data-structure-typed 1.47.7 → 1.47.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (72) hide show
  1. package/CHANGELOG.md +1 -1
  2. package/README.md +98 -17
  3. package/dist/cjs/data-structures/binary-tree/segment-tree.d.ts +6 -6
  4. package/dist/cjs/data-structures/binary-tree/segment-tree.js +7 -7
  5. package/dist/cjs/data-structures/binary-tree/segment-tree.js.map +1 -1
  6. package/dist/cjs/data-structures/graph/abstract-graph.d.ts +17 -17
  7. package/dist/cjs/data-structures/graph/abstract-graph.js +30 -30
  8. package/dist/cjs/data-structures/graph/abstract-graph.js.map +1 -1
  9. package/dist/cjs/data-structures/graph/directed-graph.d.ts +24 -24
  10. package/dist/cjs/data-structures/graph/directed-graph.js +28 -28
  11. package/dist/cjs/data-structures/graph/directed-graph.js.map +1 -1
  12. package/dist/cjs/data-structures/graph/undirected-graph.d.ts +14 -14
  13. package/dist/cjs/data-structures/graph/undirected-graph.js +18 -18
  14. package/dist/cjs/data-structures/graph/undirected-graph.js.map +1 -1
  15. package/dist/cjs/data-structures/linked-list/doubly-linked-list.d.ts +28 -28
  16. package/dist/cjs/data-structures/linked-list/doubly-linked-list.js +33 -33
  17. package/dist/cjs/data-structures/linked-list/doubly-linked-list.js.map +1 -1
  18. package/dist/cjs/data-structures/linked-list/singly-linked-list.d.ts +21 -21
  19. package/dist/cjs/data-structures/linked-list/singly-linked-list.js +27 -27
  20. package/dist/cjs/data-structures/linked-list/singly-linked-list.js.map +1 -1
  21. package/dist/cjs/data-structures/linked-list/skip-linked-list.js +4 -4
  22. package/dist/cjs/data-structures/linked-list/skip-linked-list.js.map +1 -1
  23. package/dist/cjs/data-structures/queue/queue.d.ts +13 -13
  24. package/dist/cjs/data-structures/queue/queue.js +13 -13
  25. package/dist/cjs/data-structures/stack/stack.d.ts +6 -6
  26. package/dist/cjs/data-structures/stack/stack.js +7 -7
  27. package/dist/cjs/data-structures/stack/stack.js.map +1 -1
  28. package/dist/cjs/types/data-structures/graph/abstract-graph.d.ts +2 -2
  29. package/dist/mjs/data-structures/binary-tree/segment-tree.d.ts +6 -6
  30. package/dist/mjs/data-structures/binary-tree/segment-tree.js +7 -7
  31. package/dist/mjs/data-structures/graph/abstract-graph.d.ts +17 -17
  32. package/dist/mjs/data-structures/graph/abstract-graph.js +30 -30
  33. package/dist/mjs/data-structures/graph/directed-graph.d.ts +24 -24
  34. package/dist/mjs/data-structures/graph/directed-graph.js +28 -28
  35. package/dist/mjs/data-structures/graph/undirected-graph.d.ts +14 -14
  36. package/dist/mjs/data-structures/graph/undirected-graph.js +18 -18
  37. package/dist/mjs/data-structures/linked-list/doubly-linked-list.d.ts +28 -28
  38. package/dist/mjs/data-structures/linked-list/doubly-linked-list.js +33 -33
  39. package/dist/mjs/data-structures/linked-list/singly-linked-list.d.ts +21 -21
  40. package/dist/mjs/data-structures/linked-list/singly-linked-list.js +27 -27
  41. package/dist/mjs/data-structures/linked-list/skip-linked-list.js +4 -4
  42. package/dist/mjs/data-structures/queue/queue.d.ts +13 -13
  43. package/dist/mjs/data-structures/queue/queue.js +13 -13
  44. package/dist/mjs/data-structures/stack/stack.d.ts +6 -6
  45. package/dist/mjs/data-structures/stack/stack.js +7 -7
  46. package/dist/mjs/types/data-structures/graph/abstract-graph.d.ts +2 -2
  47. package/dist/umd/data-structure-typed.js +161 -161
  48. package/dist/umd/data-structure-typed.min.js +2 -2
  49. package/dist/umd/data-structure-typed.min.js.map +1 -1
  50. package/package.json +1 -1
  51. package/src/data-structures/binary-tree/segment-tree.ts +10 -10
  52. package/src/data-structures/graph/abstract-graph.ts +46 -46
  53. package/src/data-structures/graph/directed-graph.ts +40 -40
  54. package/src/data-structures/graph/undirected-graph.ts +26 -26
  55. package/src/data-structures/linked-list/doubly-linked-list.ts +45 -45
  56. package/src/data-structures/linked-list/singly-linked-list.ts +38 -38
  57. package/src/data-structures/linked-list/skip-linked-list.ts +4 -4
  58. package/src/data-structures/queue/queue.ts +13 -13
  59. package/src/data-structures/stack/stack.ts +9 -9
  60. package/src/types/data-structures/graph/abstract-graph.ts +2 -2
  61. package/test/integration/index.html +102 -33
  62. package/test/performance/data-structures/linked-list/doubly-linked-list.test.ts +1 -1
  63. package/test/performance/data-structures/linked-list/singly-linked-list.test.ts +1 -1
  64. package/test/unit/data-structures/binary-tree/segment-tree.test.ts +1 -1
  65. package/test/unit/data-structures/graph/abstract-graph.test.ts +4 -4
  66. package/test/unit/data-structures/graph/directed-graph.test.ts +10 -10
  67. package/test/unit/data-structures/graph/undirected-graph.test.ts +3 -3
  68. package/test/unit/data-structures/linked-list/doubly-linked-list.test.ts +14 -14
  69. package/test/unit/data-structures/linked-list/singly-linked-list.test.ts +3 -3
  70. package/test/unit/data-structures/linked-list/skip-list.test.ts +1 -1
  71. package/test/unit/data-structures/queue/deque.test.ts +1 -1
  72. package/test/unit/data-structures/stack/stack.test.ts +2 -2
@@ -47,13 +47,13 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
47
47
  * @param value
48
48
  */
49
49
  abstract createEdge(srcOrV1: VertexKey, destOrV2: VertexKey, weight?: number, value?: E): EO;
50
- abstract deleteEdge(edge: EO): EO | null;
51
- abstract getEdge(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO | null;
50
+ abstract deleteEdge(edge: EO): EO | undefined;
51
+ abstract getEdge(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO | undefined;
52
52
  abstract degreeOf(vertexOrKey: VO | VertexKey): number;
53
53
  abstract edgeSet(): EO[];
54
54
  abstract edgesOf(vertexOrKey: VO | VertexKey): EO[];
55
55
  abstract getNeighbors(vertexOrKey: VO | VertexKey): VO[];
56
- abstract getEndsOfEdge(edge: EO): [VO, VO] | null;
56
+ abstract getEndsOfEdge(edge: EO): [VO, VO] | undefined;
57
57
  /**
58
58
  * Time Complexity: O(1) - Constant time for Map lookup.
59
59
  * Space Complexity: O(1) - Constant space, as it creates only a few variables.
@@ -62,13 +62,13 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
62
62
  * Time Complexity: O(1) - Constant time for Map lookup.
63
63
  * Space Complexity: O(1) - Constant space, as it creates only a few variables.
64
64
  *
65
- * The function "getVertex" returns the vertex with the specified ID or null if it doesn't exist.
65
+ * The function "getVertex" returns the vertex with the specified ID or undefined if it doesn't exist.
66
66
  * @param {VertexKey} vertexKey - The `vertexKey` parameter is the identifier of the vertex that you want to retrieve from
67
67
  * the `_vertices` map.
68
68
  * @returns The method `getVertex` returns the vertex with the specified `vertexKey` if it exists in the `_vertices`
69
- * map. If the vertex does not exist, it returns `null`.
69
+ * map. If the vertex does not exist, it returns `undefined`.
70
70
  */
71
- getVertex(vertexKey: VertexKey): VO | null;
71
+ getVertex(vertexKey: VertexKey): VO | undefined;
72
72
  /**
73
73
  * Time Complexity: O(1) - Constant time for Map lookup.
74
74
  * Space Complexity: O(1) - Constant space, as it creates only a few variables.
@@ -201,7 +201,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
201
201
  * vertices. If `isWeight` is `false` or not provided, it uses a breadth-first search (BFS) algorithm to calculate the
202
202
  * minimum number of
203
203
  */
204
- getMinCostBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean): number | null;
204
+ getMinCostBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean): number | undefined;
205
205
  /**
206
206
  * Time Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm or DFS).
207
207
  * Space Complexity: O(V + E) - Depends on the implementation (Dijkstra's algorithm or DFS).
@@ -223,9 +223,9 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
223
223
  * followed by iterative computation of the shortest path. This approach may result in exponential time complexity,
224
224
  * so the default method is to use the Dijkstra algorithm to obtain the shortest weighted path.
225
225
  * @returns The function `getMinPathBetween` returns an array of vertices (`VO[]`) representing the minimum path between
226
- * two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `null`.
226
+ * two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `undefined`.
227
227
  */
228
- getMinPathBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean, isDFS?: boolean): VO[] | null;
228
+ getMinPathBetween(v1: VO | VertexKey, v2: VO | VertexKey, isWeight?: boolean, isDFS?: boolean): VO[] | undefined;
229
229
  /**
230
230
  * Dijkstra algorithm time: O(VE) space: O(VO + EO)
231
231
  * /
@@ -242,9 +242,9 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
242
242
  * a graph without using a heap data structure.
243
243
  * @param {VO | VertexKey} src - The source vertex from which to start the Dijkstra's algorithm. It can be either a
244
244
  * vertex object or a vertex ID.
245
- * @param {VO | VertexKey | null} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
245
+ * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
246
246
  * parameter that specifies the destination vertex for the Dijkstra algorithm. It can be either a vertex object or its
247
- * identifier. If no destination is provided, the value is set to `null`.
247
+ * identifier. If no destination is provided, the value is set to `undefined`.
248
248
  * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
249
249
  * distance from the source vertex to the destination vertex should be calculated and returned in the result. If
250
250
  * `getMinDist` is set to `true`, the `minDist` property in the result will contain the minimum distance
@@ -253,7 +253,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
253
253
  * shortest paths from the source vertex to all other vertices in the graph. If `genPaths
254
254
  * @returns The function `dijkstraWithoutHeap` returns an object of type `DijkstraResult<VO>`.
255
255
  */
256
- dijkstraWithoutHeap(src: VO | VertexKey, dest?: VO | VertexKey | null, getMinDist?: boolean, genPaths?: boolean): DijkstraResult<VO>;
256
+ dijkstraWithoutHeap(src: VO | VertexKey, dest?: VO | VertexKey | undefined, getMinDist?: boolean, genPaths?: boolean): DijkstraResult<VO>;
257
257
  /**
258
258
  * Dijkstra algorithm time: O(logVE) space: O(VO + EO)
259
259
  *
@@ -276,7 +276,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
276
276
  * optional destination vertex, and optionally returns the minimum distance, the paths, and other information.
277
277
  * @param {VO | VertexKey} src - The `src` parameter represents the source vertex from which the Dijkstra algorithm will
278
278
  * start. It can be either a vertex object or a vertex ID.
279
- * @param {VO | VertexKey | null} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
279
+ * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
280
280
  * vertex to which the shortest path is calculated from the source vertex. If no destination is provided, the algorithm
281
281
  * will calculate the shortest paths to all other vertices from the source vertex.
282
282
  * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
@@ -287,7 +287,7 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
287
287
  * shortest paths from the source vertex to all other vertices in the graph. If `genPaths
288
288
  * @returns The function `dijkstra` returns an object of type `DijkstraResult<VO>`.
289
289
  */
290
- dijkstra(src: VO | VertexKey, dest?: VO | VertexKey | null, getMinDist?: boolean, genPaths?: boolean): DijkstraResult<VO>;
290
+ dijkstra(src: VO | VertexKey, dest?: VO | VertexKey | undefined, getMinDist?: boolean, genPaths?: boolean): DijkstraResult<VO>;
291
291
  /**
292
292
  * Time Complexity: O(V * E) - Quadratic time in the worst case (Bellman-Ford algorithm).
293
293
  * Space Complexity: O(V + E) - Depends on the implementation (Bellman-Ford algorithm).
@@ -353,12 +353,12 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
353
353
  * graph.
354
354
  * @returns The function `floydWarshall()` returns an object with two properties: `costs` and `predecessor`. The `costs`
355
355
  * property is a 2D array of numbers representing the shortest path costs between vertices in a graph. The
356
- * `predecessor` property is a 2D array of vertices (or `null`) representing the predecessor vertices in the shortest
356
+ * `predecessor` property is a 2D array of vertices (or `undefined`) representing the predecessor vertices in the shortest
357
357
  * path between vertices in the
358
358
  */
359
359
  floydWarshall(): {
360
360
  costs: number[][];
361
- predecessor: (VO | null)[][];
361
+ predecessor: (VO | undefined)[][];
362
362
  };
363
363
  /**
364
364
  * Time Complexity: O(V + E) - Linear time (Tarjan's algorithm).
@@ -445,6 +445,6 @@ export declare abstract class AbstractGraph<V = any, E = any, VO extends Abstrac
445
445
  getBridges(): EO[];
446
446
  protected abstract _addEdgeOnly(edge: EO): boolean;
447
447
  protected _addVertexOnly(newVertex: VO): boolean;
448
- protected _getVertex(vertexOrKey: VertexKey | VO): VO | null;
448
+ protected _getVertex(vertexOrKey: VertexKey | VO): VO | undefined;
449
449
  protected _getVertexKey(vertexOrKey: VO | VertexKey): VertexKey;
450
450
  }
@@ -58,14 +58,14 @@ export class AbstractGraph {
58
58
  * Time Complexity: O(1) - Constant time for Map lookup.
59
59
  * Space Complexity: O(1) - Constant space, as it creates only a few variables.
60
60
  *
61
- * The function "getVertex" returns the vertex with the specified ID or null if it doesn't exist.
61
+ * The function "getVertex" returns the vertex with the specified ID or undefined if it doesn't exist.
62
62
  * @param {VertexKey} vertexKey - The `vertexKey` parameter is the identifier of the vertex that you want to retrieve from
63
63
  * the `_vertices` map.
64
64
  * @returns The method `getVertex` returns the vertex with the specified `vertexKey` if it exists in the `_vertices`
65
- * map. If the vertex does not exist, it returns `null`.
65
+ * map. If the vertex does not exist, it returns `undefined`.
66
66
  */
67
67
  getVertex(vertexKey) {
68
- return this._vertices.get(vertexKey) || null;
68
+ return this._vertices.get(vertexKey) || undefined;
69
69
  }
70
70
  /**
71
71
  * Time Complexity: O(1) - Constant time for Map lookup.
@@ -302,7 +302,7 @@ export class AbstractGraph {
302
302
  const vertex2 = this._getVertex(v2);
303
303
  const vertex1 = this._getVertex(v1);
304
304
  if (!(vertex1 && vertex2)) {
305
- return null;
305
+ return undefined;
306
306
  }
307
307
  const visited = new Map();
308
308
  const queue = new Queue([vertex1]);
@@ -327,7 +327,7 @@ export class AbstractGraph {
327
327
  }
328
328
  cost++;
329
329
  }
330
- return null;
330
+ return undefined;
331
331
  }
332
332
  }
333
333
  /**
@@ -351,7 +351,7 @@ export class AbstractGraph {
351
351
  * followed by iterative computation of the shortest path. This approach may result in exponential time complexity,
352
352
  * so the default method is to use the Dijkstra algorithm to obtain the shortest weighted path.
353
353
  * @returns The function `getMinPathBetween` returns an array of vertices (`VO[]`) representing the minimum path between
354
- * two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `null`.
354
+ * two vertices (`v1` and `v2`). If there is no path between the vertices, it returns `undefined`.
355
355
  */
356
356
  getMinPathBetween(v1, v2, isWeight, isDFS = false) {
357
357
  if (isWeight === undefined)
@@ -370,7 +370,7 @@ export class AbstractGraph {
370
370
  }
371
371
  index++;
372
372
  }
373
- return allPaths[minIndex] || null;
373
+ return allPaths[minIndex] || undefined;
374
374
  }
375
375
  else {
376
376
  return this.dijkstra(v1, v2, true, true)?.minPath ?? [];
@@ -419,9 +419,9 @@ export class AbstractGraph {
419
419
  * a graph without using a heap data structure.
420
420
  * @param {VO | VertexKey} src - The source vertex from which to start the Dijkstra's algorithm. It can be either a
421
421
  * vertex object or a vertex ID.
422
- * @param {VO | VertexKey | null} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
422
+ * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter in the `dijkstraWithoutHeap` function is an optional
423
423
  * parameter that specifies the destination vertex for the Dijkstra algorithm. It can be either a vertex object or its
424
- * identifier. If no destination is provided, the value is set to `null`.
424
+ * identifier. If no destination is provided, the value is set to `undefined`.
425
425
  * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
426
426
  * distance from the source vertex to the destination vertex should be calculated and returned in the result. If
427
427
  * `getMinDist` is set to `true`, the `minDist` property in the result will contain the minimum distance
@@ -436,9 +436,9 @@ export class AbstractGraph {
436
436
  if (genPaths === undefined)
437
437
  genPaths = false;
438
438
  if (dest === undefined)
439
- dest = null;
439
+ dest = undefined;
440
440
  let minDist = Infinity;
441
- let minDest = null;
441
+ let minDest = undefined;
442
442
  let minPath = [];
443
443
  const paths = [];
444
444
  const vertices = this._vertices;
@@ -446,9 +446,9 @@ export class AbstractGraph {
446
446
  const seen = new Set();
447
447
  const preMap = new Map(); // predecessor
448
448
  const srcVertex = this._getVertex(src);
449
- const destVertex = dest ? this._getVertex(dest) : null;
449
+ const destVertex = dest ? this._getVertex(dest) : undefined;
450
450
  if (!srcVertex) {
451
- return null;
451
+ return undefined;
452
452
  }
453
453
  for (const vertex of vertices) {
454
454
  const vertexOrKey = vertex[1];
@@ -456,10 +456,10 @@ export class AbstractGraph {
456
456
  distMap.set(vertexOrKey, Infinity);
457
457
  }
458
458
  distMap.set(srcVertex, 0);
459
- preMap.set(srcVertex, null);
459
+ preMap.set(srcVertex, undefined);
460
460
  const getMinOfNoSeen = () => {
461
461
  let min = Infinity;
462
- let minV = null;
462
+ let minV = undefined;
463
463
  for (const [key, value] of distMap) {
464
464
  if (!seen.has(key)) {
465
465
  if (value < min) {
@@ -507,7 +507,7 @@ export class AbstractGraph {
507
507
  if (edge) {
508
508
  const curFromMap = distMap.get(cur);
509
509
  const neighborFromMap = distMap.get(neighbor);
510
- // TODO after no-non-null-assertion not ensure the logic
510
+ // TODO after no-non-undefined-assertion not ensure the logic
511
511
  if (curFromMap !== undefined && neighborFromMap !== undefined) {
512
512
  if (edge.weight + curFromMap < neighborFromMap) {
513
513
  distMap.set(neighbor, edge.weight + curFromMap);
@@ -554,7 +554,7 @@ export class AbstractGraph {
554
554
  * optional destination vertex, and optionally returns the minimum distance, the paths, and other information.
555
555
  * @param {VO | VertexKey} src - The `src` parameter represents the source vertex from which the Dijkstra algorithm will
556
556
  * start. It can be either a vertex object or a vertex ID.
557
- * @param {VO | VertexKey | null} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
557
+ * @param {VO | VertexKey | undefined} [dest] - The `dest` parameter is the destination vertex or vertex ID. It specifies the
558
558
  * vertex to which the shortest path is calculated from the source vertex. If no destination is provided, the algorithm
559
559
  * will calculate the shortest paths to all other vertices from the source vertex.
560
560
  * @param {boolean} [getMinDist] - The `getMinDist` parameter is a boolean flag that determines whether the minimum
@@ -571,9 +571,9 @@ export class AbstractGraph {
571
571
  if (genPaths === undefined)
572
572
  genPaths = false;
573
573
  if (dest === undefined)
574
- dest = null;
574
+ dest = undefined;
575
575
  let minDist = Infinity;
576
- let minDest = null;
576
+ let minDest = undefined;
577
577
  let minPath = [];
578
578
  const paths = [];
579
579
  const vertices = this._vertices;
@@ -581,9 +581,9 @@ export class AbstractGraph {
581
581
  const seen = new Set();
582
582
  const preMap = new Map(); // predecessor
583
583
  const srcVertex = this._getVertex(src);
584
- const destVertex = dest ? this._getVertex(dest) : null;
584
+ const destVertex = dest ? this._getVertex(dest) : undefined;
585
585
  if (!srcVertex)
586
- return null;
586
+ return undefined;
587
587
  for (const vertex of vertices) {
588
588
  const vertexOrKey = vertex[1];
589
589
  if (vertexOrKey instanceof AbstractVertex)
@@ -592,11 +592,11 @@ export class AbstractGraph {
592
592
  const heap = new PriorityQueue([], { comparator: (a, b) => a.key - b.key });
593
593
  heap.add({ key: 0, value: srcVertex });
594
594
  distMap.set(srcVertex, 0);
595
- preMap.set(srcVertex, null);
595
+ preMap.set(srcVertex, undefined);
596
596
  /**
597
597
  * The function `getPaths` retrieves all paths from vertices to a specified minimum vertex.
598
- * @param {VO | null} minV - The parameter `minV` is of type `VO | null`. It represents the minimum vertex value or
599
- * null.
598
+ * @param {VO | undefined} minV - The parameter `minV` is of type `VO | undefined`. It represents the minimum vertex value or
599
+ * undefined.
600
600
  */
601
601
  const getPaths = (minV) => {
602
602
  for (const vertex of vertices) {
@@ -732,7 +732,7 @@ export class AbstractGraph {
732
732
  }
733
733
  }
734
734
  }
735
- let minDest = null;
735
+ let minDest = undefined;
736
736
  if (getMin) {
737
737
  distMap.forEach((d, v) => {
738
738
  if (v !== srcVertex) {
@@ -808,7 +808,7 @@ export class AbstractGraph {
808
808
  * graph.
809
809
  * @returns The function `floydWarshall()` returns an object with two properties: `costs` and `predecessor`. The `costs`
810
810
  * property is a 2D array of numbers representing the shortest path costs between vertices in a graph. The
811
- * `predecessor` property is a 2D array of vertices (or `null`) representing the predecessor vertices in the shortest
811
+ * `predecessor` property is a 2D array of vertices (or `undefined`) representing the predecessor vertices in the shortest
812
812
  * path between vertices in the
813
813
  */
814
814
  floydWarshall() {
@@ -821,7 +821,7 @@ export class AbstractGraph {
821
821
  costs[i] = [];
822
822
  predecessor[i] = [];
823
823
  for (let j = 0; j < n; j++) {
824
- predecessor[i][j] = null;
824
+ predecessor[i][j] = undefined;
825
825
  }
826
826
  }
827
827
  for (let i = 0; i < n; i++) {
@@ -913,7 +913,7 @@ export class AbstractGraph {
913
913
  }
914
914
  const childLow = lowMap.get(neighbor);
915
915
  const curLow = lowMap.get(cur);
916
- // TODO after no-non-null-assertion not ensure the logic
916
+ // TODO after no-non-undefined-assertion not ensure the logic
917
917
  if (curLow !== undefined && childLow !== undefined) {
918
918
  lowMap.set(cur, Math.min(curLow, childLow));
919
919
  }
@@ -937,7 +937,7 @@ export class AbstractGraph {
937
937
  }
938
938
  }
939
939
  };
940
- dfs(root, null);
940
+ dfs(root, undefined);
941
941
  let SCCs = new Map();
942
942
  const getSCCs = () => {
943
943
  const SCCs = new Map();
@@ -1031,7 +1031,7 @@ export class AbstractGraph {
1031
1031
  }
1032
1032
  _getVertex(vertexOrKey) {
1033
1033
  const vertexKey = this._getVertexKey(vertexOrKey);
1034
- return this._vertices.get(vertexKey) || null;
1034
+ return this._vertices.get(vertexKey) || undefined;
1035
1035
  }
1036
1036
  _getVertexKey(vertexOrKey) {
1037
1037
  return vertexOrKey instanceof AbstractVertex ? vertexOrKey.key : vertexOrKey;
@@ -74,13 +74,13 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
74
74
  * Space Complexity: O(1)
75
75
  *
76
76
  * The `getEdge` function retrieves an edge between two vertices based on their source and destination IDs.
77
- * @param {VO | VertexKey | null} srcOrKey - The source vertex or its ID. It can be either a vertex object or a vertex ID.
78
- * @param {VO | VertexKey | null} destOrKey - The `destOrKey` parameter in the `getEdge` function represents the
79
- * destination vertex of the edge. It can be either a vertex object (`VO`), a vertex ID (`VertexKey`), or `null` if the
77
+ * @param {VO | VertexKey | undefined} srcOrKey - The source vertex or its ID. It can be either a vertex object or a vertex ID.
78
+ * @param {VO | VertexKey | undefined} destOrKey - The `destOrKey` parameter in the `getEdge` function represents the
79
+ * destination vertex of the edge. It can be either a vertex object (`VO`), a vertex ID (`VertexKey`), or `undefined` if the
80
80
  * destination is not specified.
81
- * @returns the first edge found between the source and destination vertices, or null if no such edge is found.
81
+ * @returns the first edge found between the source and destination vertices, or undefined if no such edge is found.
82
82
  */
83
- getEdge(srcOrKey: VO | VertexKey | null, destOrKey: VO | VertexKey | null): EO | null;
83
+ getEdge(srcOrKey: VO | VertexKey | undefined, destOrKey: VO | VertexKey | undefined): EO | undefined;
84
84
  /**
85
85
  * Time Complexity: O(|E|) where |E| is the number of edges
86
86
  * Space Complexity: O(1)
@@ -92,9 +92,9 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
92
92
  * The function removes an edge between two vertices in a graph and returns the removed edge.
93
93
  * @param {VO | VertexKey} srcOrKey - The source vertex or its ID.
94
94
  * @param {VO | VertexKey} destOrKey - The `destOrKey` parameter represents the destination vertex or its ID.
95
- * @returns the removed edge (EO) if it exists, or null if either the source or destination vertex does not exist.
95
+ * @returns the removed edge (EO) if it exists, or undefined if either the source or destination vertex does not exist.
96
96
  */
97
- deleteEdgeSrcToDest(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO | null;
97
+ deleteEdgeSrcToDest(srcOrKey: VO | VertexKey, destOrKey: VO | VertexKey): EO | undefined;
98
98
  /**
99
99
  * Time Complexity: O(|E|) where |E| is the number of edges
100
100
  * Space Complexity: O(1)
@@ -103,12 +103,12 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
103
103
  * Time Complexity: O(|E|) where |E| is the number of edges
104
104
  * Space Complexity: O(1)
105
105
  *
106
- * The function removes an edge from a graph and returns the removed edge, or null if the edge was not found.
106
+ * The function removes an edge from a graph and returns the removed edge, or undefined if the edge was not found.
107
107
  * @param {EO} edge - The `edge` parameter is an object that represents an edge in a graph. It has two properties: `src`
108
108
  * and `dest`, which represent the source and destination vertices of the edge, respectively.
109
- * @returns The method `deleteEdge` returns the removed edge (`EO`) if it exists, or `null` if the edge does not exist.
109
+ * @returns The method `deleteEdge` returns the removed edge (`EO`) if it exists, or `undefined` if the edge does not exist.
110
110
  */
111
- deleteEdge(edge: EO): EO | null;
111
+ deleteEdge(edge: EO): EO | undefined;
112
112
  /**
113
113
  * Time Complexity: O(|E|) where |E| is the number of edges
114
114
  * Space Complexity: O(1)
@@ -213,11 +213,11 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
213
213
  * Time Complexity: O(1)
214
214
  * Space Complexity: O(1)
215
215
  *
216
- * The function "getEdgeSrc" returns the source vertex of an edge, or null if the edge does not exist.
216
+ * The function "getEdgeSrc" returns the source vertex of an edge, or undefined if the edge does not exist.
217
217
  * @param {EO} e - The parameter "e" is of type EO, which represents an edge in a graph.
218
- * @returns either a vertex object (VO) or null.
218
+ * @returns either a vertex object (VO) or undefined.
219
219
  */
220
- getEdgeSrc(e: EO): VO | null;
220
+ getEdgeSrc(e: EO): VO | undefined;
221
221
  /**
222
222
  * Time Complexity: O(1)
223
223
  * Space Complexity: O(1)
@@ -228,9 +228,9 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
228
228
  *
229
229
  * The function "getEdgeDest" returns the destination vertex of an edge.
230
230
  * @param {EO} e - The parameter "e" is of type "EO", which represents an edge in a graph.
231
- * @returns either a vertex object of type VO or null.
231
+ * @returns either a vertex object of type VO or undefined.
232
232
  */
233
- getEdgeDest(e: EO): VO | null;
233
+ getEdgeDest(e: EO): VO | undefined;
234
234
  /**
235
235
  * Time Complexity: O(|E|) where |E| is the number of edges
236
236
  * Space Complexity: O(1)
@@ -240,11 +240,11 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
240
240
  * Space Complexity: O(1)
241
241
  *
242
242
  * The function `getDestinations` returns an array of destination vertices connected to a given vertex.
243
- * @param {VO | VertexKey | null} vertex - The `vertex` parameter represents the starting vertex from which we want to
244
- * find the destinations. It can be either a `VO` object, a `VertexKey` value, or `null`.
243
+ * @param {VO | VertexKey | undefined} vertex - The `vertex` parameter represents the starting vertex from which we want to
244
+ * find the destinations. It can be either a `VO` object, a `VertexKey` value, or `undefined`.
245
245
  * @returns an array of vertices (VO[]).
246
246
  */
247
- getDestinations(vertex: VO | VertexKey | null): VO[];
247
+ getDestinations(vertex: VO | VertexKey | undefined): VO[];
248
248
  /**
249
249
  * Time Complexity: O(|V| + |E|) where |V| is the number of vertices and |E| is the number of edges
250
250
  * Space Complexity: O(|V|)
@@ -254,13 +254,13 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
254
254
  * Space Complexity: O(|V|)
255
255
  *
256
256
  * The `topologicalSort` function performs a topological sort on a graph and returns an array of vertices or vertex IDs
257
- * in the sorted order, or null if the graph contains a cycle.
257
+ * in the sorted order, or undefined if the graph contains a cycle.
258
258
  * @param {'vertex' | 'key'} [propertyName] - The `propertyName` parameter is an optional parameter that specifies the
259
259
  * property to use for sorting the vertices. It can have two possible values: 'vertex' or 'key'. If 'vertex' is
260
260
  * specified, the vertices themselves will be used for sorting. If 'key' is specified, the ids of
261
- * @returns an array of vertices or vertex IDs in topological order. If there is a cycle in the graph, it returns null.
261
+ * @returns an array of vertices or vertex IDs in topological order. If there is a cycle in the graph, it returns undefined.
262
262
  */
263
- topologicalSort(propertyName?: 'vertex' | 'key'): Array<VO | VertexKey> | null;
263
+ topologicalSort(propertyName?: 'vertex' | 'key'): Array<VO | VertexKey> | undefined;
264
264
  /**
265
265
  * Time Complexity: O(|E|) where |E| is the number of edges
266
266
  * Space Complexity: O(|E|)
@@ -296,12 +296,12 @@ export declare class DirectedGraph<V = any, E = any, VO extends DirectedVertex<V
296
296
  * Space Complexity: O(1)
297
297
  *
298
298
  * The function "getEndsOfEdge" returns the source and destination vertices of an edge if it exists in the graph,
299
- * otherwise it returns null.
299
+ * otherwise it returns undefined.
300
300
  * @param {EO} edge - The parameter `edge` is of type `EO`, which represents an edge in a graph.
301
301
  * @returns The function `getEndsOfEdge` returns an array containing two vertices `[VO, VO]` if the edge exists in the
302
- * graph. If the edge does not exist, it returns `null`.
302
+ * graph. If the edge does not exist, it returns `undefined`.
303
303
  */
304
- getEndsOfEdge(edge: EO): [VO, VO] | null;
304
+ getEndsOfEdge(edge: EO): [VO, VO] | undefined;
305
305
  /**
306
306
  * Time Complexity: O(1)
307
307
  * Space Complexity: O(1)
@@ -96,15 +96,15 @@ export class DirectedGraph extends AbstractGraph {
96
96
  * Space Complexity: O(1)
97
97
  *
98
98
  * The `getEdge` function retrieves an edge between two vertices based on their source and destination IDs.
99
- * @param {VO | VertexKey | null} srcOrKey - The source vertex or its ID. It can be either a vertex object or a vertex ID.
100
- * @param {VO | VertexKey | null} destOrKey - The `destOrKey` parameter in the `getEdge` function represents the
101
- * destination vertex of the edge. It can be either a vertex object (`VO`), a vertex ID (`VertexKey`), or `null` if the
99
+ * @param {VO | VertexKey | undefined} srcOrKey - The source vertex or its ID. It can be either a vertex object or a vertex ID.
100
+ * @param {VO | VertexKey | undefined} destOrKey - The `destOrKey` parameter in the `getEdge` function represents the
101
+ * destination vertex of the edge. It can be either a vertex object (`VO`), a vertex ID (`VertexKey`), or `undefined` if the
102
102
  * destination is not specified.
103
- * @returns the first edge found between the source and destination vertices, or null if no such edge is found.
103
+ * @returns the first edge found between the source and destination vertices, or undefined if no such edge is found.
104
104
  */
105
105
  getEdge(srcOrKey, destOrKey) {
106
106
  let edges = [];
107
- if (srcOrKey !== null && destOrKey !== null) {
107
+ if (srcOrKey !== undefined && destOrKey !== undefined) {
108
108
  const src = this._getVertex(srcOrKey);
109
109
  const dest = this._getVertex(destOrKey);
110
110
  if (src && dest) {
@@ -114,7 +114,7 @@ export class DirectedGraph extends AbstractGraph {
114
114
  }
115
115
  }
116
116
  }
117
- return edges[0] || null;
117
+ return edges[0] || undefined;
118
118
  }
119
119
  /**
120
120
  * Time Complexity: O(|E|) where |E| is the number of edges
@@ -127,14 +127,14 @@ export class DirectedGraph extends AbstractGraph {
127
127
  * The function removes an edge between two vertices in a graph and returns the removed edge.
128
128
  * @param {VO | VertexKey} srcOrKey - The source vertex or its ID.
129
129
  * @param {VO | VertexKey} destOrKey - The `destOrKey` parameter represents the destination vertex or its ID.
130
- * @returns the removed edge (EO) if it exists, or null if either the source or destination vertex does not exist.
130
+ * @returns the removed edge (EO) if it exists, or undefined if either the source or destination vertex does not exist.
131
131
  */
132
132
  deleteEdgeSrcToDest(srcOrKey, destOrKey) {
133
133
  const src = this._getVertex(srcOrKey);
134
134
  const dest = this._getVertex(destOrKey);
135
- let removed = null;
135
+ let removed = undefined;
136
136
  if (!src || !dest) {
137
- return null;
137
+ return undefined;
138
138
  }
139
139
  const srcOutEdges = this._outEdgeMap.get(src);
140
140
  if (srcOutEdges) {
@@ -142,7 +142,7 @@ export class DirectedGraph extends AbstractGraph {
142
142
  }
143
143
  const destInEdges = this._inEdgeMap.get(dest);
144
144
  if (destInEdges) {
145
- removed = arrayRemove(destInEdges, (edge) => edge.src === src.key)[0] || null;
145
+ removed = arrayRemove(destInEdges, (edge) => edge.src === src.key)[0] || undefined;
146
146
  }
147
147
  return removed;
148
148
  }
@@ -154,13 +154,13 @@ export class DirectedGraph extends AbstractGraph {
154
154
  * Time Complexity: O(|E|) where |E| is the number of edges
155
155
  * Space Complexity: O(1)
156
156
  *
157
- * The function removes an edge from a graph and returns the removed edge, or null if the edge was not found.
157
+ * The function removes an edge from a graph and returns the removed edge, or undefined if the edge was not found.
158
158
  * @param {EO} edge - The `edge` parameter is an object that represents an edge in a graph. It has two properties: `src`
159
159
  * and `dest`, which represent the source and destination vertices of the edge, respectively.
160
- * @returns The method `deleteEdge` returns the removed edge (`EO`) if it exists, or `null` if the edge does not exist.
160
+ * @returns The method `deleteEdge` returns the removed edge (`EO`) if it exists, or `undefined` if the edge does not exist.
161
161
  */
162
162
  deleteEdge(edge) {
163
- let removed = null;
163
+ let removed = undefined;
164
164
  const src = this._getVertex(edge.src);
165
165
  const dest = this._getVertex(edge.dest);
166
166
  if (src && dest) {
@@ -308,9 +308,9 @@ export class DirectedGraph extends AbstractGraph {
308
308
  * Time Complexity: O(1)
309
309
  * Space Complexity: O(1)
310
310
  *
311
- * The function "getEdgeSrc" returns the source vertex of an edge, or null if the edge does not exist.
311
+ * The function "getEdgeSrc" returns the source vertex of an edge, or undefined if the edge does not exist.
312
312
  * @param {EO} e - The parameter "e" is of type EO, which represents an edge in a graph.
313
- * @returns either a vertex object (VO) or null.
313
+ * @returns either a vertex object (VO) or undefined.
314
314
  */
315
315
  getEdgeSrc(e) {
316
316
  return this._getVertex(e.src);
@@ -325,7 +325,7 @@ export class DirectedGraph extends AbstractGraph {
325
325
  *
326
326
  * The function "getEdgeDest" returns the destination vertex of an edge.
327
327
  * @param {EO} e - The parameter "e" is of type "EO", which represents an edge in a graph.
328
- * @returns either a vertex object of type VO or null.
328
+ * @returns either a vertex object of type VO or undefined.
329
329
  */
330
330
  getEdgeDest(e) {
331
331
  return this._getVertex(e.dest);
@@ -339,12 +339,12 @@ export class DirectedGraph extends AbstractGraph {
339
339
  * Space Complexity: O(1)
340
340
  *
341
341
  * The function `getDestinations` returns an array of destination vertices connected to a given vertex.
342
- * @param {VO | VertexKey | null} vertex - The `vertex` parameter represents the starting vertex from which we want to
343
- * find the destinations. It can be either a `VO` object, a `VertexKey` value, or `null`.
342
+ * @param {VO | VertexKey | undefined} vertex - The `vertex` parameter represents the starting vertex from which we want to
343
+ * find the destinations. It can be either a `VO` object, a `VertexKey` value, or `undefined`.
344
344
  * @returns an array of vertices (VO[]).
345
345
  */
346
346
  getDestinations(vertex) {
347
- if (vertex === null) {
347
+ if (vertex === undefined) {
348
348
  return [];
349
349
  }
350
350
  const destinations = [];
@@ -366,11 +366,11 @@ export class DirectedGraph extends AbstractGraph {
366
366
  * Space Complexity: O(|V|)
367
367
  *
368
368
  * The `topologicalSort` function performs a topological sort on a graph and returns an array of vertices or vertex IDs
369
- * in the sorted order, or null if the graph contains a cycle.
369
+ * in the sorted order, or undefined if the graph contains a cycle.
370
370
  * @param {'vertex' | 'key'} [propertyName] - The `propertyName` parameter is an optional parameter that specifies the
371
371
  * property to use for sorting the vertices. It can have two possible values: 'vertex' or 'key'. If 'vertex' is
372
372
  * specified, the vertices themselves will be used for sorting. If 'key' is specified, the ids of
373
- * @returns an array of vertices or vertex IDs in topological order. If there is a cycle in the graph, it returns null.
373
+ * @returns an array of vertices or vertex IDs in topological order. If there is a cycle in the graph, it returns undefined.
374
374
  */
375
375
  topologicalSort(propertyName) {
376
376
  propertyName = propertyName ?? 'key';
@@ -403,7 +403,7 @@ export class DirectedGraph extends AbstractGraph {
403
403
  }
404
404
  }
405
405
  if (hasCycle)
406
- return null;
406
+ return undefined;
407
407
  if (propertyName === 'key')
408
408
  sorted = sorted.map(vertex => (vertex instanceof DirectedVertex ? vertex.key : vertex));
409
409
  return sorted.reverse();
@@ -446,7 +446,7 @@ export class DirectedGraph extends AbstractGraph {
446
446
  const outEdges = this.outgoingEdgesOf(vertex);
447
447
  for (const outEdge of outEdges) {
448
448
  const neighbor = this._getVertex(outEdge.dest);
449
- // TODO after no-non-null-assertion not ensure the logic
449
+ // TODO after no-non-undefined-assertion not ensure the logic
450
450
  if (neighbor) {
451
451
  neighbors.push(neighbor);
452
452
  }
@@ -463,14 +463,14 @@ export class DirectedGraph extends AbstractGraph {
463
463
  * Space Complexity: O(1)
464
464
  *
465
465
  * The function "getEndsOfEdge" returns the source and destination vertices of an edge if it exists in the graph,
466
- * otherwise it returns null.
466
+ * otherwise it returns undefined.
467
467
  * @param {EO} edge - The parameter `edge` is of type `EO`, which represents an edge in a graph.
468
468
  * @returns The function `getEndsOfEdge` returns an array containing two vertices `[VO, VO]` if the edge exists in the
469
- * graph. If the edge does not exist, it returns `null`.
469
+ * graph. If the edge does not exist, it returns `undefined`.
470
470
  */
471
471
  getEndsOfEdge(edge) {
472
472
  if (!this.hasEdge(edge.src, edge.dest)) {
473
- return null;
473
+ return undefined;
474
474
  }
475
475
  const v1 = this._getVertex(edge.src);
476
476
  const v2 = this._getVertex(edge.dest);
@@ -478,7 +478,7 @@ export class DirectedGraph extends AbstractGraph {
478
478
  return [v1, v2];
479
479
  }
480
480
  else {
481
- return null;
481
+ return undefined;
482
482
  }
483
483
  }
484
484
  /**
@@ -501,7 +501,7 @@ export class DirectedGraph extends AbstractGraph {
501
501
  }
502
502
  const srcVertex = this._getVertex(edge.src);
503
503
  const destVertex = this._getVertex(edge.dest);
504
- // TODO after no-non-null-assertion not ensure the logic
504
+ // TODO after no-non-undefined-assertion not ensure the logic
505
505
  if (srcVertex && destVertex) {
506
506
  const srcOutEdges = this._outEdgeMap.get(srcVertex);
507
507
  if (srcOutEdges) {