ds-mcp-flowise 1.1.2 → 1.1.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +259 -215
- package/dist/index.js +32 -32
- package/package.json +55 -55
- package/scripts/extract-nodes.ts +368 -368
- package/scripts/prepare-database.ts +230 -230
- package/src/index.ts +1078 -1078
package/README.md
CHANGED
|
@@ -1,215 +1,259 @@
|
|
|
1
|
-
# DS-MCP-FLOWISE
|
|
2
|
-
|
|
3
|
-
MCP (Model Context Protocol) server that gives AI assistants (Claude, GPT, etc.) deep knowledge of [Flowise](https://flowiseai.com/) nodes so they can help you design, build, and deploy chatflows and agentflows.
|
|
4
|
-
|
|
5
|
-
## What This Does
|
|
6
|
-
|
|
7
|
-
When connected to Claude Code (or other MCP clients), this server lets the AI:
|
|
8
|
-
- Know all 311 Flowise nodes and their configurations
|
|
9
|
-
- Understand how nodes connect together
|
|
10
|
-
- Design complete flows based on your requirements
|
|
11
|
-
- Output valid JSON you can import into Flowise
|
|
12
|
-
- **Deploy flows directly to your Flowise instance** (optional API integration)
|
|
13
|
-
|
|
14
|
-
## Quick Start
|
|
15
|
-
|
|
16
|
-
### 1. Add to Claude Code
|
|
17
|
-
|
|
18
|
-
Add this to your Claude Code MCP configuration (`claude_desktop_config.json` or via settings):
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
"
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
}
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
###
|
|
61
|
-
|
|
62
|
-
1.
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
```
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
##
|
|
214
|
-
|
|
215
|
-
|
|
1
|
+
# DS-MCP-FLOWISE
|
|
2
|
+
|
|
3
|
+
MCP (Model Context Protocol) server that gives AI assistants (Claude, GPT, etc.) deep knowledge of [Flowise](https://flowiseai.com/) nodes so they can help you design, build, and deploy chatflows and agentflows.
|
|
4
|
+
|
|
5
|
+
## What This Does
|
|
6
|
+
|
|
7
|
+
When connected to Claude Code (or other MCP clients), this server lets the AI:
|
|
8
|
+
- Know all 311 Flowise nodes and their configurations
|
|
9
|
+
- Understand how nodes connect together
|
|
10
|
+
- Design complete flows based on your requirements
|
|
11
|
+
- Output valid JSON you can import into Flowise
|
|
12
|
+
- **Deploy flows directly to your Flowise instance** (optional API integration)
|
|
13
|
+
|
|
14
|
+
## Quick Start
|
|
15
|
+
|
|
16
|
+
### 1. Add to Claude Code
|
|
17
|
+
|
|
18
|
+
Add this to your Claude Code MCP configuration (`claude_desktop_config.json` or via settings):
|
|
19
|
+
|
|
20
|
+
**Windows:**
|
|
21
|
+
```json
|
|
22
|
+
{
|
|
23
|
+
"mcpServers": {
|
|
24
|
+
"flowise": {
|
|
25
|
+
"command": "cmd",
|
|
26
|
+
"args": ["/c", "npx", "-y", "ds-mcp-flowise"]
|
|
27
|
+
}
|
|
28
|
+
}
|
|
29
|
+
}
|
|
30
|
+
```
|
|
31
|
+
|
|
32
|
+
**Mac / Linux:**
|
|
33
|
+
```json
|
|
34
|
+
{
|
|
35
|
+
"mcpServers": {
|
|
36
|
+
"flowise": {
|
|
37
|
+
"command": "npx",
|
|
38
|
+
"args": ["-y", "ds-mcp-flowise"]
|
|
39
|
+
}
|
|
40
|
+
}
|
|
41
|
+
}
|
|
42
|
+
```
|
|
43
|
+
|
|
44
|
+
That's it. No cloning, no building. The `npx` command downloads and runs it automatically.
|
|
45
|
+
|
|
46
|
+
### 2. Start a Conversation
|
|
47
|
+
|
|
48
|
+
Open Claude Code and describe what you want to build:
|
|
49
|
+
|
|
50
|
+
> "Build me a RAG chatbot that uses Pinecone for vector storage and OpenAI for the LLM"
|
|
51
|
+
|
|
52
|
+
### 3. Get Your Flow
|
|
53
|
+
|
|
54
|
+
Claude will use the MCP tools to:
|
|
55
|
+
- Find the right nodes (ChatOpenAI, Pinecone, embeddings, etc.)
|
|
56
|
+
- Check their schemas and required inputs
|
|
57
|
+
- Design the complete flow
|
|
58
|
+
- Output the JSON with all nodes and edges
|
|
59
|
+
|
|
60
|
+
### 4. Import into Flowise
|
|
61
|
+
|
|
62
|
+
1. Open Flowise
|
|
63
|
+
2. Create a new Chatflow or Agentflow
|
|
64
|
+
3. Click the menu (⋮) → **Load Chatflow**
|
|
65
|
+
4. Paste the JSON Claude gave you
|
|
66
|
+
5. Configure credentials (API keys) for each node
|
|
67
|
+
6. Save and test
|
|
68
|
+
|
|
69
|
+
## Flowise API Integration (Optional)
|
|
70
|
+
|
|
71
|
+
Instead of manually importing JSON, you can connect directly to your Flowise instance to create, update, and manage chatflows via the API.
|
|
72
|
+
|
|
73
|
+
### Setup
|
|
74
|
+
|
|
75
|
+
1. Create a `.env` file in the project root (or in your working directory):
|
|
76
|
+
|
|
77
|
+
```bash
|
|
78
|
+
FLOWISE_API_URL=https://your-flowise-instance.com
|
|
79
|
+
FLOWISE_API_KEY=your-api-key-here
|
|
80
|
+
```
|
|
81
|
+
|
|
82
|
+
2. Get your API key from Flowise:
|
|
83
|
+
- Open your Flowise instance
|
|
84
|
+
- Go to **Settings** → **API Keys**
|
|
85
|
+
- Create a new API key or copy an existing one
|
|
86
|
+
|
|
87
|
+
3. The MCP server will automatically load credentials from `.env` when it starts.
|
|
88
|
+
|
|
89
|
+
### Usage
|
|
90
|
+
|
|
91
|
+
Once configured, you can ask Claude:
|
|
92
|
+
|
|
93
|
+
- "Test the connection to my Flowise instance"
|
|
94
|
+
- "List all my chatflows"
|
|
95
|
+
- "Create a new chatflow with this design and deploy it"
|
|
96
|
+
- "Update the existing chatflow with these changes"
|
|
97
|
+
|
|
98
|
+
> **Note:** The Flowise API currently only supports **chatflows**. Agentflows must be created through the Flowise UI by importing the generated JSON.
|
|
99
|
+
|
|
100
|
+
### Security Notes
|
|
101
|
+
|
|
102
|
+
- Never commit your `.env` file to version control
|
|
103
|
+
- The `.env` file is already in `.gitignore`
|
|
104
|
+
- API keys should be kept private and rotated periodically
|
|
105
|
+
|
|
106
|
+
## Alternative Installation Methods
|
|
107
|
+
|
|
108
|
+
### Global Install (npm)
|
|
109
|
+
|
|
110
|
+
```bash
|
|
111
|
+
npm install -g ds-mcp-flowise
|
|
112
|
+
```
|
|
113
|
+
|
|
114
|
+
Then in your MCP config:
|
|
115
|
+
|
|
116
|
+
**Windows:**
|
|
117
|
+
```json
|
|
118
|
+
{
|
|
119
|
+
"mcpServers": {
|
|
120
|
+
"flowise": {
|
|
121
|
+
"command": "cmd",
|
|
122
|
+
"args": ["/c", "ds-mcp-flowise"]
|
|
123
|
+
}
|
|
124
|
+
}
|
|
125
|
+
}
|
|
126
|
+
```
|
|
127
|
+
|
|
128
|
+
**Mac / Linux:**
|
|
129
|
+
```json
|
|
130
|
+
{
|
|
131
|
+
"mcpServers": {
|
|
132
|
+
"flowise": {
|
|
133
|
+
"command": "ds-mcp-flowise"
|
|
134
|
+
}
|
|
135
|
+
}
|
|
136
|
+
}
|
|
137
|
+
```
|
|
138
|
+
|
|
139
|
+
### Build from Source
|
|
140
|
+
|
|
141
|
+
```bash
|
|
142
|
+
git clone https://github.com/dtsoden/DS-MCP-FLOWISE.git
|
|
143
|
+
cd DS-MCP-FLOWISE
|
|
144
|
+
npm install
|
|
145
|
+
npm run build
|
|
146
|
+
```
|
|
147
|
+
|
|
148
|
+
Then in your MCP config:
|
|
149
|
+
|
|
150
|
+
**Windows:**
|
|
151
|
+
```json
|
|
152
|
+
{
|
|
153
|
+
"mcpServers": {
|
|
154
|
+
"flowise": {
|
|
155
|
+
"command": "node",
|
|
156
|
+
"args": ["C:\\path\\to\\DS-MCP-FLOWISE\\dist\\index.js"]
|
|
157
|
+
}
|
|
158
|
+
}
|
|
159
|
+
}
|
|
160
|
+
```
|
|
161
|
+
|
|
162
|
+
**Mac / Linux:**
|
|
163
|
+
```json
|
|
164
|
+
{
|
|
165
|
+
"mcpServers": {
|
|
166
|
+
"flowise": {
|
|
167
|
+
"command": "node",
|
|
168
|
+
"args": ["/path/to/DS-MCP-FLOWISE/dist/index.js"]
|
|
169
|
+
}
|
|
170
|
+
}
|
|
171
|
+
}
|
|
172
|
+
```
|
|
173
|
+
|
|
174
|
+
## Available Tools
|
|
175
|
+
|
|
176
|
+
### Node Discovery
|
|
177
|
+
|
|
178
|
+
| Tool | Description |
|
|
179
|
+
|------|-------------|
|
|
180
|
+
| `list_categories` | List all 26 node categories with counts |
|
|
181
|
+
| `list_nodes` | List nodes, optionally filtered by category |
|
|
182
|
+
| `get_node_schema` | Get detailed schema for a node including all inputs |
|
|
183
|
+
| `search_nodes` | Search nodes by keyword |
|
|
184
|
+
| `find_compatible_nodes` | Find nodes that can connect to a given node |
|
|
185
|
+
|
|
186
|
+
### Template Library
|
|
187
|
+
|
|
188
|
+
| Tool | Description |
|
|
189
|
+
|------|-------------|
|
|
190
|
+
| `list_templates` | List 64 marketplace templates by type |
|
|
191
|
+
| `get_template` | Get complete template with nodes and edges |
|
|
192
|
+
|
|
193
|
+
### Flow Building
|
|
194
|
+
|
|
195
|
+
| Tool | Description |
|
|
196
|
+
|------|-------------|
|
|
197
|
+
| `validate_flow` | Validate a flow's nodes and connections |
|
|
198
|
+
| `generate_flow_skeleton` | Generate a starting flow for common use cases |
|
|
199
|
+
|
|
200
|
+
### Flowise API (requires .env configuration)
|
|
201
|
+
|
|
202
|
+
| Tool | Description |
|
|
203
|
+
|------|-------------|
|
|
204
|
+
| `flowise_test_connection` | Test connection to your Flowise instance |
|
|
205
|
+
| `flowise_list_chatflows` | List all chatflows in your instance |
|
|
206
|
+
| `flowise_get_chatflow` | Get details of a specific chatflow |
|
|
207
|
+
| `flowise_create_chatflow` | Create and deploy a new chatflow |
|
|
208
|
+
| `flowise_update_chatflow` | Update an existing chatflow |
|
|
209
|
+
| `flowise_delete_chatflow` | Delete a chatflow |
|
|
210
|
+
|
|
211
|
+
> **Note:** The Flowise API currently only supports **chatflows**. Agentflows must be created through the Flowise UI by importing the generated JSON.
|
|
212
|
+
|
|
213
|
+
## Example Prompts
|
|
214
|
+
|
|
215
|
+
Once connected, try asking Claude:
|
|
216
|
+
|
|
217
|
+
- "What vector stores does Flowise support?"
|
|
218
|
+
- "Show me how to build a simple chatbot with memory"
|
|
219
|
+
- "Create a RAG flow using Pinecone and Claude"
|
|
220
|
+
- "What nodes can connect to a ConversationChain?"
|
|
221
|
+
- "Build me an agent that can search the web and query a database"
|
|
222
|
+
|
|
223
|
+
## What's Included
|
|
224
|
+
|
|
225
|
+
- **311 Flowise nodes** with full schemas
|
|
226
|
+
- **1,915 input parameters** documented
|
|
227
|
+
- **26 node categories** (Chat Models, Vector Stores, Tools, etc.)
|
|
228
|
+
- **64 marketplace templates** as examples
|
|
229
|
+
- **SQLite database** for fast queries
|
|
230
|
+
|
|
231
|
+
## Updating the Node Database
|
|
232
|
+
|
|
233
|
+
To update with the latest Flowise nodes:
|
|
234
|
+
|
|
235
|
+
```bash
|
|
236
|
+
git clone https://github.com/dtsoden/DS-MCP-FLOWISE.git
|
|
237
|
+
cd DS-MCP-FLOWISE
|
|
238
|
+
npm install
|
|
239
|
+
|
|
240
|
+
# This clones Flowise and extracts all node definitions
|
|
241
|
+
npm run extract
|
|
242
|
+
|
|
243
|
+
# This rebuilds the SQLite database
|
|
244
|
+
npm run prepare-db
|
|
245
|
+
|
|
246
|
+
npm run build
|
|
247
|
+
```
|
|
248
|
+
|
|
249
|
+
## Credits
|
|
250
|
+
|
|
251
|
+
- [Flowise](https://github.com/FlowiseAI/Flowise) - The no-code LLM orchestration platform
|
|
252
|
+
- Inspired by [n8n-mcp](https://github.com/czlonkowski/n8n-mcp) architecture
|
|
253
|
+
|
|
254
|
+
## License
|
|
255
|
+
|
|
256
|
+
MIT
|
|
257
|
+
|
|
258
|
+
---
|
|
259
|
+
*Auto-published to npm via GitHub Actions*
|
package/dist/index.js
CHANGED
|
@@ -386,10 +386,10 @@ const TOOLS = [
|
|
|
386
386
|
];
|
|
387
387
|
// === TOOL IMPLEMENTATIONS ===
|
|
388
388
|
function listCategories() {
|
|
389
|
-
const categories = query(`
|
|
390
|
-
SELECT name, node_count
|
|
391
|
-
FROM categories
|
|
392
|
-
ORDER BY name
|
|
389
|
+
const categories = query(`
|
|
390
|
+
SELECT name, node_count
|
|
391
|
+
FROM categories
|
|
392
|
+
ORDER BY name
|
|
393
393
|
`);
|
|
394
394
|
return JSON.stringify(categories, null, 2);
|
|
395
395
|
}
|
|
@@ -418,11 +418,11 @@ function getNodeSchema(name) {
|
|
|
418
418
|
if (!node) {
|
|
419
419
|
return JSON.stringify({ error: `Node "${name}" not found` });
|
|
420
420
|
}
|
|
421
|
-
const inputs = query(`
|
|
422
|
-
SELECT input_name, input_label, input_type, description, optional, default_value, options, additional_params
|
|
423
|
-
FROM node_inputs
|
|
424
|
-
WHERE node_name = ?
|
|
425
|
-
ORDER BY additional_params, input_label
|
|
421
|
+
const inputs = query(`
|
|
422
|
+
SELECT input_name, input_label, input_type, description, optional, default_value, options, additional_params
|
|
423
|
+
FROM node_inputs
|
|
424
|
+
WHERE node_name = ?
|
|
425
|
+
ORDER BY additional_params, input_label
|
|
426
426
|
`, [name]);
|
|
427
427
|
const schema = {
|
|
428
428
|
...node,
|
|
@@ -443,11 +443,11 @@ function getNodeSchema(name) {
|
|
|
443
443
|
}
|
|
444
444
|
function searchNodes(searchQuery, limit = 10) {
|
|
445
445
|
const searchTerm = `%${searchQuery}%`;
|
|
446
|
-
const results = query(`
|
|
447
|
-
SELECT name, label, category, description
|
|
448
|
-
FROM nodes
|
|
449
|
-
WHERE name LIKE ? OR label LIKE ? OR description LIKE ? OR category LIKE ?
|
|
450
|
-
LIMIT ?
|
|
446
|
+
const results = query(`
|
|
447
|
+
SELECT name, label, category, description
|
|
448
|
+
FROM nodes
|
|
449
|
+
WHERE name LIKE ? OR label LIKE ? OR description LIKE ? OR category LIKE ?
|
|
450
|
+
LIMIT ?
|
|
451
451
|
`, [searchTerm, searchTerm, searchTerm, searchTerm, limit]);
|
|
452
452
|
return JSON.stringify(results, null, 2);
|
|
453
453
|
}
|
|
@@ -507,10 +507,10 @@ function findCompatibleNodes(nodeName, direction = 'inputs') {
|
|
|
507
507
|
return JSON.stringify({ compatible_inputs: compatible }, null, 2);
|
|
508
508
|
}
|
|
509
509
|
else {
|
|
510
|
-
const allInputs = query(`
|
|
511
|
-
SELECT DISTINCT n.name, n.label, n.category, ni.input_type
|
|
512
|
-
FROM nodes n
|
|
513
|
-
JOIN node_inputs ni ON n.name = ni.node_name
|
|
510
|
+
const allInputs = query(`
|
|
511
|
+
SELECT DISTINCT n.name, n.label, n.category, ni.input_type
|
|
512
|
+
FROM nodes n
|
|
513
|
+
JOIN node_inputs ni ON n.name = ni.node_name
|
|
514
514
|
`);
|
|
515
515
|
const compatible = allInputs.filter((i) => baseClasses.includes(i.input_type)).map((i) => ({
|
|
516
516
|
name: i.name,
|
|
@@ -881,13 +881,13 @@ server.setRequestHandler(GetPromptRequestSchema, async (request) => {
|
|
|
881
881
|
role: 'user',
|
|
882
882
|
content: {
|
|
883
883
|
type: 'text',
|
|
884
|
-
text: `Help me build a Flowise chatflow that: ${args?.description}
|
|
885
|
-
|
|
886
|
-
First, use list_categories to see available node types.
|
|
887
|
-
Then, use search_nodes or list_nodes to find relevant components.
|
|
888
|
-
Use get_node_schema to understand how to configure each node.
|
|
889
|
-
Check list_templates for similar examples.
|
|
890
|
-
Use validate_flow to verify the flow is valid.
|
|
884
|
+
text: `Help me build a Flowise chatflow that: ${args?.description}
|
|
885
|
+
|
|
886
|
+
First, use list_categories to see available node types.
|
|
887
|
+
Then, use search_nodes or list_nodes to find relevant components.
|
|
888
|
+
Use get_node_schema to understand how to configure each node.
|
|
889
|
+
Check list_templates for similar examples.
|
|
890
|
+
Use validate_flow to verify the flow is valid.
|
|
891
891
|
Finally, use flowise_create_chatflow to push it directly to Flowise!`,
|
|
892
892
|
},
|
|
893
893
|
},
|
|
@@ -901,13 +901,13 @@ Finally, use flowise_create_chatflow to push it directly to Flowise!`,
|
|
|
901
901
|
role: 'user',
|
|
902
902
|
content: {
|
|
903
903
|
type: 'text',
|
|
904
|
-
text: `Help me build a Flowise agent flow that: ${args?.description}
|
|
905
|
-
|
|
906
|
-
Agent flows use nodes from the "Agent Flows" category.
|
|
907
|
-
Use list_nodes with category="Agent Flows" to see available nodes.
|
|
908
|
-
Use list_templates with type="agentflowv2" for examples.
|
|
909
|
-
Key nodes include: startAgentflow, agentAgentflow, llmAgentflow, toolAgentflow, conditionAgentflow.
|
|
910
|
-
Use get_node_schema to understand each node's configuration.
|
|
904
|
+
text: `Help me build a Flowise agent flow that: ${args?.description}
|
|
905
|
+
|
|
906
|
+
Agent flows use nodes from the "Agent Flows" category.
|
|
907
|
+
Use list_nodes with category="Agent Flows" to see available nodes.
|
|
908
|
+
Use list_templates with type="agentflowv2" for examples.
|
|
909
|
+
Key nodes include: startAgentflow, agentAgentflow, llmAgentflow, toolAgentflow, conditionAgentflow.
|
|
910
|
+
Use get_node_schema to understand each node's configuration.
|
|
911
911
|
Finally, use flowise_create_chatflow to push it directly to Flowise!`,
|
|
912
912
|
},
|
|
913
913
|
},
|