cui-llama.rn 1.6.1 → 1.7.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/android/src/main/CMakeLists.txt +6 -0
- package/android/src/main/java/com/rnllama/LlamaContext.java +51 -14
- package/android/src/main/java/com/rnllama/RNLlama.java +158 -6
- package/android/src/main/jni.cpp +153 -14
- package/android/src/main/jniLibs/arm64-v8a/librnllama.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod_i8mm.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_i8mm.so +0 -0
- package/android/src/main/jniLibs/x86_64/librnllama.so +0 -0
- package/android/src/main/jniLibs/x86_64/librnllama_x86_64.so +0 -0
- package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +24 -4
- package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +22 -2
- package/cpp/chat.cpp +128 -106
- package/cpp/chat.h +2 -0
- package/cpp/common.cpp +38 -76
- package/cpp/common.h +23 -19
- package/cpp/ggml-backend.cpp +9 -5
- package/cpp/ggml-backend.h +4 -4
- package/cpp/ggml-cpu/ggml-cpu-aarch64.cpp +0 -2
- package/cpp/ggml-cpu/ggml-cpu-quants.c +306 -6
- package/cpp/ggml-cpu/ggml-cpu.c +5 -13
- package/cpp/ggml-cpu/ggml-cpu.cpp +29 -16
- package/cpp/ggml-cpu/ops.cpp +107 -13
- package/cpp/ggml-cpu/vec.cpp +0 -6
- package/cpp/ggml-cpu/vec.h +16 -0
- package/cpp/ggml-llama-sim.metallib +0 -0
- package/cpp/ggml-llama.metallib +0 -0
- package/cpp/ggml-metal-impl.h +36 -11
- package/cpp/ggml-metal.m +321 -132
- package/cpp/ggml-opt.cpp +373 -190
- package/cpp/ggml-opt.h +49 -28
- package/cpp/ggml-quants.c +0 -6
- package/cpp/ggml.c +93 -38
- package/cpp/ggml.h +21 -7
- package/cpp/gguf.cpp +33 -33
- package/cpp/llama-adapter.cpp +6 -0
- package/cpp/llama-arch.cpp +3 -0
- package/cpp/llama-batch.cpp +3 -1
- package/cpp/llama-chat.cpp +8 -6
- package/cpp/llama-chat.h +1 -0
- package/cpp/llama-context.cpp +349 -135
- package/cpp/llama-context.h +30 -3
- package/cpp/llama-cparams.h +1 -0
- package/cpp/llama-graph.cpp +150 -234
- package/cpp/llama-graph.h +52 -7
- package/cpp/llama-hparams.cpp +17 -1
- package/cpp/llama-hparams.h +34 -5
- package/cpp/llama-kv-cache.cpp +662 -321
- package/cpp/llama-kv-cache.h +203 -93
- package/cpp/llama-memory.h +3 -2
- package/cpp/llama-model-loader.cpp +24 -15
- package/cpp/llama-model-saver.cpp +281 -0
- package/cpp/llama-model-saver.h +37 -0
- package/cpp/llama-model.cpp +536 -132
- package/cpp/llama-model.h +7 -1
- package/cpp/llama-sampling.cpp +18 -6
- package/cpp/llama-vocab.cpp +46 -8
- package/cpp/llama-vocab.h +6 -0
- package/cpp/llama.cpp +14 -0
- package/cpp/llama.h +72 -131
- package/cpp/minja/chat-template.hpp +9 -5
- package/cpp/minja/minja.hpp +69 -36
- package/cpp/rn-llama.cpp +611 -47
- package/cpp/rn-llama.h +33 -3
- package/cpp/sampling.cpp +57 -50
- package/cpp/tools/mtmd/clip-impl.h +462 -0
- package/cpp/tools/mtmd/clip.cpp +4024 -0
- package/cpp/tools/mtmd/clip.h +101 -0
- package/cpp/tools/mtmd/miniaudio.h +93468 -0
- package/cpp/tools/mtmd/mtmd-audio.cpp +855 -0
- package/cpp/tools/mtmd/mtmd-audio.h +62 -0
- package/cpp/tools/mtmd/mtmd-helper.cpp +297 -0
- package/cpp/tools/mtmd/mtmd.cpp +942 -0
- package/cpp/tools/mtmd/mtmd.h +362 -0
- package/cpp/tools/mtmd/stb_image.h +7988 -0
- package/ios/CMakeLists.txt +7 -0
- package/ios/RNLlama.mm +77 -3
- package/ios/RNLlamaContext.h +5 -1
- package/ios/RNLlamaContext.mm +105 -10
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/chat.h +2 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/common.h +23 -19
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-backend.h +4 -4
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-metal-impl.h +36 -11
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-opt.h +49 -28
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml.h +21 -7
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-chat.h +1 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-context.h +30 -3
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-cparams.h +1 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-graph.h +52 -7
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-hparams.h +34 -5
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-kv-cache.h +203 -93
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-memory.h +3 -2
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-model-saver.h +37 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-model.h +7 -1
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-vocab.h +6 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama.h +72 -131
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/minja/chat-template.hpp +9 -5
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/minja/minja.hpp +69 -36
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/rn-llama.h +33 -3
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/ggml-llama.metallib +0 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/chat.h +2 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/common.h +23 -19
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend.h +4 -4
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal-impl.h +36 -11
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-opt.h +49 -28
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml.h +21 -7
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-chat.h +1 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-context.h +30 -3
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cparams.h +1 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-graph.h +52 -7
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-hparams.h +34 -5
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-kv-cache.h +203 -93
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-memory.h +3 -2
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model-saver.h +37 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model.h +7 -1
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-vocab.h +6 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama.h +72 -131
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/minja/chat-template.hpp +9 -5
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/minja/minja.hpp +69 -36
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/rn-llama.h +33 -3
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/_CodeSignature/CodeResources +1 -1
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/ggml-llama-sim.metallib +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/chat.h +2 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/common.h +23 -19
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-backend.h +4 -4
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-metal-impl.h +36 -11
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-opt.h +49 -28
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml.h +21 -7
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-chat.h +1 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-context.h +30 -3
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-cparams.h +1 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-graph.h +52 -7
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-hparams.h +34 -5
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-kv-cache.h +203 -93
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-memory.h +3 -2
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-model-saver.h +37 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-model.h +7 -1
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-vocab.h +6 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama.h +72 -131
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/minja/chat-template.hpp +9 -5
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/minja/minja.hpp +69 -36
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/rn-llama.h +33 -3
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/ggml-llama.metallib +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/chat.h +2 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/common.h +23 -19
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend.h +4 -4
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal-impl.h +36 -11
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-opt.h +49 -28
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml.h +21 -7
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-chat.h +1 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-context.h +30 -3
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cparams.h +1 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-graph.h +52 -7
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-hparams.h +34 -5
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-kv-cache.h +203 -93
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-memory.h +3 -2
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model-saver.h +37 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model.h +7 -1
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-vocab.h +6 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama.h +72 -131
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/minja/chat-template.hpp +9 -5
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/minja/minja.hpp +69 -36
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/rn-llama.h +33 -3
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/_CodeSignature/CodeResources +1 -1
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/ggml-llama-sim.metallib +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/rnllama +0 -0
- package/jest/mock.js +33 -7
- package/lib/commonjs/NativeRNLlama.js.map +1 -1
- package/lib/commonjs/index.js +153 -21
- package/lib/commonjs/index.js.map +1 -1
- package/lib/module/NativeRNLlama.js.map +1 -1
- package/lib/module/index.js +152 -20
- package/lib/module/index.js.map +1 -1
- package/lib/typescript/NativeRNLlama.d.ts +50 -4
- package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
- package/lib/typescript/index.d.ts +72 -6
- package/lib/typescript/index.d.ts.map +1 -1
- package/package.json +1 -1
- package/src/NativeRNLlama.ts +67 -4
- package/src/index.ts +212 -38
- package/lib/commonjs/chat.js +0 -37
- package/lib/commonjs/chat.js.map +0 -1
- package/lib/module/chat.js +0 -33
- package/lib/module/chat.js.map +0 -1
- package/lib/typescript/chat.d.ts +0 -10
- package/lib/typescript/chat.d.ts.map +0 -1
- package/src/chat.ts +0 -44
@@ -37,13 +37,16 @@ extern "C" {
|
|
37
37
|
// ====== Dataset ======
|
38
38
|
|
39
39
|
LM_GGML_API lm_ggml_opt_dataset_t lm_ggml_opt_dataset_init(
|
40
|
-
|
41
|
-
|
42
|
-
int64_t
|
43
|
-
int64_t
|
40
|
+
enum lm_ggml_type type_data, // the type for the internal data tensor
|
41
|
+
enum lm_ggml_type type_label, // the type for the internal labels tensor
|
42
|
+
int64_t ne_datapoint, // number of elements per datapoint
|
43
|
+
int64_t ne_label, // number of elements per label
|
44
|
+
int64_t ndata, // total number of datapoints/labels
|
45
|
+
int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
|
44
46
|
LM_GGML_API void lm_ggml_opt_dataset_free(lm_ggml_opt_dataset_t dataset);
|
45
47
|
|
46
48
|
// get underlying tensors that store the data
|
49
|
+
LM_GGML_API int64_t lm_ggml_opt_dataset_ndata (lm_ggml_opt_dataset_t dataset);
|
47
50
|
LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_dataset_data (lm_ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata]
|
48
51
|
LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_dataset_labels(lm_ggml_opt_dataset_t dataset); // shape = [nd_label, ndata]
|
49
52
|
|
@@ -56,13 +59,19 @@ extern "C" {
|
|
56
59
|
struct lm_ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch]
|
57
60
|
struct lm_ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch]
|
58
61
|
int64_t ibatch);
|
62
|
+
LM_GGML_API void lm_ggml_opt_dataset_get_batch_host(
|
63
|
+
lm_ggml_opt_dataset_t dataset,
|
64
|
+
void * data_batch,
|
65
|
+
size_t nb_data_batch,
|
66
|
+
void * labels_batch,
|
67
|
+
int64_t ibatch);
|
59
68
|
|
60
69
|
// ====== Model / Context ======
|
61
70
|
|
62
71
|
enum lm_ggml_opt_build_type {
|
63
|
-
LM_GGML_OPT_BUILD_TYPE_FORWARD,
|
64
|
-
LM_GGML_OPT_BUILD_TYPE_GRAD,
|
65
|
-
LM_GGML_OPT_BUILD_TYPE_OPT,
|
72
|
+
LM_GGML_OPT_BUILD_TYPE_FORWARD = 10,
|
73
|
+
LM_GGML_OPT_BUILD_TYPE_GRAD = 20,
|
74
|
+
LM_GGML_OPT_BUILD_TYPE_OPT = 30,
|
66
75
|
};
|
67
76
|
|
68
77
|
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
|
@@ -81,20 +90,22 @@ extern "C" {
|
|
81
90
|
// userdata can be used to pass arbitrary data
|
82
91
|
typedef struct lm_ggml_opt_optimizer_params (*lm_ggml_opt_get_optimizer_params)(void * userdata);
|
83
92
|
|
84
|
-
// returns the default optimizer params (constant)
|
93
|
+
// returns the default optimizer params (constant, hard-coded values)
|
85
94
|
// userdata is not used
|
86
95
|
LM_GGML_API struct lm_ggml_opt_optimizer_params lm_ggml_opt_get_default_optimizer_params(void * userdata);
|
87
96
|
|
97
|
+
// casts userdata to lm_ggml_opt_optimizer_params and returns it
|
98
|
+
LM_GGML_API struct lm_ggml_opt_optimizer_params lm_ggml_opt_get_constant_optimizer_params(void * userdata);
|
99
|
+
|
88
100
|
// parameters for initializing a new optimization context
|
89
101
|
struct lm_ggml_opt_params {
|
90
102
|
lm_ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs
|
91
103
|
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
struct lm_ggml_tensor
|
97
|
-
struct lm_ggml_tensor * outputs;
|
104
|
+
// by default the forward graph needs to be reconstructed for each eval
|
105
|
+
// if ctx_compute, inputs, and outputs are set the graphs are instead allocated statically
|
106
|
+
struct lm_ggml_context * ctx_compute;
|
107
|
+
struct lm_ggml_tensor * inputs;
|
108
|
+
struct lm_ggml_tensor * outputs;
|
98
109
|
|
99
110
|
enum lm_ggml_opt_loss_type loss_type;
|
100
111
|
enum lm_ggml_opt_build_type build_type;
|
@@ -107,12 +118,9 @@ extern "C" {
|
|
107
118
|
|
108
119
|
// get parameters for an optimization context with defaults set where possible
|
109
120
|
// parameters for which no sensible defaults exist are supplied as arguments to this function
|
110
|
-
LM_GGML_API lm_ggml_opt_params lm_ggml_opt_default_params(
|
111
|
-
lm_ggml_backend_sched_t
|
112
|
-
|
113
|
-
struct lm_ggml_tensor * inputs,
|
114
|
-
struct lm_ggml_tensor * outputs,
|
115
|
-
enum lm_ggml_opt_loss_type loss_type);
|
121
|
+
LM_GGML_API struct lm_ggml_opt_params lm_ggml_opt_default_params(
|
122
|
+
lm_ggml_backend_sched_t backend_sched,
|
123
|
+
enum lm_ggml_opt_loss_type loss_type);
|
116
124
|
|
117
125
|
LM_GGML_API lm_ggml_opt_context_t lm_ggml_opt_init(struct lm_ggml_opt_params params);
|
118
126
|
LM_GGML_API void lm_ggml_opt_free(lm_ggml_opt_context_t opt_ctx);
|
@@ -120,7 +128,10 @@ extern "C" {
|
|
120
128
|
// set gradients to zero, initilize loss, and optionally reset the optimizer
|
121
129
|
LM_GGML_API void lm_ggml_opt_reset(lm_ggml_opt_context_t opt_ctx, bool optimizer);
|
122
130
|
|
131
|
+
LM_GGML_API bool lm_ggml_opt_static_graphs(lm_ggml_opt_context_t opt_ctx); // whether the graphs are allocated_statically
|
132
|
+
|
123
133
|
// get underlying tensors that store data
|
134
|
+
// if not using static graphs these pointers become invalid with the next call to lm_ggml_opt_alloc
|
124
135
|
LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_inputs( lm_ggml_opt_context_t opt_ctx); // forward graph input tensor
|
125
136
|
LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_outputs( lm_ggml_opt_context_t opt_ctx); // forward graph output tensor
|
126
137
|
LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_labels( lm_ggml_opt_context_t opt_ctx); // labels to compare outputs against
|
@@ -128,11 +139,12 @@ extern "C" {
|
|
128
139
|
LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_pred( lm_ggml_opt_context_t opt_ctx); // predictions made by outputs
|
129
140
|
LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_ncorrect(lm_ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels
|
130
141
|
|
142
|
+
// get the gradient accumulator for a node from the forward graph
|
131
143
|
LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_grad_acc(lm_ggml_opt_context_t opt_ctx, struct lm_ggml_tensor * node);
|
132
144
|
|
133
145
|
// ====== Optimization Result ======
|
134
146
|
|
135
|
-
LM_GGML_API lm_ggml_opt_result_t lm_ggml_opt_result_init();
|
147
|
+
LM_GGML_API lm_ggml_opt_result_t lm_ggml_opt_result_init(void);
|
136
148
|
LM_GGML_API void lm_ggml_opt_result_free(lm_ggml_opt_result_t result);
|
137
149
|
LM_GGML_API void lm_ggml_opt_result_reset(lm_ggml_opt_result_t result);
|
138
150
|
|
@@ -144,11 +156,20 @@ extern "C" {
|
|
144
156
|
|
145
157
|
// ====== Computation ======
|
146
158
|
|
147
|
-
//
|
148
|
-
LM_GGML_API void
|
159
|
+
// if not using static graphs, this function must be called prior to lm_ggml_opt_alloc
|
160
|
+
LM_GGML_API void lm_ggml_opt_prepare_alloc(
|
161
|
+
lm_ggml_opt_context_t opt_ctx,
|
162
|
+
struct lm_ggml_context * ctx_compute,
|
163
|
+
struct lm_ggml_cgraph * gf,
|
164
|
+
struct lm_ggml_tensor * inputs,
|
165
|
+
struct lm_ggml_tensor * outputs);
|
166
|
+
|
167
|
+
// allocate the next graph for evaluation, either forward or forward + backward
|
168
|
+
// must be called exactly once prior to calling lm_ggml_opt_eval
|
169
|
+
LM_GGML_API void lm_ggml_opt_alloc(lm_ggml_opt_context_t opt_ctx, bool backward);
|
149
170
|
|
150
|
-
// do forward pass, increment result if not NULL, do backward pass
|
151
|
-
LM_GGML_API void
|
171
|
+
// do forward pass, increment result if not NULL, do backward pass if allocated
|
172
|
+
LM_GGML_API void lm_ggml_opt_eval(lm_ggml_opt_context_t opt_ctx, lm_ggml_opt_result_t result);
|
152
173
|
|
153
174
|
// ############################################################################
|
154
175
|
// ## The high-level functions start here. They do not depend on any private ##
|
@@ -200,9 +221,9 @@ extern "C" {
|
|
200
221
|
// fit model defined by inputs and outputs to dataset
|
201
222
|
LM_GGML_API void lm_ggml_opt_fit(
|
202
223
|
lm_ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs
|
203
|
-
lm_ggml_context
|
204
|
-
lm_ggml_tensor
|
205
|
-
lm_ggml_tensor
|
224
|
+
struct lm_ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
|
225
|
+
struct lm_ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
|
226
|
+
struct lm_ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
|
206
227
|
lm_ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
|
207
228
|
enum lm_ggml_opt_loss_type loss_type, // loss to minimize
|
208
229
|
lm_ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
|
@@ -537,6 +537,7 @@ extern "C" {
|
|
537
537
|
LM_GGML_UNARY_OP_HARDSWISH,
|
538
538
|
LM_GGML_UNARY_OP_HARDSIGMOID,
|
539
539
|
LM_GGML_UNARY_OP_EXP,
|
540
|
+
LM_GGML_UNARY_OP_GELU_ERF,
|
540
541
|
|
541
542
|
LM_GGML_UNARY_OP_COUNT,
|
542
543
|
};
|
@@ -674,11 +675,15 @@ extern "C" {
|
|
674
675
|
LM_GGML_API bool lm_ggml_is_3d (const struct lm_ggml_tensor * tensor);
|
675
676
|
LM_GGML_API int lm_ggml_n_dims (const struct lm_ggml_tensor * tensor); // returns 1 for scalars
|
676
677
|
|
678
|
+
// returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
|
677
679
|
LM_GGML_API bool lm_ggml_is_contiguous (const struct lm_ggml_tensor * tensor);
|
678
680
|
LM_GGML_API bool lm_ggml_is_contiguous_0(const struct lm_ggml_tensor * tensor); // same as lm_ggml_is_contiguous()
|
679
681
|
LM_GGML_API bool lm_ggml_is_contiguous_1(const struct lm_ggml_tensor * tensor); // contiguous for dims >= 1
|
680
682
|
LM_GGML_API bool lm_ggml_is_contiguous_2(const struct lm_ggml_tensor * tensor); // contiguous for dims >= 2
|
681
683
|
|
684
|
+
// returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
|
685
|
+
LM_GGML_API bool lm_ggml_is_contiguously_allocated(const struct lm_ggml_tensor * tensor);
|
686
|
+
|
682
687
|
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
|
683
688
|
LM_GGML_API bool lm_ggml_is_contiguous_channels(const struct lm_ggml_tensor * tensor);
|
684
689
|
|
@@ -765,7 +770,7 @@ extern "C" {
|
|
765
770
|
// Tensor flags
|
766
771
|
LM_GGML_API void lm_ggml_set_input(struct lm_ggml_tensor * tensor);
|
767
772
|
LM_GGML_API void lm_ggml_set_output(struct lm_ggml_tensor * tensor);
|
768
|
-
LM_GGML_API void lm_ggml_set_param(struct
|
773
|
+
LM_GGML_API void lm_ggml_set_param(struct lm_ggml_tensor * tensor);
|
769
774
|
LM_GGML_API void lm_ggml_set_loss(struct lm_ggml_tensor * tensor);
|
770
775
|
|
771
776
|
//
|
@@ -935,7 +940,7 @@ extern "C" {
|
|
935
940
|
LM_GGML_API struct lm_ggml_tensor * lm_ggml_repeat_back(
|
936
941
|
struct lm_ggml_context * ctx,
|
937
942
|
struct lm_ggml_tensor * a,
|
938
|
-
struct lm_ggml_tensor * b);
|
943
|
+
struct lm_ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
|
939
944
|
|
940
945
|
// concat a and b along dim
|
941
946
|
// used in stable-diffusion
|
@@ -1021,6 +1026,16 @@ extern "C" {
|
|
1021
1026
|
struct lm_ggml_context * ctx,
|
1022
1027
|
struct lm_ggml_tensor * a);
|
1023
1028
|
|
1029
|
+
// GELU using erf (error function) when possible
|
1030
|
+
// some backends may fallback to approximation based on Abramowitz and Stegun formula
|
1031
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_gelu_erf(
|
1032
|
+
struct lm_ggml_context * ctx,
|
1033
|
+
struct lm_ggml_tensor * a);
|
1034
|
+
|
1035
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_gelu_erf_inplace(
|
1036
|
+
struct lm_ggml_context * ctx,
|
1037
|
+
struct lm_ggml_tensor * a);
|
1038
|
+
|
1024
1039
|
LM_GGML_API struct lm_ggml_tensor * lm_ggml_gelu_quick(
|
1025
1040
|
struct lm_ggml_context * ctx,
|
1026
1041
|
struct lm_ggml_tensor * a);
|
@@ -2046,15 +2061,14 @@ extern "C" {
|
|
2046
2061
|
|
2047
2062
|
LM_GGML_API void lm_ggml_build_forward_expand(struct lm_ggml_cgraph * cgraph, struct lm_ggml_tensor * tensor);
|
2048
2063
|
LM_GGML_API void lm_ggml_build_backward_expand(
|
2049
|
-
struct lm_ggml_context *
|
2050
|
-
struct
|
2051
|
-
struct
|
2052
|
-
bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
|
2064
|
+
struct lm_ggml_context * ctx, // context for gradient computation
|
2065
|
+
struct lm_ggml_cgraph * cgraph,
|
2066
|
+
struct lm_ggml_tensor ** grad_accs);
|
2053
2067
|
|
2054
2068
|
// graph allocation in a context
|
2055
2069
|
LM_GGML_API struct lm_ggml_cgraph * lm_ggml_new_graph (struct lm_ggml_context * ctx); // size = LM_GGML_DEFAULT_GRAPH_SIZE, grads = false
|
2056
2070
|
LM_GGML_API struct lm_ggml_cgraph * lm_ggml_new_graph_custom(struct lm_ggml_context * ctx, size_t size, bool grads);
|
2057
|
-
LM_GGML_API struct lm_ggml_cgraph * lm_ggml_graph_dup (struct lm_ggml_context * ctx, struct lm_ggml_cgraph * cgraph);
|
2071
|
+
LM_GGML_API struct lm_ggml_cgraph * lm_ggml_graph_dup (struct lm_ggml_context * ctx, struct lm_ggml_cgraph * cgraph, bool force_grads);
|
2058
2072
|
LM_GGML_API void lm_ggml_graph_cpy (struct lm_ggml_cgraph * src, struct lm_ggml_cgraph * dst);
|
2059
2073
|
LM_GGML_API void lm_ggml_graph_reset (struct lm_ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
|
2060
2074
|
LM_GGML_API void lm_ggml_graph_clear (struct lm_ggml_cgraph * cgraph);
|
@@ -7,6 +7,7 @@
|
|
7
7
|
#include "llama-adapter.h"
|
8
8
|
|
9
9
|
#include "ggml-cpp.h"
|
10
|
+
#include "ggml-opt.h"
|
10
11
|
|
11
12
|
#include <map>
|
12
13
|
#include <vector>
|
@@ -133,6 +134,32 @@ struct llama_context {
|
|
133
134
|
llama_perf_context_data perf_get_data() const;
|
134
135
|
void perf_reset();
|
135
136
|
|
137
|
+
//
|
138
|
+
// training
|
139
|
+
//
|
140
|
+
|
141
|
+
void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);
|
142
|
+
|
143
|
+
void opt_epoch(
|
144
|
+
lm_ggml_opt_dataset_t dataset,
|
145
|
+
lm_ggml_opt_result_t result_train,
|
146
|
+
lm_ggml_opt_result_t result_eval,
|
147
|
+
int64_t idata_split,
|
148
|
+
lm_ggml_opt_epoch_callback callback_train,
|
149
|
+
lm_ggml_opt_epoch_callback callback_eval);
|
150
|
+
|
151
|
+
void opt_epoch_iter(
|
152
|
+
lm_ggml_opt_dataset_t dataset,
|
153
|
+
lm_ggml_opt_result_t result,
|
154
|
+
const std::vector<llama_token> & tokens,
|
155
|
+
const std::vector<llama_token> & labels_sparse,
|
156
|
+
llama_batch & batch,
|
157
|
+
lm_ggml_opt_epoch_callback callback,
|
158
|
+
bool train,
|
159
|
+
int64_t idata_in_loop,
|
160
|
+
int64_t ndata_in_loop,
|
161
|
+
int64_t t_loop_start);
|
162
|
+
|
136
163
|
private:
|
137
164
|
//
|
138
165
|
// output
|
@@ -187,9 +214,6 @@ private:
|
|
187
214
|
|
188
215
|
std::unique_ptr<llama_memory_i> memory;
|
189
216
|
|
190
|
-
// TODO: remove
|
191
|
-
bool logits_all = false;
|
192
|
-
|
193
217
|
// decode output (2-dimensional array: [n_outputs][n_vocab])
|
194
218
|
size_t logits_size = 0; // capacity (of floats) for logits
|
195
219
|
float * logits = nullptr;
|
@@ -215,6 +239,9 @@ private:
|
|
215
239
|
|
216
240
|
lm_ggml_context_ptr ctx_compute;
|
217
241
|
|
242
|
+
// training
|
243
|
+
lm_ggml_opt_context_t opt_ctx = nullptr;
|
244
|
+
|
218
245
|
lm_ggml_threadpool_t threadpool = nullptr;
|
219
246
|
lm_ggml_threadpool_t threadpool_batch = nullptr;
|
220
247
|
|
@@ -19,6 +19,7 @@ struct llama_cparams;
|
|
19
19
|
|
20
20
|
class llama_memory_i;
|
21
21
|
class llama_kv_cache_unified;
|
22
|
+
class llama_kv_cache_unified_iswa;
|
22
23
|
class llama_kv_cache_recurrent;
|
23
24
|
|
24
25
|
// certain models (typically multi-modal) can produce different types of graphs
|
@@ -255,6 +256,31 @@ public:
|
|
255
256
|
|
256
257
|
void set_input(const llama_ubatch * ubatch) override;
|
257
258
|
|
259
|
+
lm_ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
|
260
|
+
|
261
|
+
lm_ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch]
|
262
|
+
lm_ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch]
|
263
|
+
|
264
|
+
const llama_hparams & hparams;
|
265
|
+
const llama_cparams & cparams;
|
266
|
+
|
267
|
+
const llama_kv_cache_unified * kv_self;
|
268
|
+
};
|
269
|
+
|
270
|
+
class llm_graph_input_attn_kv_unified_iswa : public llm_graph_input_i {
|
271
|
+
public:
|
272
|
+
llm_graph_input_attn_kv_unified_iswa(
|
273
|
+
const llama_hparams & hparams,
|
274
|
+
const llama_cparams & cparams,
|
275
|
+
const llama_kv_cache_unified_iswa * kv_self) :
|
276
|
+
hparams(hparams),
|
277
|
+
cparams(cparams),
|
278
|
+
kv_self(kv_self) {
|
279
|
+
}
|
280
|
+
~llm_graph_input_attn_kv_unified_iswa() = default;
|
281
|
+
|
282
|
+
void set_input(const llama_ubatch * ubatch) override;
|
283
|
+
|
258
284
|
lm_ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
|
259
285
|
lm_ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
|
260
286
|
|
@@ -266,7 +292,7 @@ public:
|
|
266
292
|
const llama_hparams & hparams;
|
267
293
|
const llama_cparams & cparams;
|
268
294
|
|
269
|
-
const
|
295
|
+
const llama_kv_cache_unified_iswa * kv_self;
|
270
296
|
};
|
271
297
|
|
272
298
|
class llm_graph_input_attn_cross : public llm_graph_input_i {
|
@@ -298,6 +324,7 @@ class llm_graph_result_i {
|
|
298
324
|
public:
|
299
325
|
virtual ~llm_graph_result_i() = default;
|
300
326
|
|
327
|
+
virtual lm_ggml_tensor * get_tokens() = 0;
|
301
328
|
virtual lm_ggml_tensor * get_logits() = 0;
|
302
329
|
virtual lm_ggml_tensor * get_embd() = 0;
|
303
330
|
virtual lm_ggml_tensor * get_embd_pooled() = 0;
|
@@ -312,6 +339,7 @@ class llm_graph_result : public llm_graph_result_i {
|
|
312
339
|
public:
|
313
340
|
virtual ~llm_graph_result() = default;
|
314
341
|
|
342
|
+
lm_ggml_tensor * get_tokens() override { return t_tokens; }
|
315
343
|
lm_ggml_tensor * get_logits() override { return t_logits; }
|
316
344
|
lm_ggml_tensor * get_embd() override { return t_embd; }
|
317
345
|
lm_ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
|
@@ -328,6 +356,7 @@ public:
|
|
328
356
|
}
|
329
357
|
|
330
358
|
// important graph nodes
|
359
|
+
lm_ggml_tensor * t_tokens = nullptr;
|
331
360
|
lm_ggml_tensor * t_logits = nullptr;
|
332
361
|
lm_ggml_tensor * t_embd = nullptr;
|
333
362
|
lm_ggml_tensor * t_embd_pooled = nullptr;
|
@@ -375,7 +404,6 @@ struct llm_graph_context {
|
|
375
404
|
const int64_t n_layer;
|
376
405
|
const int64_t n_rot;
|
377
406
|
const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
|
378
|
-
const int64_t n_ctx_per_seq;
|
379
407
|
const int64_t n_head;
|
380
408
|
const int64_t n_head_kv;
|
381
409
|
const int64_t n_embd_head_k;
|
@@ -504,13 +532,12 @@ struct llm_graph_context {
|
|
504
532
|
|
505
533
|
lm_ggml_tensor * build_attn_mha(
|
506
534
|
lm_ggml_cgraph * gf,
|
507
|
-
lm_ggml_tensor * q,
|
508
|
-
lm_ggml_tensor * k,
|
509
|
-
lm_ggml_tensor * v,
|
535
|
+
lm_ggml_tensor * q, // [n_embd_head_q, n_head_q, n_tokens]
|
536
|
+
lm_ggml_tensor * k, // [n_embd_head_k, n_head_k, n_tokens]
|
537
|
+
lm_ggml_tensor * v, // [n_embd_head_v, n_head_v, n_tokens] (v_trans == false)
|
510
538
|
lm_ggml_tensor * kq_b,
|
511
539
|
lm_ggml_tensor * kq_mask,
|
512
|
-
lm_ggml_tensor * v_mla,
|
513
|
-
bool v_trans,
|
540
|
+
lm_ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
|
514
541
|
float kq_scale) const;
|
515
542
|
|
516
543
|
llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const;
|
@@ -543,6 +570,21 @@ struct llm_graph_context {
|
|
543
570
|
float kq_scale,
|
544
571
|
int il) const;
|
545
572
|
|
573
|
+
llm_graph_input_attn_kv_unified_iswa * build_attn_inp_kv_unified_iswa() const;
|
574
|
+
|
575
|
+
lm_ggml_tensor * build_attn(
|
576
|
+
llm_graph_input_attn_kv_unified_iswa * inp,
|
577
|
+
lm_ggml_cgraph * gf,
|
578
|
+
lm_ggml_tensor * wo,
|
579
|
+
lm_ggml_tensor * wo_b,
|
580
|
+
lm_ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
|
581
|
+
lm_ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
|
582
|
+
lm_ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
|
583
|
+
lm_ggml_tensor * kq_b,
|
584
|
+
lm_ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
|
585
|
+
float kq_scale,
|
586
|
+
int il) const;
|
587
|
+
|
546
588
|
llm_graph_input_attn_cross * build_attn_inp_cross() const;
|
547
589
|
|
548
590
|
lm_ggml_tensor * build_attn(
|
@@ -593,3 +635,6 @@ struct llm_graph_context {
|
|
593
635
|
lm_ggml_tensor * cls_out,
|
594
636
|
lm_ggml_tensor * cls_out_b) const;
|
595
637
|
};
|
638
|
+
|
639
|
+
// TODO: better name
|
640
|
+
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional);
|
@@ -14,6 +14,12 @@ enum llama_expert_gating_func_type {
|
|
14
14
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
|
15
15
|
};
|
16
16
|
|
17
|
+
enum llama_swa_type {
|
18
|
+
LLAMA_SWA_TYPE_NONE = 0,
|
19
|
+
LLAMA_SWA_TYPE_STANDARD = 1,
|
20
|
+
LLAMA_SWA_TYPE_CHUNKED = 2,
|
21
|
+
};
|
22
|
+
|
17
23
|
struct llama_hparams_posnet {
|
18
24
|
uint32_t n_embd;
|
19
25
|
uint32_t n_layer;
|
@@ -35,8 +41,6 @@ struct llama_hparams {
|
|
35
41
|
uint32_t n_embd_features = 0;
|
36
42
|
uint32_t n_layer;
|
37
43
|
uint32_t n_rot;
|
38
|
-
uint32_t n_swa = 0; // sliding window attention (SWA)
|
39
|
-
uint32_t n_swa_pattern = 1; // by default, all layers use non-sliding-window attention
|
40
44
|
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
41
45
|
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
42
46
|
uint32_t n_expert = 0;
|
@@ -96,6 +100,15 @@ struct llama_hparams {
|
|
96
100
|
|
97
101
|
std::array<int, 4> rope_sections;
|
98
102
|
|
103
|
+
// Sliding Window Attention (SWA)
|
104
|
+
llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
|
105
|
+
// the size of the sliding window (0 - no SWA)
|
106
|
+
uint32_t n_swa = 0;
|
107
|
+
// if swa_layers[il] == true, then layer il is SWA
|
108
|
+
// if swa_layers[il] == false, then layer il is dense (i.e. non-SWA)
|
109
|
+
// by default, all layers are dense
|
110
|
+
std::array<bool, LLAMA_MAX_LAYERS> swa_layers;
|
111
|
+
|
99
112
|
// for State Space Models
|
100
113
|
uint32_t ssm_d_conv = 0;
|
101
114
|
uint32_t ssm_d_inner = 0;
|
@@ -116,11 +129,10 @@ struct llama_hparams {
|
|
116
129
|
bool causal_attn = true;
|
117
130
|
bool use_alibi = false;
|
118
131
|
bool attn_soft_cap = false;
|
132
|
+
bool use_kq_norm = true;
|
119
133
|
|
134
|
+
// llama4
|
120
135
|
uint32_t n_moe_layer_step = 0;
|
121
|
-
bool use_kq_norm = true;
|
122
|
-
uint32_t n_attn_chunk = 0;
|
123
|
-
// values below seems to be fixed on llama4
|
124
136
|
uint32_t n_no_rope_layer_step = 4;
|
125
137
|
uint32_t n_attn_temp_floor_scale = 8192;
|
126
138
|
float f_attn_temp_scale = 0.1;
|
@@ -133,6 +145,23 @@ struct llama_hparams {
|
|
133
145
|
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
134
146
|
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
135
147
|
|
148
|
+
// this value n_pattern means that every nth layer is dense (i.e. non-SWA)
|
149
|
+
// note that if n_pattern == 0, all layers are SWA
|
150
|
+
// if n_pattern == 1, all layers are dense
|
151
|
+
// example: n_pattern = 3
|
152
|
+
// il == 0: swa
|
153
|
+
// il == 1: swa
|
154
|
+
// il == 2: dense
|
155
|
+
// il == 3: swa
|
156
|
+
// il == 4: swa
|
157
|
+
// il == 5: dense
|
158
|
+
// il == 6: swa
|
159
|
+
// etc ...
|
160
|
+
void set_swa_pattern(uint32_t n_pattern);
|
161
|
+
|
162
|
+
// return true if one of the layers is SWA
|
163
|
+
bool is_swa_any() const;
|
164
|
+
|
136
165
|
uint32_t n_head(uint32_t il = 0) const;
|
137
166
|
|
138
167
|
uint32_t n_head_kv(uint32_t il = 0) const;
|