cui-llama.rn 1.6.1 → 1.7.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. package/android/src/main/CMakeLists.txt +6 -0
  2. package/android/src/main/java/com/rnllama/LlamaContext.java +38 -5
  3. package/android/src/main/java/com/rnllama/RNLlama.java +139 -4
  4. package/android/src/main/jni.cpp +153 -14
  5. package/android/src/main/jniLibs/arm64-v8a/librnllama.so +0 -0
  6. package/android/src/main/jniLibs/arm64-v8a/librnllama_v8.so +0 -0
  7. package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2.so +0 -0
  8. package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod.so +0 -0
  9. package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod_i8mm.so +0 -0
  10. package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_i8mm.so +0 -0
  11. package/android/src/main/jniLibs/x86_64/librnllama.so +0 -0
  12. package/android/src/main/jniLibs/x86_64/librnllama_x86_64.so +0 -0
  13. package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +24 -4
  14. package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +22 -2
  15. package/cpp/chat.cpp +128 -106
  16. package/cpp/chat.h +2 -0
  17. package/cpp/common.cpp +41 -76
  18. package/cpp/common.h +23 -19
  19. package/cpp/ggml-backend.cpp +9 -5
  20. package/cpp/ggml-backend.h +4 -4
  21. package/cpp/ggml-cpu/ggml-cpu-aarch64.cpp +0 -2
  22. package/cpp/ggml-cpu/ggml-cpu-quants.c +306 -6
  23. package/cpp/ggml-cpu/ggml-cpu.c +5 -13
  24. package/cpp/ggml-cpu/ggml-cpu.cpp +29 -16
  25. package/cpp/ggml-cpu/ops.cpp +107 -13
  26. package/cpp/ggml-cpu/vec.cpp +0 -6
  27. package/cpp/ggml-cpu/vec.h +16 -0
  28. package/cpp/ggml-llama-sim.metallib +0 -0
  29. package/cpp/ggml-llama.metallib +0 -0
  30. package/cpp/ggml-metal-impl.h +36 -11
  31. package/cpp/ggml-metal.m +321 -132
  32. package/cpp/ggml-opt.cpp +373 -190
  33. package/cpp/ggml-opt.h +49 -28
  34. package/cpp/ggml-quants.c +0 -6
  35. package/cpp/ggml.c +93 -38
  36. package/cpp/ggml.h +21 -7
  37. package/cpp/gguf.cpp +33 -33
  38. package/cpp/llama-adapter.cpp +6 -0
  39. package/cpp/llama-arch.cpp +3 -0
  40. package/cpp/llama-batch.cpp +3 -1
  41. package/cpp/llama-chat.cpp +8 -6
  42. package/cpp/llama-chat.h +1 -0
  43. package/cpp/llama-context.cpp +349 -135
  44. package/cpp/llama-context.h +30 -3
  45. package/cpp/llama-cparams.h +1 -0
  46. package/cpp/llama-graph.cpp +150 -234
  47. package/cpp/llama-graph.h +52 -7
  48. package/cpp/llama-hparams.cpp +17 -1
  49. package/cpp/llama-hparams.h +34 -5
  50. package/cpp/llama-kv-cache.cpp +662 -321
  51. package/cpp/llama-kv-cache.h +203 -93
  52. package/cpp/llama-memory.h +3 -2
  53. package/cpp/llama-model-loader.cpp +24 -15
  54. package/cpp/llama-model-saver.cpp +281 -0
  55. package/cpp/llama-model-saver.h +37 -0
  56. package/cpp/llama-model.cpp +536 -132
  57. package/cpp/llama-model.h +7 -1
  58. package/cpp/llama-sampling.cpp +18 -6
  59. package/cpp/llama-vocab.cpp +46 -8
  60. package/cpp/llama-vocab.h +6 -0
  61. package/cpp/llama.cpp +14 -0
  62. package/cpp/llama.h +72 -131
  63. package/cpp/minja/chat-template.hpp +9 -5
  64. package/cpp/minja/minja.hpp +69 -36
  65. package/cpp/rn-llama.cpp +611 -47
  66. package/cpp/rn-llama.h +33 -3
  67. package/cpp/sampling.cpp +57 -50
  68. package/cpp/tools/mtmd/clip-impl.h +462 -0
  69. package/cpp/tools/mtmd/clip.cpp +4024 -0
  70. package/cpp/tools/mtmd/clip.h +101 -0
  71. package/cpp/tools/mtmd/miniaudio.h +93468 -0
  72. package/cpp/tools/mtmd/mtmd-audio.cpp +855 -0
  73. package/cpp/tools/mtmd/mtmd-audio.h +62 -0
  74. package/cpp/tools/mtmd/mtmd-helper.cpp +297 -0
  75. package/cpp/tools/mtmd/mtmd.cpp +942 -0
  76. package/cpp/tools/mtmd/mtmd.h +362 -0
  77. package/cpp/tools/mtmd/stb_image.h +7988 -0
  78. package/ios/CMakeLists.txt +7 -0
  79. package/ios/RNLlama.mm +77 -3
  80. package/ios/RNLlamaContext.h +5 -1
  81. package/ios/RNLlamaContext.mm +105 -10
  82. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/chat.h +2 -0
  83. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/common.h +23 -19
  84. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-backend.h +4 -4
  85. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-metal-impl.h +36 -11
  86. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-opt.h +49 -28
  87. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml.h +21 -7
  88. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-chat.h +1 -0
  89. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-context.h +30 -3
  90. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-cparams.h +1 -0
  91. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-graph.h +52 -7
  92. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-hparams.h +34 -5
  93. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-kv-cache.h +203 -93
  94. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-memory.h +3 -2
  95. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-model-saver.h +37 -0
  96. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-model.h +7 -1
  97. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-vocab.h +6 -0
  98. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama.h +72 -131
  99. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/minja/chat-template.hpp +9 -5
  100. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/minja/minja.hpp +69 -36
  101. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/rn-llama.h +33 -3
  102. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Info.plist +0 -0
  103. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/ggml-llama.metallib +0 -0
  104. package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/rnllama +0 -0
  105. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/chat.h +2 -0
  106. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/common.h +23 -19
  107. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend.h +4 -4
  108. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal-impl.h +36 -11
  109. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-opt.h +49 -28
  110. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml.h +21 -7
  111. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-chat.h +1 -0
  112. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-context.h +30 -3
  113. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cparams.h +1 -0
  114. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-graph.h +52 -7
  115. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-hparams.h +34 -5
  116. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-kv-cache.h +203 -93
  117. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-memory.h +3 -2
  118. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model-saver.h +37 -0
  119. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model.h +7 -1
  120. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-vocab.h +6 -0
  121. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama.h +72 -131
  122. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/minja/chat-template.hpp +9 -5
  123. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/minja/minja.hpp +69 -36
  124. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/rn-llama.h +33 -3
  125. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Info.plist +0 -0
  126. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/_CodeSignature/CodeResources +1 -1
  127. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/ggml-llama-sim.metallib +0 -0
  128. package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/rnllama +0 -0
  129. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/chat.h +2 -0
  130. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/common.h +23 -19
  131. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-backend.h +4 -4
  132. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-metal-impl.h +36 -11
  133. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-opt.h +49 -28
  134. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml.h +21 -7
  135. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-chat.h +1 -0
  136. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-context.h +30 -3
  137. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-cparams.h +1 -0
  138. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-graph.h +52 -7
  139. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-hparams.h +34 -5
  140. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-kv-cache.h +203 -93
  141. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-memory.h +3 -2
  142. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-model-saver.h +37 -0
  143. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-model.h +7 -1
  144. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-vocab.h +6 -0
  145. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama.h +72 -131
  146. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/minja/chat-template.hpp +9 -5
  147. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/minja/minja.hpp +69 -36
  148. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/rn-llama.h +33 -3
  149. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Info.plist +0 -0
  150. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/ggml-llama.metallib +0 -0
  151. package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/rnllama +0 -0
  152. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/chat.h +2 -0
  153. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/common.h +23 -19
  154. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend.h +4 -4
  155. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal-impl.h +36 -11
  156. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-opt.h +49 -28
  157. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml.h +21 -7
  158. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-chat.h +1 -0
  159. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-context.h +30 -3
  160. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cparams.h +1 -0
  161. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-graph.h +52 -7
  162. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-hparams.h +34 -5
  163. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-kv-cache.h +203 -93
  164. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-memory.h +3 -2
  165. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model-saver.h +37 -0
  166. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model.h +7 -1
  167. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-vocab.h +6 -0
  168. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama.h +72 -131
  169. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/minja/chat-template.hpp +9 -5
  170. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/minja/minja.hpp +69 -36
  171. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/rn-llama.h +33 -3
  172. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Info.plist +0 -0
  173. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/_CodeSignature/CodeResources +1 -1
  174. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/ggml-llama-sim.metallib +0 -0
  175. package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/rnllama +0 -0
  176. package/jest/mock.js +33 -7
  177. package/lib/commonjs/NativeRNLlama.js.map +1 -1
  178. package/lib/commonjs/index.js +153 -21
  179. package/lib/commonjs/index.js.map +1 -1
  180. package/lib/module/NativeRNLlama.js.map +1 -1
  181. package/lib/module/index.js +152 -20
  182. package/lib/module/index.js.map +1 -1
  183. package/lib/typescript/NativeRNLlama.d.ts +50 -4
  184. package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
  185. package/lib/typescript/index.d.ts +72 -6
  186. package/lib/typescript/index.d.ts.map +1 -1
  187. package/package.json +1 -1
  188. package/src/NativeRNLlama.ts +67 -4
  189. package/src/index.ts +212 -38
  190. package/lib/commonjs/chat.js +0 -37
  191. package/lib/commonjs/chat.js.map +0 -1
  192. package/lib/module/chat.js +0 -33
  193. package/lib/module/chat.js.map +0 -1
  194. package/lib/typescript/chat.d.ts +0 -10
  195. package/lib/typescript/chat.d.ts.map +0 -1
  196. package/src/chat.ts +0 -44
package/cpp/ggml-opt.h CHANGED
@@ -37,13 +37,16 @@ extern "C" {
37
37
  // ====== Dataset ======
38
38
 
39
39
  LM_GGML_API lm_ggml_opt_dataset_t lm_ggml_opt_dataset_init(
40
- int64_t ne_datapoint, // number of elements per datapoint
41
- int64_t ne_label, // number of elements per label
42
- int64_t ndata, // total number of datapoints/labels
43
- int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
40
+ enum lm_ggml_type type_data, // the type for the internal data tensor
41
+ enum lm_ggml_type type_label, // the type for the internal labels tensor
42
+ int64_t ne_datapoint, // number of elements per datapoint
43
+ int64_t ne_label, // number of elements per label
44
+ int64_t ndata, // total number of datapoints/labels
45
+ int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
44
46
  LM_GGML_API void lm_ggml_opt_dataset_free(lm_ggml_opt_dataset_t dataset);
45
47
 
46
48
  // get underlying tensors that store the data
49
+ LM_GGML_API int64_t lm_ggml_opt_dataset_ndata (lm_ggml_opt_dataset_t dataset);
47
50
  LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_dataset_data (lm_ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata]
48
51
  LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_dataset_labels(lm_ggml_opt_dataset_t dataset); // shape = [nd_label, ndata]
49
52
 
@@ -56,13 +59,19 @@ extern "C" {
56
59
  struct lm_ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch]
57
60
  struct lm_ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch]
58
61
  int64_t ibatch);
62
+ LM_GGML_API void lm_ggml_opt_dataset_get_batch_host(
63
+ lm_ggml_opt_dataset_t dataset,
64
+ void * data_batch,
65
+ size_t nb_data_batch,
66
+ void * labels_batch,
67
+ int64_t ibatch);
59
68
 
60
69
  // ====== Model / Context ======
61
70
 
62
71
  enum lm_ggml_opt_build_type {
63
- LM_GGML_OPT_BUILD_TYPE_FORWARD,
64
- LM_GGML_OPT_BUILD_TYPE_GRAD,
65
- LM_GGML_OPT_BUILD_TYPE_OPT,
72
+ LM_GGML_OPT_BUILD_TYPE_FORWARD = 10,
73
+ LM_GGML_OPT_BUILD_TYPE_GRAD = 20,
74
+ LM_GGML_OPT_BUILD_TYPE_OPT = 30,
66
75
  };
67
76
 
68
77
  // parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
@@ -81,20 +90,22 @@ extern "C" {
81
90
  // userdata can be used to pass arbitrary data
82
91
  typedef struct lm_ggml_opt_optimizer_params (*lm_ggml_opt_get_optimizer_params)(void * userdata);
83
92
 
84
- // returns the default optimizer params (constant)
93
+ // returns the default optimizer params (constant, hard-coded values)
85
94
  // userdata is not used
86
95
  LM_GGML_API struct lm_ggml_opt_optimizer_params lm_ggml_opt_get_default_optimizer_params(void * userdata);
87
96
 
97
+ // casts userdata to lm_ggml_opt_optimizer_params and returns it
98
+ LM_GGML_API struct lm_ggml_opt_optimizer_params lm_ggml_opt_get_constant_optimizer_params(void * userdata);
99
+
88
100
  // parameters for initializing a new optimization context
89
101
  struct lm_ggml_opt_params {
90
102
  lm_ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs
91
103
 
92
- struct lm_ggml_context * ctx_compute; // created in user code, holds non-static tensors
93
-
94
- // the forward graph is defined by inputs and outputs
95
- // those tensors and all tensors inbetween are not intended to be reusable between multiple optimization contexts
96
- struct lm_ggml_tensor * inputs;
97
- struct lm_ggml_tensor * outputs;
104
+ // by default the forward graph needs to be reconstructed for each eval
105
+ // if ctx_compute, inputs, and outputs are set the graphs are instead allocated statically
106
+ struct lm_ggml_context * ctx_compute;
107
+ struct lm_ggml_tensor * inputs;
108
+ struct lm_ggml_tensor * outputs;
98
109
 
99
110
  enum lm_ggml_opt_loss_type loss_type;
100
111
  enum lm_ggml_opt_build_type build_type;
@@ -107,12 +118,9 @@ extern "C" {
107
118
 
108
119
  // get parameters for an optimization context with defaults set where possible
109
120
  // parameters for which no sensible defaults exist are supplied as arguments to this function
110
- LM_GGML_API lm_ggml_opt_params lm_ggml_opt_default_params(
111
- lm_ggml_backend_sched_t backend_sched,
112
- struct lm_ggml_context * ctx_compute,
113
- struct lm_ggml_tensor * inputs,
114
- struct lm_ggml_tensor * outputs,
115
- enum lm_ggml_opt_loss_type loss_type);
121
+ LM_GGML_API struct lm_ggml_opt_params lm_ggml_opt_default_params(
122
+ lm_ggml_backend_sched_t backend_sched,
123
+ enum lm_ggml_opt_loss_type loss_type);
116
124
 
117
125
  LM_GGML_API lm_ggml_opt_context_t lm_ggml_opt_init(struct lm_ggml_opt_params params);
118
126
  LM_GGML_API void lm_ggml_opt_free(lm_ggml_opt_context_t opt_ctx);
@@ -120,7 +128,10 @@ extern "C" {
120
128
  // set gradients to zero, initilize loss, and optionally reset the optimizer
121
129
  LM_GGML_API void lm_ggml_opt_reset(lm_ggml_opt_context_t opt_ctx, bool optimizer);
122
130
 
131
+ LM_GGML_API bool lm_ggml_opt_static_graphs(lm_ggml_opt_context_t opt_ctx); // whether the graphs are allocated_statically
132
+
123
133
  // get underlying tensors that store data
134
+ // if not using static graphs these pointers become invalid with the next call to lm_ggml_opt_alloc
124
135
  LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_inputs( lm_ggml_opt_context_t opt_ctx); // forward graph input tensor
125
136
  LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_outputs( lm_ggml_opt_context_t opt_ctx); // forward graph output tensor
126
137
  LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_labels( lm_ggml_opt_context_t opt_ctx); // labels to compare outputs against
@@ -128,11 +139,12 @@ extern "C" {
128
139
  LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_pred( lm_ggml_opt_context_t opt_ctx); // predictions made by outputs
129
140
  LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_ncorrect(lm_ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels
130
141
 
142
+ // get the gradient accumulator for a node from the forward graph
131
143
  LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_grad_acc(lm_ggml_opt_context_t opt_ctx, struct lm_ggml_tensor * node);
132
144
 
133
145
  // ====== Optimization Result ======
134
146
 
135
- LM_GGML_API lm_ggml_opt_result_t lm_ggml_opt_result_init();
147
+ LM_GGML_API lm_ggml_opt_result_t lm_ggml_opt_result_init(void);
136
148
  LM_GGML_API void lm_ggml_opt_result_free(lm_ggml_opt_result_t result);
137
149
  LM_GGML_API void lm_ggml_opt_result_reset(lm_ggml_opt_result_t result);
138
150
 
@@ -144,11 +156,20 @@ extern "C" {
144
156
 
145
157
  // ====== Computation ======
146
158
 
147
- // do forward pass, increment result if not NULL
148
- LM_GGML_API void lm_ggml_opt_forward(lm_ggml_opt_context_t opt_ctx, lm_ggml_opt_result_t result);
159
+ // if not using static graphs, this function must be called prior to lm_ggml_opt_alloc
160
+ LM_GGML_API void lm_ggml_opt_prepare_alloc(
161
+ lm_ggml_opt_context_t opt_ctx,
162
+ struct lm_ggml_context * ctx_compute,
163
+ struct lm_ggml_cgraph * gf,
164
+ struct lm_ggml_tensor * inputs,
165
+ struct lm_ggml_tensor * outputs);
166
+
167
+ // allocate the next graph for evaluation, either forward or forward + backward
168
+ // must be called exactly once prior to calling lm_ggml_opt_eval
169
+ LM_GGML_API void lm_ggml_opt_alloc(lm_ggml_opt_context_t opt_ctx, bool backward);
149
170
 
150
- // do forward pass, increment result if not NULL, do backward pass
151
- LM_GGML_API void lm_ggml_opt_forward_backward(lm_ggml_opt_context_t opt_ctx, lm_ggml_opt_result_t result);
171
+ // do forward pass, increment result if not NULL, do backward pass if allocated
172
+ LM_GGML_API void lm_ggml_opt_eval(lm_ggml_opt_context_t opt_ctx, lm_ggml_opt_result_t result);
152
173
 
153
174
  // ############################################################################
154
175
  // ## The high-level functions start here. They do not depend on any private ##
@@ -200,9 +221,9 @@ extern "C" {
200
221
  // fit model defined by inputs and outputs to dataset
201
222
  LM_GGML_API void lm_ggml_opt_fit(
202
223
  lm_ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs
203
- lm_ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
204
- lm_ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
205
- lm_ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
224
+ struct lm_ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
225
+ struct lm_ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
226
+ struct lm_ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
206
227
  lm_ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
207
228
  enum lm_ggml_opt_loss_type loss_type, // loss to minimize
208
229
  lm_ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
package/cpp/ggml-quants.c CHANGED
@@ -19,12 +19,6 @@
19
19
  #define GROUP_MAX_EPS_IQ1_M 1e-7f
20
20
  #define GROUP_MAX_EPS_IQ1_S 1e-12f
21
21
 
22
- #if defined(_MSC_VER)
23
- // disable "possible loss of data" to avoid warnings for hundreds of casts
24
- // we should just be careful :)
25
- #pragma warning(disable: 4244 4267)
26
- #endif
27
-
28
22
  #define UNUSED LM_GGML_UNUSED
29
23
 
30
24
  // reference implementation for deterministic creation of model files
package/cpp/ggml.c CHANGED
@@ -64,12 +64,17 @@
64
64
  // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
65
65
  float lm_ggml_table_f32_f16[1 << 16];
66
66
 
67
- #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
68
- (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
67
+ #if defined(__linux__) || \
68
+ defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \
69
+ (defined(__APPLE__) && !TARGET_OS_TV && !TARGET_OS_WATCH)
70
+
69
71
  #include <unistd.h>
70
72
  #include <sys/types.h>
71
73
  #include <sys/stat.h>
72
74
  #include <sys/wait.h>
75
+ #if defined(__linux__)
76
+ #include <sys/prctl.h>
77
+ #endif
73
78
 
74
79
  #if defined(__ANDROID__)
75
80
  #include <unwind.h>
@@ -133,10 +138,36 @@ static void lm_ggml_print_backtrace(void) {
133
138
  if (LM_GGML_NO_BACKTRACE) {
134
139
  return;
135
140
  }
136
- char attach[32];
137
- snprintf(attach, sizeof(attach), "attach %d", getpid());
138
- int pid = fork();
139
- if (pid == 0) {
141
+ #if defined(__linux__)
142
+ FILE * f = fopen("/proc/self/status", "r");
143
+ size_t size = 0;
144
+ char * line = NULL;
145
+ ssize_t length = 0;
146
+ while ((length = getline(&line, &size, f)) > 0) {
147
+ if (!strncmp(line, "TracerPid:", sizeof("TracerPid:") - 1) &&
148
+ (length != sizeof("TracerPid:\t0\n") - 1 || line[length - 2] != '0')) {
149
+ // Already being debugged, and the breakpoint is the later abort()
150
+ free(line);
151
+ fclose(f);
152
+ return;
153
+ }
154
+ }
155
+ free(line);
156
+ fclose(f);
157
+ int lock[2] = { -1, -1 };
158
+ (void) !pipe(lock); // Don't start gdb until after PR_SET_PTRACER
159
+ #endif
160
+ const int parent_pid = getpid();
161
+ const int child_pid = fork();
162
+ if (child_pid < 0) { // error
163
+ return;
164
+ } else if (child_pid == 0) { // child
165
+ char attach[32];
166
+ snprintf(attach, sizeof(attach), "attach %d", parent_pid);
167
+ #if defined(__linux__)
168
+ close(lock[1]);
169
+ (void) !read(lock[0], lock, 1);
170
+ #endif
140
171
  // try gdb
141
172
  execlp("gdb", "gdb", "--batch",
142
173
  "-ex", "set style enabled on",
@@ -149,18 +180,18 @@ static void lm_ggml_print_backtrace(void) {
149
180
  execlp("lldb", "lldb", "--batch",
150
181
  "-o", "bt",
151
182
  "-o", "quit",
152
- "-p", attach,
183
+ "-p", &attach[sizeof("attach ") - 1],
153
184
  (char *) NULL);
154
- exit(EXIT_FAILURE);
155
- } else {
156
- int wstatus;
157
- waitpid(pid, &wstatus, 0);
158
- if (WIFEXITED(wstatus)) {
159
- if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
160
- // gdb failed, fallback to backtrace_symbols
161
- lm_ggml_print_backtrace_symbols();
162
- }
163
- }
185
+ // gdb failed, fallback to backtrace_symbols
186
+ lm_ggml_print_backtrace_symbols();
187
+ _Exit(0);
188
+ } else { // parent
189
+ #if defined(__linux__)
190
+ prctl(PR_SET_PTRACER, child_pid);
191
+ close(lock[1]);
192
+ close(lock[0]);
193
+ #endif
194
+ waitpid(child_pid, NULL, 0);
164
195
  }
165
196
  }
166
197
  #else
@@ -1081,9 +1112,10 @@ static const char * LM_GGML_UNARY_OP_NAME[LM_GGML_UNARY_OP_COUNT] = {
1081
1112
  "HARDSWISH",
1082
1113
  "HARDSIGMOID",
1083
1114
  "EXP",
1115
+ "GELU_ERF",
1084
1116
  };
1085
1117
 
1086
- static_assert(LM_GGML_UNARY_OP_COUNT == 14, "LM_GGML_UNARY_OP_COUNT != 14");
1118
+ static_assert(LM_GGML_UNARY_OP_COUNT == 15, "LM_GGML_UNARY_OP_COUNT != 15");
1087
1119
 
1088
1120
 
1089
1121
  static_assert(sizeof(struct lm_ggml_object)%LM_GGML_MEM_ALIGN == 0, "lm_ggml_object size must be a multiple of LM_GGML_MEM_ALIGN");
@@ -1312,6 +1344,10 @@ bool lm_ggml_is_contiguous_2(const struct lm_ggml_tensor * tensor) {
1312
1344
  return lm_ggml_is_contiguous_n(tensor, 2);
1313
1345
  }
1314
1346
 
1347
+ bool lm_ggml_is_contiguously_allocated(const struct lm_ggml_tensor * tensor) {
1348
+ return lm_ggml_nbytes(tensor) == lm_ggml_nelements(tensor) * lm_ggml_type_size(tensor->type)/lm_ggml_blck_size(tensor->type);
1349
+ }
1350
+
1315
1351
  bool lm_ggml_is_permuted(const struct lm_ggml_tensor * tensor) {
1316
1352
  static_assert(LM_GGML_MAX_DIMS == 4, "LM_GGML_MAX_DIMS is not 4 - update this function");
1317
1353
 
@@ -2479,6 +2515,20 @@ struct lm_ggml_tensor * lm_ggml_gelu_inplace(
2479
2515
  return lm_ggml_unary_inplace(ctx, a, LM_GGML_UNARY_OP_GELU);
2480
2516
  }
2481
2517
 
2518
+ // lm_ggml_gelu_erf
2519
+
2520
+ struct lm_ggml_tensor * lm_ggml_gelu_erf(
2521
+ struct lm_ggml_context * ctx,
2522
+ struct lm_ggml_tensor * a) {
2523
+ return lm_ggml_unary(ctx, a, LM_GGML_UNARY_OP_GELU_ERF);
2524
+ }
2525
+
2526
+ struct lm_ggml_tensor * lm_ggml_gelu_erf_inplace(
2527
+ struct lm_ggml_context * ctx,
2528
+ struct lm_ggml_tensor * a) {
2529
+ return lm_ggml_unary_inplace(ctx, a, LM_GGML_UNARY_OP_GELU_ERF);
2530
+ }
2531
+
2482
2532
  // lm_ggml_gelu_quick
2483
2533
 
2484
2534
  struct lm_ggml_tensor * lm_ggml_gelu_quick(
@@ -2741,11 +2791,11 @@ void lm_ggml_mul_mat_set_prec(
2741
2791
  c = lm_ggml_mul_mat_id(ctx, as, b, ids);
2742
2792
 
2743
2793
  as -> [cols, rows, n_expert]
2744
- ids -> [n_experts_used, n_tokens] (i32)
2745
2794
  b -> [cols, n_expert_used, n_tokens]
2795
+ ids -> [n_expert_used, n_tokens] (i32)
2746
2796
  c -> [rows, n_expert_used, n_tokens]
2747
2797
 
2748
- in b, n_experts_used can be broadcasted to match the n_expert_used of ids
2798
+ in b, n_expert_used can be broadcasted to match the n_expert_used of ids
2749
2799
 
2750
2800
  c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
2751
2801
  */
@@ -5508,7 +5558,7 @@ static void lm_ggml_compute_backward(
5508
5558
  // tensor = src0 * 1 + src1 * 0
5509
5559
  if (src0_needs_grads) {
5510
5560
  // dsrc0 = dtensor * 1
5511
- lm_ggml_add_or_set(ctx, cgraph, isrc0, grad);
5561
+ lm_ggml_add_or_set(ctx, cgraph, isrc0, lm_ggml_reshape(ctx, grad, src0));
5512
5562
  }
5513
5563
  if (src1_needs_grads) {
5514
5564
  // dsrc1 = dtensor * 0 -> noop
@@ -5789,10 +5839,9 @@ void lm_ggml_build_forward_expand(struct lm_ggml_cgraph * cgraph, struct lm_ggml
5789
5839
  }
5790
5840
 
5791
5841
  void lm_ggml_build_backward_expand(
5792
- struct lm_ggml_context * ctx_static,
5793
- struct lm_ggml_context * ctx_compute,
5794
- struct lm_ggml_cgraph * cgraph,
5795
- bool accumulate) {
5842
+ struct lm_ggml_context * ctx,
5843
+ struct lm_ggml_cgraph * cgraph,
5844
+ struct lm_ggml_tensor ** grad_accs) {
5796
5845
  LM_GGML_ASSERT(cgraph->n_nodes > 0);
5797
5846
  LM_GGML_ASSERT(cgraph->grads);
5798
5847
  LM_GGML_ASSERT(cgraph->grad_accs);
@@ -5865,21 +5914,24 @@ void lm_ggml_build_backward_expand(
5865
5914
  LM_GGML_ASSERT(!node->view_src || node->op == LM_GGML_OP_CPY || node->op == LM_GGML_OP_VIEW ||
5866
5915
  node->op == LM_GGML_OP_RESHAPE || node->op == LM_GGML_OP_PERMUTE || node->op == LM_GGML_OP_TRANSPOSE);
5867
5916
 
5868
- const size_t igrad = lm_ggml_hash_find(&cgraph->visited_hash_set, node);
5869
- LM_GGML_ASSERT(igrad != LM_GGML_HASHSET_FULL);
5870
- LM_GGML_ASSERT(lm_ggml_bitset_get(cgraph->visited_hash_set.used, igrad));
5871
- if ((accumulate && (node->flags & LM_GGML_TENSOR_FLAG_PARAM)) || (node->flags & LM_GGML_TENSOR_FLAG_LOSS)) {
5872
- cgraph->grad_accs[igrad] = lm_ggml_dup_tensor(ctx_static, node);
5873
- cgraph->grads[igrad] = cgraph->grad_accs[igrad];
5874
- lm_ggml_format_name(cgraph->grad_accs[igrad], "grad acc for %s", node->name);
5917
+ const size_t ihash = lm_ggml_hash_find(&cgraph->visited_hash_set, node);
5918
+ LM_GGML_ASSERT(ihash != LM_GGML_HASHSET_FULL);
5919
+ LM_GGML_ASSERT(lm_ggml_bitset_get(cgraph->visited_hash_set.used, ihash));
5920
+ if (grad_accs && grad_accs[i]) {
5921
+ cgraph->grad_accs[ihash] = grad_accs[i];
5922
+ cgraph->grads[ihash] = cgraph->grad_accs[ihash];
5923
+ } else if (node->flags & LM_GGML_TENSOR_FLAG_LOSS) {
5924
+ // loss tensors always need a gradient accumulator
5925
+ cgraph->grad_accs[ihash] = lm_ggml_new_tensor(ctx, LM_GGML_TYPE_F32, LM_GGML_MAX_DIMS, node->ne);
5926
+ cgraph->grads[ihash] = cgraph->grad_accs[ihash];
5875
5927
  }
5876
- grads_needed[igrad] = true;
5928
+ grads_needed[ihash] = true;
5877
5929
  }
5878
5930
 
5879
5931
  for (int i = n_nodes_f - 1; i >= 0; --i) {
5880
5932
  // inplace operations to add gradients are not created by lm_ggml_compute_backward except for gradient accumulation
5881
5933
  // use allocator to automatically make inplace operations
5882
- lm_ggml_compute_backward(ctx_compute, cgraph, i, grads_needed);
5934
+ lm_ggml_compute_backward(ctx, cgraph, i, grads_needed);
5883
5935
  }
5884
5936
 
5885
5937
  free(grads_needed);
@@ -6025,8 +6077,8 @@ void lm_ggml_graph_cpy(struct lm_ggml_cgraph * src, struct lm_ggml_cgraph * dst)
6025
6077
  }
6026
6078
  }
6027
6079
 
6028
- struct lm_ggml_cgraph * lm_ggml_graph_dup(struct lm_ggml_context * ctx, struct lm_ggml_cgraph * cgraph) {
6029
- struct lm_ggml_cgraph * result = lm_ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
6080
+ struct lm_ggml_cgraph * lm_ggml_graph_dup(struct lm_ggml_context * ctx, struct lm_ggml_cgraph * cgraph, bool force_grads) {
6081
+ struct lm_ggml_cgraph * result = lm_ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads || force_grads);
6030
6082
  lm_ggml_graph_cpy(cgraph, result);
6031
6083
  return result;
6032
6084
  }
@@ -6045,6 +6097,9 @@ struct lm_ggml_tensor * lm_ggml_set_zero(struct lm_ggml_tensor * tensor) {
6045
6097
  }
6046
6098
 
6047
6099
  void lm_ggml_graph_reset(struct lm_ggml_cgraph * cgraph) {
6100
+ if (!cgraph) {
6101
+ return;
6102
+ }
6048
6103
  LM_GGML_ASSERT(cgraph->grads != NULL);
6049
6104
 
6050
6105
  for (int i = 0; i < cgraph->n_nodes; i++) {
@@ -6354,8 +6409,8 @@ void lm_ggml_set_output(struct lm_ggml_tensor * tensor) {
6354
6409
  tensor->flags |= LM_GGML_TENSOR_FLAG_OUTPUT;
6355
6410
  }
6356
6411
 
6357
- void lm_ggml_set_param(struct lm_ggml_context * ctx, struct lm_ggml_tensor * tensor) {
6358
- LM_GGML_UNUSED(ctx); // TODO: remove this parameter
6412
+ void lm_ggml_set_param(struct lm_ggml_tensor * tensor) {
6413
+ LM_GGML_ASSERT(tensor->op == LM_GGML_OP_NONE);
6359
6414
  tensor->flags |= LM_GGML_TENSOR_FLAG_PARAM;
6360
6415
  }
6361
6416
 
package/cpp/ggml.h CHANGED
@@ -537,6 +537,7 @@ extern "C" {
537
537
  LM_GGML_UNARY_OP_HARDSWISH,
538
538
  LM_GGML_UNARY_OP_HARDSIGMOID,
539
539
  LM_GGML_UNARY_OP_EXP,
540
+ LM_GGML_UNARY_OP_GELU_ERF,
540
541
 
541
542
  LM_GGML_UNARY_OP_COUNT,
542
543
  };
@@ -674,11 +675,15 @@ extern "C" {
674
675
  LM_GGML_API bool lm_ggml_is_3d (const struct lm_ggml_tensor * tensor);
675
676
  LM_GGML_API int lm_ggml_n_dims (const struct lm_ggml_tensor * tensor); // returns 1 for scalars
676
677
 
678
+ // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
677
679
  LM_GGML_API bool lm_ggml_is_contiguous (const struct lm_ggml_tensor * tensor);
678
680
  LM_GGML_API bool lm_ggml_is_contiguous_0(const struct lm_ggml_tensor * tensor); // same as lm_ggml_is_contiguous()
679
681
  LM_GGML_API bool lm_ggml_is_contiguous_1(const struct lm_ggml_tensor * tensor); // contiguous for dims >= 1
680
682
  LM_GGML_API bool lm_ggml_is_contiguous_2(const struct lm_ggml_tensor * tensor); // contiguous for dims >= 2
681
683
 
684
+ // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
685
+ LM_GGML_API bool lm_ggml_is_contiguously_allocated(const struct lm_ggml_tensor * tensor);
686
+
682
687
  // true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
683
688
  LM_GGML_API bool lm_ggml_is_contiguous_channels(const struct lm_ggml_tensor * tensor);
684
689
 
@@ -765,7 +770,7 @@ extern "C" {
765
770
  // Tensor flags
766
771
  LM_GGML_API void lm_ggml_set_input(struct lm_ggml_tensor * tensor);
767
772
  LM_GGML_API void lm_ggml_set_output(struct lm_ggml_tensor * tensor);
768
- LM_GGML_API void lm_ggml_set_param(struct lm_ggml_context * ctx, struct lm_ggml_tensor * tensor);
773
+ LM_GGML_API void lm_ggml_set_param(struct lm_ggml_tensor * tensor);
769
774
  LM_GGML_API void lm_ggml_set_loss(struct lm_ggml_tensor * tensor);
770
775
 
771
776
  //
@@ -935,7 +940,7 @@ extern "C" {
935
940
  LM_GGML_API struct lm_ggml_tensor * lm_ggml_repeat_back(
936
941
  struct lm_ggml_context * ctx,
937
942
  struct lm_ggml_tensor * a,
938
- struct lm_ggml_tensor * b);
943
+ struct lm_ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
939
944
 
940
945
  // concat a and b along dim
941
946
  // used in stable-diffusion
@@ -1021,6 +1026,16 @@ extern "C" {
1021
1026
  struct lm_ggml_context * ctx,
1022
1027
  struct lm_ggml_tensor * a);
1023
1028
 
1029
+ // GELU using erf (error function) when possible
1030
+ // some backends may fallback to approximation based on Abramowitz and Stegun formula
1031
+ LM_GGML_API struct lm_ggml_tensor * lm_ggml_gelu_erf(
1032
+ struct lm_ggml_context * ctx,
1033
+ struct lm_ggml_tensor * a);
1034
+
1035
+ LM_GGML_API struct lm_ggml_tensor * lm_ggml_gelu_erf_inplace(
1036
+ struct lm_ggml_context * ctx,
1037
+ struct lm_ggml_tensor * a);
1038
+
1024
1039
  LM_GGML_API struct lm_ggml_tensor * lm_ggml_gelu_quick(
1025
1040
  struct lm_ggml_context * ctx,
1026
1041
  struct lm_ggml_tensor * a);
@@ -2046,15 +2061,14 @@ extern "C" {
2046
2061
 
2047
2062
  LM_GGML_API void lm_ggml_build_forward_expand(struct lm_ggml_cgraph * cgraph, struct lm_ggml_tensor * tensor);
2048
2063
  LM_GGML_API void lm_ggml_build_backward_expand(
2049
- struct lm_ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
2050
- struct lm_ggml_context * ctx_compute, // context for gradient computation
2051
- struct lm_ggml_cgraph * cgraph,
2052
- bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
2064
+ struct lm_ggml_context * ctx, // context for gradient computation
2065
+ struct lm_ggml_cgraph * cgraph,
2066
+ struct lm_ggml_tensor ** grad_accs);
2053
2067
 
2054
2068
  // graph allocation in a context
2055
2069
  LM_GGML_API struct lm_ggml_cgraph * lm_ggml_new_graph (struct lm_ggml_context * ctx); // size = LM_GGML_DEFAULT_GRAPH_SIZE, grads = false
2056
2070
  LM_GGML_API struct lm_ggml_cgraph * lm_ggml_new_graph_custom(struct lm_ggml_context * ctx, size_t size, bool grads);
2057
- LM_GGML_API struct lm_ggml_cgraph * lm_ggml_graph_dup (struct lm_ggml_context * ctx, struct lm_ggml_cgraph * cgraph);
2071
+ LM_GGML_API struct lm_ggml_cgraph * lm_ggml_graph_dup (struct lm_ggml_context * ctx, struct lm_ggml_cgraph * cgraph, bool force_grads);
2058
2072
  LM_GGML_API void lm_ggml_graph_cpy (struct lm_ggml_cgraph * src, struct lm_ggml_cgraph * dst);
2059
2073
  LM_GGML_API void lm_ggml_graph_reset (struct lm_ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
2060
2074
  LM_GGML_API void lm_ggml_graph_clear (struct lm_ggml_cgraph * cgraph);