deepthinking-mcp 4.3.2 → 4.3.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.js +572 -571
- package/dist/index.js.map +1 -1
- package/package.json +3 -2
package/dist/index.js
CHANGED
|
@@ -1,13 +1,14 @@
|
|
|
1
1
|
#!/usr/bin/env node
|
|
2
2
|
import { dirname, join } from 'path';
|
|
3
3
|
import { fileURLToPath } from 'url';
|
|
4
|
-
import { z } from 'zod';
|
|
4
|
+
import { z as z$1 } from 'zod/v3';
|
|
5
5
|
import { zodToJsonSchema } from 'zod-to-json-schema';
|
|
6
6
|
import { createHash, randomUUID } from 'crypto';
|
|
7
7
|
import { Server } from '@modelcontextprotocol/sdk/server/index.js';
|
|
8
8
|
import { StdioServerTransport } from '@modelcontextprotocol/sdk/server/stdio.js';
|
|
9
9
|
import { ListToolsRequestSchema, CallToolRequestSchema } from '@modelcontextprotocol/sdk/types.js';
|
|
10
10
|
import { readFileSync } from 'fs';
|
|
11
|
+
import { z } from 'zod';
|
|
11
12
|
|
|
12
13
|
var __defProp = Object.defineProperty;
|
|
13
14
|
var __getOwnPropNames = Object.getOwnPropertyNames;
|
|
@@ -33,691 +34,691 @@ var ThinkingToolSchema, generateMcpSchema, thinkingTool;
|
|
|
33
34
|
var init_thinking = __esm({
|
|
34
35
|
"src/tools/thinking.ts"() {
|
|
35
36
|
init_esm_shims();
|
|
36
|
-
ThinkingToolSchema = z.object({
|
|
37
|
-
sessionId: z.string().optional(),
|
|
38
|
-
mode: z.enum(["sequential", "shannon", "mathematics", "physics", "hybrid", "abductive", "causal", "bayesian", "counterfactual", "analogical", "temporal", "gametheory", "evidential", "firstprinciples", "systemsthinking", "scientificmethod", "optimization", "formallogic"]).default("hybrid"),
|
|
39
|
-
thought: z.string(),
|
|
40
|
-
thoughtNumber: z.number().int().positive(),
|
|
41
|
-
totalThoughts: z.number().int().positive(),
|
|
42
|
-
nextThoughtNeeded: z.boolean(),
|
|
43
|
-
isRevision: z.boolean().optional(),
|
|
44
|
-
revisesThought: z.string().optional(),
|
|
45
|
-
revisionReason: z.string().optional(),
|
|
46
|
-
branchFrom: z.string().optional(),
|
|
47
|
-
branchId: z.string().optional(),
|
|
48
|
-
stage: z.enum(["problem_definition", "constraints", "model", "proof", "implementation"]).optional(),
|
|
49
|
-
uncertainty: z.number().min(0).max(1).optional(),
|
|
50
|
-
dependencies: z.array(z.string()).optional(),
|
|
51
|
-
assumptions: z.array(z.string()).optional(),
|
|
52
|
-
thoughtType: z.string().optional(),
|
|
53
|
-
mathematicalModel: z.object({
|
|
54
|
-
latex: z.string(),
|
|
55
|
-
symbolic: z.string(),
|
|
56
|
-
ascii: z.string().optional()
|
|
37
|
+
ThinkingToolSchema = z$1.object({
|
|
38
|
+
sessionId: z$1.string().optional(),
|
|
39
|
+
mode: z$1.enum(["sequential", "shannon", "mathematics", "physics", "hybrid", "abductive", "causal", "bayesian", "counterfactual", "analogical", "temporal", "gametheory", "evidential", "firstprinciples", "systemsthinking", "scientificmethod", "optimization", "formallogic"]).default("hybrid"),
|
|
40
|
+
thought: z$1.string(),
|
|
41
|
+
thoughtNumber: z$1.number().int().positive(),
|
|
42
|
+
totalThoughts: z$1.number().int().positive(),
|
|
43
|
+
nextThoughtNeeded: z$1.boolean(),
|
|
44
|
+
isRevision: z$1.boolean().optional(),
|
|
45
|
+
revisesThought: z$1.string().optional(),
|
|
46
|
+
revisionReason: z$1.string().optional(),
|
|
47
|
+
branchFrom: z$1.string().optional(),
|
|
48
|
+
branchId: z$1.string().optional(),
|
|
49
|
+
stage: z$1.enum(["problem_definition", "constraints", "model", "proof", "implementation"]).optional(),
|
|
50
|
+
uncertainty: z$1.number().min(0).max(1).optional(),
|
|
51
|
+
dependencies: z$1.array(z$1.string()).optional(),
|
|
52
|
+
assumptions: z$1.array(z$1.string()).optional(),
|
|
53
|
+
thoughtType: z$1.string().optional(),
|
|
54
|
+
mathematicalModel: z$1.object({
|
|
55
|
+
latex: z$1.string(),
|
|
56
|
+
symbolic: z$1.string(),
|
|
57
|
+
ascii: z$1.string().optional()
|
|
57
58
|
}).optional(),
|
|
58
|
-
proofStrategy: z.object({
|
|
59
|
-
type: z.enum(["direct", "contradiction", "induction", "construction", "contrapositive"]),
|
|
60
|
-
steps: z.array(z.string())
|
|
59
|
+
proofStrategy: z$1.object({
|
|
60
|
+
type: z$1.enum(["direct", "contradiction", "induction", "construction", "contrapositive"]),
|
|
61
|
+
steps: z$1.array(z$1.string())
|
|
61
62
|
}).optional(),
|
|
62
|
-
tensorProperties: z.object({
|
|
63
|
-
rank: z.tuple([z.number(), z.number()]),
|
|
64
|
-
components: z.string(),
|
|
65
|
-
latex: z.string(),
|
|
66
|
-
symmetries: z.array(z.string()),
|
|
67
|
-
invariants: z.array(z.string()),
|
|
68
|
-
transformation: z.enum(["covariant", "contravariant", "mixed"])
|
|
63
|
+
tensorProperties: z$1.object({
|
|
64
|
+
rank: z$1.tuple([z$1.number(), z$1.number()]),
|
|
65
|
+
components: z$1.string(),
|
|
66
|
+
latex: z$1.string(),
|
|
67
|
+
symmetries: z$1.array(z$1.string()),
|
|
68
|
+
invariants: z$1.array(z$1.string()),
|
|
69
|
+
transformation: z$1.enum(["covariant", "contravariant", "mixed"])
|
|
69
70
|
}).optional(),
|
|
70
|
-
physicalInterpretation: z.object({
|
|
71
|
-
quantity: z.string(),
|
|
72
|
-
units: z.string(),
|
|
73
|
-
conservationLaws: z.array(z.string())
|
|
71
|
+
physicalInterpretation: z$1.object({
|
|
72
|
+
quantity: z$1.string(),
|
|
73
|
+
units: z$1.string(),
|
|
74
|
+
conservationLaws: z$1.array(z$1.string())
|
|
74
75
|
}).optional(),
|
|
75
76
|
// Abductive reasoning properties (v2.0)
|
|
76
|
-
observations: z.array(z.object({
|
|
77
|
-
id: z.string(),
|
|
78
|
-
description: z.string(),
|
|
79
|
-
confidence: z.number().min(0).max(1)
|
|
77
|
+
observations: z$1.array(z$1.object({
|
|
78
|
+
id: z$1.string(),
|
|
79
|
+
description: z$1.string(),
|
|
80
|
+
confidence: z$1.number().min(0).max(1)
|
|
80
81
|
})).optional(),
|
|
81
|
-
hypotheses: z.array(z.object({
|
|
82
|
-
id: z.string(),
|
|
82
|
+
hypotheses: z$1.array(z$1.object({
|
|
83
|
+
id: z$1.string(),
|
|
83
84
|
// Abductive fields
|
|
84
|
-
explanation: z.string().optional(),
|
|
85
|
-
assumptions: z.array(z.string()).optional(),
|
|
86
|
-
predictions: z.array(z.string()).optional(),
|
|
87
|
-
score: z.number().optional(),
|
|
85
|
+
explanation: z$1.string().optional(),
|
|
86
|
+
assumptions: z$1.array(z$1.string()).optional(),
|
|
87
|
+
predictions: z$1.array(z$1.string()).optional(),
|
|
88
|
+
score: z$1.number().optional(),
|
|
88
89
|
// Evidential fields
|
|
89
|
-
name: z.string().optional(),
|
|
90
|
-
description: z.string().optional(),
|
|
91
|
-
mutuallyExclusive: z.boolean().optional(),
|
|
92
|
-
subsets: z.array(z.string()).optional()
|
|
90
|
+
name: z$1.string().optional(),
|
|
91
|
+
description: z$1.string().optional(),
|
|
92
|
+
mutuallyExclusive: z$1.boolean().optional(),
|
|
93
|
+
subsets: z$1.array(z$1.string()).optional()
|
|
93
94
|
})).optional(),
|
|
94
|
-
evaluationCriteria: z.object({
|
|
95
|
-
parsimony: z.number(),
|
|
96
|
-
explanatoryPower: z.number(),
|
|
97
|
-
plausibility: z.number(),
|
|
98
|
-
testability: z.boolean()
|
|
95
|
+
evaluationCriteria: z$1.object({
|
|
96
|
+
parsimony: z$1.number(),
|
|
97
|
+
explanatoryPower: z$1.number(),
|
|
98
|
+
plausibility: z$1.number(),
|
|
99
|
+
testability: z$1.boolean()
|
|
99
100
|
}).optional(),
|
|
100
|
-
evidence: z.array(z.object({
|
|
101
|
-
id: z.string(),
|
|
102
|
-
description: z.string(),
|
|
101
|
+
evidence: z$1.array(z$1.object({
|
|
102
|
+
id: z$1.string(),
|
|
103
|
+
description: z$1.string(),
|
|
103
104
|
// Abductive fields
|
|
104
|
-
hypothesisId: z.string().optional(),
|
|
105
|
-
type: z.enum(["supporting", "contradicting", "neutral"]).optional(),
|
|
106
|
-
strength: z.number().min(0).max(1).optional(),
|
|
105
|
+
hypothesisId: z$1.string().optional(),
|
|
106
|
+
type: z$1.enum(["supporting", "contradicting", "neutral"]).optional(),
|
|
107
|
+
strength: z$1.number().min(0).max(1).optional(),
|
|
107
108
|
// Evidential fields
|
|
108
|
-
source: z.string().optional(),
|
|
109
|
-
reliability: z.number().min(0).max(1).optional(),
|
|
110
|
-
timestamp: z.number().optional(),
|
|
111
|
-
supports: z.array(z.string()).optional(),
|
|
112
|
-
contradicts: z.array(z.string()).optional()
|
|
109
|
+
source: z$1.string().optional(),
|
|
110
|
+
reliability: z$1.number().min(0).max(1).optional(),
|
|
111
|
+
timestamp: z$1.number().optional(),
|
|
112
|
+
supports: z$1.array(z$1.string()).optional(),
|
|
113
|
+
contradicts: z$1.array(z$1.string()).optional()
|
|
113
114
|
})).optional(),
|
|
114
|
-
bestExplanation: z.object({
|
|
115
|
-
id: z.string(),
|
|
116
|
-
explanation: z.string(),
|
|
117
|
-
assumptions: z.array(z.string()),
|
|
118
|
-
predictions: z.array(z.string()),
|
|
119
|
-
score: z.number()
|
|
115
|
+
bestExplanation: z$1.object({
|
|
116
|
+
id: z$1.string(),
|
|
117
|
+
explanation: z$1.string(),
|
|
118
|
+
assumptions: z$1.array(z$1.string()),
|
|
119
|
+
predictions: z$1.array(z$1.string()),
|
|
120
|
+
score: z$1.number()
|
|
120
121
|
}).optional(),
|
|
121
122
|
// Causal reasoning properties (v2.0)
|
|
122
|
-
causalGraph: z.object({
|
|
123
|
-
nodes: z.array(z.object({
|
|
124
|
-
id: z.string(),
|
|
125
|
-
name: z.string(),
|
|
126
|
-
type: z.enum(["cause", "effect", "mediator", "confounder"]),
|
|
127
|
-
description: z.string()
|
|
123
|
+
causalGraph: z$1.object({
|
|
124
|
+
nodes: z$1.array(z$1.object({
|
|
125
|
+
id: z$1.string(),
|
|
126
|
+
name: z$1.string(),
|
|
127
|
+
type: z$1.enum(["cause", "effect", "mediator", "confounder"]),
|
|
128
|
+
description: z$1.string()
|
|
128
129
|
})),
|
|
129
|
-
edges: z.array(z.object({
|
|
130
|
-
from: z.string(),
|
|
131
|
-
to: z.string(),
|
|
132
|
-
strength: z.number(),
|
|
133
|
-
confidence: z.number().min(0).max(1)
|
|
130
|
+
edges: z$1.array(z$1.object({
|
|
131
|
+
from: z$1.string(),
|
|
132
|
+
to: z$1.string(),
|
|
133
|
+
strength: z$1.number(),
|
|
134
|
+
confidence: z$1.number().min(0).max(1)
|
|
134
135
|
}))
|
|
135
136
|
}).optional(),
|
|
136
|
-
interventions: z.array(z.object({
|
|
137
|
-
nodeId: z.string(),
|
|
138
|
-
action: z.string(),
|
|
139
|
-
expectedEffects: z.array(z.object({
|
|
140
|
-
nodeId: z.string(),
|
|
141
|
-
expectedChange: z.string(),
|
|
142
|
-
confidence: z.number()
|
|
137
|
+
interventions: z$1.array(z$1.object({
|
|
138
|
+
nodeId: z$1.string(),
|
|
139
|
+
action: z$1.string(),
|
|
140
|
+
expectedEffects: z$1.array(z$1.object({
|
|
141
|
+
nodeId: z$1.string(),
|
|
142
|
+
expectedChange: z$1.string(),
|
|
143
|
+
confidence: z$1.number()
|
|
143
144
|
}))
|
|
144
145
|
})).optional(),
|
|
145
|
-
mechanisms: z.array(z.object({
|
|
146
|
-
from: z.string(),
|
|
147
|
-
to: z.string(),
|
|
148
|
-
description: z.string(),
|
|
149
|
-
type: z.enum(["direct", "indirect", "feedback"])
|
|
146
|
+
mechanisms: z$1.array(z$1.object({
|
|
147
|
+
from: z$1.string(),
|
|
148
|
+
to: z$1.string(),
|
|
149
|
+
description: z$1.string(),
|
|
150
|
+
type: z$1.enum(["direct", "indirect", "feedback"])
|
|
150
151
|
})).optional(),
|
|
151
|
-
confounders: z.array(z.object({
|
|
152
|
-
nodeId: z.string(),
|
|
153
|
-
affects: z.array(z.string()),
|
|
154
|
-
description: z.string()
|
|
152
|
+
confounders: z$1.array(z$1.object({
|
|
153
|
+
nodeId: z$1.string(),
|
|
154
|
+
affects: z$1.array(z$1.string()),
|
|
155
|
+
description: z$1.string()
|
|
155
156
|
})).optional(),
|
|
156
157
|
// Bayesian reasoning properties (v2.0)
|
|
157
|
-
hypothesis: z.object({
|
|
158
|
-
id: z.string(),
|
|
159
|
-
statement: z.string()
|
|
158
|
+
hypothesis: z$1.object({
|
|
159
|
+
id: z$1.string(),
|
|
160
|
+
statement: z$1.string()
|
|
160
161
|
}).optional(),
|
|
161
|
-
prior: z.object({
|
|
162
|
-
probability: z.number().min(0).max(1),
|
|
163
|
-
justification: z.string()
|
|
162
|
+
prior: z$1.object({
|
|
163
|
+
probability: z$1.number().min(0).max(1),
|
|
164
|
+
justification: z$1.string()
|
|
164
165
|
}).optional(),
|
|
165
|
-
likelihood: z.object({
|
|
166
|
-
probability: z.number().min(0).max(1),
|
|
167
|
-
description: z.string()
|
|
166
|
+
likelihood: z$1.object({
|
|
167
|
+
probability: z$1.number().min(0).max(1),
|
|
168
|
+
description: z$1.string()
|
|
168
169
|
}).optional(),
|
|
169
|
-
posterior: z.object({
|
|
170
|
-
probability: z.number().min(0).max(1),
|
|
171
|
-
calculation: z.string()
|
|
170
|
+
posterior: z$1.object({
|
|
171
|
+
probability: z$1.number().min(0).max(1),
|
|
172
|
+
calculation: z$1.string()
|
|
172
173
|
}).optional(),
|
|
173
|
-
bayesFactor: z.number().optional(),
|
|
174
|
+
bayesFactor: z$1.number().optional(),
|
|
174
175
|
// Counterfactual reasoning properties (v2.0)
|
|
175
|
-
actual: z.object({
|
|
176
|
-
id: z.string(),
|
|
177
|
-
name: z.string(),
|
|
178
|
-
description: z.string(),
|
|
179
|
-
conditions: z.array(z.object({
|
|
180
|
-
factor: z.string(),
|
|
181
|
-
value: z.string()
|
|
176
|
+
actual: z$1.object({
|
|
177
|
+
id: z$1.string(),
|
|
178
|
+
name: z$1.string(),
|
|
179
|
+
description: z$1.string(),
|
|
180
|
+
conditions: z$1.array(z$1.object({
|
|
181
|
+
factor: z$1.string(),
|
|
182
|
+
value: z$1.string()
|
|
182
183
|
})),
|
|
183
|
-
outcomes: z.array(z.object({
|
|
184
|
-
description: z.string(),
|
|
185
|
-
impact: z.enum(["positive", "negative", "neutral"]),
|
|
186
|
-
magnitude: z.number().optional()
|
|
184
|
+
outcomes: z$1.array(z$1.object({
|
|
185
|
+
description: z$1.string(),
|
|
186
|
+
impact: z$1.enum(["positive", "negative", "neutral"]),
|
|
187
|
+
magnitude: z$1.number().optional()
|
|
187
188
|
}))
|
|
188
189
|
}).optional(),
|
|
189
|
-
counterfactuals: z.array(z.object({
|
|
190
|
-
id: z.string(),
|
|
191
|
-
name: z.string(),
|
|
192
|
-
description: z.string(),
|
|
193
|
-
conditions: z.array(z.object({
|
|
194
|
-
factor: z.string(),
|
|
195
|
-
value: z.string()
|
|
190
|
+
counterfactuals: z$1.array(z$1.object({
|
|
191
|
+
id: z$1.string(),
|
|
192
|
+
name: z$1.string(),
|
|
193
|
+
description: z$1.string(),
|
|
194
|
+
conditions: z$1.array(z$1.object({
|
|
195
|
+
factor: z$1.string(),
|
|
196
|
+
value: z$1.string()
|
|
196
197
|
})),
|
|
197
|
-
outcomes: z.array(z.object({
|
|
198
|
-
description: z.string(),
|
|
199
|
-
impact: z.enum(["positive", "negative", "neutral"]),
|
|
200
|
-
magnitude: z.number().optional()
|
|
198
|
+
outcomes: z$1.array(z$1.object({
|
|
199
|
+
description: z$1.string(),
|
|
200
|
+
impact: z$1.enum(["positive", "negative", "neutral"]),
|
|
201
|
+
magnitude: z$1.number().optional()
|
|
201
202
|
}))
|
|
202
203
|
})).optional(),
|
|
203
|
-
comparison: z.object({
|
|
204
|
-
differences: z.array(z.object({
|
|
205
|
-
aspect: z.string(),
|
|
206
|
-
actual: z.string(),
|
|
207
|
-
counterfactual: z.string(),
|
|
208
|
-
significance: z.enum(["high", "medium", "low"])
|
|
204
|
+
comparison: z$1.object({
|
|
205
|
+
differences: z$1.array(z$1.object({
|
|
206
|
+
aspect: z$1.string(),
|
|
207
|
+
actual: z$1.string(),
|
|
208
|
+
counterfactual: z$1.string(),
|
|
209
|
+
significance: z$1.enum(["high", "medium", "low"])
|
|
209
210
|
})),
|
|
210
|
-
insights: z.array(z.string()),
|
|
211
|
-
lessons: z.array(z.string())
|
|
211
|
+
insights: z$1.array(z$1.string()),
|
|
212
|
+
lessons: z$1.array(z$1.string())
|
|
212
213
|
}).optional(),
|
|
213
|
-
interventionPoint: z.object({
|
|
214
|
-
description: z.string(),
|
|
215
|
-
alternatives: z.array(z.string())
|
|
214
|
+
interventionPoint: z$1.object({
|
|
215
|
+
description: z$1.string(),
|
|
216
|
+
alternatives: z$1.array(z$1.string())
|
|
216
217
|
}).optional(),
|
|
217
|
-
causalChains: z.array(z.object({
|
|
218
|
-
intervention: z.string(),
|
|
219
|
-
steps: z.array(z.string()),
|
|
220
|
-
finalOutcome: z.string()
|
|
218
|
+
causalChains: z$1.array(z$1.object({
|
|
219
|
+
intervention: z$1.string(),
|
|
220
|
+
steps: z$1.array(z$1.string()),
|
|
221
|
+
finalOutcome: z$1.string()
|
|
221
222
|
})).optional(),
|
|
222
223
|
// Analogical reasoning properties (v2.0)
|
|
223
|
-
sourceDomain: z.object({
|
|
224
|
-
id: z.string(),
|
|
225
|
-
name: z.string(),
|
|
226
|
-
description: z.string(),
|
|
227
|
-
entities: z.array(z.object({
|
|
228
|
-
id: z.string(),
|
|
229
|
-
name: z.string(),
|
|
230
|
-
type: z.string()
|
|
224
|
+
sourceDomain: z$1.object({
|
|
225
|
+
id: z$1.string(),
|
|
226
|
+
name: z$1.string(),
|
|
227
|
+
description: z$1.string(),
|
|
228
|
+
entities: z$1.array(z$1.object({
|
|
229
|
+
id: z$1.string(),
|
|
230
|
+
name: z$1.string(),
|
|
231
|
+
type: z$1.string()
|
|
231
232
|
})),
|
|
232
|
-
relations: z.array(z.object({
|
|
233
|
-
id: z.string(),
|
|
234
|
-
type: z.string(),
|
|
235
|
-
from: z.string(),
|
|
236
|
-
to: z.string()
|
|
233
|
+
relations: z$1.array(z$1.object({
|
|
234
|
+
id: z$1.string(),
|
|
235
|
+
type: z$1.string(),
|
|
236
|
+
from: z$1.string(),
|
|
237
|
+
to: z$1.string()
|
|
237
238
|
}))
|
|
238
239
|
}).optional(),
|
|
239
|
-
targetDomain: z.object({
|
|
240
|
-
id: z.string(),
|
|
241
|
-
name: z.string(),
|
|
242
|
-
description: z.string(),
|
|
243
|
-
entities: z.array(z.object({
|
|
244
|
-
id: z.string(),
|
|
245
|
-
name: z.string(),
|
|
246
|
-
type: z.string()
|
|
240
|
+
targetDomain: z$1.object({
|
|
241
|
+
id: z$1.string(),
|
|
242
|
+
name: z$1.string(),
|
|
243
|
+
description: z$1.string(),
|
|
244
|
+
entities: z$1.array(z$1.object({
|
|
245
|
+
id: z$1.string(),
|
|
246
|
+
name: z$1.string(),
|
|
247
|
+
type: z$1.string()
|
|
247
248
|
})),
|
|
248
|
-
relations: z.array(z.object({
|
|
249
|
-
id: z.string(),
|
|
250
|
-
type: z.string(),
|
|
251
|
-
from: z.string(),
|
|
252
|
-
to: z.string()
|
|
249
|
+
relations: z$1.array(z$1.object({
|
|
250
|
+
id: z$1.string(),
|
|
251
|
+
type: z$1.string(),
|
|
252
|
+
from: z$1.string(),
|
|
253
|
+
to: z$1.string()
|
|
253
254
|
}))
|
|
254
255
|
}).optional(),
|
|
255
|
-
mapping: z.array(z.object({
|
|
256
|
-
sourceEntityId: z.string(),
|
|
257
|
-
targetEntityId: z.string(),
|
|
258
|
-
justification: z.string(),
|
|
259
|
-
confidence: z.number().min(0).max(1)
|
|
256
|
+
mapping: z$1.array(z$1.object({
|
|
257
|
+
sourceEntityId: z$1.string(),
|
|
258
|
+
targetEntityId: z$1.string(),
|
|
259
|
+
justification: z$1.string(),
|
|
260
|
+
confidence: z$1.number().min(0).max(1)
|
|
260
261
|
})).optional(),
|
|
261
|
-
insights: z.array(z.object({
|
|
262
|
-
description: z.string(),
|
|
263
|
-
sourceEvidence: z.string(),
|
|
264
|
-
targetApplication: z.string()
|
|
262
|
+
insights: z$1.array(z$1.object({
|
|
263
|
+
description: z$1.string(),
|
|
264
|
+
sourceEvidence: z$1.string(),
|
|
265
|
+
targetApplication: z$1.string()
|
|
265
266
|
})).optional(),
|
|
266
|
-
inferences: z.array(z.object({
|
|
267
|
-
sourcePattern: z.string(),
|
|
268
|
-
targetPrediction: z.string(),
|
|
269
|
-
confidence: z.number().min(0).max(1),
|
|
270
|
-
needsVerification: z.boolean()
|
|
267
|
+
inferences: z$1.array(z$1.object({
|
|
268
|
+
sourcePattern: z$1.string(),
|
|
269
|
+
targetPrediction: z$1.string(),
|
|
270
|
+
confidence: z$1.number().min(0).max(1),
|
|
271
|
+
needsVerification: z$1.boolean()
|
|
271
272
|
})).optional(),
|
|
272
|
-
limitations: z.array(z.string()).optional(),
|
|
273
|
-
analogyStrength: z.number().min(0).max(1).optional(),
|
|
273
|
+
limitations: z$1.array(z$1.string()).optional(),
|
|
274
|
+
analogyStrength: z$1.number().min(0).max(1).optional(),
|
|
274
275
|
// Temporal reasoning properties (Phase 3, v2.1)
|
|
275
|
-
timeline: z.object({
|
|
276
|
-
id: z.string(),
|
|
277
|
-
name: z.string(),
|
|
278
|
-
timeUnit: z.enum(["milliseconds", "seconds", "minutes", "hours", "days", "months", "years"]),
|
|
279
|
-
startTime: z.number().optional(),
|
|
280
|
-
endTime: z.number().optional(),
|
|
281
|
-
events: z.array(z.string())
|
|
276
|
+
timeline: z$1.object({
|
|
277
|
+
id: z$1.string(),
|
|
278
|
+
name: z$1.string(),
|
|
279
|
+
timeUnit: z$1.enum(["milliseconds", "seconds", "minutes", "hours", "days", "months", "years"]),
|
|
280
|
+
startTime: z$1.number().optional(),
|
|
281
|
+
endTime: z$1.number().optional(),
|
|
282
|
+
events: z$1.array(z$1.string())
|
|
282
283
|
}).optional(),
|
|
283
|
-
events: z.array(z.object({
|
|
284
|
-
id: z.string(),
|
|
285
|
-
name: z.string(),
|
|
286
|
-
description: z.string(),
|
|
287
|
-
timestamp: z.number(),
|
|
288
|
-
duration: z.number().optional(),
|
|
289
|
-
type: z.enum(["instant", "interval"]),
|
|
290
|
-
properties: z.record(z.any())
|
|
284
|
+
events: z$1.array(z$1.object({
|
|
285
|
+
id: z$1.string(),
|
|
286
|
+
name: z$1.string(),
|
|
287
|
+
description: z$1.string(),
|
|
288
|
+
timestamp: z$1.number(),
|
|
289
|
+
duration: z$1.number().optional(),
|
|
290
|
+
type: z$1.enum(["instant", "interval"]),
|
|
291
|
+
properties: z$1.record(z$1.any())
|
|
291
292
|
})).optional(),
|
|
292
|
-
intervals: z.array(z.object({
|
|
293
|
-
id: z.string(),
|
|
294
|
-
name: z.string(),
|
|
295
|
-
start: z.number(),
|
|
296
|
-
end: z.number(),
|
|
297
|
-
overlaps: z.array(z.string()).optional(),
|
|
298
|
-
contains: z.array(z.string()).optional()
|
|
293
|
+
intervals: z$1.array(z$1.object({
|
|
294
|
+
id: z$1.string(),
|
|
295
|
+
name: z$1.string(),
|
|
296
|
+
start: z$1.number(),
|
|
297
|
+
end: z$1.number(),
|
|
298
|
+
overlaps: z$1.array(z$1.string()).optional(),
|
|
299
|
+
contains: z$1.array(z$1.string()).optional()
|
|
299
300
|
})).optional(),
|
|
300
|
-
constraints: z.array(z.object({
|
|
301
|
-
id: z.string(),
|
|
302
|
-
type: z.enum(["before", "after", "during", "overlaps", "meets", "starts", "finishes", "equals"]),
|
|
303
|
-
subject: z.string(),
|
|
304
|
-
object: z.string(),
|
|
305
|
-
confidence: z.number().min(0).max(1)
|
|
301
|
+
constraints: z$1.array(z$1.object({
|
|
302
|
+
id: z$1.string(),
|
|
303
|
+
type: z$1.enum(["before", "after", "during", "overlaps", "meets", "starts", "finishes", "equals"]),
|
|
304
|
+
subject: z$1.string(),
|
|
305
|
+
object: z$1.string(),
|
|
306
|
+
confidence: z$1.number().min(0).max(1)
|
|
306
307
|
})).optional(),
|
|
307
|
-
relations: z.array(z.object({
|
|
308
|
-
id: z.string(),
|
|
309
|
-
from: z.string(),
|
|
310
|
-
to: z.string(),
|
|
311
|
-
relationType: z.enum(["causes", "enables", "prevents", "precedes", "follows"]),
|
|
312
|
-
strength: z.number().min(0).max(1),
|
|
313
|
-
delay: z.number().optional()
|
|
308
|
+
relations: z$1.array(z$1.object({
|
|
309
|
+
id: z$1.string(),
|
|
310
|
+
from: z$1.string(),
|
|
311
|
+
to: z$1.string(),
|
|
312
|
+
relationType: z$1.enum(["causes", "enables", "prevents", "precedes", "follows"]),
|
|
313
|
+
strength: z$1.number().min(0).max(1),
|
|
314
|
+
delay: z$1.number().optional()
|
|
314
315
|
})).optional(),
|
|
315
316
|
// Game theory properties (Phase 3, v2.2)
|
|
316
|
-
game: z.object({
|
|
317
|
-
id: z.string(),
|
|
318
|
-
name: z.string(),
|
|
319
|
-
description: z.string(),
|
|
320
|
-
type: z.enum(["normal_form", "extensive_form", "cooperative", "non_cooperative"]),
|
|
321
|
-
numPlayers: z.number().int().min(2),
|
|
322
|
-
isZeroSum: z.boolean(),
|
|
323
|
-
isPerfectInformation: z.boolean()
|
|
317
|
+
game: z$1.object({
|
|
318
|
+
id: z$1.string(),
|
|
319
|
+
name: z$1.string(),
|
|
320
|
+
description: z$1.string(),
|
|
321
|
+
type: z$1.enum(["normal_form", "extensive_form", "cooperative", "non_cooperative"]),
|
|
322
|
+
numPlayers: z$1.number().int().min(2),
|
|
323
|
+
isZeroSum: z$1.boolean(),
|
|
324
|
+
isPerfectInformation: z$1.boolean()
|
|
324
325
|
}).optional(),
|
|
325
|
-
players: z.array(z.object({
|
|
326
|
-
id: z.string(),
|
|
327
|
-
name: z.string(),
|
|
328
|
-
role: z.string().optional(),
|
|
329
|
-
isRational: z.boolean(),
|
|
330
|
-
availableStrategies: z.array(z.string())
|
|
326
|
+
players: z$1.array(z$1.object({
|
|
327
|
+
id: z$1.string(),
|
|
328
|
+
name: z$1.string(),
|
|
329
|
+
role: z$1.string().optional(),
|
|
330
|
+
isRational: z$1.boolean(),
|
|
331
|
+
availableStrategies: z$1.array(z$1.string())
|
|
331
332
|
})).optional(),
|
|
332
|
-
strategies: z.array(z.object({
|
|
333
|
-
id: z.string(),
|
|
334
|
-
playerId: z.string(),
|
|
335
|
-
name: z.string(),
|
|
336
|
-
description: z.string(),
|
|
337
|
-
isPure: z.boolean(),
|
|
338
|
-
probability: z.number().min(0).max(1).optional()
|
|
333
|
+
strategies: z$1.array(z$1.object({
|
|
334
|
+
id: z$1.string(),
|
|
335
|
+
playerId: z$1.string(),
|
|
336
|
+
name: z$1.string(),
|
|
337
|
+
description: z$1.string(),
|
|
338
|
+
isPure: z$1.boolean(),
|
|
339
|
+
probability: z$1.number().min(0).max(1).optional()
|
|
339
340
|
})).optional(),
|
|
340
|
-
payoffMatrix: z.object({
|
|
341
|
-
players: z.array(z.string()),
|
|
342
|
-
dimensions: z.array(z.number()),
|
|
343
|
-
payoffs: z.array(z.object({
|
|
344
|
-
strategyProfile: z.array(z.string()),
|
|
345
|
-
payoffs: z.array(z.number())
|
|
341
|
+
payoffMatrix: z$1.object({
|
|
342
|
+
players: z$1.array(z$1.string()),
|
|
343
|
+
dimensions: z$1.array(z$1.number()),
|
|
344
|
+
payoffs: z$1.array(z$1.object({
|
|
345
|
+
strategyProfile: z$1.array(z$1.string()),
|
|
346
|
+
payoffs: z$1.array(z$1.number())
|
|
346
347
|
}))
|
|
347
348
|
}).optional(),
|
|
348
|
-
nashEquilibria: z.array(z.object({
|
|
349
|
-
id: z.string(),
|
|
350
|
-
strategyProfile: z.array(z.string()),
|
|
351
|
-
payoffs: z.array(z.number()),
|
|
352
|
-
type: z.enum(["pure", "mixed"]),
|
|
353
|
-
isStrict: z.boolean(),
|
|
354
|
-
stability: z.number().min(0).max(1)
|
|
349
|
+
nashEquilibria: z$1.array(z$1.object({
|
|
350
|
+
id: z$1.string(),
|
|
351
|
+
strategyProfile: z$1.array(z$1.string()),
|
|
352
|
+
payoffs: z$1.array(z$1.number()),
|
|
353
|
+
type: z$1.enum(["pure", "mixed"]),
|
|
354
|
+
isStrict: z$1.boolean(),
|
|
355
|
+
stability: z$1.number().min(0).max(1)
|
|
355
356
|
})).optional(),
|
|
356
|
-
dominantStrategies: z.array(z.object({
|
|
357
|
-
playerId: z.string(),
|
|
358
|
-
strategyId: z.string(),
|
|
359
|
-
type: z.enum(["strictly_dominant", "weakly_dominant"]),
|
|
360
|
-
dominatesStrategies: z.array(z.string()),
|
|
361
|
-
justification: z.string()
|
|
357
|
+
dominantStrategies: z$1.array(z$1.object({
|
|
358
|
+
playerId: z$1.string(),
|
|
359
|
+
strategyId: z$1.string(),
|
|
360
|
+
type: z$1.enum(["strictly_dominant", "weakly_dominant"]),
|
|
361
|
+
dominatesStrategies: z$1.array(z$1.string()),
|
|
362
|
+
justification: z$1.string()
|
|
362
363
|
})).optional(),
|
|
363
|
-
gameTree: z.object({
|
|
364
|
-
rootNode: z.string(),
|
|
365
|
-
nodes: z.array(z.object({
|
|
366
|
-
id: z.string(),
|
|
367
|
-
type: z.enum(["decision", "chance", "terminal"]),
|
|
368
|
-
playerId: z.string().optional(),
|
|
369
|
-
parentNode: z.string().optional(),
|
|
370
|
-
childNodes: z.array(z.string()),
|
|
371
|
-
action: z.string().optional(),
|
|
372
|
-
probability: z.number().min(0).max(1).optional(),
|
|
373
|
-
payoffs: z.array(z.number()).optional()
|
|
364
|
+
gameTree: z$1.object({
|
|
365
|
+
rootNode: z$1.string(),
|
|
366
|
+
nodes: z$1.array(z$1.object({
|
|
367
|
+
id: z$1.string(),
|
|
368
|
+
type: z$1.enum(["decision", "chance", "terminal"]),
|
|
369
|
+
playerId: z$1.string().optional(),
|
|
370
|
+
parentNode: z$1.string().optional(),
|
|
371
|
+
childNodes: z$1.array(z$1.string()),
|
|
372
|
+
action: z$1.string().optional(),
|
|
373
|
+
probability: z$1.number().min(0).max(1).optional(),
|
|
374
|
+
payoffs: z$1.array(z$1.number()).optional()
|
|
374
375
|
})),
|
|
375
|
-
informationSets: z.array(z.object({
|
|
376
|
-
id: z.string(),
|
|
377
|
-
playerId: z.string(),
|
|
378
|
-
nodes: z.array(z.string()),
|
|
379
|
-
availableActions: z.array(z.string())
|
|
376
|
+
informationSets: z$1.array(z$1.object({
|
|
377
|
+
id: z$1.string(),
|
|
378
|
+
playerId: z$1.string(),
|
|
379
|
+
nodes: z$1.array(z$1.string()),
|
|
380
|
+
availableActions: z$1.array(z$1.string())
|
|
380
381
|
})).optional()
|
|
381
382
|
}).optional(),
|
|
382
383
|
// Evidential properties (Phase 3, v2.3)
|
|
383
|
-
frameOfDiscernment: z.array(z.string()).optional(),
|
|
384
|
-
beliefFunctions: z.array(z.object({
|
|
385
|
-
id: z.string(),
|
|
386
|
-
source: z.string(),
|
|
387
|
-
massAssignments: z.array(z.object({
|
|
388
|
-
hypothesisSet: z.array(z.string()),
|
|
389
|
-
mass: z.number().min(0).max(1),
|
|
390
|
-
justification: z.string()
|
|
384
|
+
frameOfDiscernment: z$1.array(z$1.string()).optional(),
|
|
385
|
+
beliefFunctions: z$1.array(z$1.object({
|
|
386
|
+
id: z$1.string(),
|
|
387
|
+
source: z$1.string(),
|
|
388
|
+
massAssignments: z$1.array(z$1.object({
|
|
389
|
+
hypothesisSet: z$1.array(z$1.string()),
|
|
390
|
+
mass: z$1.number().min(0).max(1),
|
|
391
|
+
justification: z$1.string()
|
|
391
392
|
})),
|
|
392
|
-
conflictMass: z.number().optional()
|
|
393
|
+
conflictMass: z$1.number().optional()
|
|
393
394
|
})).optional(),
|
|
394
|
-
combinedBelief: z.object({
|
|
395
|
-
id: z.string(),
|
|
396
|
-
source: z.string(),
|
|
397
|
-
massAssignments: z.array(z.object({
|
|
398
|
-
hypothesisSet: z.array(z.string()),
|
|
399
|
-
mass: z.number().min(0).max(1),
|
|
400
|
-
justification: z.string()
|
|
395
|
+
combinedBelief: z$1.object({
|
|
396
|
+
id: z$1.string(),
|
|
397
|
+
source: z$1.string(),
|
|
398
|
+
massAssignments: z$1.array(z$1.object({
|
|
399
|
+
hypothesisSet: z$1.array(z$1.string()),
|
|
400
|
+
mass: z$1.number().min(0).max(1),
|
|
401
|
+
justification: z$1.string()
|
|
401
402
|
})),
|
|
402
|
-
conflictMass: z.number().optional()
|
|
403
|
+
conflictMass: z$1.number().optional()
|
|
403
404
|
}).optional(),
|
|
404
|
-
plausibility: z.object({
|
|
405
|
-
id: z.string(),
|
|
406
|
-
assignments: z.array(z.object({
|
|
407
|
-
hypothesisSet: z.array(z.string()),
|
|
408
|
-
plausibility: z.number().min(0).max(1),
|
|
409
|
-
belief: z.number().min(0).max(1),
|
|
410
|
-
uncertaintyInterval: z.tuple([z.number(), z.number()])
|
|
405
|
+
plausibility: z$1.object({
|
|
406
|
+
id: z$1.string(),
|
|
407
|
+
assignments: z$1.array(z$1.object({
|
|
408
|
+
hypothesisSet: z$1.array(z$1.string()),
|
|
409
|
+
plausibility: z$1.number().min(0).max(1),
|
|
410
|
+
belief: z$1.number().min(0).max(1),
|
|
411
|
+
uncertaintyInterval: z$1.tuple([z$1.number(), z$1.number()])
|
|
411
412
|
}))
|
|
412
413
|
}).optional(),
|
|
413
|
-
decisions: z.array(z.object({
|
|
414
|
-
id: z.string(),
|
|
415
|
-
name: z.string(),
|
|
416
|
-
selectedHypothesis: z.array(z.string()),
|
|
417
|
-
confidence: z.number().min(0).max(1),
|
|
418
|
-
reasoning: z.string(),
|
|
419
|
-
alternatives: z.array(z.object({
|
|
420
|
-
hypothesis: z.array(z.string()),
|
|
421
|
-
expectedUtility: z.number(),
|
|
422
|
-
risk: z.number()
|
|
414
|
+
decisions: z$1.array(z$1.object({
|
|
415
|
+
id: z$1.string(),
|
|
416
|
+
name: z$1.string(),
|
|
417
|
+
selectedHypothesis: z$1.array(z$1.string()),
|
|
418
|
+
confidence: z$1.number().min(0).max(1),
|
|
419
|
+
reasoning: z$1.string(),
|
|
420
|
+
alternatives: z$1.array(z$1.object({
|
|
421
|
+
hypothesis: z$1.array(z$1.string()),
|
|
422
|
+
expectedUtility: z$1.number(),
|
|
423
|
+
risk: z$1.number()
|
|
423
424
|
}))
|
|
424
425
|
})).optional(),
|
|
425
426
|
// First-Principles properties (Phase 3, v3.1.0)
|
|
426
|
-
question: z.string().optional(),
|
|
427
|
-
principles: z.array(z.object({
|
|
428
|
-
id: z.string(),
|
|
429
|
-
type: z.enum(["axiom", "definition", "observation", "logical_inference", "assumption"]),
|
|
430
|
-
statement: z.string(),
|
|
431
|
-
justification: z.string(),
|
|
432
|
-
dependsOn: z.array(z.string()).optional(),
|
|
433
|
-
confidence: z.number().min(0).max(1).optional()
|
|
427
|
+
question: z$1.string().optional(),
|
|
428
|
+
principles: z$1.array(z$1.object({
|
|
429
|
+
id: z$1.string(),
|
|
430
|
+
type: z$1.enum(["axiom", "definition", "observation", "logical_inference", "assumption"]),
|
|
431
|
+
statement: z$1.string(),
|
|
432
|
+
justification: z$1.string(),
|
|
433
|
+
dependsOn: z$1.array(z$1.string()).optional(),
|
|
434
|
+
confidence: z$1.number().min(0).max(1).optional()
|
|
434
435
|
})).optional(),
|
|
435
|
-
derivationSteps: z.array(z.object({
|
|
436
|
-
stepNumber: z.number().int().positive(),
|
|
437
|
-
principle: z.string(),
|
|
438
|
-
inference: z.string(),
|
|
439
|
-
logicalForm: z.string().optional(),
|
|
440
|
-
confidence: z.number().min(0).max(1)
|
|
436
|
+
derivationSteps: z$1.array(z$1.object({
|
|
437
|
+
stepNumber: z$1.number().int().positive(),
|
|
438
|
+
principle: z$1.string(),
|
|
439
|
+
inference: z$1.string(),
|
|
440
|
+
logicalForm: z$1.string().optional(),
|
|
441
|
+
confidence: z$1.number().min(0).max(1)
|
|
441
442
|
})).optional(),
|
|
442
|
-
conclusion: z.object({
|
|
443
|
-
statement: z.string(),
|
|
444
|
-
derivationChain: z.array(z.number()),
|
|
445
|
-
certainty: z.number().min(0).max(1),
|
|
446
|
-
limitations: z.array(z.string()).optional()
|
|
443
|
+
conclusion: z$1.object({
|
|
444
|
+
statement: z$1.string(),
|
|
445
|
+
derivationChain: z$1.array(z$1.number()),
|
|
446
|
+
certainty: z$1.number().min(0).max(1),
|
|
447
|
+
limitations: z$1.array(z$1.string()).optional()
|
|
447
448
|
}).optional(),
|
|
448
|
-
alternativeInterpretations: z.array(z.string()).optional(),
|
|
449
|
+
alternativeInterpretations: z$1.array(z$1.string()).optional(),
|
|
449
450
|
// Systems Thinking properties (Phase 4, v3.2.0)
|
|
450
|
-
system: z.object({
|
|
451
|
-
id: z.string(),
|
|
452
|
-
name: z.string(),
|
|
453
|
-
description: z.string(),
|
|
454
|
-
boundary: z.string(),
|
|
455
|
-
purpose: z.string(),
|
|
456
|
-
timeHorizon: z.string().optional()
|
|
451
|
+
system: z$1.object({
|
|
452
|
+
id: z$1.string(),
|
|
453
|
+
name: z$1.string(),
|
|
454
|
+
description: z$1.string(),
|
|
455
|
+
boundary: z$1.string(),
|
|
456
|
+
purpose: z$1.string(),
|
|
457
|
+
timeHorizon: z$1.string().optional()
|
|
457
458
|
}).optional(),
|
|
458
|
-
components: z.array(z.object({
|
|
459
|
-
id: z.string(),
|
|
460
|
-
name: z.string(),
|
|
461
|
-
type: z.enum(["stock", "flow", "variable", "parameter", "delay"]),
|
|
462
|
-
description: z.string(),
|
|
463
|
-
unit: z.string().optional(),
|
|
464
|
-
initialValue: z.number().optional(),
|
|
465
|
-
formula: z.string().optional(),
|
|
466
|
-
influencedBy: z.array(z.string()).optional()
|
|
459
|
+
components: z$1.array(z$1.object({
|
|
460
|
+
id: z$1.string(),
|
|
461
|
+
name: z$1.string(),
|
|
462
|
+
type: z$1.enum(["stock", "flow", "variable", "parameter", "delay"]),
|
|
463
|
+
description: z$1.string(),
|
|
464
|
+
unit: z$1.string().optional(),
|
|
465
|
+
initialValue: z$1.number().optional(),
|
|
466
|
+
formula: z$1.string().optional(),
|
|
467
|
+
influencedBy: z$1.array(z$1.string()).optional()
|
|
467
468
|
})).optional(),
|
|
468
|
-
feedbackLoops: z.array(z.object({
|
|
469
|
-
id: z.string(),
|
|
470
|
-
name: z.string(),
|
|
471
|
-
type: z.enum(["reinforcing", "balancing"]),
|
|
472
|
-
description: z.string(),
|
|
473
|
-
components: z.array(z.string()),
|
|
474
|
-
polarity: z.enum(["+", "-"]),
|
|
475
|
-
strength: z.number().min(0).max(1),
|
|
476
|
-
delay: z.number().optional(),
|
|
477
|
-
dominance: z.enum(["early", "middle", "late"]).optional()
|
|
469
|
+
feedbackLoops: z$1.array(z$1.object({
|
|
470
|
+
id: z$1.string(),
|
|
471
|
+
name: z$1.string(),
|
|
472
|
+
type: z$1.enum(["reinforcing", "balancing"]),
|
|
473
|
+
description: z$1.string(),
|
|
474
|
+
components: z$1.array(z$1.string()),
|
|
475
|
+
polarity: z$1.enum(["+", "-"]),
|
|
476
|
+
strength: z$1.number().min(0).max(1),
|
|
477
|
+
delay: z$1.number().optional(),
|
|
478
|
+
dominance: z$1.enum(["early", "middle", "late"]).optional()
|
|
478
479
|
})).optional(),
|
|
479
|
-
leveragePoints: z.array(z.object({
|
|
480
|
-
id: z.string(),
|
|
481
|
-
name: z.string(),
|
|
482
|
-
location: z.string(),
|
|
483
|
-
description: z.string(),
|
|
484
|
-
effectiveness: z.number().min(0).max(1),
|
|
485
|
-
difficulty: z.number().min(0).max(1),
|
|
486
|
-
type: z.enum(["parameter", "feedback", "structure", "goal", "paradigm"]),
|
|
487
|
-
interventionExamples: z.array(z.string())
|
|
480
|
+
leveragePoints: z$1.array(z$1.object({
|
|
481
|
+
id: z$1.string(),
|
|
482
|
+
name: z$1.string(),
|
|
483
|
+
location: z$1.string(),
|
|
484
|
+
description: z$1.string(),
|
|
485
|
+
effectiveness: z$1.number().min(0).max(1),
|
|
486
|
+
difficulty: z$1.number().min(0).max(1),
|
|
487
|
+
type: z$1.enum(["parameter", "feedback", "structure", "goal", "paradigm"]),
|
|
488
|
+
interventionExamples: z$1.array(z$1.string())
|
|
488
489
|
})).optional(),
|
|
489
|
-
behaviors: z.array(z.object({
|
|
490
|
-
id: z.string(),
|
|
491
|
-
name: z.string(),
|
|
492
|
-
description: z.string(),
|
|
493
|
-
pattern: z.enum(["growth", "decline", "oscillation", "equilibrium", "chaos", "overshoot_collapse"]),
|
|
494
|
-
causes: z.array(z.string()),
|
|
495
|
-
timeframe: z.string(),
|
|
496
|
-
unintendedConsequences: z.array(z.string()).optional()
|
|
490
|
+
behaviors: z$1.array(z$1.object({
|
|
491
|
+
id: z$1.string(),
|
|
492
|
+
name: z$1.string(),
|
|
493
|
+
description: z$1.string(),
|
|
494
|
+
pattern: z$1.enum(["growth", "decline", "oscillation", "equilibrium", "chaos", "overshoot_collapse"]),
|
|
495
|
+
causes: z$1.array(z$1.string()),
|
|
496
|
+
timeframe: z$1.string(),
|
|
497
|
+
unintendedConsequences: z$1.array(z$1.string()).optional()
|
|
497
498
|
})).optional(),
|
|
498
499
|
// Scientific Method properties (Phase 4, v3.2.0)
|
|
499
|
-
researchQuestion: z.object({
|
|
500
|
-
id: z.string(),
|
|
501
|
-
question: z.string(),
|
|
502
|
-
background: z.string(),
|
|
503
|
-
rationale: z.string(),
|
|
504
|
-
significance: z.string(),
|
|
505
|
-
variables: z.object({
|
|
506
|
-
independent: z.array(z.string()),
|
|
507
|
-
dependent: z.array(z.string()),
|
|
508
|
-
control: z.array(z.string())
|
|
500
|
+
researchQuestion: z$1.object({
|
|
501
|
+
id: z$1.string(),
|
|
502
|
+
question: z$1.string(),
|
|
503
|
+
background: z$1.string(),
|
|
504
|
+
rationale: z$1.string(),
|
|
505
|
+
significance: z$1.string(),
|
|
506
|
+
variables: z$1.object({
|
|
507
|
+
independent: z$1.array(z$1.string()),
|
|
508
|
+
dependent: z$1.array(z$1.string()),
|
|
509
|
+
control: z$1.array(z$1.string())
|
|
509
510
|
})
|
|
510
511
|
}).optional(),
|
|
511
|
-
scientificHypotheses: z.array(z.object({
|
|
512
|
-
id: z.string(),
|
|
513
|
-
type: z.enum(["null", "alternative", "directional", "non_directional"]),
|
|
514
|
-
statement: z.string(),
|
|
515
|
-
prediction: z.string(),
|
|
516
|
-
rationale: z.string(),
|
|
517
|
-
testable: z.boolean(),
|
|
518
|
-
falsifiable: z.boolean()
|
|
512
|
+
scientificHypotheses: z$1.array(z$1.object({
|
|
513
|
+
id: z$1.string(),
|
|
514
|
+
type: z$1.enum(["null", "alternative", "directional", "non_directional"]),
|
|
515
|
+
statement: z$1.string(),
|
|
516
|
+
prediction: z$1.string(),
|
|
517
|
+
rationale: z$1.string(),
|
|
518
|
+
testable: z$1.boolean(),
|
|
519
|
+
falsifiable: z$1.boolean()
|
|
519
520
|
})).optional(),
|
|
520
|
-
experiment: z.object({
|
|
521
|
-
id: z.string(),
|
|
522
|
-
type: z.enum(["experimental", "quasi_experimental", "observational", "correlational"]),
|
|
523
|
-
design: z.string(),
|
|
524
|
-
sampleSize: z.number().int().positive(),
|
|
525
|
-
sampleSizeJustification: z.string().optional(),
|
|
526
|
-
randomization: z.boolean(),
|
|
527
|
-
blinding: z.enum(["none", "single", "double", "triple"]).optional(),
|
|
528
|
-
controls: z.array(z.string()),
|
|
529
|
-
procedure: z.array(z.string()),
|
|
530
|
-
materials: z.array(z.string()).optional(),
|
|
531
|
-
duration: z.string().optional(),
|
|
532
|
-
ethicalConsiderations: z.array(z.string()).optional()
|
|
521
|
+
experiment: z$1.object({
|
|
522
|
+
id: z$1.string(),
|
|
523
|
+
type: z$1.enum(["experimental", "quasi_experimental", "observational", "correlational"]),
|
|
524
|
+
design: z$1.string(),
|
|
525
|
+
sampleSize: z$1.number().int().positive(),
|
|
526
|
+
sampleSizeJustification: z$1.string().optional(),
|
|
527
|
+
randomization: z$1.boolean(),
|
|
528
|
+
blinding: z$1.enum(["none", "single", "double", "triple"]).optional(),
|
|
529
|
+
controls: z$1.array(z$1.string()),
|
|
530
|
+
procedure: z$1.array(z$1.string()),
|
|
531
|
+
materials: z$1.array(z$1.string()).optional(),
|
|
532
|
+
duration: z$1.string().optional(),
|
|
533
|
+
ethicalConsiderations: z$1.array(z$1.string()).optional()
|
|
533
534
|
}).optional(),
|
|
534
|
-
dataCollection: z.object({
|
|
535
|
-
id: z.string(),
|
|
536
|
-
method: z.array(z.string()),
|
|
537
|
-
instruments: z.array(z.string()),
|
|
538
|
-
dataQuality: z.object({
|
|
539
|
-
completeness: z.number().min(0).max(1),
|
|
540
|
-
reliability: z.number().min(0).max(1),
|
|
541
|
-
validity: z.number().min(0).max(1)
|
|
535
|
+
dataCollection: z$1.object({
|
|
536
|
+
id: z$1.string(),
|
|
537
|
+
method: z$1.array(z$1.string()),
|
|
538
|
+
instruments: z$1.array(z$1.string()),
|
|
539
|
+
dataQuality: z$1.object({
|
|
540
|
+
completeness: z$1.number().min(0).max(1),
|
|
541
|
+
reliability: z$1.number().min(0).max(1),
|
|
542
|
+
validity: z$1.number().min(0).max(1)
|
|
542
543
|
}),
|
|
543
|
-
limitations: z.array(z.string()).optional()
|
|
544
|
+
limitations: z$1.array(z$1.string()).optional()
|
|
544
545
|
}).optional(),
|
|
545
|
-
statisticalAnalysis: z.object({
|
|
546
|
-
id: z.string(),
|
|
547
|
-
tests: z.array(z.object({
|
|
548
|
-
id: z.string(),
|
|
549
|
-
name: z.string(),
|
|
550
|
-
hypothesisTested: z.string(),
|
|
551
|
-
testStatistic: z.number(),
|
|
552
|
-
pValue: z.number().min(0).max(1),
|
|
553
|
-
confidenceInterval: z.tuple([z.number(), z.number()]).optional(),
|
|
554
|
-
alpha: z.number().min(0).max(1),
|
|
555
|
-
result: z.enum(["reject_null", "fail_to_reject_null"]),
|
|
556
|
-
interpretation: z.string()
|
|
546
|
+
statisticalAnalysis: z$1.object({
|
|
547
|
+
id: z$1.string(),
|
|
548
|
+
tests: z$1.array(z$1.object({
|
|
549
|
+
id: z$1.string(),
|
|
550
|
+
name: z$1.string(),
|
|
551
|
+
hypothesisTested: z$1.string(),
|
|
552
|
+
testStatistic: z$1.number(),
|
|
553
|
+
pValue: z$1.number().min(0).max(1),
|
|
554
|
+
confidenceInterval: z$1.tuple([z$1.number(), z$1.number()]).optional(),
|
|
555
|
+
alpha: z$1.number().min(0).max(1),
|
|
556
|
+
result: z$1.enum(["reject_null", "fail_to_reject_null"]),
|
|
557
|
+
interpretation: z$1.string()
|
|
557
558
|
})),
|
|
558
|
-
summary: z.string(),
|
|
559
|
-
effectSize: z.object({
|
|
560
|
-
type: z.string(),
|
|
561
|
-
value: z.number(),
|
|
562
|
-
interpretation: z.string()
|
|
559
|
+
summary: z$1.string(),
|
|
560
|
+
effectSize: z$1.object({
|
|
561
|
+
type: z$1.string(),
|
|
562
|
+
value: z$1.number(),
|
|
563
|
+
interpretation: z$1.string()
|
|
563
564
|
}).optional(),
|
|
564
|
-
powerAnalysis: z.object({
|
|
565
|
-
power: z.number().min(0).max(1),
|
|
566
|
-
alpha: z.number().min(0).max(1),
|
|
567
|
-
interpretation: z.string()
|
|
565
|
+
powerAnalysis: z$1.object({
|
|
566
|
+
power: z$1.number().min(0).max(1),
|
|
567
|
+
alpha: z$1.number().min(0).max(1),
|
|
568
|
+
interpretation: z$1.string()
|
|
568
569
|
}).optional()
|
|
569
570
|
}).optional(),
|
|
570
|
-
scientificConclusion: z.object({
|
|
571
|
-
id: z.string(),
|
|
572
|
-
statement: z.string(),
|
|
573
|
-
supportedHypotheses: z.array(z.string()),
|
|
574
|
-
rejectedHypotheses: z.array(z.string()),
|
|
575
|
-
confidence: z.number().min(0).max(1),
|
|
576
|
-
limitations: z.array(z.string()),
|
|
577
|
-
alternativeExplanations: z.array(z.string()).optional(),
|
|
578
|
-
futureDirections: z.array(z.string()),
|
|
579
|
-
replicationConsiderations: z.array(z.string()),
|
|
580
|
-
practicalImplications: z.array(z.string()).optional(),
|
|
581
|
-
theoreticalImplications: z.array(z.string()).optional()
|
|
571
|
+
scientificConclusion: z$1.object({
|
|
572
|
+
id: z$1.string(),
|
|
573
|
+
statement: z$1.string(),
|
|
574
|
+
supportedHypotheses: z$1.array(z$1.string()),
|
|
575
|
+
rejectedHypotheses: z$1.array(z$1.string()),
|
|
576
|
+
confidence: z$1.number().min(0).max(1),
|
|
577
|
+
limitations: z$1.array(z$1.string()),
|
|
578
|
+
alternativeExplanations: z$1.array(z$1.string()).optional(),
|
|
579
|
+
futureDirections: z$1.array(z$1.string()),
|
|
580
|
+
replicationConsiderations: z$1.array(z$1.string()),
|
|
581
|
+
practicalImplications: z$1.array(z$1.string()).optional(),
|
|
582
|
+
theoreticalImplications: z$1.array(z$1.string()).optional()
|
|
582
583
|
}).optional(),
|
|
583
584
|
// Optimization properties (Phase 4, v3.2.0)
|
|
584
|
-
optimizationProblem: z.object({
|
|
585
|
-
id: z.string(),
|
|
586
|
-
name: z.string(),
|
|
587
|
-
description: z.string(),
|
|
588
|
-
type: z.enum(["linear", "nonlinear", "integer", "mixed_integer", "constraint_satisfaction", "multi_objective"]),
|
|
589
|
-
approach: z.enum(["exact", "heuristic", "metaheuristic", "approximation"]).optional(),
|
|
590
|
-
complexity: z.string().optional()
|
|
585
|
+
optimizationProblem: z$1.object({
|
|
586
|
+
id: z$1.string(),
|
|
587
|
+
name: z$1.string(),
|
|
588
|
+
description: z$1.string(),
|
|
589
|
+
type: z$1.enum(["linear", "nonlinear", "integer", "mixed_integer", "constraint_satisfaction", "multi_objective"]),
|
|
590
|
+
approach: z$1.enum(["exact", "heuristic", "metaheuristic", "approximation"]).optional(),
|
|
591
|
+
complexity: z$1.string().optional()
|
|
591
592
|
}).optional(),
|
|
592
|
-
decisionVariables: z.array(z.object({
|
|
593
|
-
id: z.string(),
|
|
594
|
-
name: z.string(),
|
|
595
|
-
description: z.string(),
|
|
596
|
-
type: z.enum(["continuous", "integer", "binary", "categorical"]),
|
|
597
|
-
unit: z.string().optional(),
|
|
598
|
-
semantics: z.string()
|
|
593
|
+
decisionVariables: z$1.array(z$1.object({
|
|
594
|
+
id: z$1.string(),
|
|
595
|
+
name: z$1.string(),
|
|
596
|
+
description: z$1.string(),
|
|
597
|
+
type: z$1.enum(["continuous", "integer", "binary", "categorical"]),
|
|
598
|
+
unit: z$1.string().optional(),
|
|
599
|
+
semantics: z$1.string()
|
|
599
600
|
})).optional(),
|
|
600
|
-
optimizationConstraints: z.array(z.object({
|
|
601
|
-
id: z.string(),
|
|
602
|
-
name: z.string(),
|
|
603
|
-
description: z.string(),
|
|
604
|
-
type: z.enum(["hard", "soft"]),
|
|
605
|
-
formula: z.string(),
|
|
606
|
-
variables: z.array(z.string()),
|
|
607
|
-
penalty: z.number().optional(),
|
|
608
|
-
rationale: z.string(),
|
|
609
|
-
priority: z.number().optional()
|
|
601
|
+
optimizationConstraints: z$1.array(z$1.object({
|
|
602
|
+
id: z$1.string(),
|
|
603
|
+
name: z$1.string(),
|
|
604
|
+
description: z$1.string(),
|
|
605
|
+
type: z$1.enum(["hard", "soft"]),
|
|
606
|
+
formula: z$1.string(),
|
|
607
|
+
variables: z$1.array(z$1.string()),
|
|
608
|
+
penalty: z$1.number().optional(),
|
|
609
|
+
rationale: z$1.string(),
|
|
610
|
+
priority: z$1.number().optional()
|
|
610
611
|
})).optional(),
|
|
611
|
-
objectives: z.array(z.object({
|
|
612
|
-
id: z.string(),
|
|
613
|
-
name: z.string(),
|
|
614
|
-
description: z.string(),
|
|
615
|
-
type: z.enum(["minimize", "maximize"]),
|
|
616
|
-
formula: z.string(),
|
|
617
|
-
variables: z.array(z.string()),
|
|
618
|
-
weight: z.number().min(0).max(1).optional(),
|
|
619
|
-
units: z.string().optional(),
|
|
620
|
-
idealValue: z.number().optional(),
|
|
621
|
-
acceptableRange: z.tuple([z.number(), z.number()]).optional()
|
|
612
|
+
objectives: z$1.array(z$1.object({
|
|
613
|
+
id: z$1.string(),
|
|
614
|
+
name: z$1.string(),
|
|
615
|
+
description: z$1.string(),
|
|
616
|
+
type: z$1.enum(["minimize", "maximize"]),
|
|
617
|
+
formula: z$1.string(),
|
|
618
|
+
variables: z$1.array(z$1.string()),
|
|
619
|
+
weight: z$1.number().min(0).max(1).optional(),
|
|
620
|
+
units: z$1.string().optional(),
|
|
621
|
+
idealValue: z$1.number().optional(),
|
|
622
|
+
acceptableRange: z$1.tuple([z$1.number(), z$1.number()]).optional()
|
|
622
623
|
})).optional(),
|
|
623
|
-
solution: z.object({
|
|
624
|
-
id: z.string(),
|
|
625
|
-
type: z.enum(["optimal", "feasible", "infeasible", "unbounded", "approximate"]),
|
|
626
|
-
variableValues: z.record(z.union([z.number(), z.string()])),
|
|
627
|
-
objectiveValues: z.record(z.number()),
|
|
628
|
-
quality: z.number().min(0).max(1),
|
|
629
|
-
computationTime: z.number().optional(),
|
|
630
|
-
iterations: z.number().optional(),
|
|
631
|
-
method: z.string().optional(),
|
|
632
|
-
guarantees: z.array(z.string()).optional()
|
|
624
|
+
solution: z$1.object({
|
|
625
|
+
id: z$1.string(),
|
|
626
|
+
type: z$1.enum(["optimal", "feasible", "infeasible", "unbounded", "approximate"]),
|
|
627
|
+
variableValues: z$1.record(z$1.union([z$1.number(), z$1.string()])),
|
|
628
|
+
objectiveValues: z$1.record(z$1.number()),
|
|
629
|
+
quality: z$1.number().min(0).max(1),
|
|
630
|
+
computationTime: z$1.number().optional(),
|
|
631
|
+
iterations: z$1.number().optional(),
|
|
632
|
+
method: z$1.string().optional(),
|
|
633
|
+
guarantees: z$1.array(z$1.string()).optional()
|
|
633
634
|
}).optional(),
|
|
634
|
-
sensitivityAnalysis: z.object({
|
|
635
|
-
id: z.string(),
|
|
636
|
-
robustness: z.number().min(0).max(1),
|
|
637
|
-
criticalConstraints: z.array(z.string()),
|
|
638
|
-
shadowPrices: z.record(z.number()).optional(),
|
|
639
|
-
recommendations: z.array(z.string())
|
|
635
|
+
sensitivityAnalysis: z$1.object({
|
|
636
|
+
id: z$1.string(),
|
|
637
|
+
robustness: z$1.number().min(0).max(1),
|
|
638
|
+
criticalConstraints: z$1.array(z$1.string()),
|
|
639
|
+
shadowPrices: z$1.record(z$1.number()).optional(),
|
|
640
|
+
recommendations: z$1.array(z$1.string())
|
|
640
641
|
}).optional(),
|
|
641
642
|
// Formal Logic properties (Phase 4, v3.2.0)
|
|
642
|
-
propositions: z.array(z.object({
|
|
643
|
-
id: z.string(),
|
|
644
|
-
symbol: z.string(),
|
|
645
|
-
statement: z.string(),
|
|
646
|
-
truthValue: z.boolean().optional(),
|
|
647
|
-
type: z.enum(["atomic", "compound"]),
|
|
648
|
-
formula: z.string().optional()
|
|
643
|
+
propositions: z$1.array(z$1.object({
|
|
644
|
+
id: z$1.string(),
|
|
645
|
+
symbol: z$1.string(),
|
|
646
|
+
statement: z$1.string(),
|
|
647
|
+
truthValue: z$1.boolean().optional(),
|
|
648
|
+
type: z$1.enum(["atomic", "compound"]),
|
|
649
|
+
formula: z$1.string().optional()
|
|
649
650
|
})).optional(),
|
|
650
|
-
logicalInferences: z.array(z.object({
|
|
651
|
-
id: z.string(),
|
|
652
|
-
rule: z.enum(["modus_ponens", "modus_tollens", "hypothetical_syllogism", "disjunctive_syllogism", "conjunction", "simplification", "addition", "resolution", "contradiction", "excluded_middle"]),
|
|
653
|
-
premises: z.array(z.string()),
|
|
654
|
-
conclusion: z.string(),
|
|
655
|
-
justification: z.string(),
|
|
656
|
-
valid: z.boolean()
|
|
651
|
+
logicalInferences: z$1.array(z$1.object({
|
|
652
|
+
id: z$1.string(),
|
|
653
|
+
rule: z$1.enum(["modus_ponens", "modus_tollens", "hypothetical_syllogism", "disjunctive_syllogism", "conjunction", "simplification", "addition", "resolution", "contradiction", "excluded_middle"]),
|
|
654
|
+
premises: z$1.array(z$1.string()),
|
|
655
|
+
conclusion: z$1.string(),
|
|
656
|
+
justification: z$1.string(),
|
|
657
|
+
valid: z$1.boolean()
|
|
657
658
|
})).optional(),
|
|
658
|
-
logicalProof: z.object({
|
|
659
|
-
id: z.string(),
|
|
660
|
-
theorem: z.string(),
|
|
661
|
-
technique: z.enum(["direct", "contradiction", "contrapositive", "cases", "induction", "natural_deduction", "resolution", "semantic_tableaux"]),
|
|
662
|
-
steps: z.array(z.object({
|
|
663
|
-
stepNumber: z.number().int().positive(),
|
|
664
|
-
statement: z.string(),
|
|
665
|
-
formula: z.string().optional(),
|
|
666
|
-
justification: z.string(),
|
|
667
|
-
rule: z.enum(["modus_ponens", "modus_tollens", "hypothetical_syllogism", "disjunctive_syllogism", "conjunction", "simplification", "addition", "resolution", "contradiction", "excluded_middle"]).optional(),
|
|
668
|
-
referencesSteps: z.array(z.number()).optional(),
|
|
669
|
-
isAssumption: z.boolean().optional(),
|
|
670
|
-
dischargesAssumption: z.number().optional()
|
|
659
|
+
logicalProof: z$1.object({
|
|
660
|
+
id: z$1.string(),
|
|
661
|
+
theorem: z$1.string(),
|
|
662
|
+
technique: z$1.enum(["direct", "contradiction", "contrapositive", "cases", "induction", "natural_deduction", "resolution", "semantic_tableaux"]),
|
|
663
|
+
steps: z$1.array(z$1.object({
|
|
664
|
+
stepNumber: z$1.number().int().positive(),
|
|
665
|
+
statement: z$1.string(),
|
|
666
|
+
formula: z$1.string().optional(),
|
|
667
|
+
justification: z$1.string(),
|
|
668
|
+
rule: z$1.enum(["modus_ponens", "modus_tollens", "hypothetical_syllogism", "disjunctive_syllogism", "conjunction", "simplification", "addition", "resolution", "contradiction", "excluded_middle"]).optional(),
|
|
669
|
+
referencesSteps: z$1.array(z$1.number()).optional(),
|
|
670
|
+
isAssumption: z$1.boolean().optional(),
|
|
671
|
+
dischargesAssumption: z$1.number().optional()
|
|
671
672
|
})),
|
|
672
|
-
conclusion: z.string(),
|
|
673
|
-
valid: z.boolean(),
|
|
674
|
-
completeness: z.number().min(0).max(1),
|
|
675
|
-
assumptions: z.array(z.string()).optional()
|
|
673
|
+
conclusion: z$1.string(),
|
|
674
|
+
valid: z$1.boolean(),
|
|
675
|
+
completeness: z$1.number().min(0).max(1),
|
|
676
|
+
assumptions: z$1.array(z$1.string()).optional()
|
|
676
677
|
}).optional(),
|
|
677
|
-
truthTable: z.object({
|
|
678
|
-
id: z.string(),
|
|
679
|
-
propositions: z.array(z.string()),
|
|
680
|
-
formula: z.string().optional(),
|
|
681
|
-
rows: z.array(z.object({
|
|
682
|
-
rowNumber: z.number().int().positive(),
|
|
683
|
-
assignments: z.record(z.boolean()),
|
|
684
|
-
result: z.boolean()
|
|
678
|
+
truthTable: z$1.object({
|
|
679
|
+
id: z$1.string(),
|
|
680
|
+
propositions: z$1.array(z$1.string()),
|
|
681
|
+
formula: z$1.string().optional(),
|
|
682
|
+
rows: z$1.array(z$1.object({
|
|
683
|
+
rowNumber: z$1.number().int().positive(),
|
|
684
|
+
assignments: z$1.record(z$1.boolean()),
|
|
685
|
+
result: z$1.boolean()
|
|
685
686
|
})),
|
|
686
|
-
isTautology: z.boolean(),
|
|
687
|
-
isContradiction: z.boolean(),
|
|
688
|
-
isContingent: z.boolean()
|
|
687
|
+
isTautology: z$1.boolean(),
|
|
688
|
+
isContradiction: z$1.boolean(),
|
|
689
|
+
isContingent: z$1.boolean()
|
|
689
690
|
}).optional(),
|
|
690
|
-
satisfiability: z.object({
|
|
691
|
-
id: z.string(),
|
|
692
|
-
formula: z.string(),
|
|
693
|
-
satisfiable: z.boolean(),
|
|
694
|
-
model: z.record(z.boolean()).optional(),
|
|
695
|
-
method: z.enum(["dpll", "cdcl", "resolution", "truth_table", "other"]),
|
|
696
|
-
complexity: z.string().optional(),
|
|
697
|
-
explanation: z.string()
|
|
691
|
+
satisfiability: z$1.object({
|
|
692
|
+
id: z$1.string(),
|
|
693
|
+
formula: z$1.string(),
|
|
694
|
+
satisfiable: z$1.boolean(),
|
|
695
|
+
model: z$1.record(z$1.boolean()).optional(),
|
|
696
|
+
method: z$1.enum(["dpll", "cdcl", "resolution", "truth_table", "other"]),
|
|
697
|
+
complexity: z$1.string().optional(),
|
|
698
|
+
explanation: z$1.string()
|
|
698
699
|
}).optional(),
|
|
699
|
-
action: z.enum(["add_thought", "summarize", "export", "switch_mode", "get_session", "recommend_mode"]).default("add_thought"),
|
|
700
|
-
exportFormat: z.enum(["markdown", "latex", "json", "html", "jupyter", "mermaid", "dot", "ascii"]).optional(),
|
|
701
|
-
newMode: z.enum(["sequential", "shannon", "mathematics", "physics", "hybrid", "abductive", "causal", "bayesian", "counterfactual", "analogical", "temporal", "gametheory", "evidential", "firstprinciples", "systemsthinking", "scientificmethod", "optimization", "formallogic"]).optional(),
|
|
700
|
+
action: z$1.enum(["add_thought", "summarize", "export", "switch_mode", "get_session", "recommend_mode"]).default("add_thought"),
|
|
701
|
+
exportFormat: z$1.enum(["markdown", "latex", "json", "html", "jupyter", "mermaid", "dot", "ascii"]).optional(),
|
|
702
|
+
newMode: z$1.enum(["sequential", "shannon", "mathematics", "physics", "hybrid", "abductive", "causal", "bayesian", "counterfactual", "analogical", "temporal", "gametheory", "evidential", "firstprinciples", "systemsthinking", "scientificmethod", "optimization", "formallogic"]).optional(),
|
|
702
703
|
// Mode recommendation parameters (v2.4)
|
|
703
|
-
problemType: z.string().optional(),
|
|
704
|
-
problemCharacteristics: z.object({
|
|
705
|
-
domain: z.string(),
|
|
706
|
-
complexity: z.enum(["low", "medium", "high"]),
|
|
707
|
-
uncertainty: z.enum(["low", "medium", "high"]),
|
|
708
|
-
timeDependent: z.boolean(),
|
|
709
|
-
multiAgent: z.boolean(),
|
|
710
|
-
requiresProof: z.boolean(),
|
|
711
|
-
requiresQuantification: z.boolean(),
|
|
712
|
-
hasIncompleteInfo: z.boolean(),
|
|
713
|
-
requiresExplanation: z.boolean(),
|
|
714
|
-
hasAlternatives: z.boolean()
|
|
704
|
+
problemType: z$1.string().optional(),
|
|
705
|
+
problemCharacteristics: z$1.object({
|
|
706
|
+
domain: z$1.string(),
|
|
707
|
+
complexity: z$1.enum(["low", "medium", "high"]),
|
|
708
|
+
uncertainty: z$1.enum(["low", "medium", "high"]),
|
|
709
|
+
timeDependent: z$1.boolean(),
|
|
710
|
+
multiAgent: z$1.boolean(),
|
|
711
|
+
requiresProof: z$1.boolean(),
|
|
712
|
+
requiresQuantification: z$1.boolean(),
|
|
713
|
+
hasIncompleteInfo: z$1.boolean(),
|
|
714
|
+
requiresExplanation: z$1.boolean(),
|
|
715
|
+
hasAlternatives: z$1.boolean()
|
|
715
716
|
}).optional(),
|
|
716
|
-
includeCombinations: z.boolean().optional()
|
|
717
|
+
includeCombinations: z$1.boolean().optional()
|
|
717
718
|
});
|
|
718
719
|
generateMcpSchema = () => {
|
|
719
720
|
const jsonSchema = zodToJsonSchema(ThinkingToolSchema, {
|
|
720
|
-
target: "
|
|
721
|
+
target: "jsonSchema2020-12",
|
|
721
722
|
$refStrategy: "none"
|
|
722
723
|
});
|
|
723
724
|
if (jsonSchema && typeof jsonSchema === "object") {
|
|
@@ -5392,7 +5393,7 @@ init_esm_shims();
|
|
|
5392
5393
|
init_esm_shims();
|
|
5393
5394
|
function generateToolSchema(zodSchema, name, description) {
|
|
5394
5395
|
const jsonSchema = zodToJsonSchema(zodSchema, {
|
|
5395
|
-
target: "
|
|
5396
|
+
target: "jsonSchema2020-12",
|
|
5396
5397
|
$refStrategy: "none"
|
|
5397
5398
|
});
|
|
5398
5399
|
if (jsonSchema && typeof jsonSchema === "object") {
|