
2522
+
2523
+ # ----------------------------------------------------------------------
2524
+ # Proof for derived triple:
2525
+ # (1 4) :easterFor 2029 .
2526
+ # It holds because the following instance of the rule body is provable:
2527
+ # 2029 a :Year .
2528
+ # (2029 19) math:remainder 15 .
2529
+ # (2029 100) math:integerQuotient 20 .
2530
+ # (2029 100) math:remainder 29 .
2531
+ # (20 4) math:integerQuotient 5 .
2532
+ # (20 4) math:remainder 0 .
2533
+ # (20 8) math:sum 28 .
2534
+ # (28 25) math:integerQuotient 1 .
2535
+ # (20 1) math:difference 19 .
2536
+ # (19 1) math:sum 20 .
2537
+ # (20 3) math:integerQuotient 6 .
2538
+ # (19 15) math:product 285 .
2539
+ # (285 20) math:sum 305 .
2540
+ # (305 5) math:difference 300 .
2541
+ # (300 6) math:difference 294 .
2542
+ # (294 15) math:sum 309 .
2543
+ # (309 30) math:remainder 9 .
2544
+ # (29 4) math:integerQuotient 7 .
2545
+ # (29 4) math:remainder 1 .
2546
+ # (2 0) math:product 0 .
2547
+ # (2 7) math:product 14 .
2548
+ # 9 math:negation -9 .
2549
+ # 1 math:negation -1 .
2550
+ # (32 0 14 -9 -1) math:sum 36 .
2551
+ # (36 7) math:remainder 1 .
2552
+ # (11 9) math:product 99 .
2553
+ # (22 1) math:product 22 .
2554
+ # (15 99 22) math:sum 136 .
2555
+ # (136 451) math:integerQuotient 0 .
2556
+ # (7 0) math:product 0 .
2557
+ # 0 math:negation 0 .
2558
+ # (9 1 0 114) math:sum 124 .
2559
+ # (124 31) math:integerQuotient 4 .
2560
+ # (124 31) math:remainder 0 .
2561
+ # (0 1) math:sum 1 .
2562
+ # via the schematic forward rule:
2563
+ # {
2564
+ # ?Y a :Year .
2565
+ # (?Y 19) math:remainder ?J .
2566
+ # (?Y 100) math:integerQuotient ?K .
2567
+ # (?Y 100) math:remainder ?H .
2568
+ # (?K 4) math:integerQuotient ?M .
2569
+ # (?K 4) math:remainder ?N .
2570
+ # (?K 8) math:sum ?_b1 .
2571
+ # (?_b1 25) math:integerQuotient ?P .
2572
+ # (?K ?P) math:difference ?_b2 .
2573
+ # (?_b2 1) math:sum ?_b3 .
2574
+ # (?_b3 3) math:integerQuotient ?Q .
2575
+ # (19 ?J) math:product ?_b4 .
2576
+ # (?_b4 ?K) math:sum ?_b5 .
2577
+ # (?_b5 ?M) math:difference ?_b6 .
2578
+ # (?_b6 ?Q) math:difference ?_b7 .
2579
+ # (?_b7 15) math:sum ?_b8 .
2580
+ # (?_b8 30) math:remainder ?R .
2581
+ # (?H 4) math:integerQuotient ?S .
2582
+ # (?H 4) math:remainder ?U .
2583
+ # (2 ?N) math:product ?_b9 .
2584
+ # (2 ?S) math:product ?_b10 .
2585
+ # ?R math:negation ?_b11 .
2586
+ # ?U math:negation ?_b12 .
2587
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
2588
+ # (?_b13 7) math:remainder ?V .
2589
+ # (11 ?R) math:product ?_b14 .
2590
+ # (22 ?V) math:product ?_b15 .
2591
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
2592
+ # (?_b16 451) math:integerQuotient ?W .
2593
+ # (7 ?W) math:product ?_b17 .
2594
+ # ?_b17 math:negation ?_b18 .
2595
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
2596
+ # (?_b19 31) math:integerQuotient ?X .
2597
+ # (?_b19 31) math:remainder ?Z .
2598
+ # (?Z 1) math:sum ?DAY .
2599
+ # } => {
2600
+ # (?DAY ?X) :easterFor ?Y .
2601
+ # } .
2602
+ # with substitution (on rule variables):
2603
+ # ?DAY = 1
2604
+ # ?H = 29
2605
+ # ?J = 15
2606
+ # ?K = 20
2607
+ # ?M = 5
2608
+ # ?N = 0
2609
+ # ?P = 1
2610
+ # ?Q = 6
2611
+ # ?R = 9
2612
+ # ?S = 7
2613
+ # ?U = 1
2614
+ # ?V = 1
2615
+ # ?W = 0
2616
+ # ?X = 4
2617
+ # ?Y = 2029
2618
+ # ?Z = 0
2619
+ # ?_b1 = 28
2620
+ # ?_b10 = 14
2621
+ # ?_b11 = -9
2622
+ # ?_b12 = -1
2623
+ # ?_b13 = 36
2624
+ # ?_b14 = 99
2625
+ # ?_b15 = 22
2626
+ # ?_b16 = 136
2627
+ # ?_b17 = 0
2628
+ # ?_b18 = 0
2629
+ # ?_b19 = 124
2630
+ # ?_b2 = 19
2631
+ # ?_b3 = 20
2632
+ # ?_b4 = 285
2633
+ # ?_b5 = 305
2634
+ # ?_b6 = 300
2635
+ # ?_b7 = 294
2636
+ # ?_b8 = 309
2637
+ # ?_b9 = 0
2638
+ # Therefore the derived triple above is entailed by the rules and facts.
2639
+ # ----------------------------------------------------------------------
2640
+
2641
+ (1 4) :easterFor 2029 .
2642
+
2643
+ # ----------------------------------------------------------------------
2644
+ # Proof for derived triple:
2645
+ # (16 4) :easterFor 2028 .
2646
+ # It holds because the following instance of the rule body is provable:
2647
+ # 2028 a :Year .
2648
+ # (2028 19) math:remainder 14 .
2649
+ # (2028 100) math:integerQuotient 20 .
2650
+ # (2028 100) math:remainder 28 .
2651
+ # (20 4) math:integerQuotient 5 .
2652
+ # (20 4) math:remainder 0 .
2653
+ # (20 8) math:sum 28 .
2654
+ # (28 25) math:integerQuotient 1 .
2655
+ # (20 1) math:difference 19 .
2656
+ # (19 1) math:sum 20 .
2657
+ # (20 3) math:integerQuotient 6 .
2658
+ # (19 14) math:product 266 .
2659
+ # (266 20) math:sum 286 .
2660
+ # (286 5) math:difference 281 .
2661
+ # (281 6) math:difference 275 .
2662
+ # (275 15) math:sum 290 .
2663
+ # (290 30) math:remainder 20 .
2664
+ # (28 4) math:integerQuotient 7 .
2665
+ # (28 4) math:remainder 0 .
2666
+ # (2 0) math:product 0 .
2667
+ # (2 7) math:product 14 .
2668
+ # 20 math:negation -20 .
2669
+ # 0 math:negation 0 .
2670
+ # (32 0 14 -20 0) math:sum 26 .
2671
+ # (26 7) math:remainder 5 .
2672
+ # (11 20) math:product 220 .
2673
+ # (22 5) math:product 110 .
2674
+ # (14 220 110) math:sum 344 .
2675
+ # (344 451) math:integerQuotient 0 .
2676
+ # (7 0) math:product 0 .
2677
+ # 0 math:negation 0 .
2678
+ # (20 5 0 114) math:sum 139 .
2679
+ # (139 31) math:integerQuotient 4 .
2680
+ # (139 31) math:remainder 15 .
2681
+ # (15 1) math:sum 16 .
2682
+ # via the schematic forward rule:
2683
+ # {
2684
+ # ?Y a :Year .
2685
+ # (?Y 19) math:remainder ?J .
2686
+ # (?Y 100) math:integerQuotient ?K .
2687
+ # (?Y 100) math:remainder ?H .
2688
+ # (?K 4) math:integerQuotient ?M .
2689
+ # (?K 4) math:remainder ?N .
2690
+ # (?K 8) math:sum ?_b1 .
2691
+ # (?_b1 25) math:integerQuotient ?P .
2692
+ # (?K ?P) math:difference ?_b2 .
2693
+ # (?_b2 1) math:sum ?_b3 .
2694
+ # (?_b3 3) math:integerQuotient ?Q .
2695
+ # (19 ?J) math:product ?_b4 .
2696
+ # (?_b4 ?K) math:sum ?_b5 .
2697
+ # (?_b5 ?M) math:difference ?_b6 .
2698
+ # (?_b6 ?Q) math:difference ?_b7 .
2699
+ # (?_b7 15) math:sum ?_b8 .
2700
+ # (?_b8 30) math:remainder ?R .
2701
+ # (?H 4) math:integerQuotient ?S .
2702
+ # (?H 4) math:remainder ?U .
2703
+ # (2 ?N) math:product ?_b9 .
2704
+ # (2 ?S) math:product ?_b10 .
2705
+ # ?R math:negation ?_b11 .
2706
+ # ?U math:negation ?_b12 .
2707
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
2708
+ # (?_b13 7) math:remainder ?V .
2709
+ # (11 ?R) math:product ?_b14 .
2710
+ # (22 ?V) math:product ?_b15 .
2711
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
2712
+ # (?_b16 451) math:integerQuotient ?W .
2713
+ # (7 ?W) math:product ?_b17 .
2714
+ # ?_b17 math:negation ?_b18 .
2715
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
2716
+ # (?_b19 31) math:integerQuotient ?X .
2717
+ # (?_b19 31) math:remainder ?Z .
2718
+ # (?Z 1) math:sum ?DAY .
2719
+ # } => {
2720
+ # (?DAY ?X) :easterFor ?Y .
2721
+ # } .
2722
+ # with substitution (on rule variables):
2723
+ # ?DAY = 16
2724
+ # ?H = 28
2725
+ # ?J = 14
2726
+ # ?K = 20
2727
+ # ?M = 5
2728
+ # ?N = 0
2729
+ # ?P = 1
2730
+ # ?Q = 6
2731
+ # ?R = 20
2732
+ # ?S = 7
2733
+ # ?U = 0
2734
+ # ?V = 5
2735
+ # ?W = 0
2736
+ # ?X = 4
2737
+ # ?Y = 2028
2738
+ # ?Z = 15
2739
+ # ?_b1 = 28
2740
+ # ?_b10 = 14
2741
+ # ?_b11 = -20
2742
+ # ?_b12 = 0
2743
+ # ?_b13 = 26
2744
+ # ?_b14 = 220
2745
+ # ?_b15 = 110
2746
+ # ?_b16 = 344
2747
+ # ?_b17 = 0
2748
+ # ?_b18 = 0
2749
+ # ?_b19 = 139
2750
+ # ?_b2 = 19
2751
+ # ?_b3 = 20
2752
+ # ?_b4 = 266
2753
+ # ?_b5 = 286
2754
+ # ?_b6 = 281
2755
+ # ?_b7 = 275
2756
+ # ?_b8 = 290
2757
+ # ?_b9 = 0
2758
+ # Therefore the derived triple above is entailed by the rules and facts.
2759
+ # ----------------------------------------------------------------------
2760
+
2761
+ (16 4) :easterFor 2028 .
2762
+
2763
+ # ----------------------------------------------------------------------
2764
+ # Proof for derived triple:
2765
+ # (28 3) :easterFor 2027 .
2766
+ # It holds because the following instance of the rule body is provable:
2767
+ # 2027 a :Year .
2768
+ # (2027 19) math:remainder 13 .
2769
+ # (2027 100) math:integerQuotient 20 .
2770
+ # (2027 100) math:remainder 27 .
2771
+ # (20 4) math:integerQuotient 5 .
2772
+ # (20 4) math:remainder 0 .
2773
+ # (20 8) math:sum 28 .
2774
+ # (28 25) math:integerQuotient 1 .
2775
+ # (20 1) math:difference 19 .
2776
+ # (19 1) math:sum 20 .
2777
+ # (20 3) math:integerQuotient 6 .
2778
+ # (19 13) math:product 247 .
2779
+ # (247 20) math:sum 267 .
2780
+ # (267 5) math:difference 262 .
2781
+ # (262 6) math:difference 256 .
2782
+ # (256 15) math:sum 271 .
2783
+ # (271 30) math:remainder 1 .
2784
+ # (27 4) math:integerQuotient 6 .
2785
+ # (27 4) math:remainder 3 .
2786
+ # (2 0) math:product 0 .
2787
+ # (2 6) math:product 12 .
2788
+ # 1 math:negation -1 .
2789
+ # 3 math:negation -3 .
2790
+ # (32 0 12 -1 -3) math:sum 40 .
2791
+ # (40 7) math:remainder 5 .
2792
+ # (11 1) math:product 11 .
2793
+ # (22 5) math:product 110 .
2794
+ # (13 11 110) math:sum 134 .
2795
+ # (134 451) math:integerQuotient 0 .
2796
+ # (7 0) math:product 0 .
2797
+ # 0 math:negation 0 .
2798
+ # (1 5 0 114) math:sum 120 .
2799
+ # (120 31) math:integerQuotient 3 .
2800
+ # (120 31) math:remainder 27 .
2801
+ # (27 1) math:sum 28 .
2802
+ # via the schematic forward rule:
2803
+ # {
2804
+ # ?Y a :Year .
2805
+ # (?Y 19) math:remainder ?J .
2806
+ # (?Y 100) math:integerQuotient ?K .
2807
+ # (?Y 100) math:remainder ?H .
2808
+ # (?K 4) math:integerQuotient ?M .
2809
+ # (?K 4) math:remainder ?N .
2810
+ # (?K 8) math:sum ?_b1 .
2811
+ # (?_b1 25) math:integerQuotient ?P .
2812
+ # (?K ?P) math:difference ?_b2 .
2813
+ # (?_b2 1) math:sum ?_b3 .
2814
+ # (?_b3 3) math:integerQuotient ?Q .
2815
+ # (19 ?J) math:product ?_b4 .
2816
+ # (?_b4 ?K) math:sum ?_b5 .
2817
+ # (?_b5 ?M) math:difference ?_b6 .
2818
+ # (?_b6 ?Q) math:difference ?_b7 .
2819
+ # (?_b7 15) math:sum ?_b8 .
2820
+ # (?_b8 30) math:remainder ?R .
2821
+ # (?H 4) math:integerQuotient ?S .
2822
+ # (?H 4) math:remainder ?U .
2823
+ # (2 ?N) math:product ?_b9 .
2824
+ # (2 ?S) math:product ?_b10 .
2825
+ # ?R math:negation ?_b11 .
2826
+ # ?U math:negation ?_b12 .
2827
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
2828
+ # (?_b13 7) math:remainder ?V .
2829
+ # (11 ?R) math:product ?_b14 .
2830
+ # (22 ?V) math:product ?_b15 .
2831
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
2832
+ # (?_b16 451) math:integerQuotient ?W .
2833
+ # (7 ?W) math:product ?_b17 .
2834
+ # ?_b17 math:negation ?_b18 .
2835
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
2836
+ # (?_b19 31) math:integerQuotient ?X .
2837
+ # (?_b19 31) math:remainder ?Z .
2838
+ # (?Z 1) math:sum ?DAY .
2839
+ # } => {
2840
+ # (?DAY ?X) :easterFor ?Y .
2841
+ # } .
2842
+ # with substitution (on rule variables):
2843
+ # ?DAY = 28
2844
+ # ?H = 27
2845
+ # ?J = 13
2846
+ # ?K = 20
2847
+ # ?M = 5
2848
+ # ?N = 0
2849
+ # ?P = 1
2850
+ # ?Q = 6
2851
+ # ?R = 1
2852
+ # ?S = 6
2853
+ # ?U = 3
2854
+ # ?V = 5
2855
+ # ?W = 0
2856
+ # ?X = 3
2857
+ # ?Y = 2027
2858
+ # ?Z = 27
2859
+ # ?_b1 = 28
2860
+ # ?_b10 = 12
2861
+ # ?_b11 = -1
2862
+ # ?_b12 = -3
2863
+ # ?_b13 = 40
2864
+ # ?_b14 = 11
2865
+ # ?_b15 = 110
2866
+ # ?_b16 = 134
2867
+ # ?_b17 = 0
2868
+ # ?_b18 = 0
2869
+ # ?_b19 = 120
2870
+ # ?_b2 = 19
2871
+ # ?_b3 = 20
2872
+ # ?_b4 = 247
2873
+ # ?_b5 = 267
2874
+ # ?_b6 = 262
2875
+ # ?_b7 = 256
2876
+ # ?_b8 = 271
2877
+ # ?_b9 = 0
2878
+ # Therefore the derived triple above is entailed by the rules and facts.
2879
+ # ----------------------------------------------------------------------
2880
+
2881
+ (28 3) :easterFor 2027 .
2882
+
2883
+ # ----------------------------------------------------------------------
2884
+ # Proof for derived triple:
2885
+ # (5 4) :easterFor 2026 .
2886
+ # It holds because the following instance of the rule body is provable:
2887
+ # 2026 a :Year .
2888
+ # (2026 19) math:remainder 12 .
2889
+ # (2026 100) math:integerQuotient 20 .
2890
+ # (2026 100) math:remainder 26 .
2891
+ # (20 4) math:integerQuotient 5 .
2892
+ # (20 4) math:remainder 0 .
2893
+ # (20 8) math:sum 28 .
2894
+ # (28 25) math:integerQuotient 1 .
2895
+ # (20 1) math:difference 19 .
2896
+ # (19 1) math:sum 20 .
2897
+ # (20 3) math:integerQuotient 6 .
2898
+ # (19 12) math:product 228 .
2899
+ # (228 20) math:sum 248 .
2900
+ # (248 5) math:difference 243 .
2901
+ # (243 6) math:difference 237 .
2902
+ # (237 15) math:sum 252 .
2903
+ # (252 30) math:remainder 12 .
2904
+ # (26 4) math:integerQuotient 6 .
2905
+ # (26 4) math:remainder 2 .
2906
+ # (2 0) math:product 0 .
2907
+ # (2 6) math:product 12 .
2908
+ # 12 math:negation -12 .
2909
+ # 2 math:negation -2 .
2910
+ # (32 0 12 -12 -2) math:sum 30 .
2911
+ # (30 7) math:remainder 2 .
2912
+ # (11 12) math:product 132 .
2913
+ # (22 2) math:product 44 .
2914
+ # (12 132 44) math:sum 188 .
2915
+ # (188 451) math:integerQuotient 0 .
2916
+ # (7 0) math:product 0 .
2917
+ # 0 math:negation 0 .
2918
+ # (12 2 0 114) math:sum 128 .
2919
+ # (128 31) math:integerQuotient 4 .
2920
+ # (128 31) math:remainder 4 .
2921
+ # (4 1) math:sum 5 .
2922
+ # via the schematic forward rule:
2923
+ # {
2924
+ # ?Y a :Year .
2925
+ # (?Y 19) math:remainder ?J .
2926
+ # (?Y 100) math:integerQuotient ?K .
2927
+ # (?Y 100) math:remainder ?H .
2928
+ # (?K 4) math:integerQuotient ?M .
2929
+ # (?K 4) math:remainder ?N .
2930
+ # (?K 8) math:sum ?_b1 .
2931
+ # (?_b1 25) math:integerQuotient ?P .
2932
+ # (?K ?P) math:difference ?_b2 .
2933
+ # (?_b2 1) math:sum ?_b3 .
2934
+ # (?_b3 3) math:integerQuotient ?Q .
2935
+ # (19 ?J) math:product ?_b4 .
2936
+ # (?_b4 ?K) math:sum ?_b5 .
2937
+ # (?_b5 ?M) math:difference ?_b6 .
2938
+ # (?_b6 ?Q) math:difference ?_b7 .
2939
+ # (?_b7 15) math:sum ?_b8 .
2940
+ # (?_b8 30) math:remainder ?R .
2941
+ # (?H 4) math:integerQuotient ?S .
2942
+ # (?H 4) math:remainder ?U .
2943
+ # (2 ?N) math:product ?_b9 .
2944
+ # (2 ?S) math:product ?_b10 .
2945
+ # ?R math:negation ?_b11 .
2946
+ # ?U math:negation ?_b12 .
2947
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
2948
+ # (?_b13 7) math:remainder ?V .
2949
+ # (11 ?R) math:product ?_b14 .
2950
+ # (22 ?V) math:product ?_b15 .
2951
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
2952
+ # (?_b16 451) math:integerQuotient ?W .
2953
+ # (7 ?W) math:product ?_b17 .
2954
+ # ?_b17 math:negation ?_b18 .
2955
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
2956
+ # (?_b19 31) math:integerQuotient ?X .
2957
+ # (?_b19 31) math:remainder ?Z .
2958
+ # (?Z 1) math:sum ?DAY .
2959
+ # } => {
2960
+ # (?DAY ?X) :easterFor ?Y .
2961
+ # } .
2962
+ # with substitution (on rule variables):
2963
+ # ?DAY = 5
2964
+ # ?H = 26
2965
+ # ?J = 12
2966
+ # ?K = 20
2967
+ # ?M = 5
2968
+ # ?N = 0
2969
+ # ?P = 1
2970
+ # ?Q = 6
2971
+ # ?R = 12
2972
+ # ?S = 6
2973
+ # ?U = 2
2974
+ # ?V = 2
2975
+ # ?W = 0
2976
+ # ?X = 4
2977
+ # ?Y = 2026
2978
+ # ?Z = 4
2979
+ # ?_b1 = 28
2980
+ # ?_b10 = 12
2981
+ # ?_b11 = -12
2982
+ # ?_b12 = -2
2983
+ # ?_b13 = 30
2984
+ # ?_b14 = 132
2985
+ # ?_b15 = 44
2986
+ # ?_b16 = 188
2987
+ # ?_b17 = 0
2988
+ # ?_b18 = 0
2989
+ # ?_b19 = 128
2990
+ # ?_b2 = 19
2991
+ # ?_b3 = 20
2992
+ # ?_b4 = 228
2993
+ # ?_b5 = 248
2994
+ # ?_b6 = 243
2995
+ # ?_b7 = 237
2996
+ # ?_b8 = 252
2997
+ # ?_b9 = 0
2998
+ # Therefore the derived triple above is entailed by the rules and facts.
2999
+ # ----------------------------------------------------------------------
3000
+
3001
+ (5 4) :easterFor 2026 .
3002
+
3003
+ # ----------------------------------------------------------------------
3004
+ # Proof for derived triple:
3005
+ # (20 4) :easterFor 2025 .
3006
+ # It holds because the following instance of the rule body is provable:
3007
+ # 2025 a :Year .
3008
+ # (2025 19) math:remainder 11 .
3009
+ # (2025 100) math:integerQuotient 20 .
3010
+ # (2025 100) math:remainder 25 .
3011
+ # (20 4) math:integerQuotient 5 .
3012
+ # (20 4) math:remainder 0 .
3013
+ # (20 8) math:sum 28 .
3014
+ # (28 25) math:integerQuotient 1 .
3015
+ # (20 1) math:difference 19 .
3016
+ # (19 1) math:sum 20 .
3017
+ # (20 3) math:integerQuotient 6 .
3018
+ # (19 11) math:product 209 .
3019
+ # (209 20) math:sum 229 .
3020
+ # (229 5) math:difference 224 .
3021
+ # (224 6) math:difference 218 .
3022
+ # (218 15) math:sum 233 .
3023
+ # (233 30) math:remainder 23 .
3024
+ # (25 4) math:integerQuotient 6 .
3025
+ # (25 4) math:remainder 1 .
3026
+ # (2 0) math:product 0 .
3027
+ # (2 6) math:product 12 .
3028
+ # 23 math:negation -23 .
3029
+ # 1 math:negation -1 .
3030
+ # (32 0 12 -23 -1) math:sum 20 .
3031
+ # (20 7) math:remainder 6 .
3032
+ # (11 23) math:product 253 .
3033
+ # (22 6) math:product 132 .
3034
+ # (11 253 132) math:sum 396 .
3035
+ # (396 451) math:integerQuotient 0 .
3036
+ # (7 0) math:product 0 .
3037
+ # 0 math:negation 0 .
3038
+ # (23 6 0 114) math:sum 143 .
3039
+ # (143 31) math:integerQuotient 4 .
3040
+ # (143 31) math:remainder 19 .
3041
+ # (19 1) math:sum 20 .
3042
+ # via the schematic forward rule:
3043
+ # {
3044
+ # ?Y a :Year .
3045
+ # (?Y 19) math:remainder ?J .
3046
+ # (?Y 100) math:integerQuotient ?K .
3047
+ # (?Y 100) math:remainder ?H .
3048
+ # (?K 4) math:integerQuotient ?M .
3049
+ # (?K 4) math:remainder ?N .
3050
+ # (?K 8) math:sum ?_b1 .
3051
+ # (?_b1 25) math:integerQuotient ?P .
3052
+ # (?K ?P) math:difference ?_b2 .
3053
+ # (?_b2 1) math:sum ?_b3 .
3054
+ # (?_b3 3) math:integerQuotient ?Q .
3055
+ # (19 ?J) math:product ?_b4 .
3056
+ # (?_b4 ?K) math:sum ?_b5 .
3057
+ # (?_b5 ?M) math:difference ?_b6 .
3058
+ # (?_b6 ?Q) math:difference ?_b7 .
3059
+ # (?_b7 15) math:sum ?_b8 .
3060
+ # (?_b8 30) math:remainder ?R .
3061
+ # (?H 4) math:integerQuotient ?S .
3062
+ # (?H 4) math:remainder ?U .
3063
+ # (2 ?N) math:product ?_b9 .
3064
+ # (2 ?S) math:product ?_b10 .
3065
+ # ?R math:negation ?_b11 .
3066
+ # ?U math:negation ?_b12 .
3067
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
3068
+ # (?_b13 7) math:remainder ?V .
3069
+ # (11 ?R) math:product ?_b14 .
3070
+ # (22 ?V) math:product ?_b15 .
3071
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
3072
+ # (?_b16 451) math:integerQuotient ?W .
3073
+ # (7 ?W) math:product ?_b17 .
3074
+ # ?_b17 math:negation ?_b18 .
3075
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
3076
+ # (?_b19 31) math:integerQuotient ?X .
3077
+ # (?_b19 31) math:remainder ?Z .
3078
+ # (?Z 1) math:sum ?DAY .
3079
+ # } => {
3080
+ # (?DAY ?X) :easterFor ?Y .
3081
+ # } .
3082
+ # with substitution (on rule variables):
3083
+ # ?DAY = 20
3084
+ # ?H = 25
3085
+ # ?J = 11
3086
+ # ?K = 20
3087
+ # ?M = 5
3088
+ # ?N = 0
3089
+ # ?P = 1
3090
+ # ?Q = 6
3091
+ # ?R = 23
3092
+ # ?S = 6
3093
+ # ?U = 1
3094
+ # ?V = 6
3095
+ # ?W = 0
3096
+ # ?X = 4
3097
+ # ?Y = 2025
3098
+ # ?Z = 19
3099
+ # ?_b1 = 28
3100
+ # ?_b10 = 12
3101
+ # ?_b11 = -23
3102
+ # ?_b12 = -1
3103
+ # ?_b13 = 20
3104
+ # ?_b14 = 253
3105
+ # ?_b15 = 132
3106
+ # ?_b16 = 396
3107
+ # ?_b17 = 0
3108
+ # ?_b18 = 0
3109
+ # ?_b19 = 143
3110
+ # ?_b2 = 19
3111
+ # ?_b3 = 20
3112
+ # ?_b4 = 209
3113
+ # ?_b5 = 229
3114
+ # ?_b6 = 224
3115
+ # ?_b7 = 218
3116
+ # ?_b8 = 233
3117
+ # ?_b9 = 0
3118
+ # Therefore the derived triple above is entailed by the rules and facts.
3119
+ # ----------------------------------------------------------------------
3120
+
3121
+ (20 4) :easterFor 2025 .
3122
+
3123
+ # ----------------------------------------------------------------------
3124
+ # Proof for derived triple:
3125
+ # (31 3) :easterFor 2024 .
3126
+ # It holds because the following instance of the rule body is provable:
3127
+ # 2024 a :Year .
3128
+ # (2024 19) math:remainder 10 .
3129
+ # (2024 100) math:integerQuotient 20 .
3130
+ # (2024 100) math:remainder 24 .
3131
+ # (20 4) math:integerQuotient 5 .
3132
+ # (20 4) math:remainder 0 .
3133
+ # (20 8) math:sum 28 .
3134
+ # (28 25) math:integerQuotient 1 .
3135
+ # (20 1) math:difference 19 .
3136
+ # (19 1) math:sum 20 .
3137
+ # (20 3) math:integerQuotient 6 .
3138
+ # (19 10) math:product 190 .
3139
+ # (190 20) math:sum 210 .
3140
+ # (210 5) math:difference 205 .
3141
+ # (205 6) math:difference 199 .
3142
+ # (199 15) math:sum 214 .
3143
+ # (214 30) math:remainder 4 .
3144
+ # (24 4) math:integerQuotient 6 .
3145
+ # (24 4) math:remainder 0 .
3146
+ # (2 0) math:product 0 .
3147
+ # (2 6) math:product 12 .
3148
+ # 4 math:negation -4 .
3149
+ # 0 math:negation 0 .
3150
+ # (32 0 12 -4 0) math:sum 40 .
3151
+ # (40 7) math:remainder 5 .
3152
+ # (11 4) math:product 44 .
3153
+ # (22 5) math:product 110 .
3154
+ # (10 44 110) math:sum 164 .
3155
+ # (164 451) math:integerQuotient 0 .
3156
+ # (7 0) math:product 0 .
3157
+ # 0 math:negation 0 .
3158
+ # (4 5 0 114) math:sum 123 .
3159
+ # (123 31) math:integerQuotient 3 .
3160
+ # (123 31) math:remainder 30 .
3161
+ # (30 1) math:sum 31 .
3162
+ # via the schematic forward rule:
3163
+ # {
3164
+ # ?Y a :Year .
3165
+ # (?Y 19) math:remainder ?J .
3166
+ # (?Y 100) math:integerQuotient ?K .
3167
+ # (?Y 100) math:remainder ?H .
3168
+ # (?K 4) math:integerQuotient ?M .
3169
+ # (?K 4) math:remainder ?N .
3170
+ # (?K 8) math:sum ?_b1 .
3171
+ # (?_b1 25) math:integerQuotient ?P .
3172
+ # (?K ?P) math:difference ?_b2 .
3173
+ # (?_b2 1) math:sum ?_b3 .
3174
+ # (?_b3 3) math:integerQuotient ?Q .
3175
+ # (19 ?J) math:product ?_b4 .
3176
+ # (?_b4 ?K) math:sum ?_b5 .
3177
+ # (?_b5 ?M) math:difference ?_b6 .
3178
+ # (?_b6 ?Q) math:difference ?_b7 .
3179
+ # (?_b7 15) math:sum ?_b8 .
3180
+ # (?_b8 30) math:remainder ?R .
3181
+ # (?H 4) math:integerQuotient ?S .
3182
+ # (?H 4) math:remainder ?U .
3183
+ # (2 ?N) math:product ?_b9 .
3184
+ # (2 ?S) math:product ?_b10 .
3185
+ # ?R math:negation ?_b11 .
3186
+ # ?U math:negation ?_b12 .
3187
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
3188
+ # (?_b13 7) math:remainder ?V .
3189
+ # (11 ?R) math:product ?_b14 .
3190
+ # (22 ?V) math:product ?_b15 .
3191
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
3192
+ # (?_b16 451) math:integerQuotient ?W .
3193
+ # (7 ?W) math:product ?_b17 .
3194
+ # ?_b17 math:negation ?_b18 .
3195
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
3196
+ # (?_b19 31) math:integerQuotient ?X .
3197
+ # (?_b19 31) math:remainder ?Z .
3198
+ # (?Z 1) math:sum ?DAY .
3199
+ # } => {
3200
+ # (?DAY ?X) :easterFor ?Y .
3201
+ # } .
3202
+ # with substitution (on rule variables):
3203
+ # ?DAY = 31
3204
+ # ?H = 24
3205
+ # ?J = 10
3206
+ # ?K = 20
3207
+ # ?M = 5
3208
+ # ?N = 0
3209
+ # ?P = 1
3210
+ # ?Q = 6
3211
+ # ?R = 4
3212
+ # ?S = 6
3213
+ # ?U = 0
3214
+ # ?V = 5
3215
+ # ?W = 0
3216
+ # ?X = 3
3217
+ # ?Y = 2024
3218
+ # ?Z = 30
3219
+ # ?_b1 = 28
3220
+ # ?_b10 = 12
3221
+ # ?_b11 = -4
3222
+ # ?_b12 = 0
3223
+ # ?_b13 = 40
3224
+ # ?_b14 = 44
3225
+ # ?_b15 = 110
3226
+ # ?_b16 = 164
3227
+ # ?_b17 = 0
3228
+ # ?_b18 = 0
3229
+ # ?_b19 = 123
3230
+ # ?_b2 = 19
3231
+ # ?_b3 = 20
3232
+ # ?_b4 = 190
3233
+ # ?_b5 = 210
3234
+ # ?_b6 = 205
3235
+ # ?_b7 = 199
3236
+ # ?_b8 = 214
3237
+ # ?_b9 = 0
3238
+ # Therefore the derived triple above is entailed by the rules and facts.
3239
+ # ----------------------------------------------------------------------
3240
+
3241
+ (31 3) :easterFor 2024 .
3242
+
3243
+ # ----------------------------------------------------------------------
3244
+ # Proof for derived triple:
3245
+ # (9 4) :easterFor 2023 .
3246
+ # It holds because the following instance of the rule body is provable:
3247
+ # 2023 a :Year .
3248
+ # (2023 19) math:remainder 9 .
3249
+ # (2023 100) math:integerQuotient 20 .
3250
+ # (2023 100) math:remainder 23 .
3251
+ # (20 4) math:integerQuotient 5 .
3252
+ # (20 4) math:remainder 0 .
3253
+ # (20 8) math:sum 28 .
3254
+ # (28 25) math:integerQuotient 1 .
3255
+ # (20 1) math:difference 19 .
3256
+ # (19 1) math:sum 20 .
3257
+ # (20 3) math:integerQuotient 6 .
3258
+ # (19 9) math:product 171 .
3259
+ # (171 20) math:sum 191 .
3260
+ # (191 5) math:difference 186 .
3261
+ # (186 6) math:difference 180 .
3262
+ # (180 15) math:sum 195 .
3263
+ # (195 30) math:remainder 15 .
3264
+ # (23 4) math:integerQuotient 5 .
3265
+ # (23 4) math:remainder 3 .
3266
+ # (2 0) math:product 0 .
3267
+ # (2 5) math:product 10 .
3268
+ # 15 math:negation -15 .
3269
+ # 3 math:negation -3 .
3270
+ # (32 0 10 -15 -3) math:sum 24 .
3271
+ # (24 7) math:remainder 3 .
3272
+ # (11 15) math:product 165 .
3273
+ # (22 3) math:product 66 .
3274
+ # (9 165 66) math:sum 240 .
3275
+ # (240 451) math:integerQuotient 0 .
3276
+ # (7 0) math:product 0 .
3277
+ # 0 math:negation 0 .
3278
+ # (15 3 0 114) math:sum 132 .
3279
+ # (132 31) math:integerQuotient 4 .
3280
+ # (132 31) math:remainder 8 .
3281
+ # (8 1) math:sum 9 .
3282
+ # via the schematic forward rule:
3283
+ # {
3284
+ # ?Y a :Year .
3285
+ # (?Y 19) math:remainder ?J .
3286
+ # (?Y 100) math:integerQuotient ?K .
3287
+ # (?Y 100) math:remainder ?H .
3288
+ # (?K 4) math:integerQuotient ?M .
3289
+ # (?K 4) math:remainder ?N .
3290
+ # (?K 8) math:sum ?_b1 .
3291
+ # (?_b1 25) math:integerQuotient ?P .
3292
+ # (?K ?P) math:difference ?_b2 .
3293
+ # (?_b2 1) math:sum ?_b3 .
3294
+ # (?_b3 3) math:integerQuotient ?Q .
3295
+ # (19 ?J) math:product ?_b4 .
3296
+ # (?_b4 ?K) math:sum ?_b5 .
3297
+ # (?_b5 ?M) math:difference ?_b6 .
3298
+ # (?_b6 ?Q) math:difference ?_b7 .
3299
+ # (?_b7 15) math:sum ?_b8 .
3300
+ # (?_b8 30) math:remainder ?R .
3301
+ # (?H 4) math:integerQuotient ?S .
3302
+ # (?H 4) math:remainder ?U .
3303
+ # (2 ?N) math:product ?_b9 .
3304
+ # (2 ?S) math:product ?_b10 .
3305
+ # ?R math:negation ?_b11 .
3306
+ # ?U math:negation ?_b12 .
3307
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
3308
+ # (?_b13 7) math:remainder ?V .
3309
+ # (11 ?R) math:product ?_b14 .
3310
+ # (22 ?V) math:product ?_b15 .
3311
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
3312
+ # (?_b16 451) math:integerQuotient ?W .
3313
+ # (7 ?W) math:product ?_b17 .
3314
+ # ?_b17 math:negation ?_b18 .
3315
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
3316
+ # (?_b19 31) math:integerQuotient ?X .
3317
+ # (?_b19 31) math:remainder ?Z .
3318
+ # (?Z 1) math:sum ?DAY .
3319
+ # } => {
3320
+ # (?DAY ?X) :easterFor ?Y .
3321
+ # } .
3322
+ # with substitution (on rule variables):
3323
+ # ?DAY = 9
3324
+ # ?H = 23
3325
+ # ?J = 9
3326
+ # ?K = 20
3327
+ # ?M = 5
3328
+ # ?N = 0
3329
+ # ?P = 1
3330
+ # ?Q = 6
3331
+ # ?R = 15
3332
+ # ?S = 5
3333
+ # ?U = 3
3334
+ # ?V = 3
3335
+ # ?W = 0
3336
+ # ?X = 4
3337
+ # ?Y = 2023
3338
+ # ?Z = 8
3339
+ # ?_b1 = 28
3340
+ # ?_b10 = 10
3341
+ # ?_b11 = -15
3342
+ # ?_b12 = -3
3343
+ # ?_b13 = 24
3344
+ # ?_b14 = 165
3345
+ # ?_b15 = 66
3346
+ # ?_b16 = 240
3347
+ # ?_b17 = 0
3348
+ # ?_b18 = 0
3349
+ # ?_b19 = 132
3350
+ # ?_b2 = 19
3351
+ # ?_b3 = 20
3352
+ # ?_b4 = 171
3353
+ # ?_b5 = 191
3354
+ # ?_b6 = 186
3355
+ # ?_b7 = 180
3356
+ # ?_b8 = 195
3357
+ # ?_b9 = 0
3358
+ # Therefore the derived triple above is entailed by the rules and facts.
3359
+ # ----------------------------------------------------------------------
3360
+
3361
+ (9 4) :easterFor 2023 .
3362
+
3363
+ # ----------------------------------------------------------------------
3364
+ # Proof for derived triple:
3365
+ # (17 4) :easterFor 2022 .
3366
+ # It holds because the following instance of the rule body is provable:
3367
+ # 2022 a :Year .
3368
+ # (2022 19) math:remainder 8 .
3369
+ # (2022 100) math:integerQuotient 20 .
3370
+ # (2022 100) math:remainder 22 .
3371
+ # (20 4) math:integerQuotient 5 .
3372
+ # (20 4) math:remainder 0 .
3373
+ # (20 8) math:sum 28 .
3374
+ # (28 25) math:integerQuotient 1 .
3375
+ # (20 1) math:difference 19 .
3376
+ # (19 1) math:sum 20 .
3377
+ # (20 3) math:integerQuotient 6 .
3378
+ # (19 8) math:product 152 .
3379
+ # (152 20) math:sum 172 .
3380
+ # (172 5) math:difference 167 .
3381
+ # (167 6) math:difference 161 .
3382
+ # (161 15) math:sum 176 .
3383
+ # (176 30) math:remainder 26 .
3384
+ # (22 4) math:integerQuotient 5 .
3385
+ # (22 4) math:remainder 2 .
3386
+ # (2 0) math:product 0 .
3387
+ # (2 5) math:product 10 .
3388
+ # 26 math:negation -26 .
3389
+ # 2 math:negation -2 .
3390
+ # (32 0 10 -26 -2) math:sum 14 .
3391
+ # (14 7) math:remainder 0 .
3392
+ # (11 26) math:product 286 .
3393
+ # (22 0) math:product 0 .
3394
+ # (8 286 0) math:sum 294 .
3395
+ # (294 451) math:integerQuotient 0 .
3396
+ # (7 0) math:product 0 .
3397
+ # 0 math:negation 0 .
3398
+ # (26 0 0 114) math:sum 140 .
3399
+ # (140 31) math:integerQuotient 4 .
3400
+ # (140 31) math:remainder 16 .
3401
+ # (16 1) math:sum 17 .
3402
+ # via the schematic forward rule:
3403
+ # {
3404
+ # ?Y a :Year .
3405
+ # (?Y 19) math:remainder ?J .
3406
+ # (?Y 100) math:integerQuotient ?K .
3407
+ # (?Y 100) math:remainder ?H .
3408
+ # (?K 4) math:integerQuotient ?M .
3409
+ # (?K 4) math:remainder ?N .
3410
+ # (?K 8) math:sum ?_b1 .
3411
+ # (?_b1 25) math:integerQuotient ?P .
3412
+ # (?K ?P) math:difference ?_b2 .
3413
+ # (?_b2 1) math:sum ?_b3 .
3414
+ # (?_b3 3) math:integerQuotient ?Q .
3415
+ # (19 ?J) math:product ?_b4 .
3416
+ # (?_b4 ?K) math:sum ?_b5 .
3417
+ # (?_b5 ?M) math:difference ?_b6 .
3418
+ # (?_b6 ?Q) math:difference ?_b7 .
3419
+ # (?_b7 15) math:sum ?_b8 .
3420
+ # (?_b8 30) math:remainder ?R .
3421
+ # (?H 4) math:integerQuotient ?S .
3422
+ # (?H 4) math:remainder ?U .
3423
+ # (2 ?N) math:product ?_b9 .
3424
+ # (2 ?S) math:product ?_b10 .
3425
+ # ?R math:negation ?_b11 .
3426
+ # ?U math:negation ?_b12 .
3427
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
3428
+ # (?_b13 7) math:remainder ?V .
3429
+ # (11 ?R) math:product ?_b14 .
3430
+ # (22 ?V) math:product ?_b15 .
3431
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
3432
+ # (?_b16 451) math:integerQuotient ?W .
3433
+ # (7 ?W) math:product ?_b17 .
3434
+ # ?_b17 math:negation ?_b18 .
3435
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
3436
+ # (?_b19 31) math:integerQuotient ?X .
3437
+ # (?_b19 31) math:remainder ?Z .
3438
+ # (?Z 1) math:sum ?DAY .
3439
+ # } => {
3440
+ # (?DAY ?X) :easterFor ?Y .
3441
+ # } .
3442
+ # with substitution (on rule variables):
3443
+ # ?DAY = 17
3444
+ # ?H = 22
3445
+ # ?J = 8
3446
+ # ?K = 20
3447
+ # ?M = 5
3448
+ # ?N = 0
3449
+ # ?P = 1
3450
+ # ?Q = 6
3451
+ # ?R = 26
3452
+ # ?S = 5
3453
+ # ?U = 2
3454
+ # ?V = 0
3455
+ # ?W = 0
3456
+ # ?X = 4
3457
+ # ?Y = 2022
3458
+ # ?Z = 16
3459
+ # ?_b1 = 28
3460
+ # ?_b10 = 10
3461
+ # ?_b11 = -26
3462
+ # ?_b12 = -2
3463
+ # ?_b13 = 14
3464
+ # ?_b14 = 286
3465
+ # ?_b15 = 0
3466
+ # ?_b16 = 294
3467
+ # ?_b17 = 0
3468
+ # ?_b18 = 0
3469
+ # ?_b19 = 140
3470
+ # ?_b2 = 19
3471
+ # ?_b3 = 20
3472
+ # ?_b4 = 152
3473
+ # ?_b5 = 172
3474
+ # ?_b6 = 167
3475
+ # ?_b7 = 161
3476
+ # ?_b8 = 176
3477
+ # ?_b9 = 0
3478
+ # Therefore the derived triple above is entailed by the rules and facts.
3479
+ # ----------------------------------------------------------------------
3480
+
3481
+ (17 4) :easterFor 2022 .
3482
+
3483
+ # ----------------------------------------------------------------------
3484
+ # Proof for derived triple:
3485
+ # (4 4) :easterFor 2021 .
3486
+ # It holds because the following instance of the rule body is provable:
3487
+ # 2021 a :Year .
3488
+ # (2021 19) math:remainder 7 .
3489
+ # (2021 100) math:integerQuotient 20 .
3490
+ # (2021 100) math:remainder 21 .
3491
+ # (20 4) math:integerQuotient 5 .
3492
+ # (20 4) math:remainder 0 .
3493
+ # (20 8) math:sum 28 .
3494
+ # (28 25) math:integerQuotient 1 .
3495
+ # (20 1) math:difference 19 .
3496
+ # (19 1) math:sum 20 .
3497
+ # (20 3) math:integerQuotient 6 .
3498
+ # (19 7) math:product 133 .
3499
+ # (133 20) math:sum 153 .
3500
+ # (153 5) math:difference 148 .
3501
+ # (148 6) math:difference 142 .
3502
+ # (142 15) math:sum 157 .
3503
+ # (157 30) math:remainder 7 .
3504
+ # (21 4) math:integerQuotient 5 .
3505
+ # (21 4) math:remainder 1 .
3506
+ # (2 0) math:product 0 .
3507
+ # (2 5) math:product 10 .
3508
+ # 7 math:negation -7 .
3509
+ # 1 math:negation -1 .
3510
+ # (32 0 10 -7 -1) math:sum 34 .
3511
+ # (34 7) math:remainder 6 .
3512
+ # (11 7) math:product 77 .
3513
+ # (22 6) math:product 132 .
3514
+ # (7 77 132) math:sum 216 .
3515
+ # (216 451) math:integerQuotient 0 .
3516
+ # (7 0) math:product 0 .
3517
+ # 0 math:negation 0 .
3518
+ # (7 6 0 114) math:sum 127 .
3519
+ # (127 31) math:integerQuotient 4 .
3520
+ # (127 31) math:remainder 3 .
3521
+ # (3 1) math:sum 4 .
3522
+ # via the schematic forward rule:
3523
+ # {
3524
+ # ?Y a :Year .
3525
+ # (?Y 19) math:remainder ?J .
3526
+ # (?Y 100) math:integerQuotient ?K .
3527
+ # (?Y 100) math:remainder ?H .
3528
+ # (?K 4) math:integerQuotient ?M .
3529
+ # (?K 4) math:remainder ?N .
3530
+ # (?K 8) math:sum ?_b1 .
3531
+ # (?_b1 25) math:integerQuotient ?P .
3532
+ # (?K ?P) math:difference ?_b2 .
3533
+ # (?_b2 1) math:sum ?_b3 .
3534
+ # (?_b3 3) math:integerQuotient ?Q .
3535
+ # (19 ?J) math:product ?_b4 .
3536
+ # (?_b4 ?K) math:sum ?_b5 .
3537
+ # (?_b5 ?M) math:difference ?_b6 .
3538
+ # (?_b6 ?Q) math:difference ?_b7 .
3539
+ # (?_b7 15) math:sum ?_b8 .
3540
+ # (?_b8 30) math:remainder ?R .
3541
+ # (?H 4) math:integerQuotient ?S .
3542
+ # (?H 4) math:remainder ?U .
3543
+ # (2 ?N) math:product ?_b9 .
3544
+ # (2 ?S) math:product ?_b10 .
3545
+ # ?R math:negation ?_b11 .
3546
+ # ?U math:negation ?_b12 .
3547
+ # (32 ?_b9 ?_b10 ?_b11 ?_b12) math:sum ?_b13 .
3548
+ # (?_b13 7) math:remainder ?V .
3549
+ # (11 ?R) math:product ?_b14 .
3550
+ # (22 ?V) math:product ?_b15 .
3551
+ # (?J ?_b14 ?_b15) math:sum ?_b16 .
3552
+ # (?_b16 451) math:integerQuotient ?W .
3553
+ # (7 ?W) math:product ?_b17 .
3554
+ # ?_b17 math:negation ?_b18 .
3555
+ # (?R ?V ?_b18 114) math:sum ?_b19 .
3556
+ # (?_b19 31) math:integerQuotient ?X .
3557
+ # (?_b19 31) math:remainder ?Z .
3558
+ # (?Z 1) math:sum ?DAY .
3559
+ # } => {
3560
+ # (?DAY ?X) :easterFor ?Y .
3561
+ # } .
3562
+ # with substitution (on rule variables):
3563
+ # ?DAY = 4
3564
+ # ?H = 21
3565
+ # ?J = 7
3566
+ # ?K = 20
3567
+ # ?M = 5
3568
+ # ?N = 0
3569
+ # ?P = 1
3570
+ # ?Q = 6
3571
+ # ?R = 7
3572
+ # ?S = 5
3573
+ # ?U = 1
3574
+ # ?V = 6
3575
+ # ?W = 0
3576
+ # ?X = 4
3577
+ # ?Y = 2021
3578
+ # ?Z = 3
3579
+ # ?_b1 = 28
3580
+ # ?_b10 = 10
3581
+ # ?_b11 = -7
3582
+ # ?_b12 = -1
3583
+ # ?_b13 = 34
3584
+ # ?_b14 = 77
3585
+ # ?_b15 = 132
3586
+ # ?_b16 = 216
3587
+ # ?_b17 = 0
3588
+ # ?_b18 = 0
3589
+ # ?_b19 = 127
3590
+ # ?_b2 = 19
3591
+ # ?_b3 = 20
3592
+ # ?_b4 = 133
3593
+ # ?_b5 = 153
3594
+ # ?_b6 = 148
3595
+ # ?_b7 = 142
3596
+ # ?_b8 = 157
3597
+ # ?_b9 = 0
3598
+ # Therefore the derived triple above is entailed by the rules and facts.
3599
+ # ----------------------------------------------------------------------
3600
+
3601
+ (4 4) :easterFor 2021 .
3602
+