eyeling 1.5.11 → 1.5.13

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (96) hide show
  1. package/README.md +4 -6
  2. package/examples/age.n3 +29 -0
  3. package/examples/backward.n3 +24 -0
  4. package/examples/basic-monadic.n3 +10032 -0
  5. package/examples/cat-koko.n3 +29 -0
  6. package/examples/collect-all-in.n3 +32 -0
  7. package/examples/complex.n3 +142 -0
  8. package/examples/control-system.n3 +77 -0
  9. package/examples/crypto-builtins-tests.n3 +60 -0
  10. package/examples/deep-taxonomy-10.n3 +21 -0
  11. package/examples/deep-taxonomy-100.n3 +111 -0
  12. package/examples/deep-taxonomy-1000.n3 +1011 -0
  13. package/examples/deep-taxonomy-10000.n3 +10011 -0
  14. package/examples/derived-backward-rule-2.n3 +28 -0
  15. package/examples/derived-backward-rule.n3 +32 -0
  16. package/examples/derived-rule.n3 +19 -0
  17. package/examples/dijkstra.n3 +64 -0
  18. package/examples/dog.n3 +21 -0
  19. package/examples/equals.n3 +12 -0
  20. package/examples/existential-rule.n3 +18 -0
  21. package/examples/fibonacci.n3 +34 -0
  22. package/examples/for-all-in.n3 +21 -0
  23. package/examples/french-cities.n3 +32 -0
  24. package/examples/fuse.n3 +13 -0
  25. package/examples/good-cobbler.n3 +18 -0
  26. package/examples/gray-code-counter.n3 +64 -0
  27. package/examples/hanoi.n3 +21 -0
  28. package/examples/liar.n3 +6 -0
  29. package/examples/list-builtins-tests.n3 +84 -0
  30. package/examples/lldm.n3 +133 -0
  31. package/examples/math-builtins-tests.n3 +612 -0
  32. package/examples/monkey.n3 +11 -0
  33. package/examples/output/age.n3 +20 -0
  34. package/examples/output/backward.n3 +18 -0
  35. package/examples/output/basic-monadic.n3 +122 -0
  36. package/examples/output/cat-koko.n3 +125 -0
  37. package/examples/output/collect-all-in.n3 +122 -0
  38. package/examples/output/complex.n3 +57 -0
  39. package/examples/output/control-system.n3 +79 -0
  40. package/examples/output/crypto-builtins-tests.n3 +66 -0
  41. package/examples/output/deep-taxonomy-10.n3 +636 -0
  42. package/examples/output/deep-taxonomy-100.n3 +6036 -0
  43. package/examples/output/deep-taxonomy-1000.n3 +60036 -0
  44. package/examples/output/deep-taxonomy-10000.n3 +600036 -0
  45. package/examples/output/derived-backward-rule-2.n3 +71 -0
  46. package/examples/output/derived-backward-rule.n3 +53 -0
  47. package/examples/output/derived-rule.n3 +52 -0
  48. package/examples/output/dijkstra.n3 +315 -0
  49. package/examples/output/dog.n3 +33 -0
  50. package/examples/output/equals.n3 +18 -0
  51. package/examples/output/existential-rule.n3 +38 -0
  52. package/examples/output/fibonacci.n3 +44 -0
  53. package/examples/output/for-all-in.n3 +30 -0
  54. package/examples/output/french-cities.n3 +507 -0
  55. package/examples/output/fuse.n3 +1 -0
  56. package/examples/output/good-cobbler.n3 +27 -0
  57. package/examples/output/gray-code-counter.n3 +20 -0
  58. package/examples/output/hanoi.n3 +20 -0
  59. package/examples/output/liar.n3 +1 -0
  60. package/examples/output/list-builtins-tests.n3 +148 -0
  61. package/examples/output/lldm.n3 +1000 -0
  62. package/examples/output/math-builtins-tests.n3 +4479 -0
  63. package/examples/output/monkey.n3 +40 -0
  64. package/examples/output/peano.n3 +26 -0
  65. package/examples/output/pi.n3 +20 -0
  66. package/examples/output/polygon.n3 +20 -0
  67. package/examples/output/reordering.n3 +29 -0
  68. package/examples/output/rule-matching.n3 +29 -0
  69. package/examples/output/self-referential.n3 +88 -0
  70. package/examples/output/similar.n3 +18 -0
  71. package/examples/output/skolem.n3 +20 -0
  72. package/examples/output/snaf.n3 +26 -0
  73. package/examples/output/socrates.n3 +24 -0
  74. package/examples/output/string-builtins-tests.n3 +258 -0
  75. package/examples/output/turing.n3 +44 -0
  76. package/examples/output/uri.n3 +46 -0
  77. package/examples/output/witch.n3 +115 -0
  78. package/examples/output/zebra.n3 +114 -0
  79. package/examples/peano.n3 +45 -0
  80. package/examples/pi.n3 +32 -0
  81. package/examples/polygon.n3 +26 -0
  82. package/examples/reordering.n3 +23 -0
  83. package/examples/rule-matching.n3 +15 -0
  84. package/examples/self-referential.n3 +32 -0
  85. package/examples/similar.n3 +28 -0
  86. package/examples/skolem.n3 +15 -0
  87. package/examples/snaf.n3 +18 -0
  88. package/examples/socrates.n3 +19 -0
  89. package/examples/string-builtins-tests.n3 +210 -0
  90. package/examples/test +154 -0
  91. package/examples/turing.n3 +93 -0
  92. package/examples/uri.n3 +17 -0
  93. package/examples/witch.n3 +33 -0
  94. package/examples/zebra.n3 +47 -0
  95. package/package.json +6 -5
  96. package/test/api.test.js +22 -0
@@ -0,0 +1,636 @@
1
+ @prefix : <http://eulersharp.sourceforge.net/2009/12dtb/test#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # :ind a :N1 .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # :ind a :N0 .
8
+ # via the schematic forward rule:
9
+ # {
10
+ # ?X a :N0 .
11
+ # } => {
12
+ # ?X a :N1 .
13
+ # ?X a :I1 .
14
+ # ?X a :J1 .
15
+ # } .
16
+ # with substitution (on rule variables):
17
+ # ?X = :ind
18
+ # Therefore the derived triple above is entailed by the rules and facts.
19
+ # ----------------------------------------------------------------------
20
+
21
+ :ind a :N1 .
22
+
23
+ # ----------------------------------------------------------------------
24
+ # Proof for derived triple:
25
+ # :ind a :I1 .
26
+ # It holds because the following instance of the rule body is provable:
27
+ # :ind a :N0 .
28
+ # via the schematic forward rule:
29
+ # {
30
+ # ?X a :N0 .
31
+ # } => {
32
+ # ?X a :N1 .
33
+ # ?X a :I1 .
34
+ # ?X a :J1 .
35
+ # } .
36
+ # with substitution (on rule variables):
37
+ # ?X = :ind
38
+ # Therefore the derived triple above is entailed by the rules and facts.
39
+ # ----------------------------------------------------------------------
40
+
41
+ :ind a :I1 .
42
+
43
+ # ----------------------------------------------------------------------
44
+ # Proof for derived triple:
45
+ # :ind a :J1 .
46
+ # It holds because the following instance of the rule body is provable:
47
+ # :ind a :N0 .
48
+ # via the schematic forward rule:
49
+ # {
50
+ # ?X a :N0 .
51
+ # } => {
52
+ # ?X a :N1 .
53
+ # ?X a :I1 .
54
+ # ?X a :J1 .
55
+ # } .
56
+ # with substitution (on rule variables):
57
+ # ?X = :ind
58
+ # Therefore the derived triple above is entailed by the rules and facts.
59
+ # ----------------------------------------------------------------------
60
+
61
+ :ind a :J1 .
62
+
63
+ # ----------------------------------------------------------------------
64
+ # Proof for derived triple:
65
+ # :ind a :N2 .
66
+ # It holds because the following instance of the rule body is provable:
67
+ # :ind a :N1 .
68
+ # via the schematic forward rule:
69
+ # {
70
+ # ?X a :N1 .
71
+ # } => {
72
+ # ?X a :N2 .
73
+ # ?X a :I2 .
74
+ # ?X a :J2 .
75
+ # } .
76
+ # with substitution (on rule variables):
77
+ # ?X = :ind
78
+ # Therefore the derived triple above is entailed by the rules and facts.
79
+ # ----------------------------------------------------------------------
80
+
81
+ :ind a :N2 .
82
+
83
+ # ----------------------------------------------------------------------
84
+ # Proof for derived triple:
85
+ # :ind a :I2 .
86
+ # It holds because the following instance of the rule body is provable:
87
+ # :ind a :N1 .
88
+ # via the schematic forward rule:
89
+ # {
90
+ # ?X a :N1 .
91
+ # } => {
92
+ # ?X a :N2 .
93
+ # ?X a :I2 .
94
+ # ?X a :J2 .
95
+ # } .
96
+ # with substitution (on rule variables):
97
+ # ?X = :ind
98
+ # Therefore the derived triple above is entailed by the rules and facts.
99
+ # ----------------------------------------------------------------------
100
+
101
+ :ind a :I2 .
102
+
103
+ # ----------------------------------------------------------------------
104
+ # Proof for derived triple:
105
+ # :ind a :J2 .
106
+ # It holds because the following instance of the rule body is provable:
107
+ # :ind a :N1 .
108
+ # via the schematic forward rule:
109
+ # {
110
+ # ?X a :N1 .
111
+ # } => {
112
+ # ?X a :N2 .
113
+ # ?X a :I2 .
114
+ # ?X a :J2 .
115
+ # } .
116
+ # with substitution (on rule variables):
117
+ # ?X = :ind
118
+ # Therefore the derived triple above is entailed by the rules and facts.
119
+ # ----------------------------------------------------------------------
120
+
121
+ :ind a :J2 .
122
+
123
+ # ----------------------------------------------------------------------
124
+ # Proof for derived triple:
125
+ # :ind a :N3 .
126
+ # It holds because the following instance of the rule body is provable:
127
+ # :ind a :N2 .
128
+ # via the schematic forward rule:
129
+ # {
130
+ # ?X a :N2 .
131
+ # } => {
132
+ # ?X a :N3 .
133
+ # ?X a :I3 .
134
+ # ?X a :J3 .
135
+ # } .
136
+ # with substitution (on rule variables):
137
+ # ?X = :ind
138
+ # Therefore the derived triple above is entailed by the rules and facts.
139
+ # ----------------------------------------------------------------------
140
+
141
+ :ind a :N3 .
142
+
143
+ # ----------------------------------------------------------------------
144
+ # Proof for derived triple:
145
+ # :ind a :I3 .
146
+ # It holds because the following instance of the rule body is provable:
147
+ # :ind a :N2 .
148
+ # via the schematic forward rule:
149
+ # {
150
+ # ?X a :N2 .
151
+ # } => {
152
+ # ?X a :N3 .
153
+ # ?X a :I3 .
154
+ # ?X a :J3 .
155
+ # } .
156
+ # with substitution (on rule variables):
157
+ # ?X = :ind
158
+ # Therefore the derived triple above is entailed by the rules and facts.
159
+ # ----------------------------------------------------------------------
160
+
161
+ :ind a :I3 .
162
+
163
+ # ----------------------------------------------------------------------
164
+ # Proof for derived triple:
165
+ # :ind a :J3 .
166
+ # It holds because the following instance of the rule body is provable:
167
+ # :ind a :N2 .
168
+ # via the schematic forward rule:
169
+ # {
170
+ # ?X a :N2 .
171
+ # } => {
172
+ # ?X a :N3 .
173
+ # ?X a :I3 .
174
+ # ?X a :J3 .
175
+ # } .
176
+ # with substitution (on rule variables):
177
+ # ?X = :ind
178
+ # Therefore the derived triple above is entailed by the rules and facts.
179
+ # ----------------------------------------------------------------------
180
+
181
+ :ind a :J3 .
182
+
183
+ # ----------------------------------------------------------------------
184
+ # Proof for derived triple:
185
+ # :ind a :N4 .
186
+ # It holds because the following instance of the rule body is provable:
187
+ # :ind a :N3 .
188
+ # via the schematic forward rule:
189
+ # {
190
+ # ?X a :N3 .
191
+ # } => {
192
+ # ?X a :N4 .
193
+ # ?X a :I4 .
194
+ # ?X a :J4 .
195
+ # } .
196
+ # with substitution (on rule variables):
197
+ # ?X = :ind
198
+ # Therefore the derived triple above is entailed by the rules and facts.
199
+ # ----------------------------------------------------------------------
200
+
201
+ :ind a :N4 .
202
+
203
+ # ----------------------------------------------------------------------
204
+ # Proof for derived triple:
205
+ # :ind a :I4 .
206
+ # It holds because the following instance of the rule body is provable:
207
+ # :ind a :N3 .
208
+ # via the schematic forward rule:
209
+ # {
210
+ # ?X a :N3 .
211
+ # } => {
212
+ # ?X a :N4 .
213
+ # ?X a :I4 .
214
+ # ?X a :J4 .
215
+ # } .
216
+ # with substitution (on rule variables):
217
+ # ?X = :ind
218
+ # Therefore the derived triple above is entailed by the rules and facts.
219
+ # ----------------------------------------------------------------------
220
+
221
+ :ind a :I4 .
222
+
223
+ # ----------------------------------------------------------------------
224
+ # Proof for derived triple:
225
+ # :ind a :J4 .
226
+ # It holds because the following instance of the rule body is provable:
227
+ # :ind a :N3 .
228
+ # via the schematic forward rule:
229
+ # {
230
+ # ?X a :N3 .
231
+ # } => {
232
+ # ?X a :N4 .
233
+ # ?X a :I4 .
234
+ # ?X a :J4 .
235
+ # } .
236
+ # with substitution (on rule variables):
237
+ # ?X = :ind
238
+ # Therefore the derived triple above is entailed by the rules and facts.
239
+ # ----------------------------------------------------------------------
240
+
241
+ :ind a :J4 .
242
+
243
+ # ----------------------------------------------------------------------
244
+ # Proof for derived triple:
245
+ # :ind a :N5 .
246
+ # It holds because the following instance of the rule body is provable:
247
+ # :ind a :N4 .
248
+ # via the schematic forward rule:
249
+ # {
250
+ # ?X a :N4 .
251
+ # } => {
252
+ # ?X a :N5 .
253
+ # ?X a :I5 .
254
+ # ?X a :J5 .
255
+ # } .
256
+ # with substitution (on rule variables):
257
+ # ?X = :ind
258
+ # Therefore the derived triple above is entailed by the rules and facts.
259
+ # ----------------------------------------------------------------------
260
+
261
+ :ind a :N5 .
262
+
263
+ # ----------------------------------------------------------------------
264
+ # Proof for derived triple:
265
+ # :ind a :I5 .
266
+ # It holds because the following instance of the rule body is provable:
267
+ # :ind a :N4 .
268
+ # via the schematic forward rule:
269
+ # {
270
+ # ?X a :N4 .
271
+ # } => {
272
+ # ?X a :N5 .
273
+ # ?X a :I5 .
274
+ # ?X a :J5 .
275
+ # } .
276
+ # with substitution (on rule variables):
277
+ # ?X = :ind
278
+ # Therefore the derived triple above is entailed by the rules and facts.
279
+ # ----------------------------------------------------------------------
280
+
281
+ :ind a :I5 .
282
+
283
+ # ----------------------------------------------------------------------
284
+ # Proof for derived triple:
285
+ # :ind a :J5 .
286
+ # It holds because the following instance of the rule body is provable:
287
+ # :ind a :N4 .
288
+ # via the schematic forward rule:
289
+ # {
290
+ # ?X a :N4 .
291
+ # } => {
292
+ # ?X a :N5 .
293
+ # ?X a :I5 .
294
+ # ?X a :J5 .
295
+ # } .
296
+ # with substitution (on rule variables):
297
+ # ?X = :ind
298
+ # Therefore the derived triple above is entailed by the rules and facts.
299
+ # ----------------------------------------------------------------------
300
+
301
+ :ind a :J5 .
302
+
303
+ # ----------------------------------------------------------------------
304
+ # Proof for derived triple:
305
+ # :ind a :N6 .
306
+ # It holds because the following instance of the rule body is provable:
307
+ # :ind a :N5 .
308
+ # via the schematic forward rule:
309
+ # {
310
+ # ?X a :N5 .
311
+ # } => {
312
+ # ?X a :N6 .
313
+ # ?X a :I6 .
314
+ # ?X a :J6 .
315
+ # } .
316
+ # with substitution (on rule variables):
317
+ # ?X = :ind
318
+ # Therefore the derived triple above is entailed by the rules and facts.
319
+ # ----------------------------------------------------------------------
320
+
321
+ :ind a :N6 .
322
+
323
+ # ----------------------------------------------------------------------
324
+ # Proof for derived triple:
325
+ # :ind a :I6 .
326
+ # It holds because the following instance of the rule body is provable:
327
+ # :ind a :N5 .
328
+ # via the schematic forward rule:
329
+ # {
330
+ # ?X a :N5 .
331
+ # } => {
332
+ # ?X a :N6 .
333
+ # ?X a :I6 .
334
+ # ?X a :J6 .
335
+ # } .
336
+ # with substitution (on rule variables):
337
+ # ?X = :ind
338
+ # Therefore the derived triple above is entailed by the rules and facts.
339
+ # ----------------------------------------------------------------------
340
+
341
+ :ind a :I6 .
342
+
343
+ # ----------------------------------------------------------------------
344
+ # Proof for derived triple:
345
+ # :ind a :J6 .
346
+ # It holds because the following instance of the rule body is provable:
347
+ # :ind a :N5 .
348
+ # via the schematic forward rule:
349
+ # {
350
+ # ?X a :N5 .
351
+ # } => {
352
+ # ?X a :N6 .
353
+ # ?X a :I6 .
354
+ # ?X a :J6 .
355
+ # } .
356
+ # with substitution (on rule variables):
357
+ # ?X = :ind
358
+ # Therefore the derived triple above is entailed by the rules and facts.
359
+ # ----------------------------------------------------------------------
360
+
361
+ :ind a :J6 .
362
+
363
+ # ----------------------------------------------------------------------
364
+ # Proof for derived triple:
365
+ # :ind a :N7 .
366
+ # It holds because the following instance of the rule body is provable:
367
+ # :ind a :N6 .
368
+ # via the schematic forward rule:
369
+ # {
370
+ # ?X a :N6 .
371
+ # } => {
372
+ # ?X a :N7 .
373
+ # ?X a :I7 .
374
+ # ?X a :J7 .
375
+ # } .
376
+ # with substitution (on rule variables):
377
+ # ?X = :ind
378
+ # Therefore the derived triple above is entailed by the rules and facts.
379
+ # ----------------------------------------------------------------------
380
+
381
+ :ind a :N7 .
382
+
383
+ # ----------------------------------------------------------------------
384
+ # Proof for derived triple:
385
+ # :ind a :I7 .
386
+ # It holds because the following instance of the rule body is provable:
387
+ # :ind a :N6 .
388
+ # via the schematic forward rule:
389
+ # {
390
+ # ?X a :N6 .
391
+ # } => {
392
+ # ?X a :N7 .
393
+ # ?X a :I7 .
394
+ # ?X a :J7 .
395
+ # } .
396
+ # with substitution (on rule variables):
397
+ # ?X = :ind
398
+ # Therefore the derived triple above is entailed by the rules and facts.
399
+ # ----------------------------------------------------------------------
400
+
401
+ :ind a :I7 .
402
+
403
+ # ----------------------------------------------------------------------
404
+ # Proof for derived triple:
405
+ # :ind a :J7 .
406
+ # It holds because the following instance of the rule body is provable:
407
+ # :ind a :N6 .
408
+ # via the schematic forward rule:
409
+ # {
410
+ # ?X a :N6 .
411
+ # } => {
412
+ # ?X a :N7 .
413
+ # ?X a :I7 .
414
+ # ?X a :J7 .
415
+ # } .
416
+ # with substitution (on rule variables):
417
+ # ?X = :ind
418
+ # Therefore the derived triple above is entailed by the rules and facts.
419
+ # ----------------------------------------------------------------------
420
+
421
+ :ind a :J7 .
422
+
423
+ # ----------------------------------------------------------------------
424
+ # Proof for derived triple:
425
+ # :ind a :N8 .
426
+ # It holds because the following instance of the rule body is provable:
427
+ # :ind a :N7 .
428
+ # via the schematic forward rule:
429
+ # {
430
+ # ?X a :N7 .
431
+ # } => {
432
+ # ?X a :N8 .
433
+ # ?X a :I8 .
434
+ # ?X a :J8 .
435
+ # } .
436
+ # with substitution (on rule variables):
437
+ # ?X = :ind
438
+ # Therefore the derived triple above is entailed by the rules and facts.
439
+ # ----------------------------------------------------------------------
440
+
441
+ :ind a :N8 .
442
+
443
+ # ----------------------------------------------------------------------
444
+ # Proof for derived triple:
445
+ # :ind a :I8 .
446
+ # It holds because the following instance of the rule body is provable:
447
+ # :ind a :N7 .
448
+ # via the schematic forward rule:
449
+ # {
450
+ # ?X a :N7 .
451
+ # } => {
452
+ # ?X a :N8 .
453
+ # ?X a :I8 .
454
+ # ?X a :J8 .
455
+ # } .
456
+ # with substitution (on rule variables):
457
+ # ?X = :ind
458
+ # Therefore the derived triple above is entailed by the rules and facts.
459
+ # ----------------------------------------------------------------------
460
+
461
+ :ind a :I8 .
462
+
463
+ # ----------------------------------------------------------------------
464
+ # Proof for derived triple:
465
+ # :ind a :J8 .
466
+ # It holds because the following instance of the rule body is provable:
467
+ # :ind a :N7 .
468
+ # via the schematic forward rule:
469
+ # {
470
+ # ?X a :N7 .
471
+ # } => {
472
+ # ?X a :N8 .
473
+ # ?X a :I8 .
474
+ # ?X a :J8 .
475
+ # } .
476
+ # with substitution (on rule variables):
477
+ # ?X = :ind
478
+ # Therefore the derived triple above is entailed by the rules and facts.
479
+ # ----------------------------------------------------------------------
480
+
481
+ :ind a :J8 .
482
+
483
+ # ----------------------------------------------------------------------
484
+ # Proof for derived triple:
485
+ # :ind a :N9 .
486
+ # It holds because the following instance of the rule body is provable:
487
+ # :ind a :N8 .
488
+ # via the schematic forward rule:
489
+ # {
490
+ # ?X a :N8 .
491
+ # } => {
492
+ # ?X a :N9 .
493
+ # ?X a :I9 .
494
+ # ?X a :J9 .
495
+ # } .
496
+ # with substitution (on rule variables):
497
+ # ?X = :ind
498
+ # Therefore the derived triple above is entailed by the rules and facts.
499
+ # ----------------------------------------------------------------------
500
+
501
+ :ind a :N9 .
502
+
503
+ # ----------------------------------------------------------------------
504
+ # Proof for derived triple:
505
+ # :ind a :I9 .
506
+ # It holds because the following instance of the rule body is provable:
507
+ # :ind a :N8 .
508
+ # via the schematic forward rule:
509
+ # {
510
+ # ?X a :N8 .
511
+ # } => {
512
+ # ?X a :N9 .
513
+ # ?X a :I9 .
514
+ # ?X a :J9 .
515
+ # } .
516
+ # with substitution (on rule variables):
517
+ # ?X = :ind
518
+ # Therefore the derived triple above is entailed by the rules and facts.
519
+ # ----------------------------------------------------------------------
520
+
521
+ :ind a :I9 .
522
+
523
+ # ----------------------------------------------------------------------
524
+ # Proof for derived triple:
525
+ # :ind a :J9 .
526
+ # It holds because the following instance of the rule body is provable:
527
+ # :ind a :N8 .
528
+ # via the schematic forward rule:
529
+ # {
530
+ # ?X a :N8 .
531
+ # } => {
532
+ # ?X a :N9 .
533
+ # ?X a :I9 .
534
+ # ?X a :J9 .
535
+ # } .
536
+ # with substitution (on rule variables):
537
+ # ?X = :ind
538
+ # Therefore the derived triple above is entailed by the rules and facts.
539
+ # ----------------------------------------------------------------------
540
+
541
+ :ind a :J9 .
542
+
543
+ # ----------------------------------------------------------------------
544
+ # Proof for derived triple:
545
+ # :ind a :N10 .
546
+ # It holds because the following instance of the rule body is provable:
547
+ # :ind a :N9 .
548
+ # via the schematic forward rule:
549
+ # {
550
+ # ?X a :N9 .
551
+ # } => {
552
+ # ?X a :N10 .
553
+ # ?X a :I10 .
554
+ # ?X a :J10 .
555
+ # } .
556
+ # with substitution (on rule variables):
557
+ # ?X = :ind
558
+ # Therefore the derived triple above is entailed by the rules and facts.
559
+ # ----------------------------------------------------------------------
560
+
561
+ :ind a :N10 .
562
+
563
+ # ----------------------------------------------------------------------
564
+ # Proof for derived triple:
565
+ # :ind a :I10 .
566
+ # It holds because the following instance of the rule body is provable:
567
+ # :ind a :N9 .
568
+ # via the schematic forward rule:
569
+ # {
570
+ # ?X a :N9 .
571
+ # } => {
572
+ # ?X a :N10 .
573
+ # ?X a :I10 .
574
+ # ?X a :J10 .
575
+ # } .
576
+ # with substitution (on rule variables):
577
+ # ?X = :ind
578
+ # Therefore the derived triple above is entailed by the rules and facts.
579
+ # ----------------------------------------------------------------------
580
+
581
+ :ind a :I10 .
582
+
583
+ # ----------------------------------------------------------------------
584
+ # Proof for derived triple:
585
+ # :ind a :J10 .
586
+ # It holds because the following instance of the rule body is provable:
587
+ # :ind a :N9 .
588
+ # via the schematic forward rule:
589
+ # {
590
+ # ?X a :N9 .
591
+ # } => {
592
+ # ?X a :N10 .
593
+ # ?X a :I10 .
594
+ # ?X a :J10 .
595
+ # } .
596
+ # with substitution (on rule variables):
597
+ # ?X = :ind
598
+ # Therefore the derived triple above is entailed by the rules and facts.
599
+ # ----------------------------------------------------------------------
600
+
601
+ :ind a :J10 .
602
+
603
+ # ----------------------------------------------------------------------
604
+ # Proof for derived triple:
605
+ # :ind a :A2 .
606
+ # It holds because the following instance of the rule body is provable:
607
+ # :ind a :N10 .
608
+ # via the schematic forward rule:
609
+ # {
610
+ # ?X a :N10 .
611
+ # } => {
612
+ # ?X a :A2 .
613
+ # } .
614
+ # with substitution (on rule variables):
615
+ # ?X = :ind
616
+ # Therefore the derived triple above is entailed by the rules and facts.
617
+ # ----------------------------------------------------------------------
618
+
619
+ :ind a :A2 .
620
+
621
+ # ----------------------------------------------------------------------
622
+ # Proof for derived triple:
623
+ # :test :is true .
624
+ # It holds because the following instance of the rule body is provable:
625
+ # :ind a :A2 .
626
+ # via the schematic forward rule:
627
+ # {
628
+ # :ind a :A2 .
629
+ # } => {
630
+ # :test :is true .
631
+ # } .
632
+ # Therefore the derived triple above is entailed by the rules and facts.
633
+ # ----------------------------------------------------------------------
634
+
635
+ :test :is true .
636
+