erosolar-cli 2.1.296 → 2.1.297

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,59 @@
1
+ /**
2
+ * Cancer Research Module
3
+ *
4
+ * This module demonstrates how TypeScript/JavaScript can be used for
5
+ * cancer research data analysis and machine learning pipelines.
6
+ *
7
+ * While real cancer research requires domain expertise and clinical validation,
8
+ * software engineering enables scalable analysis and reproducible research.
9
+ */
10
+ export interface CancerDataset {
11
+ samples: number;
12
+ features: number;
13
+ data: number[][];
14
+ labels: number[];
15
+ featureNames: string[];
16
+ }
17
+ export interface CancerStatistics {
18
+ nSamples: number;
19
+ nFeatures: number;
20
+ classDistribution: {
21
+ benign: number;
22
+ malignant: number;
23
+ };
24
+ featureMeans: Record<string, number>;
25
+ featureStds: Record<string, number>;
26
+ }
27
+ export interface ModelMetrics {
28
+ accuracy: number;
29
+ precision: number;
30
+ recall: number;
31
+ f1Score: number;
32
+ }
33
+ export declare class CancerResearchPipeline {
34
+ private seed;
35
+ private dataset;
36
+ private results;
37
+ constructor(seed?: number);
38
+ /**
39
+ * Generate synthetic cancer dataset
40
+ */
41
+ generateSyntheticData(nSamples?: number, nFeatures?: number): CancerDataset;
42
+ /**
43
+ * Compute basic statistics on the dataset
44
+ */
45
+ computeStatistics(): CancerStatistics;
46
+ /**
47
+ * Simple logistic regression implementation (educational purposes only)
48
+ */
49
+ trainLogisticRegression(testSize?: number): ModelMetrics;
50
+ /**
51
+ * Run complete pipeline
52
+ */
53
+ runPipeline(): Record<string, any>;
54
+ /**
55
+ * Export results to JSON file (node.js environment)
56
+ */
57
+ exportResults(filePath?: string): Promise<void>;
58
+ }
59
+ //# sourceMappingURL=cancerResearch.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"cancerResearch.d.ts","sourceRoot":"","sources":["../../src/science/cancerResearch.ts"],"names":[],"mappings":"AAAA;;;;;;;;GAQG;AAEH,MAAM,WAAW,aAAa;IAC5B,OAAO,EAAE,MAAM,CAAC;IAChB,QAAQ,EAAE,MAAM,CAAC;IACjB,IAAI,EAAE,MAAM,EAAE,EAAE,CAAC;IACjB,MAAM,EAAE,MAAM,EAAE,CAAC;IACjB,YAAY,EAAE,MAAM,EAAE,CAAC;CACxB;AAED,MAAM,WAAW,gBAAgB;IAC/B,QAAQ,EAAE,MAAM,CAAC;IACjB,SAAS,EAAE,MAAM,CAAC;IAClB,iBAAiB,EAAE;QACjB,MAAM,EAAE,MAAM,CAAC;QACf,SAAS,EAAE,MAAM,CAAC;KACnB,CAAC;IACF,YAAY,EAAE,MAAM,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACrC,WAAW,EAAE,MAAM,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;CACrC;AAED,MAAM,WAAW,YAAY;IAC3B,QAAQ,EAAE,MAAM,CAAC;IACjB,SAAS,EAAE,MAAM,CAAC;IAClB,MAAM,EAAE,MAAM,CAAC;IACf,OAAO,EAAE,MAAM,CAAC;CACjB;AAED,qBAAa,sBAAsB;IAIrB,OAAO,CAAC,IAAI;IAHxB,OAAO,CAAC,OAAO,CAA8B;IAC7C,OAAO,CAAC,OAAO,CAA2B;gBAEtB,IAAI,GAAE,MAAW;IAKrC;;OAEG;IACH,qBAAqB,CAAC,QAAQ,GAAE,MAAa,EAAE,SAAS,GAAE,MAAW,GAAG,aAAa;IAyCrF;;OAEG;IACH,iBAAiB,IAAI,gBAAgB;IAoCrC;;OAEG;IACH,uBAAuB,CAAC,QAAQ,GAAE,MAAY,GAAG,YAAY;IAuF7D;;OAEG;IACH,WAAW,IAAI,MAAM,CAAC,MAAM,EAAE,GAAG,CAAC;IA+BlC;;OAEG;IACG,aAAa,CAAC,QAAQ,GAAE,MAA0C,GAAG,OAAO,CAAC,IAAI,CAAC;CAUzF"}
@@ -0,0 +1,219 @@
1
+ /**
2
+ * Cancer Research Module
3
+ *
4
+ * This module demonstrates how TypeScript/JavaScript can be used for
5
+ * cancer research data analysis and machine learning pipelines.
6
+ *
7
+ * While real cancer research requires domain expertise and clinical validation,
8
+ * software engineering enables scalable analysis and reproducible research.
9
+ */
10
+ export class CancerResearchPipeline {
11
+ seed;
12
+ dataset = null;
13
+ results = {};
14
+ constructor(seed = 42) {
15
+ this.seed = seed;
16
+ // Simple seed for reproducibility
17
+ // Note: In production, use proper seeding libraries
18
+ }
19
+ /**
20
+ * Generate synthetic cancer dataset
21
+ */
22
+ generateSyntheticData(nSamples = 1000, nFeatures = 30) {
23
+ const data = [];
24
+ const labels = [];
25
+ const featureNames = Array.from({ length: nFeatures }, (_, i) => `gene_${i + 1}`);
26
+ // Simple synthetic data generation
27
+ for (let i = 0; i < nSamples; i++) {
28
+ const sample = [];
29
+ let weightedSum = 0;
30
+ for (let j = 0; j < nFeatures; j++) {
31
+ // Generate feature with normal distribution-like values
32
+ const value = (Math.random() * 2 - 1) + (Math.random() * 2 - 1); // Rough normal approximation
33
+ sample.push(value);
34
+ // Simple weight for correlation with label
35
+ weightedSum += value * (j % 3 - 1); // Arbitrary weights
36
+ }
37
+ // Convert to probability using sigmoid
38
+ const probability = 1 / (1 + Math.exp(-weightedSum / nFeatures));
39
+ const label = probability > 0.5 ? 1 : 0;
40
+ // Add some noise
41
+ const finalLabel = Math.random() > 0.8 ? 1 - label : label;
42
+ labels.push(finalLabel);
43
+ data.push(sample);
44
+ }
45
+ this.dataset = {
46
+ samples: nSamples,
47
+ features: nFeatures,
48
+ data,
49
+ labels,
50
+ featureNames
51
+ };
52
+ console.log(`Generated synthetic cancer dataset with ${nSamples} samples, ${nFeatures} features`);
53
+ return this.dataset;
54
+ }
55
+ /**
56
+ * Compute basic statistics on the dataset
57
+ */
58
+ computeStatistics() {
59
+ if (!this.dataset) {
60
+ throw new Error('No dataset loaded. Call generateSyntheticData() first.');
61
+ }
62
+ const { data, labels, featureNames } = this.dataset;
63
+ // Class distribution
64
+ const benign = labels.filter(l => l === 0).length;
65
+ const malignant = labels.filter(l => l === 1).length;
66
+ // Feature means and stds
67
+ const featureMeans = {};
68
+ const featureStds = {};
69
+ for (let j = 0; j < this.dataset.features; j++) {
70
+ const values = data.map(row => row[j]);
71
+ const mean = values.reduce((a, b) => a + b, 0) / values.length;
72
+ const variance = values.reduce((sq, n) => sq + Math.pow(n - mean, 2), 0) / values.length;
73
+ featureMeans[featureNames[j]] = mean;
74
+ featureStds[featureNames[j]] = Math.sqrt(variance);
75
+ }
76
+ const stats = {
77
+ nSamples: this.dataset.samples,
78
+ nFeatures: this.dataset.features,
79
+ classDistribution: { benign, malignant },
80
+ featureMeans,
81
+ featureStds
82
+ };
83
+ this.results.statistics = stats;
84
+ return stats;
85
+ }
86
+ /**
87
+ * Simple logistic regression implementation (educational purposes only)
88
+ */
89
+ trainLogisticRegression(testSize = 0.2) {
90
+ if (!this.dataset) {
91
+ throw new Error('No dataset loaded.');
92
+ }
93
+ const { data, labels } = this.dataset;
94
+ const n = data.length;
95
+ const splitIdx = Math.floor(n * (1 - testSize));
96
+ // Simple shuffle (Fisher-Yates)
97
+ const indices = Array.from({ length: n }, (_, i) => i);
98
+ for (let i = n - 1; i > 0; i--) {
99
+ const j = Math.floor(Math.random() * (i + 1));
100
+ [indices[i], indices[j]] = [indices[j], indices[i]];
101
+ }
102
+ // Split data
103
+ const trainData = indices.slice(0, splitIdx).map(i => data[i]);
104
+ const trainLabels = indices.slice(0, splitIdx).map(i => labels[i]);
105
+ const testData = indices.slice(splitIdx).map(i => data[i]);
106
+ const testLabels = indices.slice(splitIdx).map(i => labels[i]);
107
+ // Simple logistic regression weights (gradient descent)
108
+ const nFeatures = data[0].length;
109
+ const weights = Array(nFeatures + 1).fill(0); // +1 for bias
110
+ const learningRate = 0.01;
111
+ const epochs = 100;
112
+ for (let epoch = 0; epoch < epochs; epoch++) {
113
+ for (let i = 0; i < trainData.length; i++) {
114
+ const features = [1, ...trainData[i]]; // Add bias term
115
+ let weightedSum = 0;
116
+ for (let j = 0; j < weights.length; j++) {
117
+ weightedSum += weights[j] * features[j];
118
+ }
119
+ const prediction = 1 / (1 + Math.exp(-weightedSum));
120
+ const error = prediction - trainLabels[i];
121
+ // Update weights
122
+ for (let j = 0; j < weights.length; j++) {
123
+ weights[j] -= learningRate * error * features[j];
124
+ }
125
+ }
126
+ }
127
+ // Evaluate on test set
128
+ let truePositives = 0;
129
+ let falsePositives = 0;
130
+ let falseNegatives = 0;
131
+ let correct = 0;
132
+ for (let i = 0; i < testData.length; i++) {
133
+ const features = [1, ...testData[i]];
134
+ let weightedSum = 0;
135
+ for (let j = 0; j < weights.length; j++) {
136
+ weightedSum += weights[j] * features[j];
137
+ }
138
+ const prediction = weightedSum > 0 ? 1 : 0;
139
+ const actual = testLabels[i];
140
+ if (prediction === actual) {
141
+ correct++;
142
+ if (prediction === 1)
143
+ truePositives++;
144
+ }
145
+ else {
146
+ if (prediction === 1)
147
+ falsePositives++;
148
+ else
149
+ falseNegatives++;
150
+ }
151
+ }
152
+ const accuracy = correct / testData.length;
153
+ const precision = truePositives / (truePositives + falsePositives) || 0;
154
+ const recall = truePositives / (truePositives + falseNegatives) || 0;
155
+ const f1Score = 2 * (precision * recall) / (precision + recall) || 0;
156
+ const metrics = {
157
+ accuracy,
158
+ precision,
159
+ recall,
160
+ f1Score
161
+ };
162
+ this.results.modelMetrics = metrics;
163
+ return metrics;
164
+ }
165
+ /**
166
+ * Run complete pipeline
167
+ */
168
+ runPipeline() {
169
+ console.log('Starting TypeScript cancer research pipeline...');
170
+ // Generate data
171
+ this.generateSyntheticData(800, 25);
172
+ // Compute statistics
173
+ const stats = this.computeStatistics();
174
+ console.log('Statistics:', JSON.stringify(stats, null, 2));
175
+ // Train model
176
+ const metrics = this.trainLogisticRegression();
177
+ console.log('Model metrics:', JSON.stringify(metrics, null, 2));
178
+ // Generate report
179
+ const report = {
180
+ pipelineVersion: '1.0.0',
181
+ timestamp: new Date().toISOString(),
182
+ dataset: {
183
+ samples: this.dataset.samples,
184
+ features: this.dataset.features
185
+ },
186
+ statistics: stats,
187
+ modelMetrics: metrics,
188
+ interpretation: 'This TypeScript implementation demonstrates basic ML for cancer research. Real applications require domain expertise, validated datasets, and clinical trials.'
189
+ };
190
+ this.results.report = report;
191
+ return report;
192
+ }
193
+ /**
194
+ * Export results to JSON file (node.js environment)
195
+ */
196
+ async exportResults(filePath = 'cancer_research_typescript.json') {
197
+ if (typeof window !== 'undefined') {
198
+ console.warn('Browser environment: cannot write to file system');
199
+ return;
200
+ }
201
+ const fs = await import('fs/promises');
202
+ await fs.writeFile(filePath, JSON.stringify(this.results, null, 2));
203
+ console.log(`Results exported to ${filePath}`);
204
+ }
205
+ }
206
+ // Example usage (if run directly)
207
+ if (require.main === module) {
208
+ const pipeline = new CancerResearchPipeline();
209
+ const report = pipeline.runPipeline();
210
+ console.log('\n=== TypeScript Cancer Research Pipeline Complete ===');
211
+ console.log('This demonstrates how Node.js/TypeScript can be used for biomedical research.');
212
+ console.log('Key advantages:');
213
+ console.log('- Strong typing for data integrity');
214
+ console.log('- Async/await for large-scale data processing');
215
+ console.log('- Integration with web technologies for visualization');
216
+ console.log('- Cross-platform deployment (server, browser, mobile)');
217
+ pipeline.exportResults().catch(console.error);
218
+ }
219
+ //# sourceMappingURL=cancerResearch.js.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"cancerResearch.js","sourceRoot":"","sources":["../../src/science/cancerResearch.ts"],"names":[],"mappings":"AAAA;;;;;;;;GAQG;AA4BH,MAAM,OAAO,sBAAsB;IAIb;IAHZ,OAAO,GAAyB,IAAI,CAAC;IACrC,OAAO,GAAwB,EAAE,CAAC;IAE1C,YAAoB,OAAe,EAAE;QAAjB,SAAI,GAAJ,IAAI,CAAa;QACnC,kCAAkC;QAClC,oDAAoD;IACtD,CAAC;IAED;;OAEG;IACH,qBAAqB,CAAC,WAAmB,IAAI,EAAE,YAAoB,EAAE;QACnE,MAAM,IAAI,GAAe,EAAE,CAAC;QAC5B,MAAM,MAAM,GAAa,EAAE,CAAC;QAC5B,MAAM,YAAY,GAAG,KAAK,CAAC,IAAI,CAAC,EAAE,MAAM,EAAE,SAAS,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,QAAQ,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC;QAElF,mCAAmC;QACnC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;YAClC,MAAM,MAAM,GAAa,EAAE,CAAC;YAC5B,IAAI,WAAW,GAAG,CAAC,CAAC;YAEpB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;gBACnC,wDAAwD;gBACxD,MAAM,KAAK,GAAG,CAAC,IAAI,CAAC,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,6BAA6B;gBAC9F,MAAM,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC;gBACnB,2CAA2C;gBAC3C,WAAW,IAAI,KAAK,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,oBAAoB;YAC1D,CAAC;YAED,uCAAuC;YACvC,MAAM,WAAW,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,WAAW,GAAG,SAAS,CAAC,CAAC,CAAC;YACjE,MAAM,KAAK,GAAG,WAAW,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;YAExC,iBAAiB;YACjB,MAAM,UAAU,GAAG,IAAI,CAAC,MAAM,EAAE,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,KAAK,CAAC;YAE3D,MAAM,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC;YACxB,IAAI,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC;QACpB,CAAC;QAED,IAAI,CAAC,OAAO,GAAG;YACb,OAAO,EAAE,QAAQ;YACjB,QAAQ,EAAE,SAAS;YACnB,IAAI;YACJ,MAAM;YACN,YAAY;SACb,CAAC;QAEF,OAAO,CAAC,GAAG,CAAC,2CAA2C,QAAQ,aAAa,SAAS,WAAW,CAAC,CAAC;QAClG,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IAED;;OAEG;IACH,iBAAiB;QACf,IAAI,CAAC,IAAI,CAAC,OAAO,EAAE,CAAC;YAClB,MAAM,IAAI,KAAK,CAAC,wDAAwD,CAAC,CAAC;QAC5E,CAAC;QAED,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,YAAY,EAAE,GAAG,IAAI,CAAC,OAAO,CAAC;QAEpD,qBAAqB;QACrB,MAAM,MAAM,GAAG,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,MAAM,CAAC;QAClD,MAAM,SAAS,GAAG,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,MAAM,CAAC;QAErD,yBAAyB;QACzB,MAAM,YAAY,GAA2B,EAAE,CAAC;QAChD,MAAM,WAAW,GAA2B,EAAE,CAAC;QAE/C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;YAC/C,MAAM,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;YACvC,MAAM,IAAI,GAAG,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,GAAG,MAAM,CAAC,MAAM,CAAC;YAC/D,MAAM,QAAQ,GAAG,MAAM,CAAC,MAAM,CAAC,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,MAAM,CAAC,MAAM,CAAC;YAEzF,YAAY,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC;YACrC,WAAW,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,QAAQ,CAAC,CAAC;QACrD,CAAC;QAED,MAAM,KAAK,GAAqB;YAC9B,QAAQ,EAAE,IAAI,CAAC,OAAO,CAAC,OAAO;YAC9B,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,QAAQ;YAChC,iBAAiB,EAAE,EAAE,MAAM,EAAE,SAAS,EAAE;YACxC,YAAY;YACZ,WAAW;SACZ,CAAC;QAEF,IAAI,CAAC,OAAO,CAAC,UAAU,GAAG,KAAK,CAAC;QAChC,OAAO,KAAK,CAAC;IACf,CAAC;IAED;;OAEG;IACH,uBAAuB,CAAC,WAAmB,GAAG;QAC5C,IAAI,CAAC,IAAI,CAAC,OAAO,EAAE,CAAC;YAClB,MAAM,IAAI,KAAK,CAAC,oBAAoB,CAAC,CAAC;QACxC,CAAC;QAED,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,GAAG,IAAI,CAAC,OAAO,CAAC;QACtC,MAAM,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC;QACtB,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,QAAQ,CAAC,CAAC,CAAC;QAEhD,gCAAgC;QAChC,MAAM,OAAO,GAAG,KAAK,CAAC,IAAI,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC;QACvD,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;YAC/B,MAAM,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC9C,CAAC,OAAO,CAAC,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,OAAO,CAAC,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC;QACtD,CAAC;QAED,aAAa;QACb,MAAM,SAAS,GAAG,OAAO,CAAC,KAAK,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QAC/D,MAAM,WAAW,GAAG,OAAO,CAAC,KAAK,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;QACnE,MAAM,QAAQ,GAAG,OAAO,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;QAC3D,MAAM,UAAU,GAAG,OAAO,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;QAE/D,wDAAwD;QACxD,MAAM,SAAS,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC;QACjC,MAAM,OAAO,GAAG,KAAK,CAAC,SAAS,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,cAAc;QAC5D,MAAM,YAAY,GAAG,IAAI,CAAC;QAC1B,MAAM,MAAM,GAAG,GAAG,CAAC;QAEnB,KAAK,IAAI,KAAK,GAAG,CAAC,EAAE,KAAK,GAAG,MAAM,EAAE,KAAK,EAAE,EAAE,CAAC;YAC5C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,SAAS,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;gBAC1C,MAAM,QAAQ,GAAG,CAAC,CAAC,EAAE,GAAG,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,gBAAgB;gBACvD,IAAI,WAAW,GAAG,CAAC,CAAC;gBACpB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;oBACxC,WAAW,IAAI,OAAO,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,CAAC,CAAC,CAAC;gBAC1C,CAAC;gBAED,MAAM,UAAU,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,WAAW,CAAC,CAAC,CAAC;gBACpD,MAAM,KAAK,GAAG,UAAU,GAAG,WAAW,CAAC,CAAC,CAAC,CAAC;gBAE1C,iBAAiB;gBACjB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;oBACxC,OAAO,CAAC,CAAC,CAAC,IAAI,YAAY,GAAG,KAAK,GAAG,QAAQ,CAAC,CAAC,CAAC,CAAC;gBACnD,CAAC;YACH,CAAC;QACH,CAAC;QAED,uBAAuB;QACvB,IAAI,aAAa,GAAG,CAAC,CAAC;QACtB,IAAI,cAAc,GAAG,CAAC,CAAC;QACvB,IAAI,cAAc,GAAG,CAAC,CAAC;QACvB,IAAI,OAAO,GAAG,CAAC,CAAC;QAEhB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;YACzC,MAAM,QAAQ,GAAG,CAAC,CAAC,EAAE,GAAG,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;YACrC,IAAI,WAAW,GAAG,CAAC,CAAC;YACpB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;gBACxC,WAAW,IAAI,OAAO,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,CAAC,CAAC,CAAC;YAC1C,CAAC;YAED,MAAM,UAAU,GAAG,WAAW,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;YAC3C,MAAM,MAAM,GAAG,UAAU,CAAC,CAAC,CAAC,CAAC;YAE7B,IAAI,UAAU,KAAK,MAAM,EAAE,CAAC;gBAC1B,OAAO,EAAE,CAAC;gBACV,IAAI,UAAU,KAAK,CAAC;oBAAE,aAAa,EAAE,CAAC;YACxC,CAAC;iBAAM,CAAC;gBACN,IAAI,UAAU,KAAK,CAAC;oBAAE,cAAc,EAAE,CAAC;;oBAClC,cAAc,EAAE,CAAC;YACxB,CAAC;QACH,CAAC;QAED,MAAM,QAAQ,GAAG,OAAO,GAAG,QAAQ,CAAC,MAAM,CAAC;QAC3C,MAAM,SAAS,GAAG,aAAa,GAAG,CAAC,aAAa,GAAG,cAAc,CAAC,IAAI,CAAC,CAAC;QACxE,MAAM,MAAM,GAAG,aAAa,GAAG,CAAC,aAAa,GAAG,cAAc,CAAC,IAAI,CAAC,CAAC;QACrE,MAAM,OAAO,GAAG,CAAC,GAAG,CAAC,SAAS,GAAG,MAAM,CAAC,GAAG,CAAC,SAAS,GAAG,MAAM,CAAC,IAAI,CAAC,CAAC;QAErE,MAAM,OAAO,GAAiB;YAC5B,QAAQ;YACR,SAAS;YACT,MAAM;YACN,OAAO;SACR,CAAC;QAEF,IAAI,CAAC,OAAO,CAAC,YAAY,GAAG,OAAO,CAAC;QACpC,OAAO,OAAO,CAAC;IACjB,CAAC;IAED;;OAEG;IACH,WAAW;QACT,OAAO,CAAC,GAAG,CAAC,iDAAiD,CAAC,CAAC;QAE/D,gBAAgB;QAChB,IAAI,CAAC,qBAAqB,CAAC,GAAG,EAAE,EAAE,CAAC,CAAC;QAEpC,qBAAqB;QACrB,MAAM,KAAK,GAAG,IAAI,CAAC,iBAAiB,EAAE,CAAC;QACvC,OAAO,CAAC,GAAG,CAAC,aAAa,EAAE,IAAI,CAAC,SAAS,CAAC,KAAK,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC;QAE3D,cAAc;QACd,MAAM,OAAO,GAAG,IAAI,CAAC,uBAAuB,EAAE,CAAC;QAC/C,OAAO,CAAC,GAAG,CAAC,gBAAgB,EAAE,IAAI,CAAC,SAAS,CAAC,OAAO,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC;QAEhE,kBAAkB;QAClB,MAAM,MAAM,GAAG;YACb,eAAe,EAAE,OAAO;YACxB,SAAS,EAAE,IAAI,IAAI,EAAE,CAAC,WAAW,EAAE;YACnC,OAAO,EAAE;gBACP,OAAO,EAAE,IAAI,CAAC,OAAQ,CAAC,OAAO;gBAC9B,QAAQ,EAAE,IAAI,CAAC,OAAQ,CAAC,QAAQ;aACjC;YACD,UAAU,EAAE,KAAK;YACjB,YAAY,EAAE,OAAO;YACrB,cAAc,EAAE,gKAAgK;SACjL,CAAC;QAEF,IAAI,CAAC,OAAO,CAAC,MAAM,GAAG,MAAM,CAAC;QAC7B,OAAO,MAAM,CAAC;IAChB,CAAC;IAED;;OAEG;IACH,KAAK,CAAC,aAAa,CAAC,WAAmB,iCAAiC;QACtE,IAAI,OAAO,MAAM,KAAK,WAAW,EAAE,CAAC;YAClC,OAAO,CAAC,IAAI,CAAC,kDAAkD,CAAC,CAAC;YACjE,OAAO;QACT,CAAC;QAED,MAAM,EAAE,GAAG,MAAM,MAAM,CAAC,aAAa,CAAC,CAAC;QACvC,MAAM,EAAE,CAAC,SAAS,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC;QACpE,OAAO,CAAC,GAAG,CAAC,uBAAuB,QAAQ,EAAE,CAAC,CAAC;IACjD,CAAC;CACF;AAED,kCAAkC;AAClC,IAAI,OAAO,CAAC,IAAI,KAAK,MAAM,EAAE,CAAC;IAC5B,MAAM,QAAQ,GAAG,IAAI,sBAAsB,EAAE,CAAC;IAC9C,MAAM,MAAM,GAAG,QAAQ,CAAC,WAAW,EAAE,CAAC;IAEtC,OAAO,CAAC,GAAG,CAAC,wDAAwD,CAAC,CAAC;IACtE,OAAO,CAAC,GAAG,CAAC,+EAA+E,CAAC,CAAC;IAC7F,OAAO,CAAC,GAAG,CAAC,iBAAiB,CAAC,CAAC;IAC/B,OAAO,CAAC,GAAG,CAAC,oCAAoC,CAAC,CAAC;IAClD,OAAO,CAAC,GAAG,CAAC,+CAA+C,CAAC,CAAC;IAC7D,OAAO,CAAC,GAAG,CAAC,uDAAuD,CAAC,CAAC;IACrE,OAAO,CAAC,GAAG,CAAC,uDAAuD,CAAC,CAAC;IAErE,QAAQ,CAAC,aAAa,EAAE,CAAC,KAAK,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC;AAChD,CAAC"}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "erosolar-cli",
3
- "version": "2.1.296",
3
+ "version": "2.1.297",
4
4
  "description": "Unified AI agent framework for the command line - Multi-provider support with schema-driven tools, code intelligence, and transparent reasoning",
5
5
  "main": "dist/bin/erosolar.js",
6
6
  "type": "module",
@@ -127,7 +127,6 @@
127
127
  "boxen": "^5.1.2",
128
128
  "chalk": "^4.1.2",
129
129
  "cli-spinners": "^2.9.2",
130
- "erosolar-cli": "^2.1.248",
131
130
  "gradient-string": "^2.0.2",
132
131
  "nanospinner": "^1.1.0",
133
132
  "nodemailer": "^7.0.10",