directed-graph-typed 1.47.7 → 1.47.9
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/data-structures/binary-tree/segment-tree.d.ts +6 -6
- package/dist/data-structures/binary-tree/segment-tree.js +7 -7
- package/dist/data-structures/graph/abstract-graph.d.ts +22 -17
- package/dist/data-structures/graph/abstract-graph.js +71 -30
- package/dist/data-structures/graph/directed-graph.d.ts +24 -24
- package/dist/data-structures/graph/directed-graph.js +29 -29
- package/dist/data-structures/graph/undirected-graph.d.ts +14 -14
- package/dist/data-structures/graph/undirected-graph.js +18 -18
- package/dist/data-structures/linked-list/doubly-linked-list.d.ts +28 -28
- package/dist/data-structures/linked-list/doubly-linked-list.js +33 -33
- package/dist/data-structures/linked-list/singly-linked-list.d.ts +21 -21
- package/dist/data-structures/linked-list/singly-linked-list.js +27 -27
- package/dist/data-structures/linked-list/skip-linked-list.js +4 -4
- package/dist/data-structures/queue/queue.d.ts +13 -13
- package/dist/data-structures/queue/queue.js +13 -13
- package/dist/data-structures/stack/stack.d.ts +6 -6
- package/dist/data-structures/stack/stack.js +7 -7
- package/dist/types/data-structures/graph/abstract-graph.d.ts +2 -2
- package/package.json +2 -2
- package/src/data-structures/binary-tree/segment-tree.ts +10 -10
- package/src/data-structures/graph/abstract-graph.ts +92 -46
- package/src/data-structures/graph/directed-graph.ts +41 -41
- package/src/data-structures/graph/undirected-graph.ts +26 -26
- package/src/data-structures/linked-list/doubly-linked-list.ts +45 -45
- package/src/data-structures/linked-list/singly-linked-list.ts +38 -38
- package/src/data-structures/linked-list/skip-linked-list.ts +4 -4
- package/src/data-structures/queue/queue.ts +13 -13
- package/src/data-structures/stack/stack.ts +9 -9
- package/src/types/data-structures/graph/abstract-graph.ts +2 -2
|
@@ -9,11 +9,11 @@ import type { SegmentTreeNodeVal } from '../../types';
|
|
|
9
9
|
export declare class SegmentTreeNode {
|
|
10
10
|
start: number;
|
|
11
11
|
end: number;
|
|
12
|
-
value: SegmentTreeNodeVal |
|
|
12
|
+
value: SegmentTreeNodeVal | undefined;
|
|
13
13
|
sum: number;
|
|
14
|
-
left: SegmentTreeNode |
|
|
15
|
-
right: SegmentTreeNode |
|
|
16
|
-
constructor(start: number, end: number, sum: number, value?: SegmentTreeNodeVal |
|
|
14
|
+
left: SegmentTreeNode | undefined;
|
|
15
|
+
right: SegmentTreeNode | undefined;
|
|
16
|
+
constructor(start: number, end: number, sum: number, value?: SegmentTreeNodeVal | undefined);
|
|
17
17
|
}
|
|
18
18
|
export declare class SegmentTree {
|
|
19
19
|
/**
|
|
@@ -32,8 +32,8 @@ export declare class SegmentTree {
|
|
|
32
32
|
get start(): number;
|
|
33
33
|
protected _end: number;
|
|
34
34
|
get end(): number;
|
|
35
|
-
protected _root: SegmentTreeNode |
|
|
36
|
-
get root(): SegmentTreeNode |
|
|
35
|
+
protected _root: SegmentTreeNode | undefined;
|
|
36
|
+
get root(): SegmentTreeNode | undefined;
|
|
37
37
|
/**
|
|
38
38
|
* The build function creates a segment tree by recursively dividing the given range into smaller segments and assigning
|
|
39
39
|
* the sum of values to each segment.
|
|
@@ -12,14 +12,14 @@ class SegmentTreeNode {
|
|
|
12
12
|
constructor(start, end, sum, value) {
|
|
13
13
|
this.start = 0;
|
|
14
14
|
this.end = 0;
|
|
15
|
-
this.value =
|
|
15
|
+
this.value = undefined;
|
|
16
16
|
this.sum = 0;
|
|
17
|
-
this.left =
|
|
18
|
-
this.right =
|
|
17
|
+
this.left = undefined;
|
|
18
|
+
this.right = undefined;
|
|
19
19
|
this.start = start;
|
|
20
20
|
this.end = end;
|
|
21
21
|
this.sum = sum;
|
|
22
|
-
this.value = value ||
|
|
22
|
+
this.value = value || undefined;
|
|
23
23
|
}
|
|
24
24
|
}
|
|
25
25
|
exports.SegmentTreeNode = SegmentTreeNode;
|
|
@@ -45,7 +45,7 @@ class SegmentTree {
|
|
|
45
45
|
this._root = this.build(start, end);
|
|
46
46
|
}
|
|
47
47
|
else {
|
|
48
|
-
this._root =
|
|
48
|
+
this._root = undefined;
|
|
49
49
|
this._values = [];
|
|
50
50
|
}
|
|
51
51
|
}
|
|
@@ -96,7 +96,7 @@ class SegmentTree {
|
|
|
96
96
|
* @returns The function does not return anything.
|
|
97
97
|
*/
|
|
98
98
|
updateNode(index, sum, value) {
|
|
99
|
-
const root = this.root ||
|
|
99
|
+
const root = this.root || undefined;
|
|
100
100
|
if (!root) {
|
|
101
101
|
return;
|
|
102
102
|
}
|
|
@@ -132,7 +132,7 @@ class SegmentTree {
|
|
|
132
132
|
* @returns The function `querySumByRange` returns a number.
|
|
133
133
|
*/
|
|
134
134
|
querySumByRange(indexA, indexB) {
|
|
135
|
-
const root = this.root ||
|
|
135
|
+
const root = this.root || undefined;
|
|
136
136
|
if (!root) {
|
|
137
137
|
return 0;
|
|
138
138
|
}
|
|
@@ -47,13 +47,13 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
|
|
|
47
47
|
* @param value
|
|
48
48
|
*/
|
|
49
49
|
abstract createEdge(srcOrV1: VertexKey, destOrV2: VertexKey, weight?: number, value?: E): EO;
|
|
50
|
-
abstract deleteEdge(edge: EO): EO |
|
|
51
|
-
abstract getEdge(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO |
|
|
50
|
+
abstract deleteEdge(edge: EO): EO | undefined;
|
|
51
|
+
abstract getEdge(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO | undefined;
|
|
52
52
|
abstract degreeOf(vertexOrKey: VO | VertexKey): number;
|
|
53
53
|
abstract edgeSet(): EO[];
|
|
54
54
|
abstract edgesOf(vertexOrKey: VO | VertexKey): EO[];
|
|
55
55
|
abstract getNeighbors(vertexOrKey: VO | VertexKey): VO[];
|
|
56
|
-
abstract getEndsOfEdge(edge: EO): [VO, VO] |
|
|
56
|
+
abstract getEndsOfEdge(edge: EO): [VO, VO] | undefined;
|
|
57
57
|
/**
|
|
58
58
|
* Time Complexity: O(1) - Constant time for Map lookup.
|
|
59
59
|
* Space Complexity: O(1) - Constant space, as it creates only a few variables.
|
|
@@ -62,13 +62,13 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
|
|
|
62
62
|
* Time Complexity: O(1) - Constant time for Map lookup.
|
|
63
63
|
* Space Complexity: O(1) - Constant space, as it creates only a few variables.
|
|
64
64
|
*
|
|
65
|
-
* The function "getVertex" returns the vertex with the specified ID or
|
|
65
|
+
* The function "getVertex" returns the vertex with the specified ID or undefined if it doesn't exist.
|
|
66
66
|
* @param {VertexKey} vertexKey - The `vertexKey` parameter is the identifier of the vertex that you want to retrieve from
|
|
67
67
|
* the `_vertices` map.
|
|
68
68
|
* @returns The method `getVertex` returns the vertex with the specified `vertexKey` if it exists in the `_vertices`
|
|
69
|
-
* map. If the vertex does not exist, it returns `
|
|
69
|
+
* map. If the vertex does not exist, it returns `undefined`.
|
|
70
70
|
*/
|
|
71
|
-
getVertex(vertexKey: VertexKey): VO |
|
|
71
|
+
getVertex(vertexKey: VertexKey): VO | undefined;
|
|
72
72
|
/**
|
|
73
73
|
* Time Complexity: O(1) - Constant time for Map lookup.
|
|
74
74
|
* Space Complexity: O(1) - Constant space, as it creates only a few variables.
|
|
@@ -201,7 +201,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
|
|
|
201
201
|
* vertices. If `isWeight` is `false` or not provided, it uses a breadth-first search (BFS) algorithm to calculate the
|
|
202
202
|
* minimum number of
|
|
203
203
|
*/
|
|
204
|
-
getMinCostBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean): number |
|
|
204
|
+
getMinCostBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean): number | undefined;
|
|
205
205
|
/**
|
|
206
206
|
* Time Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm or DFS).
|
|
207
207
|
* Space Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm or DFS).
|
|
@@ -223,9 +223,9 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
|
|
|
223
223
|
* followed by iterative computation of the shortest path. This approach may result in exponential time complexity,
|
|
224
224
|
* so the default method is to use the Dijkstra algorithm to obtain the shortest weighted path.
|
|
225
225
|
* @returns The function `getMinPathBetween` returns an array of vertices (`VO[]`) representing the minimum path between
|
|
226
|
-
* two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `
|
|
226
|
+
* two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `undefined`.
|
|
227
227
|
*/
|
|
228
|
-
getMinPathBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean, isDFS?: boolean): VO[] |
|
|
228
|
+
getMinPathBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean, isDFS?: boolean): VO[] | undefined;
|
|
229
229
|
/**
|
|
230
230
|
* Dijkstra algorithm time: O(VE) space: O(VO + EO)
|
|
231
231
|
* /
|
|
@@ -242,9 +242,9 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
|
|
|
242
242
|
* a graph without using a heap data structure.
|
|
243
243
|
* @param {VO | VertexKey} src - The source vertex from which to start the Dijkstra's algorithm. It can be either a
|
|
244
244
|
* vertex object or a vertex ID.
|
|
245
|
-
* @param {VO | VertexKey |
|
|
245
|
+
* @param {VO | VertexKey | undefined} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
|
|
246
246
|
* parameter that specifies the destination vertex for the Dijkstra algorithm. It can be either a vertex object or its
|
|
247
|
-
* identifier. If no destination is provided, the value is set to `
|
|
247
|
+
* identifier. If no destination is provided, the value is set to `undefined`.
|
|
248
248
|
* @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
|
|
249
249
|
* distance from the source vertex to the destination vertex should be calculated and returned in the result. If
|
|
250
250
|
* `getMinDist` is set to `true`, the `minDist` property in the result will contain the minimum distance
|
|
@@ -253,7 +253,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
|
|
|
253
253
|
* shortest paths from the source vertex to all other vertices in the graph. If `genPaths
|
|
254
254
|
* @returns The function `dijkstraWithoutHeap` returns an object of type `DijkstraResult<VO>`.
|
|
255
255
|
*/
|
|
256
|
-
dijkstraWithoutHeap(src: VO | VertexKey, dest?: VO | VertexKey |
|
|
256
|
+
dijkstraWithoutHeap(src: VO | VertexKey, dest?: VO | VertexKey | undefined, getMinDist?: boolean, genPaths?: boolean): DijkstraResult<VO>;
|
|
257
257
|
/**
|
|
258
258
|
* Dijkstra algorithm time: O(logVE) space: O(VO + EO)
|
|
259
259
|
*
|
|
@@ -276,7 +276,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
|
|
|
276
276
|
* optional destination vertex, and optionally returns the minimum distance, the paths, and other information.
|
|
277
277
|
* @param {VO | VertexKey} src - The `src` parameter represents the source vertex from which the Dijkstra algorithm will
|
|
278
278
|
* start. It can be either a vertex object or a vertex ID.
|
|
279
|
-
* @param {VO | VertexKey |
|
|
279
|
+
* @param {VO | VertexKey | undefined} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
|
|
280
280
|
* vertex to which the shortest path is calculated from the source vertex. If no destination is provided, the algorithm
|
|
281
281
|
* will calculate the shortest paths to all other vertices from the source vertex.
|
|
282
282
|
* @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
|
|
@@ -287,7 +287,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
|
|
|
287
287
|
* shortest paths from the source vertex to all other vertices in the graph. If `genPaths
|
|
288
288
|
* @returns The function `dijkstra` returns an object of type `DijkstraResult<VO>`.
|
|
289
289
|
*/
|
|
290
|
-
dijkstra(src: VO | VertexKey, dest?: VO | VertexKey |
|
|
290
|
+
dijkstra(src: VO | VertexKey, dest?: VO | VertexKey | undefined, getMinDist?: boolean, genPaths?: boolean): DijkstraResult<VO>;
|
|
291
291
|
/**
|
|
292
292
|
* Time Complexity: O(V * E) - Quadratic time in the worst case (Bellman-Ford algorithm).
|
|
293
293
|
* Space Complexity: O(V + E) - Depends on the implementation (Bellman-Ford algorithm).
|
|
@@ -353,12 +353,12 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
|
|
|
353
353
|
* graph.
|
|
354
354
|
* @returns The function `floydWarshall()` returns an object with two properties: `costs` and `predecessor`. The `costs`
|
|
355
355
|
* property is a 2D array of numbers representing the shortest path costs between vertices in a graph. The
|
|
356
|
-
* `predecessor` property is a 2D array of vertices (or `
|
|
356
|
+
* `predecessor` property is a 2D array of vertices (or `undefined`) representing the predecessor vertices in the shortest
|
|
357
357
|
* path between vertices in the
|
|
358
358
|
*/
|
|
359
359
|
floydWarshall(): {
|
|
360
360
|
costs: number[][];
|
|
361
|
-
predecessor: (VO |
|
|
361
|
+
predecessor: (VO | undefined)[][];
|
|
362
362
|
};
|
|
363
363
|
/**
|
|
364
364
|
* Time Complexity: O(V + E) - Linear time (Tarjan's algorithm).
|
|
@@ -443,8 +443,13 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
|
|
|
443
443
|
* @returns the bridges found using the Tarjan algorithm.
|
|
444
444
|
*/
|
|
445
445
|
getBridges(): EO[];
|
|
446
|
+
[Symbol.iterator](): Iterator<[VertexKey, V | undefined]>;
|
|
447
|
+
forEach(callback: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => void): void;
|
|
448
|
+
filter(predicate: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => boolean): [VertexKey, V | undefined][];
|
|
449
|
+
map<T>(callback: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => T): T[];
|
|
450
|
+
reduce<T>(callback: (accumulator: T, entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => T, initialValue: T): T;
|
|
446
451
|
protected abstract _addEdgeOnly(edge: EO): boolean;
|
|
447
452
|
protected _addVertexOnly(newVertex: VO): boolean;
|
|
448
|
-
protected _getVertex(vertexOrKey: VertexKey | VO): VO |
|
|
453
|
+
protected _getVertex(vertexOrKey: VertexKey | VO): VO | undefined;
|
|
449
454
|
protected _getVertexKey(vertexOrKey: VO | VertexKey): VertexKey;
|
|
450
455
|
}
|
|
@@ -60,14 +60,14 @@ class AbstractGraph {
|
|
|
60
60
|
* Time Complexity: O(1) - Constant time for Map lookup.
|
|
61
61
|
* Space Complexity: O(1) - Constant space, as it creates only a few variables.
|
|
62
62
|
*
|
|
63
|
-
* The function "getVertex" returns the vertex with the specified ID or
|
|
63
|
+
* The function "getVertex" returns the vertex with the specified ID or undefined if it doesn't exist.
|
|
64
64
|
* @param {VertexKey} vertexKey - The `vertexKey` parameter is the identifier of the vertex that you want to retrieve from
|
|
65
65
|
* the `_vertices` map.
|
|
66
66
|
* @returns The method `getVertex` returns the vertex with the specified `vertexKey` if it exists in the `_vertices`
|
|
67
|
-
* map. If the vertex does not exist, it returns `
|
|
67
|
+
* map. If the vertex does not exist, it returns `undefined`.
|
|
68
68
|
*/
|
|
69
69
|
getVertex(vertexKey) {
|
|
70
|
-
return this._vertices.get(vertexKey) ||
|
|
70
|
+
return this._vertices.get(vertexKey) || undefined;
|
|
71
71
|
}
|
|
72
72
|
/**
|
|
73
73
|
* Time Complexity: O(1) - Constant time for Map lookup.
|
|
@@ -305,7 +305,7 @@ class AbstractGraph {
|
|
|
305
305
|
const vertex2 = this._getVertex(v2);
|
|
306
306
|
const vertex1 = this._getVertex(v1);
|
|
307
307
|
if (!(vertex1 && vertex2)) {
|
|
308
|
-
return
|
|
308
|
+
return undefined;
|
|
309
309
|
}
|
|
310
310
|
const visited = new Map();
|
|
311
311
|
const queue = new queue_1.Queue([vertex1]);
|
|
@@ -330,7 +330,7 @@ class AbstractGraph {
|
|
|
330
330
|
}
|
|
331
331
|
cost++;
|
|
332
332
|
}
|
|
333
|
-
return
|
|
333
|
+
return undefined;
|
|
334
334
|
}
|
|
335
335
|
}
|
|
336
336
|
/**
|
|
@@ -354,7 +354,7 @@ class AbstractGraph {
|
|
|
354
354
|
* followed by iterative computation of the shortest path. This approach may result in exponential time complexity,
|
|
355
355
|
* so the default method is to use the Dijkstra algorithm to obtain the shortest weighted path.
|
|
356
356
|
* @returns The function `getMinPathBetween` returns an array of vertices (`VO[]`) representing the minimum path between
|
|
357
|
-
* two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `
|
|
357
|
+
* two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `undefined`.
|
|
358
358
|
*/
|
|
359
359
|
getMinPathBetween(v1, v2, isWeight, isDFS = false) {
|
|
360
360
|
var _a, _b;
|
|
@@ -374,7 +374,7 @@ class AbstractGraph {
|
|
|
374
374
|
}
|
|
375
375
|
index++;
|
|
376
376
|
}
|
|
377
|
-
return allPaths[minIndex] ||
|
|
377
|
+
return allPaths[minIndex] || undefined;
|
|
378
378
|
}
|
|
379
379
|
else {
|
|
380
380
|
return (_b = (_a = this.dijkstra(v1, v2, true, true)) === null || _a === void 0 ? void 0 : _a.minPath) !== null && _b !== void 0 ? _b : [];
|
|
@@ -423,9 +423,9 @@ class AbstractGraph {
|
|
|
423
423
|
* a graph without using a heap data structure.
|
|
424
424
|
* @param {VO | VertexKey} src - The source vertex from which to start the Dijkstra's algorithm. It can be either a
|
|
425
425
|
* vertex object or a vertex ID.
|
|
426
|
-
* @param {VO | VertexKey |
|
|
426
|
+
* @param {VO | VertexKey | undefined} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
|
|
427
427
|
* parameter that specifies the destination vertex for the Dijkstra algorithm. It can be either a vertex object or its
|
|
428
|
-
* identifier. If no destination is provided, the value is set to `
|
|
428
|
+
* identifier. If no destination is provided, the value is set to `undefined`.
|
|
429
429
|
* @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
|
|
430
430
|
* distance from the source vertex to the destination vertex should be calculated and returned in the result. If
|
|
431
431
|
* `getMinDist` is set to `true`, the `minDist` property in the result will contain the minimum distance
|
|
@@ -440,9 +440,9 @@ class AbstractGraph {
|
|
|
440
440
|
if (genPaths === undefined)
|
|
441
441
|
genPaths = false;
|
|
442
442
|
if (dest === undefined)
|
|
443
|
-
dest =
|
|
443
|
+
dest = undefined;
|
|
444
444
|
let minDist = Infinity;
|
|
445
|
-
let minDest =
|
|
445
|
+
let minDest = undefined;
|
|
446
446
|
let minPath = [];
|
|
447
447
|
const paths = [];
|
|
448
448
|
const vertices = this._vertices;
|
|
@@ -450,9 +450,9 @@ class AbstractGraph {
|
|
|
450
450
|
const seen = new Set();
|
|
451
451
|
const preMap = new Map(); // predecessor
|
|
452
452
|
const srcVertex = this._getVertex(src);
|
|
453
|
-
const destVertex = dest ? this._getVertex(dest) :
|
|
453
|
+
const destVertex = dest ? this._getVertex(dest) : undefined;
|
|
454
454
|
if (!srcVertex) {
|
|
455
|
-
return
|
|
455
|
+
return undefined;
|
|
456
456
|
}
|
|
457
457
|
for (const vertex of vertices) {
|
|
458
458
|
const vertexOrKey = vertex[1];
|
|
@@ -460,10 +460,10 @@ class AbstractGraph {
|
|
|
460
460
|
distMap.set(vertexOrKey, Infinity);
|
|
461
461
|
}
|
|
462
462
|
distMap.set(srcVertex, 0);
|
|
463
|
-
preMap.set(srcVertex,
|
|
463
|
+
preMap.set(srcVertex, undefined);
|
|
464
464
|
const getMinOfNoSeen = () => {
|
|
465
465
|
let min = Infinity;
|
|
466
|
-
let minV =
|
|
466
|
+
let minV = undefined;
|
|
467
467
|
for (const [key, value] of distMap) {
|
|
468
468
|
if (!seen.has(key)) {
|
|
469
469
|
if (value < min) {
|
|
@@ -511,7 +511,7 @@ class AbstractGraph {
|
|
|
511
511
|
if (edge) {
|
|
512
512
|
const curFromMap = distMap.get(cur);
|
|
513
513
|
const neighborFromMap = distMap.get(neighbor);
|
|
514
|
-
// TODO after no-non-
|
|
514
|
+
// TODO after no-non-undefined-assertion not ensure the logic
|
|
515
515
|
if (curFromMap !== undefined && neighborFromMap !== undefined) {
|
|
516
516
|
if (edge.weight + curFromMap < neighborFromMap) {
|
|
517
517
|
distMap.set(neighbor, edge.weight + curFromMap);
|
|
@@ -558,7 +558,7 @@ class AbstractGraph {
|
|
|
558
558
|
* optional destination vertex, and optionally returns the minimum distance, the paths, and other information.
|
|
559
559
|
* @param {VO | VertexKey} src - The `src` parameter represents the source vertex from which the Dijkstra algorithm will
|
|
560
560
|
* start. It can be either a vertex object or a vertex ID.
|
|
561
|
-
* @param {VO | VertexKey |
|
|
561
|
+
* @param {VO | VertexKey | undefined} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
|
|
562
562
|
* vertex to which the shortest path is calculated from the source vertex. If no destination is provided, the algorithm
|
|
563
563
|
* will calculate the shortest paths to all other vertices from the source vertex.
|
|
564
564
|
* @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
|
|
@@ -576,9 +576,9 @@ class AbstractGraph {
|
|
|
576
576
|
if (genPaths === undefined)
|
|
577
577
|
genPaths = false;
|
|
578
578
|
if (dest === undefined)
|
|
579
|
-
dest =
|
|
579
|
+
dest = undefined;
|
|
580
580
|
let minDist = Infinity;
|
|
581
|
-
let minDest =
|
|
581
|
+
let minDest = undefined;
|
|
582
582
|
let minPath = [];
|
|
583
583
|
const paths = [];
|
|
584
584
|
const vertices = this._vertices;
|
|
@@ -586,9 +586,9 @@ class AbstractGraph {
|
|
|
586
586
|
const seen = new Set();
|
|
587
587
|
const preMap = new Map(); // predecessor
|
|
588
588
|
const srcVertex = this._getVertex(src);
|
|
589
|
-
const destVertex = dest ? this._getVertex(dest) :
|
|
589
|
+
const destVertex = dest ? this._getVertex(dest) : undefined;
|
|
590
590
|
if (!srcVertex)
|
|
591
|
-
return
|
|
591
|
+
return undefined;
|
|
592
592
|
for (const vertex of vertices) {
|
|
593
593
|
const vertexOrKey = vertex[1];
|
|
594
594
|
if (vertexOrKey instanceof AbstractVertex)
|
|
@@ -597,11 +597,11 @@ class AbstractGraph {
|
|
|
597
597
|
const heap = new priority_queue_1.PriorityQueue([], { comparator: (a, b) => a.key - b.key });
|
|
598
598
|
heap.add({ key: 0, value: srcVertex });
|
|
599
599
|
distMap.set(srcVertex, 0);
|
|
600
|
-
preMap.set(srcVertex,
|
|
600
|
+
preMap.set(srcVertex, undefined);
|
|
601
601
|
/**
|
|
602
602
|
* The function `getPaths` retrieves all paths from vertices to a specified minimum vertex.
|
|
603
|
-
* @param {VO |
|
|
604
|
-
*
|
|
603
|
+
* @param {VO | undefined} minV - The parameter `minV` is of type `VO | undefined`. It represents the minimum vertex value or
|
|
604
|
+
* undefined.
|
|
605
605
|
*/
|
|
606
606
|
const getPaths = (minV) => {
|
|
607
607
|
for (const vertex of vertices) {
|
|
@@ -737,7 +737,7 @@ class AbstractGraph {
|
|
|
737
737
|
}
|
|
738
738
|
}
|
|
739
739
|
}
|
|
740
|
-
let minDest =
|
|
740
|
+
let minDest = undefined;
|
|
741
741
|
if (getMin) {
|
|
742
742
|
distMap.forEach((d, v) => {
|
|
743
743
|
if (v !== srcVertex) {
|
|
@@ -813,7 +813,7 @@ class AbstractGraph {
|
|
|
813
813
|
* graph.
|
|
814
814
|
* @returns The function `floydWarshall()` returns an object with two properties: `costs` and `predecessor`. The `costs`
|
|
815
815
|
* property is a 2D array of numbers representing the shortest path costs between vertices in a graph. The
|
|
816
|
-
* `predecessor` property is a 2D array of vertices (or `
|
|
816
|
+
* `predecessor` property is a 2D array of vertices (or `undefined`) representing the predecessor vertices in the shortest
|
|
817
817
|
* path between vertices in the
|
|
818
818
|
*/
|
|
819
819
|
floydWarshall() {
|
|
@@ -827,7 +827,7 @@ class AbstractGraph {
|
|
|
827
827
|
costs[i] = [];
|
|
828
828
|
predecessor[i] = [];
|
|
829
829
|
for (let j = 0; j < n; j++) {
|
|
830
|
-
predecessor[i][j] =
|
|
830
|
+
predecessor[i][j] = undefined;
|
|
831
831
|
}
|
|
832
832
|
}
|
|
833
833
|
for (let i = 0; i < n; i++) {
|
|
@@ -919,7 +919,7 @@ class AbstractGraph {
|
|
|
919
919
|
}
|
|
920
920
|
const childLow = lowMap.get(neighbor);
|
|
921
921
|
const curLow = lowMap.get(cur);
|
|
922
|
-
// TODO after no-non-
|
|
922
|
+
// TODO after no-non-undefined-assertion not ensure the logic
|
|
923
923
|
if (curLow !== undefined && childLow !== undefined) {
|
|
924
924
|
lowMap.set(cur, Math.min(curLow, childLow));
|
|
925
925
|
}
|
|
@@ -943,7 +943,7 @@ class AbstractGraph {
|
|
|
943
943
|
}
|
|
944
944
|
}
|
|
945
945
|
};
|
|
946
|
-
dfs(root,
|
|
946
|
+
dfs(root, undefined);
|
|
947
947
|
let SCCs = new Map();
|
|
948
948
|
const getSCCs = () => {
|
|
949
949
|
const SCCs = new Map();
|
|
@@ -1028,6 +1028,47 @@ class AbstractGraph {
|
|
|
1028
1028
|
getBridges() {
|
|
1029
1029
|
return this.tarjan(false, true, false, false).bridges;
|
|
1030
1030
|
}
|
|
1031
|
+
*[Symbol.iterator]() {
|
|
1032
|
+
for (const vertex of this._vertices.values()) {
|
|
1033
|
+
yield [vertex.key, vertex.value];
|
|
1034
|
+
}
|
|
1035
|
+
}
|
|
1036
|
+
forEach(callback) {
|
|
1037
|
+
let index = 0;
|
|
1038
|
+
for (const vertex of this) {
|
|
1039
|
+
callback(vertex, index, this._vertices);
|
|
1040
|
+
index++;
|
|
1041
|
+
}
|
|
1042
|
+
}
|
|
1043
|
+
filter(predicate) {
|
|
1044
|
+
const filtered = [];
|
|
1045
|
+
let index = 0;
|
|
1046
|
+
for (const entry of this) {
|
|
1047
|
+
if (predicate(entry, index, this._vertices)) {
|
|
1048
|
+
filtered.push(entry);
|
|
1049
|
+
}
|
|
1050
|
+
index++;
|
|
1051
|
+
}
|
|
1052
|
+
return filtered;
|
|
1053
|
+
}
|
|
1054
|
+
map(callback) {
|
|
1055
|
+
const mapped = [];
|
|
1056
|
+
let index = 0;
|
|
1057
|
+
for (const entry of this) {
|
|
1058
|
+
mapped.push(callback(entry, index, this._vertices));
|
|
1059
|
+
index++;
|
|
1060
|
+
}
|
|
1061
|
+
return mapped;
|
|
1062
|
+
}
|
|
1063
|
+
reduce(callback, initialValue) {
|
|
1064
|
+
let accumulator = initialValue;
|
|
1065
|
+
let index = 0;
|
|
1066
|
+
for (const entry of this) {
|
|
1067
|
+
accumulator = callback(accumulator, entry, index, this._vertices);
|
|
1068
|
+
index++;
|
|
1069
|
+
}
|
|
1070
|
+
return accumulator;
|
|
1071
|
+
}
|
|
1031
1072
|
_addVertexOnly(newVertex) {
|
|
1032
1073
|
if (this.hasVertex(newVertex)) {
|
|
1033
1074
|
return false;
|
|
@@ -1038,7 +1079,7 @@ class AbstractGraph {
|
|
|
1038
1079
|
}
|
|
1039
1080
|
_getVertex(vertexOrKey) {
|
|
1040
1081
|
const vertexKey = this._getVertexKey(vertexOrKey);
|
|
1041
|
-
return this._vertices.get(vertexKey) ||
|
|
1082
|
+
return this._vertices.get(vertexKey) || undefined;
|
|
1042
1083
|
}
|
|
1043
1084
|
_getVertexKey(vertexOrKey) {
|
|
1044
1085
|
return vertexOrKey instanceof AbstractVertex ? vertexOrKey.key : vertexOrKey;
|
|
@@ -74,13 +74,13 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
|
|
|
74
74
|
* Space Complexity: O(1)
|
|
75
75
|
*
|
|
76
76
|
* The `getEdge` function retrieves an edge between two vertices based on their source and destination IDs.
|
|
77
|
-
* @param {VO | VertexKey |
|
|
78
|
-
* @param {VO | VertexKey |
|
|
79
|
-
* destination vertex of the edge. It can be either a vertex object (`VO`), a vertex ID (`VertexKey`), or `
|
|
77
|
+
* @param {VO | VertexKey | undefined} srcOrKey - The source vertex or its ID. It can be either a vertex object or a vertex ID.
|
|
78
|
+
* @param {VO | VertexKey | undefined} destOrKey - The `destOrKey` parameter in the `getEdge` function represents the
|
|
79
|
+
* destination vertex of the edge. It can be either a vertex object (`VO`), a vertex ID (`VertexKey`), or `undefined` if the
|
|
80
80
|
* destination is not specified.
|
|
81
|
-
* @returns the first edge found between the source and destination vertices, or
|
|
81
|
+
* @returns the first edge found between the source and destination vertices, or undefined if no such edge is found.
|
|
82
82
|
*/
|
|
83
|
-
getEdge(srcOrKey: VO | VertexKey |
|
|
83
|
+
getEdge(srcOrKey: VO | VertexKey | undefined, destOrKey: VO | VertexKey | undefined): EO | undefined;
|
|
84
84
|
/**
|
|
85
85
|
* Time Complexity: O(|E|) where |E| is the number of edges
|
|
86
86
|
* Space Complexity: O(1)
|
|
@@ -92,9 +92,9 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
|
|
|
92
92
|
* The function removes an edge between two vertices in a graph and returns the removed edge.
|
|
93
93
|
* @param {VO | VertexKey} srcOrKey - The source vertex or its ID.
|
|
94
94
|
* @param {VO | VertexKey} destOrKey - The `destOrKey` parameter represents the destination vertex or its ID.
|
|
95
|
-
* @returns the removed edge (EO) if it exists, or
|
|
95
|
+
* @returns the removed edge (EO) if it exists, or undefined if either the source or destination vertex does not exist.
|
|
96
96
|
*/
|
|
97
|
-
deleteEdgeSrcToDest(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO |
|
|
97
|
+
deleteEdgeSrcToDest(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO | undefined;
|
|
98
98
|
/**
|
|
99
99
|
* Time Complexity: O(|E|) where |E| is the number of edges
|
|
100
100
|
* Space Complexity: O(1)
|
|
@@ -103,12 +103,12 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
|
|
|
103
103
|
* Time Complexity: O(|E|) where |E| is the number of edges
|
|
104
104
|
* Space Complexity: O(1)
|
|
105
105
|
*
|
|
106
|
-
* The function removes an edge from a graph and returns the removed edge, or
|
|
106
|
+
* The function removes an edge from a graph and returns the removed edge, or undefined if the edge was not found.
|
|
107
107
|
* @param {EO} edge - The `edge` parameter is an object that represents an edge in a graph. It has two properties: `src`
|
|
108
108
|
* and `dest`, which represent the source and destination vertices of the edge, respectively.
|
|
109
|
-
* @returns The method `deleteEdge` returns the removed edge (`EO`) if it exists, or `
|
|
109
|
+
* @returns The method `deleteEdge` returns the removed edge (`EO`) if it exists, or `undefined` if the edge does not exist.
|
|
110
110
|
*/
|
|
111
|
-
deleteEdge(edge: EO): EO |
|
|
111
|
+
deleteEdge(edge: EO): EO | undefined;
|
|
112
112
|
/**
|
|
113
113
|
* Time Complexity: O(|E|) where |E| is the number of edges
|
|
114
114
|
* Space Complexity: O(1)
|
|
@@ -213,11 +213,11 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
|
|
|
213
213
|
* Time Complexity: O(1)
|
|
214
214
|
* Space Complexity: O(1)
|
|
215
215
|
*
|
|
216
|
-
* The function "getEdgeSrc" returns the source vertex of an edge, or
|
|
216
|
+
* The function "getEdgeSrc" returns the source vertex of an edge, or undefined if the edge does not exist.
|
|
217
217
|
* @param {EO} e - The parameter "e" is of type EO, which represents an edge in a graph.
|
|
218
|
-
* @returns either a vertex object (VO) or
|
|
218
|
+
* @returns either a vertex object (VO) or undefined.
|
|
219
219
|
*/
|
|
220
|
-
getEdgeSrc(e: EO): VO |
|
|
220
|
+
getEdgeSrc(e: EO): VO | undefined;
|
|
221
221
|
/**
|
|
222
222
|
* Time Complexity: O(1)
|
|
223
223
|
* Space Complexity: O(1)
|
|
@@ -228,9 +228,9 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
|
|
|
228
228
|
*
|
|
229
229
|
* The function "getEdgeDest" returns the destination vertex of an edge.
|
|
230
230
|
* @param {EO} e - The parameter "e" is of type "EO", which represents an edge in a graph.
|
|
231
|
-
* @returns either a vertex object of type VO or
|
|
231
|
+
* @returns either a vertex object of type VO or undefined.
|
|
232
232
|
*/
|
|
233
|
-
getEdgeDest(e: EO): VO |
|
|
233
|
+
getEdgeDest(e: EO): VO | undefined;
|
|
234
234
|
/**
|
|
235
235
|
* Time Complexity: O(|E|) where |E| is the number of edges
|
|
236
236
|
* Space Complexity: O(1)
|
|
@@ -240,11 +240,11 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
|
|
|
240
240
|
* Space Complexity: O(1)
|
|
241
241
|
*
|
|
242
242
|
* The function `getDestinations` returns an array of destination vertices connected to a given vertex.
|
|
243
|
-
* @param {VO | VertexKey |
|
|
244
|
-
* find the destinations. It can be either a `VO` object, a `VertexKey` value, or `
|
|
243
|
+
* @param {VO | VertexKey | undefined} vertex - The `vertex` parameter represents the starting vertex from which we want to
|
|
244
|
+
* find the destinations. It can be either a `VO` object, a `VertexKey` value, or `undefined`.
|
|
245
245
|
* @returns an array of vertices (VO[]).
|
|
246
246
|
*/
|
|
247
|
-
getDestinations(vertex: VO | VertexKey |
|
|
247
|
+
getDestinations(vertex: VO | VertexKey | undefined): VO[];
|
|
248
248
|
/**
|
|
249
249
|
* Time Complexity: O(|V| + |E|) where |V| is the number of vertices and |E| is the number of edges
|
|
250
250
|
* Space Complexity: O(|V|)
|
|
@@ -254,13 +254,13 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
|
|
|
254
254
|
* Space Complexity: O(|V|)
|
|
255
255
|
*
|
|
256
256
|
* The `topologicalSort` function performs a topological sort on a graph and returns an array of vertices or vertex IDs
|
|
257
|
-
* in the sorted order, or
|
|
257
|
+
* in the sorted order, or undefined if the graph contains a cycle.
|
|
258
258
|
* @param {'vertex' | 'key'} [propertyName] - The `propertyName` parameter is an optional parameter that specifies the
|
|
259
259
|
* property to use for sorting the vertices. It can have two possible values: 'vertex' or 'key'. If 'vertex' is
|
|
260
260
|
* specified, the vertices themselves will be used for sorting. If 'key' is specified, the ids of
|
|
261
|
-
* @returns an array of vertices or vertex IDs in topological order. If there is a cycle in the graph, it returns
|
|
261
|
+
* @returns an array of vertices or vertex IDs in topological order. If there is a cycle in the graph, it returns undefined.
|
|
262
262
|
*/
|
|
263
|
-
topologicalSort(propertyName?: 'vertex' | 'key'): Array<VO | VertexKey> |
|
|
263
|
+
topologicalSort(propertyName?: 'vertex' | 'key'): Array<VO | VertexKey> | undefined;
|
|
264
264
|
/**
|
|
265
265
|
* Time Complexity: O(|E|) where |E| is the number of edges
|
|
266
266
|
* Space Complexity: O(|E|)
|
|
@@ -296,12 +296,12 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
|
|
|
296
296
|
* Space Complexity: O(1)
|
|
297
297
|
*
|
|
298
298
|
* The function "getEndsOfEdge" returns the source and destination vertices of an edge if it exists in the graph,
|
|
299
|
-
* otherwise it returns
|
|
299
|
+
* otherwise it returns undefined.
|
|
300
300
|
* @param {EO} edge - The parameter `edge` is of type `EO`, which represents an edge in a graph.
|
|
301
301
|
* @returns The function `getEndsOfEdge` returns an array containing two vertices `[VO, VO]` if the edge exists in the
|
|
302
|
-
* graph. If the edge does not exist, it returns `
|
|
302
|
+
* graph. If the edge does not exist, it returns `undefined`.
|
|
303
303
|
*/
|
|
304
|
-
getEndsOfEdge(edge: EO): [VO, VO] |
|
|
304
|
+
getEndsOfEdge(edge: EO): [VO, VO] | undefined;
|
|
305
305
|
/**
|
|
306
306
|
* Time Complexity: O(1)
|
|
307
307
|
* Space Complexity: O(1)
|