directed-graph-typed 2.2.0 → 2.2.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. package/dist/cjs/index.cjs +7 -7
  2. package/dist/cjs/index.cjs.map +1 -1
  3. package/dist/cjs-legacy/index.cjs +7 -7
  4. package/dist/cjs-legacy/index.cjs.map +1 -1
  5. package/dist/esm/index.mjs +7 -7
  6. package/dist/esm/index.mjs.map +1 -1
  7. package/dist/esm-legacy/index.mjs +7 -7
  8. package/dist/esm-legacy/index.mjs.map +1 -1
  9. package/dist/types/data-structures/binary-tree/avl-tree.d.ts +3 -1
  10. package/dist/types/data-structures/binary-tree/binary-tree.d.ts +1 -0
  11. package/dist/types/data-structures/binary-tree/bst.d.ts +1 -0
  12. package/dist/types/data-structures/binary-tree/red-black-tree.d.ts +1 -0
  13. package/dist/types/data-structures/binary-tree/tree-multi-map.d.ts +1 -0
  14. package/dist/types/types/data-structures/base/base.d.ts +1 -1
  15. package/dist/umd/directed-graph-typed.js +7 -7
  16. package/dist/umd/directed-graph-typed.js.map +1 -1
  17. package/dist/umd/directed-graph-typed.min.js +1 -1
  18. package/dist/umd/directed-graph-typed.min.js.map +1 -1
  19. package/package.json +2 -2
  20. package/src/data-structures/base/iterable-entry-base.ts +4 -4
  21. package/src/data-structures/binary-tree/avl-tree-counter.ts +1 -1
  22. package/src/data-structures/binary-tree/avl-tree-multi-map.ts +1 -1
  23. package/src/data-structures/binary-tree/avl-tree.ts +4 -2
  24. package/src/data-structures/binary-tree/binary-tree.ts +3 -2
  25. package/src/data-structures/binary-tree/bst.ts +2 -1
  26. package/src/data-structures/binary-tree/red-black-tree.ts +2 -1
  27. package/src/data-structures/binary-tree/tree-counter.ts +1 -1
  28. package/src/data-structures/binary-tree/tree-multi-map.ts +2 -1
  29. package/src/data-structures/graph/abstract-graph.ts +3 -3
  30. package/src/data-structures/hash/hash-map.ts +4 -4
  31. package/src/types/data-structures/base/base.ts +1 -1
@@ -125,7 +125,9 @@ export declare class AVLTreeNode<K = any, V = any> {
125
125
  * 4. Order Preservation: Maintains the binary search tree property where left child values are less than the parent, and right child values are greater.
126
126
  * 5. Efficient Lookups: Offers O(log n) search time, where 'n' is the number of nodes, due to its balanced nature.
127
127
  * 6. Complex Insertions and Deletions: Due to rebalancing, these operations are more complex than in a regular BST.
128
- * 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.@example
128
+ * 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.
129
+ *
130
+ * @example
129
131
  * // Find elements in a range
130
132
  * // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding.
131
133
  * type Datum = { timestamp: Date; temperature: number };
@@ -123,6 +123,7 @@ export declare class BinaryTreeNode<K = any, V = any> {
123
123
  * 3. Depth and Height: Depth is the number of edges from the root to a node; height is the maximum depth in the tree.
124
124
  * 4. Subtrees: Each child of a node forms the root of a subtree.
125
125
  * 5. Leaf Nodes: Nodes without children are leaves.
126
+ *
126
127
  * @example
127
128
  * // determine loan approval using a decision tree
128
129
  * // Decision tree structure
@@ -124,6 +124,7 @@ export declare class BSTNode<K = any, V = any> {
124
124
  * 5. Logarithmic Operations: Ideal operations like insertion, deletion, and searching are O(log n) time-efficient.
125
125
  * 6. Balance Variability: Can become unbalanced; special types maintain balance.
126
126
  * 7. No Auto-Balancing: Standard BSTs don't automatically balance themselves.
127
+ *
127
128
  * @example
128
129
  * // Merge 3 sorted datasets
129
130
  * const dataset1 = new BST<number, string>([
@@ -110,6 +110,7 @@ export declare class RedBlackTreeNode<K = any, V = any> {
110
110
  * @template R
111
111
  * 1. Efficient self-balancing, but not completely balanced. Compared with AVLTree, the addition and deletion efficiency is high, but the query efficiency is slightly lower.
112
112
  * 2. It is BST itself. Compared with Heap which is not completely ordered, RedBlackTree is completely ordered.
113
+ *
113
114
  * @example
114
115
  * // using Red-Black Tree as a price-based index for stock data
115
116
  * // Define the structure of individual stock records
@@ -113,6 +113,7 @@ export declare class TreeMultiMapNode<K = any, V = any> {
113
113
  * @template K
114
114
  * @template V
115
115
  * @template R
116
+ *
116
117
  * @example
117
118
  * // players ranked by score with their equipment
118
119
  * type Equipment = {
@@ -1,6 +1,6 @@
1
1
  import { IterableElementBase, IterableEntryBase } from '../../../data-structures';
2
2
  import { LinearBase } from '../../../data-structures/base/linear-base';
3
- export type EntryCallback<K, V, R> = (key: K, value: V, index: number, original: IterableEntryBase<K, V>) => R;
3
+ export type EntryCallback<K, V, R> = (value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
4
4
  export type ElementCallback<E, R, RT> = (element: E, index: number, original: IterableElementBase<E, R>) => RT;
5
5
  export type ReduceEntryCallback<K, V, R> = (accumulator: R, value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
6
6
  export type ReduceElementCallback<E, R, U = E> = (accumulator: U, value: E, index: number, self: IterableElementBase<E, R>) => U;
@@ -133,7 +133,7 @@ var directedGraphTyped = (() => {
133
133
  every(predicate, thisArg) {
134
134
  let index = 0;
135
135
  for (const item of this) {
136
- if (!predicate.call(thisArg, item[0], item[1], index++, this)) {
136
+ if (!predicate.call(thisArg, item[1], item[0], index++, this)) {
137
137
  return false;
138
138
  }
139
139
  }
@@ -149,7 +149,7 @@ var directedGraphTyped = (() => {
149
149
  some(predicate, thisArg) {
150
150
  let index = 0;
151
151
  for (const item of this) {
152
- if (predicate.call(thisArg, item[0], item[1], index++, this)) {
152
+ if (predicate.call(thisArg, item[1], item[0], index++, this)) {
153
153
  return true;
154
154
  }
155
155
  }
@@ -165,7 +165,7 @@ var directedGraphTyped = (() => {
165
165
  let index = 0;
166
166
  for (const item of this) {
167
167
  const [key, value] = item;
168
- callbackfn.call(thisArg, key, value, index++, this);
168
+ callbackfn.call(thisArg, value, key, index++, this);
169
169
  }
170
170
  }
171
171
  /**
@@ -179,7 +179,7 @@ var directedGraphTyped = (() => {
179
179
  let index = 0;
180
180
  for (const item of this) {
181
181
  const [key, value] = item;
182
- if (callbackfn.call(thisArg, key, value, index++, this)) return item;
182
+ if (callbackfn.call(thisArg, value, key, index++, this)) return item;
183
183
  }
184
184
  return;
185
185
  }
@@ -2126,7 +2126,7 @@ var directedGraphTyped = (() => {
2126
2126
  const filtered = [];
2127
2127
  let index = 0;
2128
2128
  for (const [key, value] of this) {
2129
- if (predicate.call(thisArg, key, value, index, this)) {
2129
+ if (predicate.call(thisArg, value, key, index, this)) {
2130
2130
  filtered.push([key, value]);
2131
2131
  }
2132
2132
  index++;
@@ -2141,7 +2141,7 @@ var directedGraphTyped = (() => {
2141
2141
  const filtered = [];
2142
2142
  let index = 0;
2143
2143
  for (const [key, value] of this) {
2144
- if (predicate.call(thisArg, key, value, index, this)) {
2144
+ if (predicate.call(thisArg, value, key, index, this)) {
2145
2145
  filtered.push([key, value]);
2146
2146
  }
2147
2147
  index++;
@@ -2152,7 +2152,7 @@ var directedGraphTyped = (() => {
2152
2152
  const mapped = [];
2153
2153
  let index = 0;
2154
2154
  for (const [key, value] of this) {
2155
- mapped.push(callback.call(thisArg, key, value, index, this));
2155
+ mapped.push(callback.call(thisArg, value, key, index, this));
2156
2156
  index++;
2157
2157
  }
2158
2158
  return mapped;