eyeling 1.5.19 → 1.5.21

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,663 @@
1
+ @prefix : <http://example.org/family#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # :Adam :generation 0 .
6
+ # This triple is the head of a forward rule with an empty premise,
7
+ # so it holds unconditionally whenever the program is loaded.
8
+ # Therefore the derived triple above is entailed by the rules and facts.
9
+ # ----------------------------------------------------------------------
10
+
11
+ :Adam :generation 0 .
12
+
13
+ # ----------------------------------------------------------------------
14
+ # Proof for derived triple:
15
+ # :Carol :generation 1 .
16
+ # It holds because the following instance of the rule body is provable:
17
+ # :Adam :parentOf :Carol .
18
+ # :Adam :generation 0 .
19
+ # (0 1) math:sum 1 .
20
+ # via the schematic forward rule:
21
+ # {
22
+ # ?P :parentOf ?C .
23
+ # ?P :generation ?G .
24
+ # (?G 1) math:sum ?G1 .
25
+ # } => {
26
+ # ?C :generation ?G1 .
27
+ # } .
28
+ # with substitution (on rule variables):
29
+ # ?C = :Carol
30
+ # ?G = 0
31
+ # ?G1 = 1
32
+ # ?P = :Adam
33
+ # Therefore the derived triple above is entailed by the rules and facts.
34
+ # ----------------------------------------------------------------------
35
+
36
+ :Carol :generation 1 .
37
+
38
+ # ----------------------------------------------------------------------
39
+ # Proof for derived triple:
40
+ # :Bob :generation 1 .
41
+ # It holds because the following instance of the rule body is provable:
42
+ # :Adam :parentOf :Bob .
43
+ # :Adam :generation 0 .
44
+ # (0 1) math:sum 1 .
45
+ # via the schematic forward rule:
46
+ # {
47
+ # ?P :parentOf ?C .
48
+ # ?P :generation ?G .
49
+ # (?G 1) math:sum ?G1 .
50
+ # } => {
51
+ # ?C :generation ?G1 .
52
+ # } .
53
+ # with substitution (on rule variables):
54
+ # ?C = :Bob
55
+ # ?G = 0
56
+ # ?G1 = 1
57
+ # ?P = :Adam
58
+ # Therefore the derived triple above is entailed by the rules and facts.
59
+ # ----------------------------------------------------------------------
60
+
61
+ :Bob :generation 1 .
62
+
63
+ # ----------------------------------------------------------------------
64
+ # Proof for derived triple:
65
+ # :Judy :branch :c .
66
+ # It holds because the following instance of the rule body is provable:
67
+ # :Frank :parentOf :Judy .
68
+ # :Frank :branch :c .
69
+ # via the schematic forward rule:
70
+ # {
71
+ # ?P :parentOf ?C .
72
+ # ?P :branch ?B .
73
+ # } => {
74
+ # ?C :branch ?B .
75
+ # } .
76
+ # with substitution (on rule variables):
77
+ # ?B = :c
78
+ # ?C = :Judy
79
+ # ?P = :Frank
80
+ # Therefore the derived triple above is entailed by the rules and facts.
81
+ # ----------------------------------------------------------------------
82
+
83
+ :Judy :branch :c .
84
+
85
+ # ----------------------------------------------------------------------
86
+ # Proof for derived triple:
87
+ # :Ivan :branch :b .
88
+ # It holds because the following instance of the rule body is provable:
89
+ # :Eve :parentOf :Ivan .
90
+ # :Eve :branch :b .
91
+ # via the schematic forward rule:
92
+ # {
93
+ # ?P :parentOf ?C .
94
+ # ?P :branch ?B .
95
+ # } => {
96
+ # ?C :branch ?B .
97
+ # } .
98
+ # with substitution (on rule variables):
99
+ # ?B = :b
100
+ # ?C = :Ivan
101
+ # ?P = :Eve
102
+ # Therefore the derived triple above is entailed by the rules and facts.
103
+ # ----------------------------------------------------------------------
104
+
105
+ :Ivan :branch :b .
106
+
107
+ # ----------------------------------------------------------------------
108
+ # Proof for derived triple:
109
+ # :Heidi :branch :b .
110
+ # It holds because the following instance of the rule body is provable:
111
+ # :Dave :parentOf :Heidi .
112
+ # :Dave :branch :b .
113
+ # via the schematic forward rule:
114
+ # {
115
+ # ?P :parentOf ?C .
116
+ # ?P :branch ?B .
117
+ # } => {
118
+ # ?C :branch ?B .
119
+ # } .
120
+ # with substitution (on rule variables):
121
+ # ?B = :b
122
+ # ?C = :Heidi
123
+ # ?P = :Dave
124
+ # Therefore the derived triple above is entailed by the rules and facts.
125
+ # ----------------------------------------------------------------------
126
+
127
+ :Heidi :branch :b .
128
+
129
+ # ----------------------------------------------------------------------
130
+ # Proof for derived triple:
131
+ # :Grace :generation 2 .
132
+ # It holds because the following instance of the rule body is provable:
133
+ # :Carol :parentOf :Grace .
134
+ # :Carol :generation 1 .
135
+ # (1 1) math:sum 2 .
136
+ # via the schematic forward rule:
137
+ # {
138
+ # ?P :parentOf ?C .
139
+ # ?P :generation ?G .
140
+ # (?G 1) math:sum ?G1 .
141
+ # } => {
142
+ # ?C :generation ?G1 .
143
+ # } .
144
+ # with substitution (on rule variables):
145
+ # ?C = :Grace
146
+ # ?G = 1
147
+ # ?G1 = 2
148
+ # ?P = :Carol
149
+ # Therefore the derived triple above is entailed by the rules and facts.
150
+ # ----------------------------------------------------------------------
151
+
152
+ :Grace :generation 2 .
153
+
154
+ # ----------------------------------------------------------------------
155
+ # Proof for derived triple:
156
+ # :Frank :generation 2 .
157
+ # It holds because the following instance of the rule body is provable:
158
+ # :Carol :parentOf :Frank .
159
+ # :Carol :generation 1 .
160
+ # (1 1) math:sum 2 .
161
+ # via the schematic forward rule:
162
+ # {
163
+ # ?P :parentOf ?C .
164
+ # ?P :generation ?G .
165
+ # (?G 1) math:sum ?G1 .
166
+ # } => {
167
+ # ?C :generation ?G1 .
168
+ # } .
169
+ # with substitution (on rule variables):
170
+ # ?C = :Frank
171
+ # ?G = 1
172
+ # ?G1 = 2
173
+ # ?P = :Carol
174
+ # Therefore the derived triple above is entailed by the rules and facts.
175
+ # ----------------------------------------------------------------------
176
+
177
+ :Frank :generation 2 .
178
+
179
+ # ----------------------------------------------------------------------
180
+ # Proof for derived triple:
181
+ # :Eve :generation 2 .
182
+ # It holds because the following instance of the rule body is provable:
183
+ # :Bob :parentOf :Eve .
184
+ # :Bob :generation 1 .
185
+ # (1 1) math:sum 2 .
186
+ # via the schematic forward rule:
187
+ # {
188
+ # ?P :parentOf ?C .
189
+ # ?P :generation ?G .
190
+ # (?G 1) math:sum ?G1 .
191
+ # } => {
192
+ # ?C :generation ?G1 .
193
+ # } .
194
+ # with substitution (on rule variables):
195
+ # ?C = :Eve
196
+ # ?G = 1
197
+ # ?G1 = 2
198
+ # ?P = :Bob
199
+ # Therefore the derived triple above is entailed by the rules and facts.
200
+ # ----------------------------------------------------------------------
201
+
202
+ :Eve :generation 2 .
203
+
204
+ # ----------------------------------------------------------------------
205
+ # Proof for derived triple:
206
+ # :Dave :generation 2 .
207
+ # It holds because the following instance of the rule body is provable:
208
+ # :Bob :parentOf :Dave .
209
+ # :Bob :generation 1 .
210
+ # (1 1) math:sum 2 .
211
+ # via the schematic forward rule:
212
+ # {
213
+ # ?P :parentOf ?C .
214
+ # ?P :generation ?G .
215
+ # (?G 1) math:sum ?G1 .
216
+ # } => {
217
+ # ?C :generation ?G1 .
218
+ # } .
219
+ # with substitution (on rule variables):
220
+ # ?C = :Dave
221
+ # ?G = 1
222
+ # ?G1 = 2
223
+ # ?P = :Bob
224
+ # Therefore the derived triple above is entailed by the rules and facts.
225
+ # ----------------------------------------------------------------------
226
+
227
+ :Dave :generation 2 .
228
+
229
+ # ----------------------------------------------------------------------
230
+ # Proof for derived triple:
231
+ # :Dave :cousin :Frank .
232
+ # It holds because the following instance of the rule body is provable:
233
+ # :Dave :generation 2 .
234
+ # :Frank :generation 2 .
235
+ # :Dave :branch :b .
236
+ # :Frank :branch :c .
237
+ # :b :differentFrom :c .
238
+ # via the schematic forward rule:
239
+ # {
240
+ # ?X :generation ?G .
241
+ # ?Y :generation ?G .
242
+ # ?X :branch ?BX .
243
+ # ?Y :branch ?BY .
244
+ # ?BX :differentFrom ?BY .
245
+ # } => {
246
+ # ?X :cousin ?Y .
247
+ # } .
248
+ # with substitution (on rule variables):
249
+ # ?BX = :b
250
+ # ?BY = :c
251
+ # ?G = 2
252
+ # ?X = :Dave
253
+ # ?Y = :Frank
254
+ # Therefore the derived triple above is entailed by the rules and facts.
255
+ # ----------------------------------------------------------------------
256
+
257
+ :Dave :cousin :Frank .
258
+
259
+ # ----------------------------------------------------------------------
260
+ # Proof for derived triple:
261
+ # :Dave :cousin :Grace .
262
+ # It holds because the following instance of the rule body is provable:
263
+ # :Dave :generation 2 .
264
+ # :Grace :generation 2 .
265
+ # :Dave :branch :b .
266
+ # :Grace :branch :c .
267
+ # :b :differentFrom :c .
268
+ # via the schematic forward rule:
269
+ # {
270
+ # ?X :generation ?G .
271
+ # ?Y :generation ?G .
272
+ # ?X :branch ?BX .
273
+ # ?Y :branch ?BY .
274
+ # ?BX :differentFrom ?BY .
275
+ # } => {
276
+ # ?X :cousin ?Y .
277
+ # } .
278
+ # with substitution (on rule variables):
279
+ # ?BX = :b
280
+ # ?BY = :c
281
+ # ?G = 2
282
+ # ?X = :Dave
283
+ # ?Y = :Grace
284
+ # Therefore the derived triple above is entailed by the rules and facts.
285
+ # ----------------------------------------------------------------------
286
+
287
+ :Dave :cousin :Grace .
288
+
289
+ # ----------------------------------------------------------------------
290
+ # Proof for derived triple:
291
+ # :Eve :cousin :Frank .
292
+ # It holds because the following instance of the rule body is provable:
293
+ # :Eve :generation 2 .
294
+ # :Frank :generation 2 .
295
+ # :Eve :branch :b .
296
+ # :Frank :branch :c .
297
+ # :b :differentFrom :c .
298
+ # via the schematic forward rule:
299
+ # {
300
+ # ?X :generation ?G .
301
+ # ?Y :generation ?G .
302
+ # ?X :branch ?BX .
303
+ # ?Y :branch ?BY .
304
+ # ?BX :differentFrom ?BY .
305
+ # } => {
306
+ # ?X :cousin ?Y .
307
+ # } .
308
+ # with substitution (on rule variables):
309
+ # ?BX = :b
310
+ # ?BY = :c
311
+ # ?G = 2
312
+ # ?X = :Eve
313
+ # ?Y = :Frank
314
+ # Therefore the derived triple above is entailed by the rules and facts.
315
+ # ----------------------------------------------------------------------
316
+
317
+ :Eve :cousin :Frank .
318
+
319
+ # ----------------------------------------------------------------------
320
+ # Proof for derived triple:
321
+ # :Eve :cousin :Grace .
322
+ # It holds because the following instance of the rule body is provable:
323
+ # :Eve :generation 2 .
324
+ # :Grace :generation 2 .
325
+ # :Eve :branch :b .
326
+ # :Grace :branch :c .
327
+ # :b :differentFrom :c .
328
+ # via the schematic forward rule:
329
+ # {
330
+ # ?X :generation ?G .
331
+ # ?Y :generation ?G .
332
+ # ?X :branch ?BX .
333
+ # ?Y :branch ?BY .
334
+ # ?BX :differentFrom ?BY .
335
+ # } => {
336
+ # ?X :cousin ?Y .
337
+ # } .
338
+ # with substitution (on rule variables):
339
+ # ?BX = :b
340
+ # ?BY = :c
341
+ # ?G = 2
342
+ # ?X = :Eve
343
+ # ?Y = :Grace
344
+ # Therefore the derived triple above is entailed by the rules and facts.
345
+ # ----------------------------------------------------------------------
346
+
347
+ :Eve :cousin :Grace .
348
+
349
+ # ----------------------------------------------------------------------
350
+ # Proof for derived triple:
351
+ # :Frank :cousin :Dave .
352
+ # It holds because the following instance of the rule body is provable:
353
+ # :Frank :generation 2 .
354
+ # :Dave :generation 2 .
355
+ # :Frank :branch :c .
356
+ # :Dave :branch :b .
357
+ # :c :differentFrom :b .
358
+ # via the schematic forward rule:
359
+ # {
360
+ # ?X :generation ?G .
361
+ # ?Y :generation ?G .
362
+ # ?X :branch ?BX .
363
+ # ?Y :branch ?BY .
364
+ # ?BX :differentFrom ?BY .
365
+ # } => {
366
+ # ?X :cousin ?Y .
367
+ # } .
368
+ # with substitution (on rule variables):
369
+ # ?BX = :c
370
+ # ?BY = :b
371
+ # ?G = 2
372
+ # ?X = :Frank
373
+ # ?Y = :Dave
374
+ # Therefore the derived triple above is entailed by the rules and facts.
375
+ # ----------------------------------------------------------------------
376
+
377
+ :Frank :cousin :Dave .
378
+
379
+ # ----------------------------------------------------------------------
380
+ # Proof for derived triple:
381
+ # :Frank :cousin :Eve .
382
+ # It holds because the following instance of the rule body is provable:
383
+ # :Frank :generation 2 .
384
+ # :Eve :generation 2 .
385
+ # :Frank :branch :c .
386
+ # :Eve :branch :b .
387
+ # :c :differentFrom :b .
388
+ # via the schematic forward rule:
389
+ # {
390
+ # ?X :generation ?G .
391
+ # ?Y :generation ?G .
392
+ # ?X :branch ?BX .
393
+ # ?Y :branch ?BY .
394
+ # ?BX :differentFrom ?BY .
395
+ # } => {
396
+ # ?X :cousin ?Y .
397
+ # } .
398
+ # with substitution (on rule variables):
399
+ # ?BX = :c
400
+ # ?BY = :b
401
+ # ?G = 2
402
+ # ?X = :Frank
403
+ # ?Y = :Eve
404
+ # Therefore the derived triple above is entailed by the rules and facts.
405
+ # ----------------------------------------------------------------------
406
+
407
+ :Frank :cousin :Eve .
408
+
409
+ # ----------------------------------------------------------------------
410
+ # Proof for derived triple:
411
+ # :Grace :cousin :Dave .
412
+ # It holds because the following instance of the rule body is provable:
413
+ # :Grace :generation 2 .
414
+ # :Dave :generation 2 .
415
+ # :Grace :branch :c .
416
+ # :Dave :branch :b .
417
+ # :c :differentFrom :b .
418
+ # via the schematic forward rule:
419
+ # {
420
+ # ?X :generation ?G .
421
+ # ?Y :generation ?G .
422
+ # ?X :branch ?BX .
423
+ # ?Y :branch ?BY .
424
+ # ?BX :differentFrom ?BY .
425
+ # } => {
426
+ # ?X :cousin ?Y .
427
+ # } .
428
+ # with substitution (on rule variables):
429
+ # ?BX = :c
430
+ # ?BY = :b
431
+ # ?G = 2
432
+ # ?X = :Grace
433
+ # ?Y = :Dave
434
+ # Therefore the derived triple above is entailed by the rules and facts.
435
+ # ----------------------------------------------------------------------
436
+
437
+ :Grace :cousin :Dave .
438
+
439
+ # ----------------------------------------------------------------------
440
+ # Proof for derived triple:
441
+ # :Grace :cousin :Eve .
442
+ # It holds because the following instance of the rule body is provable:
443
+ # :Grace :generation 2 .
444
+ # :Eve :generation 2 .
445
+ # :Grace :branch :c .
446
+ # :Eve :branch :b .
447
+ # :c :differentFrom :b .
448
+ # via the schematic forward rule:
449
+ # {
450
+ # ?X :generation ?G .
451
+ # ?Y :generation ?G .
452
+ # ?X :branch ?BX .
453
+ # ?Y :branch ?BY .
454
+ # ?BX :differentFrom ?BY .
455
+ # } => {
456
+ # ?X :cousin ?Y .
457
+ # } .
458
+ # with substitution (on rule variables):
459
+ # ?BX = :c
460
+ # ?BY = :b
461
+ # ?G = 2
462
+ # ?X = :Grace
463
+ # ?Y = :Eve
464
+ # Therefore the derived triple above is entailed by the rules and facts.
465
+ # ----------------------------------------------------------------------
466
+
467
+ :Grace :cousin :Eve .
468
+
469
+ # ----------------------------------------------------------------------
470
+ # Proof for derived triple:
471
+ # :Judy :generation 3 .
472
+ # It holds because the following instance of the rule body is provable:
473
+ # :Frank :parentOf :Judy .
474
+ # :Frank :generation 2 .
475
+ # (2 1) math:sum 3 .
476
+ # via the schematic forward rule:
477
+ # {
478
+ # ?P :parentOf ?C .
479
+ # ?P :generation ?G .
480
+ # (?G 1) math:sum ?G1 .
481
+ # } => {
482
+ # ?C :generation ?G1 .
483
+ # } .
484
+ # with substitution (on rule variables):
485
+ # ?C = :Judy
486
+ # ?G = 2
487
+ # ?G1 = 3
488
+ # ?P = :Frank
489
+ # Therefore the derived triple above is entailed by the rules and facts.
490
+ # ----------------------------------------------------------------------
491
+
492
+ :Judy :generation 3 .
493
+
494
+ # ----------------------------------------------------------------------
495
+ # Proof for derived triple:
496
+ # :Ivan :generation 3 .
497
+ # It holds because the following instance of the rule body is provable:
498
+ # :Eve :parentOf :Ivan .
499
+ # :Eve :generation 2 .
500
+ # (2 1) math:sum 3 .
501
+ # via the schematic forward rule:
502
+ # {
503
+ # ?P :parentOf ?C .
504
+ # ?P :generation ?G .
505
+ # (?G 1) math:sum ?G1 .
506
+ # } => {
507
+ # ?C :generation ?G1 .
508
+ # } .
509
+ # with substitution (on rule variables):
510
+ # ?C = :Ivan
511
+ # ?G = 2
512
+ # ?G1 = 3
513
+ # ?P = :Eve
514
+ # Therefore the derived triple above is entailed by the rules and facts.
515
+ # ----------------------------------------------------------------------
516
+
517
+ :Ivan :generation 3 .
518
+
519
+ # ----------------------------------------------------------------------
520
+ # Proof for derived triple:
521
+ # :Heidi :generation 3 .
522
+ # It holds because the following instance of the rule body is provable:
523
+ # :Dave :parentOf :Heidi .
524
+ # :Dave :generation 2 .
525
+ # (2 1) math:sum 3 .
526
+ # via the schematic forward rule:
527
+ # {
528
+ # ?P :parentOf ?C .
529
+ # ?P :generation ?G .
530
+ # (?G 1) math:sum ?G1 .
531
+ # } => {
532
+ # ?C :generation ?G1 .
533
+ # } .
534
+ # with substitution (on rule variables):
535
+ # ?C = :Heidi
536
+ # ?G = 2
537
+ # ?G1 = 3
538
+ # ?P = :Dave
539
+ # Therefore the derived triple above is entailed by the rules and facts.
540
+ # ----------------------------------------------------------------------
541
+
542
+ :Heidi :generation 3 .
543
+
544
+ # ----------------------------------------------------------------------
545
+ # Proof for derived triple:
546
+ # :Heidi :cousin :Judy .
547
+ # It holds because the following instance of the rule body is provable:
548
+ # :Heidi :generation 3 .
549
+ # :Judy :generation 3 .
550
+ # :Heidi :branch :b .
551
+ # :Judy :branch :c .
552
+ # :b :differentFrom :c .
553
+ # via the schematic forward rule:
554
+ # {
555
+ # ?X :generation ?G .
556
+ # ?Y :generation ?G .
557
+ # ?X :branch ?BX .
558
+ # ?Y :branch ?BY .
559
+ # ?BX :differentFrom ?BY .
560
+ # } => {
561
+ # ?X :cousin ?Y .
562
+ # } .
563
+ # with substitution (on rule variables):
564
+ # ?BX = :b
565
+ # ?BY = :c
566
+ # ?G = 3
567
+ # ?X = :Heidi
568
+ # ?Y = :Judy
569
+ # Therefore the derived triple above is entailed by the rules and facts.
570
+ # ----------------------------------------------------------------------
571
+
572
+ :Heidi :cousin :Judy .
573
+
574
+ # ----------------------------------------------------------------------
575
+ # Proof for derived triple:
576
+ # :Ivan :cousin :Judy .
577
+ # It holds because the following instance of the rule body is provable:
578
+ # :Ivan :generation 3 .
579
+ # :Judy :generation 3 .
580
+ # :Ivan :branch :b .
581
+ # :Judy :branch :c .
582
+ # :b :differentFrom :c .
583
+ # via the schematic forward rule:
584
+ # {
585
+ # ?X :generation ?G .
586
+ # ?Y :generation ?G .
587
+ # ?X :branch ?BX .
588
+ # ?Y :branch ?BY .
589
+ # ?BX :differentFrom ?BY .
590
+ # } => {
591
+ # ?X :cousin ?Y .
592
+ # } .
593
+ # with substitution (on rule variables):
594
+ # ?BX = :b
595
+ # ?BY = :c
596
+ # ?G = 3
597
+ # ?X = :Ivan
598
+ # ?Y = :Judy
599
+ # Therefore the derived triple above is entailed by the rules and facts.
600
+ # ----------------------------------------------------------------------
601
+
602
+ :Ivan :cousin :Judy .
603
+
604
+ # ----------------------------------------------------------------------
605
+ # Proof for derived triple:
606
+ # :Judy :cousin :Heidi .
607
+ # It holds because the following instance of the rule body is provable:
608
+ # :Judy :generation 3 .
609
+ # :Heidi :generation 3 .
610
+ # :Judy :branch :c .
611
+ # :Heidi :branch :b .
612
+ # :c :differentFrom :b .
613
+ # via the schematic forward rule:
614
+ # {
615
+ # ?X :generation ?G .
616
+ # ?Y :generation ?G .
617
+ # ?X :branch ?BX .
618
+ # ?Y :branch ?BY .
619
+ # ?BX :differentFrom ?BY .
620
+ # } => {
621
+ # ?X :cousin ?Y .
622
+ # } .
623
+ # with substitution (on rule variables):
624
+ # ?BX = :c
625
+ # ?BY = :b
626
+ # ?G = 3
627
+ # ?X = :Judy
628
+ # ?Y = :Heidi
629
+ # Therefore the derived triple above is entailed by the rules and facts.
630
+ # ----------------------------------------------------------------------
631
+
632
+ :Judy :cousin :Heidi .
633
+
634
+ # ----------------------------------------------------------------------
635
+ # Proof for derived triple:
636
+ # :Judy :cousin :Ivan .
637
+ # It holds because the following instance of the rule body is provable:
638
+ # :Judy :generation 3 .
639
+ # :Ivan :generation 3 .
640
+ # :Judy :branch :c .
641
+ # :Ivan :branch :b .
642
+ # :c :differentFrom :b .
643
+ # via the schematic forward rule:
644
+ # {
645
+ # ?X :generation ?G .
646
+ # ?Y :generation ?G .
647
+ # ?X :branch ?BX .
648
+ # ?Y :branch ?BY .
649
+ # ?BX :differentFrom ?BY .
650
+ # } => {
651
+ # ?X :cousin ?Y .
652
+ # } .
653
+ # with substitution (on rule variables):
654
+ # ?BX = :c
655
+ # ?BY = :b
656
+ # ?G = 3
657
+ # ?X = :Judy
658
+ # ?Y = :Ivan
659
+ # Therefore the derived triple above is entailed by the rules and facts.
660
+ # ----------------------------------------------------------------------
661
+
662
+ :Judy :cousin :Ivan .
663
+
@@ -0,0 +1,53 @@
1
+ @prefix : <https://eyereasoner.github.io/eye/reasoning#> .
2
+ @prefix gps: <https://eyereasoner.github.io/eye/reasoning/gps/gps-schema#> .
3
+
4
+ # ----------------------------------------------------------------------
5
+ # Proof for derived triple:
6
+ # :i1 gps:path ((:drive_gent_kortrijk :drive_kortrijk_brugge :drive_brugge_oostende) 4100 0.018 0.903168 0.9801) .
7
+ # It holds because the following instance of the rule body is provable:
8
+ # :i1 :location :Gent .
9
+ # (:Gent :Oostende (:drive_gent_kortrijk :drive_kortrijk_brugge :drive_brugge_oostende) 4100 0.018 0.903168 0.9801) :path true .
10
+ # via the schematic forward rule:
11
+ # {
12
+ # :i1 :location ?Start .
13
+ # (?Start :Oostende ?Acts ?Dur ?Cost ?Bel ?Comf) :path true .
14
+ # } => {
15
+ # :i1 gps:path (?Acts ?Dur ?Cost ?Bel ?Comf) .
16
+ # } .
17
+ # with substitution (on rule variables):
18
+ # ?Acts = (:drive_gent_kortrijk :drive_kortrijk_brugge :drive_brugge_oostende)
19
+ # ?Bel = 0.903168
20
+ # ?Comf = 0.9801
21
+ # ?Cost = 0.018
22
+ # ?Dur = 4100
23
+ # ?Start = :Gent
24
+ # Therefore the derived triple above is entailed by the rules and facts.
25
+ # ----------------------------------------------------------------------
26
+
27
+ :i1 gps:path ((:drive_gent_kortrijk :drive_kortrijk_brugge :drive_brugge_oostende) 4100 0.018 0.903168 0.9801) .
28
+
29
+ # ----------------------------------------------------------------------
30
+ # Proof for derived triple:
31
+ # :i1 gps:path ((:drive_gent_brugge :drive_brugge_oostende) 2400 0.01 0.9408 0.99) .
32
+ # It holds because the following instance of the rule body is provable:
33
+ # :i1 :location :Gent .
34
+ # (:Gent :Oostende (:drive_gent_brugge :drive_brugge_oostende) 2400 0.01 0.9408 0.99) :path true .
35
+ # via the schematic forward rule:
36
+ # {
37
+ # :i1 :location ?Start .
38
+ # (?Start :Oostende ?Acts ?Dur ?Cost ?Bel ?Comf) :path true .
39
+ # } => {
40
+ # :i1 gps:path (?Acts ?Dur ?Cost ?Bel ?Comf) .
41
+ # } .
42
+ # with substitution (on rule variables):
43
+ # ?Acts = (:drive_gent_brugge :drive_brugge_oostende)
44
+ # ?Bel = 0.9408
45
+ # ?Comf = 0.99
46
+ # ?Cost = 0.01
47
+ # ?Dur = 2400
48
+ # ?Start = :Gent
49
+ # Therefore the derived triple above is entailed by the rules and facts.
50
+ # ----------------------------------------------------------------------
51
+
52
+ :i1 gps:path ((:drive_gent_brugge :drive_brugge_oostende) 2400 0.01 0.9408 0.99) .
53
+