cui-llama.rn 1.6.0 → 1.6.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +35 -7
- package/android/src/main/CMakeLists.txt +16 -11
- package/android/src/main/java/com/rnllama/LlamaContext.java +4 -1
- package/android/src/main/jni.cpp +20 -4
- package/android/src/main/jniLibs/arm64-v8a/librnllama.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod_i8mm.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_i8mm.so +0 -0
- package/android/src/main/jniLibs/x86_64/librnllama.so +0 -0
- package/android/src/main/jniLibs/x86_64/librnllama_x86_64.so +0 -0
- package/cpp/LICENSE +21 -0
- package/cpp/chat.cpp +1 -1
- package/cpp/common.cpp +17 -2
- package/cpp/common.h +7 -3
- package/cpp/ggml-alloc.c +4 -1
- package/cpp/ggml-cpp.h +1 -1
- package/cpp/ggml-cpu/amx/amx.cpp +221 -0
- package/cpp/ggml-cpu/amx/amx.h +8 -0
- package/cpp/ggml-cpu/amx/common.h +91 -0
- package/cpp/ggml-cpu/amx/mmq.cpp +2511 -0
- package/cpp/ggml-cpu/amx/mmq.h +10 -0
- package/{ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers → cpp/ggml-cpu}/binary-ops.h +1 -1
- package/cpp/ggml-cpu/common.h +72 -0
- package/cpp/{ggml-cpu-aarch64.cpp → ggml-cpu/ggml-cpu-aarch64.cpp} +809 -101
- package/cpp/{ggml-cpu.c → ggml-cpu/ggml-cpu.c} +109 -42
- package/cpp/{ggml-cpu.cpp → ggml-cpu/ggml-cpu.cpp} +3 -0
- package/cpp/{ops.cpp → ggml-cpu/ops.cpp} +246 -160
- package/{ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers → cpp/ggml-cpu}/ops.h +2 -20
- package/cpp/{sgemm.cpp → ggml-cpu/sgemm.cpp} +501 -0
- package/{ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers → cpp/ggml-cpu}/simd-mappings.h +7 -3
- package/{ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers → cpp/ggml-cpu}/unary-ops.h +1 -1
- package/cpp/ggml-cpu.h +5 -0
- package/cpp/ggml-impl.h +16 -9
- package/cpp/ggml-llama-sim.metallib +0 -0
- package/cpp/ggml-llama.metallib +0 -0
- package/cpp/ggml-metal.m +492 -47
- package/cpp/ggml.c +134 -244
- package/cpp/ggml.h +61 -94
- package/cpp/json-schema-to-grammar.cpp +3 -0
- package/cpp/llama-arch.cpp +46 -17
- package/cpp/llama-arch.h +9 -0
- package/cpp/llama-batch.cpp +5 -1
- package/cpp/llama-batch.h +2 -1
- package/cpp/llama-chat.cpp +31 -10
- package/cpp/llama-chat.h +3 -2
- package/cpp/llama-context.cpp +104 -489
- package/cpp/llama-context.h +14 -30
- package/cpp/llama-graph.cpp +69 -62
- package/cpp/llama-graph.h +21 -18
- package/cpp/llama-hparams.h +5 -0
- package/cpp/llama-kv-cache.cpp +1497 -391
- package/cpp/llama-kv-cache.h +272 -80
- package/cpp/llama-memory.h +11 -1
- package/cpp/llama-model.cpp +502 -176
- package/cpp/llama-model.h +13 -3
- package/cpp/llama-sampling.cpp +2 -1
- package/cpp/llama-vocab.cpp +8 -1
- package/cpp/llama.h +14 -11
- package/cpp/rn-llama.cpp +20 -172
- package/cpp/rn-llama.h +1 -5
- package/ios/CMakeLists.txt +13 -10
- package/ios/RNLlama.h +6 -0
- package/ios/RNLlama.mm +5 -0
- package/ios/RNLlamaContext.mm +26 -28
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/common.h +7 -3
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpp.h +1 -1
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu.h +5 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-impl.h +16 -9
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml.h +61 -94
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-arch.h +9 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-batch.h +2 -1
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-chat.h +3 -2
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-context.h +14 -30
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-graph.h +21 -18
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-hparams.h +5 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-kv-cache.h +272 -80
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-memory.h +11 -1
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-model.h +13 -3
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama.h +14 -11
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/rn-llama.h +1 -5
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/ggml-llama.metallib +0 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/common.h +7 -3
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpp.h +1 -1
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu.h +5 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-impl.h +16 -9
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml.h +61 -94
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-arch.h +9 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-batch.h +2 -1
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-chat.h +3 -2
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-context.h +14 -30
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-graph.h +21 -18
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-hparams.h +5 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-kv-cache.h +272 -80
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-memory.h +11 -1
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model.h +13 -3
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama.h +14 -11
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/rn-llama.h +1 -5
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/ggml-llama-sim.metallib +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/common.h +7 -3
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpp.h +1 -1
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu.h +5 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-impl.h +16 -9
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml.h +61 -94
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-arch.h +9 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-batch.h +2 -1
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-chat.h +3 -2
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-context.h +14 -30
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-graph.h +21 -18
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-hparams.h +5 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-kv-cache.h +272 -80
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-memory.h +11 -1
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-model.h +13 -3
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama.h +14 -11
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/rn-llama.h +1 -5
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/ggml-llama.metallib +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/common.h +7 -3
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpp.h +1 -1
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu.h +5 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-impl.h +16 -9
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml.h +61 -94
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-arch.h +9 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-batch.h +2 -1
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-chat.h +3 -2
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-context.h +14 -30
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-graph.h +21 -18
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-hparams.h +5 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-kv-cache.h +272 -80
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-memory.h +11 -1
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model.h +13 -3
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama.h +14 -11
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/rn-llama.h +1 -5
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/ggml-llama-sim.metallib +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/rnllama +0 -0
- package/lib/commonjs/NativeRNLlama.js.map +1 -1
- package/lib/module/NativeRNLlama.js.map +1 -1
- package/lib/typescript/NativeRNLlama.d.ts +4 -0
- package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
- package/package.json +1 -1
- package/src/NativeRNLlama.ts +5 -0
- package/cpp/binary-ops.h +0 -16
- package/cpp/ops.h +0 -128
- package/cpp/simd-mappings.h +0 -888
- package/cpp/unary-ops.h +0 -28
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/binary-ops.h +0 -16
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu-aarch64.h +0 -8
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu-impl.h +0 -512
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu-quants.h +0 -63
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu-traits.h +0 -38
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ops.h +0 -128
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/sgemm.h +0 -14
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/simd-mappings.h +0 -888
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/vec.h +0 -802
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-aarch64.h +0 -8
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-impl.h +0 -512
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-quants.h +0 -63
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-traits.h +0 -38
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/sgemm.h +0 -14
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/unary-ops.h +0 -28
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/vec.h +0 -802
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/binary-ops.h +0 -16
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu-aarch64.h +0 -8
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu-impl.h +0 -512
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu-quants.h +0 -63
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu-traits.h +0 -38
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ops.h +0 -128
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/sgemm.h +0 -14
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/simd-mappings.h +0 -888
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/unary-ops.h +0 -28
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/vec.h +0 -802
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/binary-ops.h +0 -16
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-aarch64.h +0 -8
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-impl.h +0 -512
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-quants.h +0 -63
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-traits.h +0 -38
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ops.h +0 -128
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/sgemm.h +0 -14
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/simd-mappings.h +0 -888
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/unary-ops.h +0 -28
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/vec.h +0 -802
- /package/cpp/{binary-ops.cpp → ggml-cpu/binary-ops.cpp} +0 -0
- /package/cpp/{ggml-cpu-aarch64.h → ggml-cpu/ggml-cpu-aarch64.h} +0 -0
- /package/cpp/{ggml-cpu-impl.h → ggml-cpu/ggml-cpu-impl.h} +0 -0
- /package/cpp/{ggml-cpu-quants.c → ggml-cpu/ggml-cpu-quants.c} +0 -0
- /package/cpp/{ggml-cpu-quants.h → ggml-cpu/ggml-cpu-quants.h} +0 -0
- /package/cpp/{ggml-cpu-traits.cpp → ggml-cpu/ggml-cpu-traits.cpp} +0 -0
- /package/cpp/{ggml-cpu-traits.h → ggml-cpu/ggml-cpu-traits.h} +0 -0
- /package/cpp/{sgemm.h → ggml-cpu/sgemm.h} +0 -0
- /package/cpp/{unary-ops.cpp → ggml-cpu/unary-ops.cpp} +0 -0
- /package/cpp/{vec.cpp → ggml-cpu/vec.cpp} +0 -0
- /package/cpp/{vec.h → ggml-cpu/vec.h} +0 -0
package/cpp/llama-kv-cache.cpp
CHANGED
@@ -4,33 +4,41 @@
|
|
4
4
|
#include "llama-batch.h"
|
5
5
|
#include "llama-cparams.h"
|
6
6
|
#include "llama-model.h"
|
7
|
+
#include "llama-context.h"
|
7
8
|
|
8
9
|
#include <algorithm>
|
9
10
|
#include <cassert>
|
11
|
+
#include <cmath>
|
10
12
|
#include <limits>
|
11
13
|
#include <map>
|
12
14
|
#include <stdexcept>
|
13
15
|
|
14
|
-
|
16
|
+
//
|
17
|
+
// llama_kv_cache_unified
|
18
|
+
//
|
19
|
+
|
20
|
+
uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) {
|
21
|
+
// the FA kernels require padding to avoid extra runtime boundary checks
|
22
|
+
return cparams.flash_attn ? 256u : 32u;
|
15
23
|
}
|
16
24
|
|
17
|
-
|
25
|
+
llama_kv_cache_unified::llama_kv_cache_unified(
|
18
26
|
const llama_model & model,
|
19
|
-
const llama_cparams & cparams,
|
20
27
|
lm_ggml_type type_k,
|
21
28
|
lm_ggml_type type_v,
|
29
|
+
bool v_trans,
|
30
|
+
bool offload,
|
22
31
|
uint32_t kv_size,
|
23
|
-
|
32
|
+
uint32_t padding) : model(model), hparams(model.hparams), v_trans(v_trans), padding(padding) {
|
24
33
|
const int32_t n_layer = hparams.n_layer;
|
25
34
|
|
26
35
|
has_shift = false;
|
36
|
+
can_shift = true;
|
27
37
|
|
28
|
-
|
29
|
-
|
30
|
-
can_shift = !recurrent && model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
38
|
+
LLAMA_LOG_INFO("%s: kv_size = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d, padding = %d\n",
|
39
|
+
__func__, kv_size, lm_ggml_type_name(type_k), lm_ggml_type_name(type_v), n_layer, can_shift, padding);
|
31
40
|
|
32
|
-
|
33
|
-
__func__, kv_size, offload, lm_ggml_type_name(type_k), lm_ggml_type_name(type_v), n_layer, can_shift);
|
41
|
+
LM_GGML_ASSERT(kv_size % padding == 0 && "kv_size must be a multiple of padding");
|
34
42
|
|
35
43
|
head = 0;
|
36
44
|
size = kv_size;
|
@@ -76,23 +84,20 @@ bool llama_kv_cache_unified::init(
|
|
76
84
|
|
77
85
|
const char * dev_name = "CPU";
|
78
86
|
|
79
|
-
lm_ggml_backend_buffer_type_t buft;
|
87
|
+
lm_ggml_backend_buffer_type_t buft = lm_ggml_backend_cpu_buffer_type();
|
88
|
+
|
80
89
|
if (offload) {
|
81
90
|
auto * dev = model.dev_layer(i);
|
82
91
|
buft = lm_ggml_backend_dev_buffer_type(dev);
|
83
92
|
|
84
93
|
dev_name = lm_ggml_backend_dev_name(dev);
|
85
|
-
} else {
|
86
|
-
buft = lm_ggml_backend_cpu_buffer_type();
|
87
94
|
}
|
88
95
|
|
89
|
-
LLAMA_LOG_DEBUG("%s: layer %3d:
|
90
|
-
i, n_embd_k_gqa, n_embd_v_gqa, dev_name);
|
96
|
+
LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, i, dev_name);
|
91
97
|
|
92
98
|
lm_ggml_context * ctx = ctx_for_buft(buft);
|
93
99
|
if (!ctx) {
|
94
|
-
|
95
|
-
return false;
|
100
|
+
throw std::runtime_error("failed to create ggml context for kv cache");
|
96
101
|
}
|
97
102
|
|
98
103
|
lm_ggml_tensor * k = lm_ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
@@ -110,55 +115,28 @@ bool llama_kv_cache_unified::init(
|
|
110
115
|
|
111
116
|
lm_ggml_backend_buffer_t buf = lm_ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
112
117
|
if (!buf) {
|
113
|
-
|
114
|
-
return false;
|
118
|
+
throw std::runtime_error("failed to allocate buffer for kv cache");
|
115
119
|
}
|
116
120
|
lm_ggml_backend_buffer_clear(buf, 0);
|
117
121
|
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, lm_ggml_backend_buffer_name(buf), lm_ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
118
122
|
bufs.emplace_back(buf);
|
119
123
|
}
|
120
124
|
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
int32_t llama_kv_cache_unified::get_n_tokens() const {
|
125
|
-
int32_t result = 0;
|
126
|
-
|
127
|
-
for (uint32_t i = 0; i < size; i++) {
|
128
|
-
result += cells[i].seq_id.size();
|
129
|
-
}
|
130
|
-
|
131
|
-
return result;
|
132
|
-
}
|
133
|
-
|
134
|
-
int32_t llama_kv_cache_unified::get_used_cells() const {
|
135
|
-
return used;
|
136
|
-
}
|
137
|
-
|
138
|
-
size_t llama_kv_cache_unified::total_size() const {
|
139
|
-
size_t size = 0;
|
140
|
-
for (const auto & buf : bufs) {
|
141
|
-
size += lm_ggml_backend_buffer_get_size(buf.get());
|
142
|
-
}
|
143
|
-
|
144
|
-
return size;
|
145
|
-
}
|
125
|
+
{
|
126
|
+
const size_t memory_size_k = size_k_bytes();
|
127
|
+
const size_t memory_size_v = size_v_bytes();
|
146
128
|
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
129
|
+
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
130
|
+
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
131
|
+
lm_ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
132
|
+
lm_ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
151
133
|
}
|
152
|
-
|
153
|
-
return pos_max;
|
154
134
|
}
|
155
135
|
|
156
136
|
void llama_kv_cache_unified::clear() {
|
157
137
|
for (int32_t i = 0; i < (int32_t) size; ++i) {
|
158
138
|
cells[i].pos = -1;
|
159
139
|
cells[i].seq_id.clear();
|
160
|
-
cells[i].src = -1;
|
161
|
-
cells[i].tail = -1;
|
162
140
|
}
|
163
141
|
head = 0;
|
164
142
|
used = 0;
|
@@ -179,35 +157,6 @@ bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
|
|
179
157
|
p1 = std::numeric_limits<llama_pos>::max();
|
180
158
|
}
|
181
159
|
|
182
|
-
// models like Mamba or RWKV can't have a state partially erased
|
183
|
-
if (recurrent) {
|
184
|
-
if (seq_id >= (int64_t) size) {
|
185
|
-
// could be fatal
|
186
|
-
return false;
|
187
|
-
}
|
188
|
-
if (0 <= seq_id) {
|
189
|
-
int32_t & tail_id = cells[seq_id].tail;
|
190
|
-
if (tail_id >= 0) {
|
191
|
-
const llama_kv_cell & cell = cells[tail_id];
|
192
|
-
// partial intersection is invalid
|
193
|
-
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
|
194
|
-
return false;
|
195
|
-
}
|
196
|
-
// invalidate tails which will be cleared
|
197
|
-
if (p0 <= cell.pos && cell.pos < p1) {
|
198
|
-
tail_id = -1;
|
199
|
-
}
|
200
|
-
}
|
201
|
-
} else {
|
202
|
-
// seq_id is negative, then the range should include everything or nothing
|
203
|
-
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
|
204
|
-
return false;
|
205
|
-
}
|
206
|
-
}
|
207
|
-
|
208
|
-
return true;
|
209
|
-
}
|
210
|
-
|
211
160
|
for (uint32_t i = 0; i < size; ++i) {
|
212
161
|
if (cells[i].pos >= p0 && cells[i].pos < p1) {
|
213
162
|
if (seq_id < 0) {
|
@@ -224,7 +173,6 @@ bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
|
|
224
173
|
}
|
225
174
|
|
226
175
|
cells[i].pos = -1;
|
227
|
-
cells[i].src = -1;
|
228
176
|
|
229
177
|
if (new_head == size) {
|
230
178
|
new_head = i;
|
@@ -254,34 +202,6 @@ void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id
|
|
254
202
|
p1 = std::numeric_limits<llama_pos>::max();
|
255
203
|
}
|
256
204
|
|
257
|
-
if (recurrent) {
|
258
|
-
if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
|
259
|
-
llama_kv_cell & tail_src = cells[seq_id_src];
|
260
|
-
llama_kv_cell & tail_dst = cells[seq_id_dst];
|
261
|
-
if (tail_dst.tail >= 0) {
|
262
|
-
// clear destination seq_id if it wasn't empty
|
263
|
-
llama_kv_cell & cell_dst = cells[tail_dst.tail];
|
264
|
-
|
265
|
-
cell_dst.seq_id.erase(seq_id_dst);
|
266
|
-
tail_dst.tail = -1;
|
267
|
-
if (cell_dst.seq_id.empty()) {
|
268
|
-
cell_dst.pos = -1;
|
269
|
-
cell_dst.delta = -1;
|
270
|
-
cell_dst.src = -1;
|
271
|
-
used -= 1;
|
272
|
-
}
|
273
|
-
}
|
274
|
-
if (tail_src.tail >= 0) {
|
275
|
-
llama_kv_cell & cell_src = cells[tail_src.tail];
|
276
|
-
|
277
|
-
cell_src.seq_id.insert(seq_id_dst);
|
278
|
-
tail_dst.tail = tail_src.tail;
|
279
|
-
}
|
280
|
-
}
|
281
|
-
|
282
|
-
return;
|
283
|
-
}
|
284
|
-
|
285
205
|
// otherwise, this is the KV of a Transformer-like model
|
286
206
|
head = 0;
|
287
207
|
|
@@ -296,17 +216,12 @@ void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
|
|
296
216
|
uint32_t new_head = size;
|
297
217
|
|
298
218
|
for (uint32_t i = 0; i < size; ++i) {
|
299
|
-
if (recurrent && (llama_seq_id) i != seq_id) {
|
300
|
-
cells[i].tail = -1;
|
301
|
-
}
|
302
|
-
|
303
219
|
if (!cells[i].has_seq_id(seq_id)) {
|
304
220
|
if (cells[i].pos >= 0) {
|
305
221
|
used--;
|
306
222
|
}
|
307
223
|
|
308
224
|
cells[i].pos = -1;
|
309
|
-
cells[i].src = -1;
|
310
225
|
cells[i].seq_id.clear();
|
311
226
|
|
312
227
|
if (new_head == size){
|
@@ -344,20 +259,6 @@ void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_po
|
|
344
259
|
return;
|
345
260
|
}
|
346
261
|
|
347
|
-
if (recurrent) {
|
348
|
-
// for Mamba-like or RWKV models, only the pos needs to be shifted
|
349
|
-
if (0 <= seq_id && seq_id < (int64_t) size) {
|
350
|
-
const int32_t tail_id = cells[seq_id].tail;
|
351
|
-
if (tail_id >= 0) {
|
352
|
-
llama_kv_cell & cell = cells[tail_id];
|
353
|
-
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
354
|
-
cell.pos += delta;
|
355
|
-
}
|
356
|
-
}
|
357
|
-
}
|
358
|
-
return;
|
359
|
-
}
|
360
|
-
|
361
262
|
for (uint32_t i = 0; i < size; ++i) {
|
362
263
|
if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
|
363
264
|
has_shift = true;
|
@@ -400,21 +301,6 @@ void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_po
|
|
400
301
|
return;
|
401
302
|
}
|
402
303
|
|
403
|
-
if (recurrent) {
|
404
|
-
// for Mamba-like or RWKV models, only the pos needs to be changed
|
405
|
-
if (0 <= seq_id && seq_id < (int64_t) size) {
|
406
|
-
const int32_t tail_id = cells[seq_id].tail;
|
407
|
-
if (tail_id >= 0) {
|
408
|
-
llama_kv_cell & cell = cells[tail_id];
|
409
|
-
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
410
|
-
cell.pos /= d;
|
411
|
-
}
|
412
|
-
}
|
413
|
-
}
|
414
|
-
|
415
|
-
return;
|
416
|
-
}
|
417
|
-
|
418
304
|
for (uint32_t i = 0; i < size; ++i) {
|
419
305
|
if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
|
420
306
|
has_shift = true;
|
@@ -440,23 +326,11 @@ llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
|
|
440
326
|
return result;
|
441
327
|
}
|
442
328
|
|
443
|
-
void llama_kv_cache_unified::defrag() {
|
444
|
-
if (!recurrent) {
|
445
|
-
do_defrag = true;
|
446
|
-
}
|
447
|
-
}
|
448
|
-
|
449
329
|
void llama_kv_cache_unified::restore() {
|
450
330
|
if (pending.ranges.empty()) {
|
451
331
|
return;
|
452
332
|
}
|
453
333
|
|
454
|
-
// TODO: tmp - move to llama_kv_cache_recurrent
|
455
|
-
if (recurrent) {
|
456
|
-
seq_rm(-1, -1, -1);
|
457
|
-
return;
|
458
|
-
}
|
459
|
-
|
460
334
|
uint32_t new_head = size;
|
461
335
|
|
462
336
|
for (auto & range : pending.ranges) {
|
@@ -469,7 +343,6 @@ void llama_kv_cache_unified::restore() {
|
|
469
343
|
}
|
470
344
|
|
471
345
|
cells[i].pos = -1;
|
472
|
-
cells[i].src = -1;
|
473
346
|
}
|
474
347
|
|
475
348
|
new_head = std::min(new_head, range.c0);
|
@@ -481,11 +354,6 @@ void llama_kv_cache_unified::restore() {
|
|
481
354
|
}
|
482
355
|
|
483
356
|
void llama_kv_cache_unified::commit() {
|
484
|
-
// TODO: tmp - move to llama_kv_cache_recurrent
|
485
|
-
if (recurrent) {
|
486
|
-
return;
|
487
|
-
}
|
488
|
-
|
489
357
|
if (pending.ranges.empty()) {
|
490
358
|
LLAMA_LOG_WARN("%s: no pending KV cache updates to commit - might indicate a bug (ref: %s)\n",
|
491
359
|
__func__, "https://github.com/ggml-org/llama.cpp/pull/12695");
|
@@ -495,183 +363,110 @@ void llama_kv_cache_unified::commit() {
|
|
495
363
|
pending.ranges.clear();
|
496
364
|
}
|
497
365
|
|
498
|
-
bool llama_kv_cache_unified::
|
499
|
-
|
500
|
-
}
|
366
|
+
bool llama_kv_cache_unified::update(llama_context & lctx) {
|
367
|
+
bool need_reserve = false;
|
501
368
|
|
502
|
-
|
503
|
-
const llama_ubatch & ubatch) {
|
504
|
-
const uint32_t n_tokens = ubatch.n_tokens;
|
505
|
-
const uint32_t n_seqs = ubatch.n_seqs;
|
506
|
-
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
369
|
+
auto * sched = lctx.get_sched();
|
507
370
|
|
508
|
-
|
509
|
-
|
510
|
-
|
511
|
-
|
512
|
-
}
|
371
|
+
if (has_shift) {
|
372
|
+
if (!get_can_shift()) {
|
373
|
+
LM_GGML_ABORT("The current KV cache / model configuration does not support K-shift");
|
374
|
+
}
|
513
375
|
|
514
|
-
|
515
|
-
// For recurrent state architectures (like Mamba or RWKV),
|
516
|
-
// each cache cell can store the state for a whole sequence.
|
517
|
-
// A slot should be always be contiguous.
|
376
|
+
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
|
518
377
|
|
519
|
-
//
|
520
|
-
|
378
|
+
// apply K-shift if needed
|
379
|
+
if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
|
380
|
+
lm_ggml_backend_sched_reset(sched);
|
521
381
|
|
522
|
-
|
523
|
-
int32_t max = 0;
|
382
|
+
auto * gf = lctx.graph_init();
|
524
383
|
|
525
|
-
|
526
|
-
for (uint32_t s = 0; s < n_seqs; ++s) {
|
527
|
-
const uint32_t n_seq_id = ubatch.n_seq_id[s];
|
528
|
-
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
529
|
-
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
384
|
+
auto res = build_graph_shift(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
|
530
385
|
|
531
|
-
|
532
|
-
|
533
|
-
|
534
|
-
|
535
|
-
|
536
|
-
|
537
|
-
|
538
|
-
llama_kv_cell & seq = cells[seq_id];
|
539
|
-
if (seq.tail >= 0) {
|
540
|
-
llama_kv_cell & cell = cells[seq.tail];
|
541
|
-
// clear cells from seq_ids that become shared
|
542
|
-
// (should not normally happen, but let's handle it anyway)
|
543
|
-
cell.seq_id.erase(seq_id);
|
544
|
-
seq.tail = -1;
|
545
|
-
if (cell.seq_id.empty()) {
|
546
|
-
cell.pos = -1;
|
547
|
-
cell.src = -1;
|
548
|
-
used -= 1;
|
549
|
-
}
|
550
|
-
}
|
551
|
-
}
|
552
|
-
}
|
386
|
+
lm_ggml_backend_sched_alloc_graph(sched, gf);
|
387
|
+
|
388
|
+
res->set_inputs(nullptr);
|
389
|
+
|
390
|
+
lctx.graph_compute(gf, false);
|
391
|
+
|
392
|
+
need_reserve = true;
|
553
393
|
}
|
554
394
|
|
555
|
-
#ifndef NDEBUG
|
556
395
|
{
|
557
|
-
|
558
|
-
|
559
|
-
for (uint32_t i = 0; i < size; ++i) {
|
560
|
-
llama_kv_cell & cell = cells[i];
|
561
|
-
for (llama_seq_id seq_id : cell.seq_id) {
|
562
|
-
if (tails_verif[seq_id] != -1) {
|
563
|
-
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
|
564
|
-
}
|
565
|
-
tails_verif[seq_id] = i;
|
566
|
-
}
|
567
|
-
}
|
396
|
+
has_shift = false;
|
397
|
+
|
568
398
|
for (uint32_t i = 0; i < size; ++i) {
|
569
|
-
|
570
|
-
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
|
571
|
-
}
|
399
|
+
cells[i].delta = 0;
|
572
400
|
}
|
573
401
|
}
|
574
|
-
|
402
|
+
}
|
575
403
|
|
576
|
-
|
577
|
-
|
404
|
+
if (do_defrag) {
|
405
|
+
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
|
578
406
|
|
579
|
-
|
580
|
-
|
581
|
-
llama_kv_cell & cell = cells[next_empty_cell];
|
582
|
-
if (cell.is_empty()) { break; }
|
583
|
-
next_empty_cell += 1;
|
584
|
-
}
|
407
|
+
if (defrag_prepare(lctx.graph_max_nodes())) {
|
408
|
+
lm_ggml_backend_sched_reset(sched);
|
585
409
|
|
586
|
-
|
587
|
-
for (uint32_t s = 0; s < n_seqs; ++s) {
|
588
|
-
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
589
|
-
llama_kv_cell & seq_meta = cells[seq_id];
|
590
|
-
bool has_cell = false;
|
591
|
-
if (seq_meta.tail >= 0) {
|
592
|
-
llama_kv_cell & cell = cells[seq_meta.tail];
|
593
|
-
LM_GGML_ASSERT(cell.has_seq_id(seq_id));
|
594
|
-
// does this seq_id "own" the cell?
|
595
|
-
if (cell.seq_id.size() == 1) { has_cell = true; }
|
596
|
-
}
|
597
|
-
if (!has_cell) {
|
598
|
-
llama_kv_cell & empty_cell = cells[next_empty_cell];
|
599
|
-
LM_GGML_ASSERT(empty_cell.is_empty());
|
600
|
-
// copy old tail into the empty cell
|
601
|
-
if (seq_meta.tail >= 0) {
|
602
|
-
llama_kv_cell & orig_cell = cells[seq_meta.tail];
|
603
|
-
empty_cell.pos = orig_cell.pos;
|
604
|
-
empty_cell.src = orig_cell.src;
|
605
|
-
orig_cell.seq_id.erase(seq_id);
|
606
|
-
empty_cell.seq_id.insert(seq_id); // will be overwritten
|
607
|
-
}
|
608
|
-
seq_meta.tail = next_empty_cell;
|
609
|
-
// find next empty cell
|
610
|
-
if (s + 1 < n_seqs) {
|
611
|
-
next_empty_cell += 1;
|
612
|
-
for (uint32_t i = 0; i < size; ++i) {
|
613
|
-
if (next_empty_cell >= size) { next_empty_cell -= size; }
|
614
|
-
llama_kv_cell & cell = cells[next_empty_cell];
|
615
|
-
if (cell.is_empty()) { break; }
|
616
|
-
next_empty_cell += 1;
|
617
|
-
}
|
618
|
-
}
|
619
|
-
}
|
620
|
-
if (min > seq_meta.tail) { min = seq_meta.tail; }
|
621
|
-
if (max < seq_meta.tail) { max = seq_meta.tail; }
|
622
|
-
}
|
410
|
+
auto * gf = lctx.graph_init();
|
623
411
|
|
624
|
-
|
625
|
-
for (uint32_t s = 0; s < n_seqs; ++s) {
|
626
|
-
int32_t dst_id = s + min;
|
627
|
-
int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
|
628
|
-
if (dst_id != src_id) {
|
629
|
-
llama_kv_cell & dst_cell = cells[dst_id];
|
630
|
-
llama_kv_cell & src_cell = cells[src_id];
|
412
|
+
auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
|
631
413
|
|
632
|
-
|
633
|
-
std::swap(dst_cell.src, src_cell.src);
|
634
|
-
std::swap(dst_cell.seq_id, src_cell.seq_id);
|
414
|
+
lm_ggml_backend_sched_alloc_graph(sched, gf);
|
635
415
|
|
636
|
-
|
637
|
-
for (const llama_seq_id seq_id : src_cell.seq_id) {
|
638
|
-
cells[seq_id].tail = src_id;
|
639
|
-
}
|
640
|
-
for (const llama_seq_id seq_id : dst_cell.seq_id) {
|
641
|
-
cells[seq_id].tail = dst_id;
|
642
|
-
}
|
643
|
-
}
|
644
|
-
}
|
416
|
+
res->set_inputs(nullptr);
|
645
417
|
|
646
|
-
|
647
|
-
for (uint32_t s = 0; s < n_seqs; ++s) {
|
648
|
-
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
649
|
-
int32_t cell_id = s + min;
|
650
|
-
llama_kv_cell & cell = cells[cell_id];
|
418
|
+
lctx.graph_compute(gf, false);
|
651
419
|
|
652
|
-
|
653
|
-
// What should happen when the pos backtracks or skips a value?
|
654
|
-
// Clearing the state mid-batch would require special-casing which isn't done.
|
655
|
-
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
656
|
-
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
|
657
|
-
}
|
658
|
-
cell.pos = last_pos;
|
659
|
-
cell.seq_id.clear();
|
660
|
-
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
|
661
|
-
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
662
|
-
cell.seq_id.insert(seq_id);
|
663
|
-
cells[seq_id].tail = cell_id;
|
664
|
-
}
|
420
|
+
need_reserve = true;
|
665
421
|
}
|
666
422
|
|
667
|
-
|
668
|
-
|
669
|
-
|
670
|
-
|
671
|
-
|
423
|
+
do_defrag = false;
|
424
|
+
}
|
425
|
+
|
426
|
+
return need_reserve;
|
427
|
+
}
|
428
|
+
|
429
|
+
void llama_kv_cache_unified::defrag_sched(float thold) {
|
430
|
+
// - do not defrag small contexts (i.e. < 2048 tokens)
|
431
|
+
// - count the padding towards the number of used tokens
|
432
|
+
const float fragmentation = n >= 2048 ? std::max(0.0f, 1.0f - (float(used + padding)/n)) : 0.0f;
|
433
|
+
|
434
|
+
// queue defragmentation for next llama_kv_cache_update
|
435
|
+
if (fragmentation > thold) {
|
436
|
+
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
|
437
|
+
|
438
|
+
do_defrag = true;
|
439
|
+
}
|
440
|
+
}
|
441
|
+
|
442
|
+
void llama_kv_cache_unified::set_full() {
|
443
|
+
n = size;
|
444
|
+
}
|
445
|
+
|
446
|
+
llama_sbatch llama_kv_cache_unified::sbatch_init(
|
447
|
+
const llama_batch & batch,
|
448
|
+
bool logits_all) {
|
449
|
+
return llama_sbatch(batch, hparams.n_embd, true, logits_all);
|
450
|
+
}
|
451
|
+
|
452
|
+
llama_ubatch llama_kv_cache_unified::ubatch_next(
|
453
|
+
llama_sbatch & sbatch,
|
454
|
+
uint32_t n_ubatch,
|
455
|
+
bool embd_pooled) const {
|
456
|
+
LM_GGML_UNUSED(embd_pooled);
|
457
|
+
return sbatch.split_simple(n_ubatch);
|
458
|
+
}
|
459
|
+
|
460
|
+
bool llama_kv_cache_unified::find_slot(
|
461
|
+
const llama_ubatch & ubatch) {
|
462
|
+
const uint32_t n_tokens = ubatch.n_tokens;
|
463
|
+
const uint32_t n_seqs = ubatch.n_seqs;
|
464
|
+
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
672
465
|
|
673
|
-
|
674
|
-
|
466
|
+
// if we have enough unused cells before the current head ->
|
467
|
+
// better to start searching from the beginning of the cache, hoping to fill it
|
468
|
+
if (head > used + 2*ubatch.n_tokens) {
|
469
|
+
head = 0;
|
675
470
|
}
|
676
471
|
|
677
472
|
// otherwise, one cell per token.
|
@@ -725,24 +520,50 @@ bool llama_kv_cache_unified::find_slot(
|
|
725
520
|
|
726
521
|
pending.ranges.push_back({head, head + n_tokens});
|
727
522
|
|
523
|
+
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
524
|
+
// after enough generations, the benefit from this heuristic disappears
|
525
|
+
// if we start defragmenting the cache, the benefit from this will be more important
|
526
|
+
n = std::min(size, std::max(padding, LM_GGML_PAD(cell_max(), padding)));
|
527
|
+
|
528
|
+
//printf("n = %5d, used = %5d, head = %5d\n", n, used, head);
|
529
|
+
|
728
530
|
return true;
|
729
531
|
}
|
730
532
|
|
731
|
-
|
732
|
-
|
733
|
-
|
533
|
+
int32_t llama_kv_cache_unified::get_n_tokens() const {
|
534
|
+
int32_t result = 0;
|
535
|
+
|
536
|
+
for (uint32_t i = 0; i < size; i++) {
|
537
|
+
result += cells[i].seq_id.size();
|
538
|
+
}
|
539
|
+
|
540
|
+
return result;
|
734
541
|
}
|
735
542
|
|
736
|
-
|
737
|
-
|
738
|
-
|
543
|
+
int32_t llama_kv_cache_unified::get_used_cells() const {
|
544
|
+
return used;
|
545
|
+
}
|
739
546
|
|
740
|
-
|
741
|
-
|
742
|
-
|
547
|
+
bool llama_kv_cache_unified::get_can_shift() const {
|
548
|
+
return can_shift;
|
549
|
+
}
|
550
|
+
|
551
|
+
llama_pos llama_kv_cache_unified::get_pos_max() const {
|
552
|
+
llama_pos pos_max = -1;
|
553
|
+
for (const auto & cell : cells) {
|
554
|
+
pos_max = std::max(pos_max, cell.pos);
|
743
555
|
}
|
744
556
|
|
745
|
-
return
|
557
|
+
return pos_max;
|
558
|
+
}
|
559
|
+
|
560
|
+
size_t llama_kv_cache_unified::total_size() const {
|
561
|
+
size_t size = 0;
|
562
|
+
for (const auto & buf : bufs) {
|
563
|
+
size += lm_ggml_backend_buffer_get_size(buf.get());
|
564
|
+
}
|
565
|
+
|
566
|
+
return size;
|
746
567
|
}
|
747
568
|
|
748
569
|
size_t llama_kv_cache_unified::size_k_bytes() const {
|
@@ -765,68 +586,331 @@ size_t llama_kv_cache_unified::size_v_bytes() const {
|
|
765
586
|
return size_v_bytes;
|
766
587
|
}
|
767
588
|
|
768
|
-
|
769
|
-
|
589
|
+
lm_ggml_tensor * llama_kv_cache_unified::build_rope_shift(
|
590
|
+
const llama_cparams & cparams,
|
591
|
+
lm_ggml_context * ctx,
|
592
|
+
lm_ggml_tensor * cur,
|
593
|
+
lm_ggml_tensor * shift,
|
594
|
+
lm_ggml_tensor * factors,
|
595
|
+
float freq_base,
|
596
|
+
float freq_scale) const {
|
597
|
+
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
|
770
598
|
|
771
|
-
const
|
772
|
-
const
|
599
|
+
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
|
600
|
+
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
|
601
|
+
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
|
773
602
|
|
774
|
-
|
603
|
+
const auto & n_rot = hparams.n_rot;
|
604
|
+
const auto & rope_type = hparams.rope_type;
|
775
605
|
|
776
|
-
//
|
606
|
+
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
|
607
|
+
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
|
608
|
+
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
|
777
609
|
|
778
|
-
|
779
|
-
uint32_t n_moves = 0;
|
610
|
+
lm_ggml_tensor * tmp;
|
780
611
|
|
781
|
-
|
782
|
-
|
783
|
-
|
784
|
-
//const uint32_t max_moves = max_nodes()/(6*n_layer);
|
785
|
-
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
|
786
|
-
const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
|
612
|
+
if (lm_ggml_is_quantized(cur->type)) {
|
613
|
+
// dequantize to f32 -> RoPE -> quantize back
|
614
|
+
tmp = lm_ggml_cast(ctx, cur, LM_GGML_TYPE_F32);
|
787
615
|
|
788
|
-
|
789
|
-
|
790
|
-
|
791
|
-
//
|
792
|
-
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
|
793
|
-
//
|
794
|
-
auto & ids = defrag_info.ids;
|
616
|
+
tmp = lm_ggml_rope_ext(ctx, tmp,
|
617
|
+
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
618
|
+
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
|
795
619
|
|
796
|
-
|
797
|
-
|
620
|
+
tmp = lm_ggml_cpy(ctx, tmp, cur);
|
621
|
+
} else {
|
622
|
+
// we rotate only the first n_rot dimensions
|
623
|
+
tmp = lm_ggml_rope_ext_inplace(ctx, cur,
|
624
|
+
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
625
|
+
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
|
626
|
+
}
|
798
627
|
|
799
|
-
|
800
|
-
|
628
|
+
return tmp;
|
629
|
+
}
|
801
630
|
|
802
|
-
|
803
|
-
|
631
|
+
class llm_graph_input_k_shift : public llm_graph_input_i {
|
632
|
+
public:
|
633
|
+
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
634
|
+
virtual ~llm_graph_input_k_shift() = default;
|
804
635
|
|
805
|
-
|
806
|
-
}
|
636
|
+
void set_input(const llama_ubatch * ubatch) override;
|
807
637
|
|
808
|
-
|
638
|
+
lm_ggml_tensor * k_shift; // I32 [kv_size]
|
809
639
|
|
810
|
-
|
640
|
+
const llama_kv_cache_unified * kv_self;
|
641
|
+
};
|
811
642
|
|
812
|
-
|
813
|
-
|
814
|
-
|
643
|
+
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
|
644
|
+
LM_GGML_UNUSED(ubatch);
|
645
|
+
|
646
|
+
if (k_shift) {
|
647
|
+
assert(lm_ggml_backend_buffer_is_host(k_shift->buffer));
|
648
|
+
|
649
|
+
int32_t * data = (int32_t *) k_shift->data;
|
650
|
+
|
651
|
+
for (uint32_t i = 0; i < kv_self->size; ++i) {
|
652
|
+
data[i] = kv_self->cells[i].delta;
|
815
653
|
}
|
654
|
+
}
|
655
|
+
}
|
816
656
|
|
817
|
-
|
818
|
-
|
657
|
+
llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift(
|
658
|
+
const llama_cparams & cparams,
|
659
|
+
lm_ggml_context * ctx,
|
660
|
+
lm_ggml_cgraph * gf) const {
|
661
|
+
auto res = std::make_unique<llm_graph_result>();
|
819
662
|
|
820
|
-
|
821
|
-
for (; is > i0; --is) {
|
822
|
-
const auto & cell1 = cells[is];
|
663
|
+
const auto & n_layer = hparams.n_layer;
|
823
664
|
|
824
|
-
|
825
|
-
|
826
|
-
}
|
665
|
+
const auto & n_embd_head_k = hparams.n_embd_head_k;
|
666
|
+
//const auto & n_embd_head_v = hparams.n_embd_head_v;
|
827
667
|
|
828
|
-
|
829
|
-
|
668
|
+
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
|
669
|
+
|
670
|
+
//LM_GGML_ASSERT(kv_self->size == n_ctx);
|
671
|
+
|
672
|
+
auto inp = std::make_unique<llm_graph_input_k_shift>(this);
|
673
|
+
|
674
|
+
inp->k_shift = lm_ggml_new_tensor_1d(ctx, LM_GGML_TYPE_I32, cparams.n_ctx);
|
675
|
+
lm_ggml_set_input(inp->k_shift);
|
676
|
+
|
677
|
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
678
|
+
const int64_t n_head_kv = hparams.n_head_kv(il);
|
679
|
+
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
680
|
+
|
681
|
+
const bool is_swa = hparams.is_swa(il);
|
682
|
+
|
683
|
+
// note: the swa rope params could become part of the cparams in the future
|
684
|
+
// if we decide to make them configurable, like the non-sliding ones
|
685
|
+
const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
|
686
|
+
const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
|
687
|
+
|
688
|
+
lm_ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
689
|
+
|
690
|
+
lm_ggml_tensor * k =
|
691
|
+
lm_ggml_view_3d(ctx, k_l[il],
|
692
|
+
n_embd_head_k, n_head_kv, size,
|
693
|
+
lm_ggml_row_size(k_l[il]->type, n_embd_head_k),
|
694
|
+
lm_ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
695
|
+
0);
|
696
|
+
|
697
|
+
lm_ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
|
698
|
+
|
699
|
+
lm_ggml_build_forward_expand(gf, cur);
|
700
|
+
}
|
701
|
+
|
702
|
+
res->add_input(std::move(inp));
|
703
|
+
|
704
|
+
return res;
|
705
|
+
}
|
706
|
+
|
707
|
+
llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
|
708
|
+
const llama_cparams & cparams,
|
709
|
+
lm_ggml_context * ctx,
|
710
|
+
lm_ggml_cgraph * gf) const {
|
711
|
+
auto res = std::make_unique<llm_graph_result>();
|
712
|
+
|
713
|
+
const auto & ids = defrag_info.ids;
|
714
|
+
|
715
|
+
#if 0
|
716
|
+
// CPU defrag
|
717
|
+
//
|
718
|
+
// TODO: optimizations are possible:
|
719
|
+
// - multiple threads
|
720
|
+
// - avoid copying to the host memory when already there
|
721
|
+
//
|
722
|
+
// likely not worth the effort, as we have lm_ggml_graph based defrag
|
723
|
+
//
|
724
|
+
|
725
|
+
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
726
|
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
727
|
+
|
728
|
+
const uint32_t kv_size = size;
|
729
|
+
|
730
|
+
std::vector<uint8_t> buf_k;
|
731
|
+
std::vector<uint8_t> buf_v;
|
732
|
+
|
733
|
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
734
|
+
const size_t k_size_row = lm_ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
735
|
+
const size_t k_size = lm_ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
|
736
|
+
|
737
|
+
const size_t v_size_el = lm_ggml_type_size(v_l[il]->type);
|
738
|
+
const size_t v_size = lm_ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
|
739
|
+
|
740
|
+
buf_k.resize(k_size);
|
741
|
+
buf_v.resize(v_size);
|
742
|
+
|
743
|
+
lm_ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
|
744
|
+
lm_ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
|
745
|
+
|
746
|
+
// batch move [i, i+nm) to [id, id+nm)
|
747
|
+
// note: cells can move only to a lower index
|
748
|
+
for (uint32_t i = 0; i < n_kv; ++i) {
|
749
|
+
const uint32_t id = ids[i];
|
750
|
+
|
751
|
+
if (i == id || id == n_kv) {
|
752
|
+
continue;
|
753
|
+
}
|
754
|
+
|
755
|
+
uint32_t nm = 1;
|
756
|
+
|
757
|
+
while (i + nm < n_kv && ids[i + nm] == id + nm) {
|
758
|
+
nm++;
|
759
|
+
}
|
760
|
+
|
761
|
+
// move keys
|
762
|
+
{
|
763
|
+
const int64_t os = i*k_size_row;
|
764
|
+
const int64_t od = id*k_size_row;
|
765
|
+
|
766
|
+
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
|
767
|
+
}
|
768
|
+
|
769
|
+
// move values (note: they are transposed)
|
770
|
+
{
|
771
|
+
const int64_t os = i;
|
772
|
+
const int64_t od = id;
|
773
|
+
|
774
|
+
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
775
|
+
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
|
776
|
+
}
|
777
|
+
}
|
778
|
+
|
779
|
+
i += nm - 1;
|
780
|
+
}
|
781
|
+
|
782
|
+
lm_ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
|
783
|
+
lm_ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
|
784
|
+
}
|
785
|
+
#else
|
786
|
+
for (uint32_t i = 0; i < ids.size(); ++i) {
|
787
|
+
const uint32_t id = ids[i];
|
788
|
+
|
789
|
+
if (i == id || id == ids.size()) {
|
790
|
+
continue;
|
791
|
+
}
|
792
|
+
|
793
|
+
uint32_t nm = 1;
|
794
|
+
|
795
|
+
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
796
|
+
nm++;
|
797
|
+
}
|
798
|
+
|
799
|
+
for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
|
800
|
+
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
801
|
+
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
802
|
+
|
803
|
+
lm_ggml_tensor * view_k_src = lm_ggml_view_2d(ctx, k_l[il],
|
804
|
+
n_embd_k_gqa, nm,
|
805
|
+
lm_ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
806
|
+
lm_ggml_row_size(k_l[il]->type, n_embd_k_gqa*i));
|
807
|
+
|
808
|
+
lm_ggml_tensor * view_k_dst = lm_ggml_view_2d(ctx, k_l[il],
|
809
|
+
n_embd_k_gqa, nm,
|
810
|
+
lm_ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
811
|
+
lm_ggml_row_size(k_l[il]->type, n_embd_k_gqa*id));
|
812
|
+
|
813
|
+
lm_ggml_tensor * view_v_src;
|
814
|
+
lm_ggml_tensor * view_v_dst;
|
815
|
+
|
816
|
+
if (cparams.flash_attn) {
|
817
|
+
// NOTE: the V cache is not transposed when using flash attention
|
818
|
+
view_v_src = lm_ggml_view_2d(ctx, v_l[il],
|
819
|
+
n_embd_v_gqa, nm,
|
820
|
+
lm_ggml_row_size(v_l[il]->type, n_embd_v_gqa),
|
821
|
+
lm_ggml_row_size(v_l[il]->type, n_embd_v_gqa*i));
|
822
|
+
|
823
|
+
view_v_dst = lm_ggml_view_2d(ctx, v_l[il],
|
824
|
+
n_embd_v_gqa, nm,
|
825
|
+
lm_ggml_row_size(v_l[il]->type, n_embd_v_gqa),
|
826
|
+
lm_ggml_row_size(v_l[il]->type, n_embd_v_gqa*id));
|
827
|
+
} else {
|
828
|
+
view_v_src = lm_ggml_view_2d(ctx, v_l[il],
|
829
|
+
nm, n_embd_v_gqa,
|
830
|
+
lm_ggml_row_size(v_l[il]->type, size),
|
831
|
+
lm_ggml_row_size(v_l[il]->type, i));
|
832
|
+
|
833
|
+
view_v_dst = lm_ggml_view_2d(ctx, v_l[il],
|
834
|
+
nm, n_embd_v_gqa,
|
835
|
+
lm_ggml_row_size(v_l[il]->type, size),
|
836
|
+
lm_ggml_row_size(v_l[il]->type, id));
|
837
|
+
}
|
838
|
+
|
839
|
+
lm_ggml_build_forward_expand(gf, lm_ggml_cpy(ctx, view_k_src, view_k_dst));
|
840
|
+
lm_ggml_build_forward_expand(gf, lm_ggml_cpy(ctx, view_v_src, view_v_dst));
|
841
|
+
}
|
842
|
+
|
843
|
+
i += nm - 1;
|
844
|
+
}
|
845
|
+
|
846
|
+
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
847
|
+
#endif
|
848
|
+
|
849
|
+
return res;
|
850
|
+
}
|
851
|
+
|
852
|
+
bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
853
|
+
const uint32_t n_layer = hparams.n_layer;
|
854
|
+
|
855
|
+
const uint32_t n_kv = cell_max();
|
856
|
+
const uint32_t n_used = used;
|
857
|
+
|
858
|
+
assert(n_used <= n_kv);
|
859
|
+
|
860
|
+
//const int64_t t_start = lm_ggml_time_us();
|
861
|
+
|
862
|
+
// number of cells moved
|
863
|
+
uint32_t n_moves = 0;
|
864
|
+
|
865
|
+
// each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
|
866
|
+
// - source view, destination view, copy operation
|
867
|
+
// - x2 for keys and values
|
868
|
+
//const uint32_t max_moves = max_nodes()/(6*n_layer);
|
869
|
+
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
|
870
|
+
const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
|
871
|
+
|
872
|
+
// determine which KV cells to move where
|
873
|
+
//
|
874
|
+
// cell i moves to ids[i]
|
875
|
+
//
|
876
|
+
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
|
877
|
+
//
|
878
|
+
auto & ids = defrag_info.ids;
|
879
|
+
|
880
|
+
ids.clear();
|
881
|
+
ids.resize(n_kv, n_kv);
|
882
|
+
|
883
|
+
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
|
884
|
+
const auto & cell0 = cells[i0];
|
885
|
+
|
886
|
+
if (!cell0.is_empty()) {
|
887
|
+
ids[i0] = i0;
|
888
|
+
|
889
|
+
continue;
|
890
|
+
}
|
891
|
+
|
892
|
+
// found a hole - fill it with data from the end of the cache
|
893
|
+
|
894
|
+
uint32_t nh = 1;
|
895
|
+
|
896
|
+
// determine the size of the hole
|
897
|
+
while (i0 + nh < n_used && cells[i0 + nh].is_empty()) {
|
898
|
+
nh++;
|
899
|
+
}
|
900
|
+
|
901
|
+
uint32_t nf = 0;
|
902
|
+
uint32_t is = n_kv - 1;
|
903
|
+
|
904
|
+
// starting from the end, find nh non-empty cells
|
905
|
+
for (; is > i0; --is) {
|
906
|
+
const auto & cell1 = cells[is];
|
907
|
+
|
908
|
+
if (cell1.is_empty() || ids[is] != n_kv) {
|
909
|
+
continue;
|
910
|
+
}
|
911
|
+
|
912
|
+
// non-empty cell which is not yet moved
|
913
|
+
nf++;
|
830
914
|
|
831
915
|
if (nf == nh) {
|
832
916
|
break;
|
@@ -867,7 +951,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
|
867
951
|
cells[i0 + nf] = cell1;
|
868
952
|
|
869
953
|
// clear the old cell and move the head there
|
870
|
-
cell1 =
|
954
|
+
cell1 = kv_cell();
|
871
955
|
head = n_used;
|
872
956
|
|
873
957
|
if (!cont) {
|
@@ -895,13 +979,25 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
|
895
979
|
return false;
|
896
980
|
}
|
897
981
|
|
898
|
-
LLAMA_LOG_DEBUG("(tmp log) KV defrag cell moves: %u\n", n_moves);
|
982
|
+
LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
|
899
983
|
|
900
|
-
LLAMA_LOG_DEBUG("expected gf nodes: %u\n", 6*n_moves*n_layer);
|
984
|
+
LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
|
901
985
|
|
902
986
|
return true;
|
903
987
|
}
|
904
988
|
|
989
|
+
uint32_t llama_kv_cache_unified::cell_max() const {
|
990
|
+
for (uint32_t i = size; i > 0; --i) {
|
991
|
+
const kv_cell & cell = cells[i - 1];
|
992
|
+
|
993
|
+
if (cell.pos >= 0 && !cell.is_empty()) {
|
994
|
+
return i;
|
995
|
+
}
|
996
|
+
}
|
997
|
+
|
998
|
+
return 0;
|
999
|
+
}
|
1000
|
+
|
905
1001
|
void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
906
1002
|
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
|
907
1003
|
uint32_t cell_count = 0;
|
@@ -1110,7 +1206,7 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
|
|
1110
1206
|
clear();
|
1111
1207
|
|
1112
1208
|
for (uint32_t i = 0; i < cell_count; ++i) {
|
1113
|
-
|
1209
|
+
kv_cell & cell = cells[i];
|
1114
1210
|
|
1115
1211
|
llama_pos pos;
|
1116
1212
|
uint32_t n_seq_id;
|
@@ -1133,15 +1229,6 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
|
|
1133
1229
|
}
|
1134
1230
|
|
1135
1231
|
cell.seq_id.insert(seq_id);
|
1136
|
-
|
1137
|
-
if (recurrent) {
|
1138
|
-
int32_t & tail = cells[seq_id].tail;
|
1139
|
-
if (tail != -1) {
|
1140
|
-
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
|
1141
|
-
return false;
|
1142
|
-
}
|
1143
|
-
tail = i;
|
1144
|
-
}
|
1145
1232
|
}
|
1146
1233
|
}
|
1147
1234
|
|
@@ -1149,14 +1236,6 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
|
|
1149
1236
|
used = cell_count;
|
1150
1237
|
}
|
1151
1238
|
|
1152
|
-
if (recurrent) {
|
1153
|
-
for (uint32_t i = 0; i < cell_count; ++i) {
|
1154
|
-
uint32_t cell_id = head + i;
|
1155
|
-
// make sure the recurrent states will keep their restored state
|
1156
|
-
cells[cell_id].src = cell_id;
|
1157
|
-
}
|
1158
|
-
}
|
1159
|
-
|
1160
1239
|
return true;
|
1161
1240
|
}
|
1162
1241
|
|
@@ -1174,7 +1253,1034 @@ bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell
|
|
1174
1253
|
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
|
1175
1254
|
return false;
|
1176
1255
|
}
|
1177
|
-
if (v_trans != (bool) v_trans) {
|
1256
|
+
if (this->v_trans != (bool) v_trans) {
|
1257
|
+
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
|
1258
|
+
return false;
|
1259
|
+
}
|
1260
|
+
|
1261
|
+
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
|
1262
|
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
1263
|
+
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
|
1264
|
+
|
1265
|
+
// Read type of key
|
1266
|
+
int32_t k_type_i_ref;
|
1267
|
+
io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
|
1268
|
+
const int32_t k_type_i = (int32_t) k_l[il]->type;
|
1269
|
+
if (k_type_i != k_type_i_ref) {
|
1270
|
+
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
|
1271
|
+
return false;
|
1272
|
+
}
|
1273
|
+
|
1274
|
+
// Read row size of key
|
1275
|
+
uint64_t k_size_row_ref;
|
1276
|
+
io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
|
1277
|
+
const size_t k_size_row = lm_ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
1278
|
+
if (k_size_row != k_size_row_ref) {
|
1279
|
+
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
|
1280
|
+
return false;
|
1281
|
+
}
|
1282
|
+
|
1283
|
+
if (cell_count) {
|
1284
|
+
// Read and set the keys for the whole cell range
|
1285
|
+
lm_ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
|
1286
|
+
}
|
1287
|
+
}
|
1288
|
+
|
1289
|
+
if (!this->v_trans) {
|
1290
|
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
1291
|
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
1292
|
+
|
1293
|
+
// Read type of value
|
1294
|
+
int32_t v_type_i_ref;
|
1295
|
+
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
|
1296
|
+
const int32_t v_type_i = (int32_t)v_l[il]->type;
|
1297
|
+
if (v_type_i != v_type_i_ref) {
|
1298
|
+
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
|
1299
|
+
return false;
|
1300
|
+
}
|
1301
|
+
|
1302
|
+
// Read row size of value
|
1303
|
+
uint64_t v_size_row_ref;
|
1304
|
+
io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
|
1305
|
+
const size_t v_size_row = lm_ggml_row_size(v_l[il]->type, n_embd_v_gqa);
|
1306
|
+
if (v_size_row != v_size_row_ref) {
|
1307
|
+
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
|
1308
|
+
return false;
|
1309
|
+
}
|
1310
|
+
|
1311
|
+
if (cell_count) {
|
1312
|
+
// Read and set the values for the whole cell range
|
1313
|
+
lm_ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
|
1314
|
+
}
|
1315
|
+
}
|
1316
|
+
} else {
|
1317
|
+
// For each layer, read the values for each cell (transposed)
|
1318
|
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
1319
|
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
1320
|
+
|
1321
|
+
// Read type of value
|
1322
|
+
int32_t v_type_i_ref;
|
1323
|
+
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
|
1324
|
+
const int32_t v_type_i = (int32_t)v_l[il]->type;
|
1325
|
+
if (v_type_i != v_type_i_ref) {
|
1326
|
+
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
|
1327
|
+
return false;
|
1328
|
+
}
|
1329
|
+
|
1330
|
+
// Read element size of value
|
1331
|
+
uint32_t v_size_el_ref;
|
1332
|
+
io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
|
1333
|
+
const size_t v_size_el = lm_ggml_type_size(v_l[il]->type);
|
1334
|
+
if (v_size_el != v_size_el_ref) {
|
1335
|
+
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
|
1336
|
+
return false;
|
1337
|
+
}
|
1338
|
+
|
1339
|
+
// Read GQA embedding size
|
1340
|
+
uint32_t n_embd_v_gqa_ref;
|
1341
|
+
io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
|
1342
|
+
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
|
1343
|
+
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
|
1344
|
+
return false;
|
1345
|
+
}
|
1346
|
+
|
1347
|
+
if (cell_count) {
|
1348
|
+
// For each row in the transposed matrix, read the values for the whole cell range
|
1349
|
+
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
1350
|
+
const size_t dst_offset = (head + j * size) * v_size_el;
|
1351
|
+
lm_ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
|
1352
|
+
}
|
1353
|
+
}
|
1354
|
+
}
|
1355
|
+
}
|
1356
|
+
|
1357
|
+
return true;
|
1358
|
+
}
|
1359
|
+
|
1360
|
+
//
|
1361
|
+
// llama_kv_cache_recurrent
|
1362
|
+
//
|
1363
|
+
|
1364
|
+
llama_kv_cache_recurrent::llama_kv_cache_recurrent(
|
1365
|
+
const llama_model & model,
|
1366
|
+
lm_ggml_type type_k,
|
1367
|
+
lm_ggml_type type_v,
|
1368
|
+
bool offload,
|
1369
|
+
uint32_t kv_size) : hparams(model.hparams) {
|
1370
|
+
const int32_t n_layer = hparams.n_layer;
|
1371
|
+
|
1372
|
+
LLAMA_LOG_INFO("%s: kv_size = %d, type_k = '%s', type_v = '%s', n_layer = %d\n",
|
1373
|
+
__func__, kv_size, lm_ggml_type_name(type_k), lm_ggml_type_name(type_v), n_layer);
|
1374
|
+
|
1375
|
+
head = 0;
|
1376
|
+
size = kv_size;
|
1377
|
+
used = 0;
|
1378
|
+
|
1379
|
+
this->type_k = type_k;
|
1380
|
+
this->type_v = type_v;
|
1381
|
+
|
1382
|
+
cells.clear();
|
1383
|
+
cells.resize(kv_size);
|
1384
|
+
|
1385
|
+
// create a context for each buffer type
|
1386
|
+
std::map<lm_ggml_backend_buffer_type_t, lm_ggml_context *> ctx_map;
|
1387
|
+
auto ctx_for_buft = [&](lm_ggml_backend_buffer_type_t buft) -> lm_ggml_context * {
|
1388
|
+
auto it = ctx_map.find(buft);
|
1389
|
+
if (it == ctx_map.end()) {
|
1390
|
+
lm_ggml_init_params params = {
|
1391
|
+
/*.mem_size =*/ size_t(2u*n_layer*lm_ggml_tensor_overhead()),
|
1392
|
+
/*.mem_buffer =*/ NULL,
|
1393
|
+
/*.no_alloc =*/ true,
|
1394
|
+
};
|
1395
|
+
|
1396
|
+
lm_ggml_context * ctx = lm_ggml_init(params);
|
1397
|
+
if (!ctx) {
|
1398
|
+
return nullptr;
|
1399
|
+
}
|
1400
|
+
|
1401
|
+
ctx_map[buft] = ctx;
|
1402
|
+
ctxs.emplace_back(ctx);
|
1403
|
+
|
1404
|
+
return ctx;
|
1405
|
+
}
|
1406
|
+
|
1407
|
+
return it->second;
|
1408
|
+
};
|
1409
|
+
|
1410
|
+
k_l.reserve(n_layer);
|
1411
|
+
v_l.reserve(n_layer);
|
1412
|
+
|
1413
|
+
for (int i = 0; i < n_layer; i++) {
|
1414
|
+
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
1415
|
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
1416
|
+
|
1417
|
+
const char * dev_name = "CPU";
|
1418
|
+
|
1419
|
+
lm_ggml_backend_buffer_type_t buft = lm_ggml_backend_cpu_buffer_type();
|
1420
|
+
|
1421
|
+
if (offload) {
|
1422
|
+
auto * dev = model.dev_layer(i);
|
1423
|
+
buft = lm_ggml_backend_dev_buffer_type(dev);
|
1424
|
+
|
1425
|
+
dev_name = lm_ggml_backend_dev_name(dev);
|
1426
|
+
}
|
1427
|
+
|
1428
|
+
LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name);
|
1429
|
+
|
1430
|
+
lm_ggml_context * ctx = ctx_for_buft(buft);
|
1431
|
+
if (!ctx) {
|
1432
|
+
throw std::runtime_error("failed to create ggml context for kv cache");
|
1433
|
+
}
|
1434
|
+
|
1435
|
+
lm_ggml_tensor * k = lm_ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
1436
|
+
lm_ggml_tensor * v = lm_ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
1437
|
+
lm_ggml_format_name(k, "cache_k_l%d", i);
|
1438
|
+
lm_ggml_format_name(v, "cache_v_l%d", i);
|
1439
|
+
k_l.push_back(k);
|
1440
|
+
v_l.push_back(v);
|
1441
|
+
}
|
1442
|
+
|
1443
|
+
// allocate tensors and initialize the buffers to avoid NaNs in the padding
|
1444
|
+
for (auto it : ctx_map) {
|
1445
|
+
auto * buft = it.first;
|
1446
|
+
auto * ctx = it.second;
|
1447
|
+
|
1448
|
+
lm_ggml_backend_buffer_t buf = lm_ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
1449
|
+
if (!buf) {
|
1450
|
+
throw std::runtime_error("failed to allocate buffer for kv cache");
|
1451
|
+
}
|
1452
|
+
lm_ggml_backend_buffer_clear(buf, 0);
|
1453
|
+
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, lm_ggml_backend_buffer_name(buf), lm_ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
1454
|
+
bufs.emplace_back(buf);
|
1455
|
+
}
|
1456
|
+
|
1457
|
+
{
|
1458
|
+
const size_t memory_size_k = size_k_bytes();
|
1459
|
+
const size_t memory_size_v = size_v_bytes();
|
1460
|
+
|
1461
|
+
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
1462
|
+
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
1463
|
+
lm_ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
1464
|
+
lm_ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
1465
|
+
}
|
1466
|
+
}
|
1467
|
+
|
1468
|
+
void llama_kv_cache_recurrent::clear() {
|
1469
|
+
for (int32_t i = 0; i < (int32_t) size; ++i) {
|
1470
|
+
cells[i].pos = -1;
|
1471
|
+
cells[i].seq_id.clear();
|
1472
|
+
cells[i].src = -1;
|
1473
|
+
cells[i].tail = -1;
|
1474
|
+
}
|
1475
|
+
head = 0;
|
1476
|
+
used = 0;
|
1477
|
+
|
1478
|
+
for (auto & buf : bufs) {
|
1479
|
+
lm_ggml_backend_buffer_clear(buf.get(), 0);
|
1480
|
+
}
|
1481
|
+
}
|
1482
|
+
|
1483
|
+
bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
1484
|
+
uint32_t new_head = size;
|
1485
|
+
|
1486
|
+
if (p0 < 0) {
|
1487
|
+
p0 = 0;
|
1488
|
+
}
|
1489
|
+
|
1490
|
+
if (p1 < 0) {
|
1491
|
+
p1 = std::numeric_limits<llama_pos>::max();
|
1492
|
+
}
|
1493
|
+
|
1494
|
+
// models like Mamba or RWKV can't have a state partially erased
|
1495
|
+
if (seq_id >= (int64_t) size) {
|
1496
|
+
// could be fatal
|
1497
|
+
return false;
|
1498
|
+
}
|
1499
|
+
if (0 <= seq_id) {
|
1500
|
+
int32_t & tail_id = cells[seq_id].tail;
|
1501
|
+
if (tail_id >= 0) {
|
1502
|
+
const kv_cell & cell = cells[tail_id];
|
1503
|
+
// partial intersection is invalid
|
1504
|
+
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
|
1505
|
+
return false;
|
1506
|
+
}
|
1507
|
+
// invalidate tails which will be cleared
|
1508
|
+
if (p0 <= cell.pos && cell.pos < p1) {
|
1509
|
+
tail_id = -1;
|
1510
|
+
}
|
1511
|
+
}
|
1512
|
+
} else {
|
1513
|
+
// seq_id is negative, then the range should include everything or nothing
|
1514
|
+
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
|
1515
|
+
return false;
|
1516
|
+
}
|
1517
|
+
}
|
1518
|
+
|
1519
|
+
for (uint32_t i = 0; i < size; ++i) {
|
1520
|
+
if (cells[i].pos >= p0 && cells[i].pos < p1) {
|
1521
|
+
if (seq_id < 0) {
|
1522
|
+
cells[i].seq_id.clear();
|
1523
|
+
} else if (cells[i].has_seq_id(seq_id)) {
|
1524
|
+
cells[i].seq_id.erase(seq_id);
|
1525
|
+
} else {
|
1526
|
+
continue;
|
1527
|
+
}
|
1528
|
+
if (cells[i].is_empty()) {
|
1529
|
+
// keep count of the number of used cells
|
1530
|
+
if (cells[i].pos >= 0) {
|
1531
|
+
used--;
|
1532
|
+
}
|
1533
|
+
cells[i].pos = -1;
|
1534
|
+
cells[i].src = -1;
|
1535
|
+
if (new_head == size) {
|
1536
|
+
new_head = i;
|
1537
|
+
}
|
1538
|
+
}
|
1539
|
+
}
|
1540
|
+
}
|
1541
|
+
|
1542
|
+
// If we freed up a slot, set head to it so searching can start there.
|
1543
|
+
if (new_head != size && new_head < head) {
|
1544
|
+
head = new_head;
|
1545
|
+
}
|
1546
|
+
|
1547
|
+
return true;
|
1548
|
+
}
|
1549
|
+
|
1550
|
+
void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
1551
|
+
if (seq_id_src == seq_id_dst) {
|
1552
|
+
return;
|
1553
|
+
}
|
1554
|
+
|
1555
|
+
if (p0 < 0) {
|
1556
|
+
p0 = 0;
|
1557
|
+
}
|
1558
|
+
|
1559
|
+
if (p1 < 0) {
|
1560
|
+
p1 = std::numeric_limits<llama_pos>::max();
|
1561
|
+
}
|
1562
|
+
|
1563
|
+
if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
|
1564
|
+
kv_cell & tail_src = cells[seq_id_src];
|
1565
|
+
kv_cell & tail_dst = cells[seq_id_dst];
|
1566
|
+
if (tail_dst.tail >= 0) {
|
1567
|
+
// clear destination seq_id if it wasn't empty
|
1568
|
+
kv_cell & cell_dst = cells[tail_dst.tail];
|
1569
|
+
|
1570
|
+
cell_dst.seq_id.erase(seq_id_dst);
|
1571
|
+
tail_dst.tail = -1;
|
1572
|
+
if (cell_dst.seq_id.empty()) {
|
1573
|
+
cell_dst.pos = -1;
|
1574
|
+
cell_dst.src = -1;
|
1575
|
+
used -= 1;
|
1576
|
+
}
|
1577
|
+
}
|
1578
|
+
if (tail_src.tail >= 0) {
|
1579
|
+
kv_cell & cell_src = cells[tail_src.tail];
|
1580
|
+
|
1581
|
+
cell_src.seq_id.insert(seq_id_dst);
|
1582
|
+
tail_dst.tail = tail_src.tail;
|
1583
|
+
}
|
1584
|
+
}
|
1585
|
+
}
|
1586
|
+
|
1587
|
+
void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) {
|
1588
|
+
uint32_t new_head = size;
|
1589
|
+
|
1590
|
+
for (uint32_t i = 0; i < size; ++i) {
|
1591
|
+
if ((llama_seq_id) i != seq_id) {
|
1592
|
+
cells[i].tail = -1;
|
1593
|
+
}
|
1594
|
+
|
1595
|
+
if (!cells[i].has_seq_id(seq_id)) {
|
1596
|
+
if (cells[i].pos >= 0) {
|
1597
|
+
used--;
|
1598
|
+
}
|
1599
|
+
|
1600
|
+
cells[i].pos = -1;
|
1601
|
+
cells[i].src = -1;
|
1602
|
+
cells[i].seq_id.clear();
|
1603
|
+
|
1604
|
+
if (new_head == size){
|
1605
|
+
new_head = i;
|
1606
|
+
}
|
1607
|
+
} else {
|
1608
|
+
cells[i].seq_id.clear();
|
1609
|
+
cells[i].seq_id.insert(seq_id);
|
1610
|
+
}
|
1611
|
+
}
|
1612
|
+
|
1613
|
+
// If we freed up a slot, set head to it so searching can start there.
|
1614
|
+
if (new_head != size && new_head < head) {
|
1615
|
+
head = new_head;
|
1616
|
+
}
|
1617
|
+
}
|
1618
|
+
|
1619
|
+
void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
|
1620
|
+
if (delta == 0) {
|
1621
|
+
return;
|
1622
|
+
}
|
1623
|
+
|
1624
|
+
if (p0 < 0) {
|
1625
|
+
p0 = 0;
|
1626
|
+
}
|
1627
|
+
|
1628
|
+
if (p1 < 0) {
|
1629
|
+
p1 = std::numeric_limits<llama_pos>::max();
|
1630
|
+
}
|
1631
|
+
|
1632
|
+
// If there is no range then return early to avoid looping over the
|
1633
|
+
if (p0 == p1) {
|
1634
|
+
return;
|
1635
|
+
}
|
1636
|
+
|
1637
|
+
// for Mamba-like or RWKV models, only the pos needs to be shifted
|
1638
|
+
if (0 <= seq_id && seq_id < (int64_t) size) {
|
1639
|
+
const int32_t tail_id = cells[seq_id].tail;
|
1640
|
+
if (tail_id >= 0) {
|
1641
|
+
kv_cell & cell = cells[tail_id];
|
1642
|
+
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
1643
|
+
cell.pos += delta;
|
1644
|
+
}
|
1645
|
+
}
|
1646
|
+
}
|
1647
|
+
}
|
1648
|
+
|
1649
|
+
void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
1650
|
+
if (d == 1) {
|
1651
|
+
return;
|
1652
|
+
}
|
1653
|
+
|
1654
|
+
if (p0 < 0) {
|
1655
|
+
p0 = 0;
|
1656
|
+
}
|
1657
|
+
|
1658
|
+
if (p1 < 0) {
|
1659
|
+
p1 = std::numeric_limits<llama_pos>::max();
|
1660
|
+
}
|
1661
|
+
|
1662
|
+
// If there is no range then return early to avoid looping over the cache.
|
1663
|
+
if (p0 == p1) {
|
1664
|
+
return;
|
1665
|
+
}
|
1666
|
+
|
1667
|
+
// for Mamba-like or RWKV models, only the pos needs to be changed
|
1668
|
+
if (0 <= seq_id && seq_id < (int64_t) size) {
|
1669
|
+
const int32_t tail_id = cells[seq_id].tail;
|
1670
|
+
if (tail_id >= 0) {
|
1671
|
+
kv_cell & cell = cells[tail_id];
|
1672
|
+
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
1673
|
+
cell.pos /= d;
|
1674
|
+
}
|
1675
|
+
}
|
1676
|
+
}
|
1677
|
+
}
|
1678
|
+
|
1679
|
+
llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const {
|
1680
|
+
llama_pos result = 0;
|
1681
|
+
|
1682
|
+
for (uint32_t i = 0; i < size; ++i) {
|
1683
|
+
if (cells[i].has_seq_id(seq_id)) {
|
1684
|
+
result = std::max(result, cells[i].pos);
|
1685
|
+
}
|
1686
|
+
}
|
1687
|
+
|
1688
|
+
return result;
|
1689
|
+
}
|
1690
|
+
|
1691
|
+
void llama_kv_cache_recurrent::restore() {
|
1692
|
+
if (pending.ranges.empty()) {
|
1693
|
+
return;
|
1694
|
+
}
|
1695
|
+
|
1696
|
+
seq_rm(-1, -1, -1);
|
1697
|
+
}
|
1698
|
+
|
1699
|
+
void llama_kv_cache_recurrent::commit() {
|
1700
|
+
pending.ranges.clear();
|
1701
|
+
}
|
1702
|
+
|
1703
|
+
bool llama_kv_cache_recurrent::update(llama_context & lctx) {
|
1704
|
+
LM_GGML_UNUSED(lctx);
|
1705
|
+
return false;
|
1706
|
+
}
|
1707
|
+
|
1708
|
+
void llama_kv_cache_recurrent::defrag_sched(float thold) {
|
1709
|
+
LM_GGML_UNUSED(thold);
|
1710
|
+
// noop
|
1711
|
+
}
|
1712
|
+
|
1713
|
+
void llama_kv_cache_recurrent::set_full() {
|
1714
|
+
n = size;
|
1715
|
+
}
|
1716
|
+
|
1717
|
+
llama_sbatch llama_kv_cache_recurrent::sbatch_init(
|
1718
|
+
const llama_batch & batch,
|
1719
|
+
bool logits_all) {
|
1720
|
+
return llama_sbatch(batch, hparams.n_embd, false, logits_all);
|
1721
|
+
}
|
1722
|
+
|
1723
|
+
llama_ubatch llama_kv_cache_recurrent::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const {
|
1724
|
+
if (embd_pooled) {
|
1725
|
+
// Pooled embeddings cannot be split across ubatches (yet)
|
1726
|
+
return sbatch.split_seq(n_ubatch);
|
1727
|
+
}
|
1728
|
+
|
1729
|
+
return sbatch.split_equal(n_ubatch);
|
1730
|
+
}
|
1731
|
+
|
1732
|
+
bool llama_kv_cache_recurrent::find_slot(
|
1733
|
+
const llama_ubatch & ubatch) {
|
1734
|
+
const uint32_t n_tokens = ubatch.n_tokens;
|
1735
|
+
const uint32_t n_seqs = ubatch.n_seqs;
|
1736
|
+
|
1737
|
+
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
1738
|
+
|
1739
|
+
// if we have enough unused cells before the current head ->
|
1740
|
+
// better to start searching from the beginning of the cache, hoping to fill it
|
1741
|
+
if (head > used + 2*n_tokens) {
|
1742
|
+
head = 0;
|
1743
|
+
}
|
1744
|
+
|
1745
|
+
// For recurrent state architectures (like Mamba or RWKV),
|
1746
|
+
// each cache cell can store the state for a whole sequence.
|
1747
|
+
// A slot should be always be contiguous.
|
1748
|
+
|
1749
|
+
// can only process batches with an equal number of new tokens in each sequence
|
1750
|
+
LM_GGML_ASSERT(ubatch.equal_seqs);
|
1751
|
+
|
1752
|
+
int32_t min = size - 1;
|
1753
|
+
int32_t max = 0;
|
1754
|
+
|
1755
|
+
// everything should fit if all seq_ids are smaller than the max
|
1756
|
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
1757
|
+
const uint32_t n_seq_id = ubatch.n_seq_id[s];
|
1758
|
+
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
1759
|
+
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
1760
|
+
|
1761
|
+
if (seq_id < 0 || (uint32_t) seq_id >= size) {
|
1762
|
+
// too big seq_id
|
1763
|
+
// TODO: would it be possible to resize the cache instead?
|
1764
|
+
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, size);
|
1765
|
+
return false;
|
1766
|
+
}
|
1767
|
+
if (j > 0) {
|
1768
|
+
kv_cell & seq = cells[seq_id];
|
1769
|
+
if (seq.tail >= 0) {
|
1770
|
+
kv_cell & cell = cells[seq.tail];
|
1771
|
+
// clear cells from seq_ids that become shared
|
1772
|
+
// (should not normally happen, but let's handle it anyway)
|
1773
|
+
cell.seq_id.erase(seq_id);
|
1774
|
+
seq.tail = -1;
|
1775
|
+
if (cell.seq_id.empty()) {
|
1776
|
+
cell.pos = -1;
|
1777
|
+
cell.src = -1;
|
1778
|
+
used -= 1;
|
1779
|
+
}
|
1780
|
+
}
|
1781
|
+
}
|
1782
|
+
}
|
1783
|
+
}
|
1784
|
+
|
1785
|
+
#ifndef NDEBUG
|
1786
|
+
{
|
1787
|
+
std::vector<int32_t> tails_verif;
|
1788
|
+
tails_verif.assign(size, -1);
|
1789
|
+
for (uint32_t i = 0; i < size; ++i) {
|
1790
|
+
kv_cell & cell = cells[i];
|
1791
|
+
for (llama_seq_id seq_id : cell.seq_id) {
|
1792
|
+
if (tails_verif[seq_id] != -1) {
|
1793
|
+
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
|
1794
|
+
}
|
1795
|
+
tails_verif[seq_id] = i;
|
1796
|
+
}
|
1797
|
+
}
|
1798
|
+
for (uint32_t i = 0; i < size; ++i) {
|
1799
|
+
if (tails_verif[i] != cells[i].tail) {
|
1800
|
+
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
|
1801
|
+
}
|
1802
|
+
}
|
1803
|
+
}
|
1804
|
+
#endif
|
1805
|
+
|
1806
|
+
// find next empty cell
|
1807
|
+
uint32_t next_empty_cell = head;
|
1808
|
+
|
1809
|
+
for (uint32_t i = 0; i < size; ++i) {
|
1810
|
+
if (next_empty_cell >= size) { next_empty_cell -= size; }
|
1811
|
+
kv_cell & cell = cells[next_empty_cell];
|
1812
|
+
if (cell.is_empty()) { break; }
|
1813
|
+
next_empty_cell += 1;
|
1814
|
+
}
|
1815
|
+
|
1816
|
+
// find usable cell range
|
1817
|
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
1818
|
+
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
1819
|
+
kv_cell & seq_meta = cells[seq_id];
|
1820
|
+
bool has_cell = false;
|
1821
|
+
if (seq_meta.tail >= 0) {
|
1822
|
+
kv_cell & cell = cells[seq_meta.tail];
|
1823
|
+
LM_GGML_ASSERT(cell.has_seq_id(seq_id));
|
1824
|
+
// does this seq_id "own" the cell?
|
1825
|
+
if (cell.seq_id.size() == 1) { has_cell = true; }
|
1826
|
+
}
|
1827
|
+
if (!has_cell) {
|
1828
|
+
kv_cell & empty_cell = cells[next_empty_cell];
|
1829
|
+
LM_GGML_ASSERT(empty_cell.is_empty());
|
1830
|
+
// copy old tail into the empty cell
|
1831
|
+
if (seq_meta.tail >= 0) {
|
1832
|
+
kv_cell & orig_cell = cells[seq_meta.tail];
|
1833
|
+
empty_cell.pos = orig_cell.pos;
|
1834
|
+
empty_cell.src = orig_cell.src;
|
1835
|
+
orig_cell.seq_id.erase(seq_id);
|
1836
|
+
empty_cell.seq_id.insert(seq_id); // will be overwritten
|
1837
|
+
}
|
1838
|
+
seq_meta.tail = next_empty_cell;
|
1839
|
+
// find next empty cell
|
1840
|
+
if (s + 1 < n_seqs) {
|
1841
|
+
next_empty_cell += 1;
|
1842
|
+
for (uint32_t i = 0; i < size; ++i) {
|
1843
|
+
if (next_empty_cell >= size) { next_empty_cell -= size; }
|
1844
|
+
kv_cell & cell = cells[next_empty_cell];
|
1845
|
+
if (cell.is_empty()) { break; }
|
1846
|
+
next_empty_cell += 1;
|
1847
|
+
}
|
1848
|
+
}
|
1849
|
+
}
|
1850
|
+
if (min > seq_meta.tail) { min = seq_meta.tail; }
|
1851
|
+
if (max < seq_meta.tail) { max = seq_meta.tail; }
|
1852
|
+
}
|
1853
|
+
|
1854
|
+
// gather and re-order
|
1855
|
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
1856
|
+
int32_t dst_id = s + min;
|
1857
|
+
int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
|
1858
|
+
if (dst_id != src_id) {
|
1859
|
+
kv_cell & dst_cell = cells[dst_id];
|
1860
|
+
kv_cell & src_cell = cells[src_id];
|
1861
|
+
|
1862
|
+
std::swap(dst_cell.pos, src_cell.pos);
|
1863
|
+
std::swap(dst_cell.src, src_cell.src);
|
1864
|
+
std::swap(dst_cell.seq_id, src_cell.seq_id);
|
1865
|
+
|
1866
|
+
// swap tails (assuming they NEVER overlap)
|
1867
|
+
for (const llama_seq_id seq_id : src_cell.seq_id) {
|
1868
|
+
cells[seq_id].tail = src_id;
|
1869
|
+
}
|
1870
|
+
for (const llama_seq_id seq_id : dst_cell.seq_id) {
|
1871
|
+
cells[seq_id].tail = dst_id;
|
1872
|
+
}
|
1873
|
+
}
|
1874
|
+
}
|
1875
|
+
|
1876
|
+
// update the pos of the used seqs
|
1877
|
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
1878
|
+
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
1879
|
+
int32_t cell_id = s + min;
|
1880
|
+
kv_cell & cell = cells[cell_id];
|
1881
|
+
|
1882
|
+
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
|
1883
|
+
// What should happen when the pos backtracks or skips a value?
|
1884
|
+
// Clearing the state mid-batch would require special-casing which isn't done.
|
1885
|
+
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
1886
|
+
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
|
1887
|
+
}
|
1888
|
+
cell.pos = last_pos;
|
1889
|
+
cell.seq_id.clear();
|
1890
|
+
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
|
1891
|
+
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
1892
|
+
cell.seq_id.insert(seq_id);
|
1893
|
+
cells[seq_id].tail = cell_id;
|
1894
|
+
}
|
1895
|
+
}
|
1896
|
+
|
1897
|
+
// allow getting the range of used cells, from head to head + n
|
1898
|
+
head = min;
|
1899
|
+
n = max - min + 1;
|
1900
|
+
used = std::count_if(cells.begin(), cells.end(),
|
1901
|
+
[](const kv_cell & cell){ return !cell.is_empty(); });
|
1902
|
+
|
1903
|
+
// sanity check
|
1904
|
+
return n >= n_seqs;
|
1905
|
+
}
|
1906
|
+
|
1907
|
+
int32_t llama_kv_cache_recurrent::get_n_tokens() const {
|
1908
|
+
int32_t result = 0;
|
1909
|
+
|
1910
|
+
for (uint32_t i = 0; i < size; i++) {
|
1911
|
+
result += cells[i].seq_id.size();
|
1912
|
+
}
|
1913
|
+
|
1914
|
+
return result;
|
1915
|
+
}
|
1916
|
+
|
1917
|
+
int32_t llama_kv_cache_recurrent::get_used_cells() const {
|
1918
|
+
return used;
|
1919
|
+
}
|
1920
|
+
|
1921
|
+
llama_pos llama_kv_cache_recurrent::get_pos_max() const {
|
1922
|
+
llama_pos pos_max = -1;
|
1923
|
+
for (const auto & cell : cells) {
|
1924
|
+
pos_max = std::max(pos_max, cell.pos);
|
1925
|
+
}
|
1926
|
+
|
1927
|
+
return pos_max;
|
1928
|
+
}
|
1929
|
+
|
1930
|
+
bool llama_kv_cache_recurrent::get_can_shift() const {
|
1931
|
+
return false;
|
1932
|
+
}
|
1933
|
+
|
1934
|
+
int32_t llama_kv_cache_recurrent::s_copy(int i) const {
|
1935
|
+
const uint32_t cell_id = i + head;
|
1936
|
+
|
1937
|
+
//////////////////////////////////////////////
|
1938
|
+
// TODO: this should not mutate the KV cache !
|
1939
|
+
kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
|
1940
|
+
|
1941
|
+
// prevent out-of-bound sources
|
1942
|
+
if (cell.src < 0 || (uint32_t) cell.src >= size) {
|
1943
|
+
cell.src = cell_id;
|
1944
|
+
}
|
1945
|
+
|
1946
|
+
int32_t res = cell.src;
|
1947
|
+
|
1948
|
+
// TODO: do not mutate the KV cache
|
1949
|
+
// ensure copy only happens once
|
1950
|
+
if (cell.src != (int32_t) cell_id) {
|
1951
|
+
cell.src = cell_id;
|
1952
|
+
}
|
1953
|
+
|
1954
|
+
return res;
|
1955
|
+
}
|
1956
|
+
|
1957
|
+
float llama_kv_cache_recurrent::s_mask(int i) const {
|
1958
|
+
const uint32_t cell_id = i + head;
|
1959
|
+
|
1960
|
+
//////////////////////////////////////////////
|
1961
|
+
// TODO: this should not mutate the KV cache !
|
1962
|
+
kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
|
1963
|
+
|
1964
|
+
float res = (float) (cell.src >= 0);
|
1965
|
+
|
1966
|
+
// only clear once
|
1967
|
+
if (cell.src < 0) {
|
1968
|
+
cell.src = cell_id;
|
1969
|
+
}
|
1970
|
+
|
1971
|
+
return res;
|
1972
|
+
}
|
1973
|
+
|
1974
|
+
uint32_t llama_kv_cache_recurrent::cell_max() const {
|
1975
|
+
for (uint32_t i = size; i > 0; --i) {
|
1976
|
+
const kv_cell & cell = cells[i - 1];
|
1977
|
+
|
1978
|
+
if (cell.pos >= 0 && !cell.is_empty()) {
|
1979
|
+
return i;
|
1980
|
+
}
|
1981
|
+
}
|
1982
|
+
|
1983
|
+
return 0;
|
1984
|
+
}
|
1985
|
+
|
1986
|
+
size_t llama_kv_cache_recurrent::total_size() const {
|
1987
|
+
size_t size = 0;
|
1988
|
+
for (const auto & buf : bufs) {
|
1989
|
+
size += lm_ggml_backend_buffer_get_size(buf.get());
|
1990
|
+
}
|
1991
|
+
|
1992
|
+
return size;
|
1993
|
+
}
|
1994
|
+
|
1995
|
+
size_t llama_kv_cache_recurrent::size_k_bytes() const {
|
1996
|
+
size_t size_k_bytes = 0;
|
1997
|
+
|
1998
|
+
for (const auto & k : k_l) {
|
1999
|
+
size_k_bytes += lm_ggml_nbytes(k);
|
2000
|
+
}
|
2001
|
+
|
2002
|
+
return size_k_bytes;
|
2003
|
+
}
|
2004
|
+
|
2005
|
+
size_t llama_kv_cache_recurrent::size_v_bytes() const {
|
2006
|
+
size_t size_v_bytes = 0;
|
2007
|
+
|
2008
|
+
for (const auto & v : v_l) {
|
2009
|
+
size_v_bytes += lm_ggml_nbytes(v);
|
2010
|
+
}
|
2011
|
+
|
2012
|
+
return size_v_bytes;
|
2013
|
+
}
|
2014
|
+
|
2015
|
+
void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
2016
|
+
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
|
2017
|
+
uint32_t cell_count = 0;
|
2018
|
+
|
2019
|
+
// Count the number of cells with the specified seq_id
|
2020
|
+
// Find all the ranges of cells with this seq id (or all, when -1)
|
2021
|
+
uint32_t cell_range_begin = size;
|
2022
|
+
for (uint32_t i = 0; i < size; ++i) {
|
2023
|
+
const auto & cell = cells[i];
|
2024
|
+
if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
|
2025
|
+
++cell_count;
|
2026
|
+
if (cell_range_begin == size) {
|
2027
|
+
cell_range_begin = i;
|
2028
|
+
}
|
2029
|
+
} else {
|
2030
|
+
if (cell_range_begin != size) {
|
2031
|
+
cell_ranges.emplace_back(cell_range_begin, i);
|
2032
|
+
cell_range_begin = size;
|
2033
|
+
}
|
2034
|
+
}
|
2035
|
+
}
|
2036
|
+
if (cell_range_begin != size) {
|
2037
|
+
cell_ranges.emplace_back(cell_range_begin, size);
|
2038
|
+
}
|
2039
|
+
|
2040
|
+
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
|
2041
|
+
uint32_t cell_count_check = 0;
|
2042
|
+
for (const auto & range : cell_ranges) {
|
2043
|
+
cell_count_check += range.second - range.first;
|
2044
|
+
}
|
2045
|
+
LM_GGML_ASSERT(cell_count == cell_count_check);
|
2046
|
+
|
2047
|
+
io.write(&cell_count, sizeof(cell_count));
|
2048
|
+
|
2049
|
+
state_write_meta(io, cell_ranges, seq_id);
|
2050
|
+
state_write_data(io, cell_ranges);
|
2051
|
+
}
|
2052
|
+
|
2053
|
+
void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
|
2054
|
+
uint32_t cell_count;
|
2055
|
+
io.read_to(&cell_count, sizeof(cell_count));
|
2056
|
+
|
2057
|
+
bool res = true;
|
2058
|
+
res = res && state_read_meta(io, cell_count, seq_id);
|
2059
|
+
res = res && state_read_data(io, cell_count);
|
2060
|
+
|
2061
|
+
if (!res) {
|
2062
|
+
if (seq_id == -1) {
|
2063
|
+
clear();
|
2064
|
+
} else {
|
2065
|
+
seq_rm(seq_id, -1, -1);
|
2066
|
+
}
|
2067
|
+
throw std::runtime_error("failed to restore kv cache");
|
2068
|
+
}
|
2069
|
+
}
|
2070
|
+
|
2071
|
+
void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
|
2072
|
+
for (const auto & range : cell_ranges) {
|
2073
|
+
for (uint32_t i = range.first; i < range.second; ++i) {
|
2074
|
+
const auto & cell = cells[i];
|
2075
|
+
const llama_pos pos = cell.pos;
|
2076
|
+
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
|
2077
|
+
|
2078
|
+
io.write(&pos, sizeof(pos));
|
2079
|
+
io.write(&n_seq_id, sizeof(n_seq_id));
|
2080
|
+
|
2081
|
+
if (n_seq_id) {
|
2082
|
+
for (auto seq_id : cell.seq_id) {
|
2083
|
+
io.write(&seq_id, sizeof(seq_id));
|
2084
|
+
}
|
2085
|
+
}
|
2086
|
+
}
|
2087
|
+
}
|
2088
|
+
}
|
2089
|
+
|
2090
|
+
void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
|
2091
|
+
const uint32_t v_trans = 0;
|
2092
|
+
const uint32_t n_layer = hparams.n_layer;
|
2093
|
+
|
2094
|
+
io.write(&v_trans, sizeof(v_trans));
|
2095
|
+
io.write(&n_layer, sizeof(n_layer));
|
2096
|
+
|
2097
|
+
std::vector<uint8_t> tmp_buf;
|
2098
|
+
|
2099
|
+
// Iterate and write all the keys first, each row is a cell
|
2100
|
+
// Get whole range at a time
|
2101
|
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
2102
|
+
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
|
2103
|
+
|
2104
|
+
// Write key type
|
2105
|
+
const int32_t k_type_i = (int32_t)k_l[il]->type;
|
2106
|
+
io.write(&k_type_i, sizeof(k_type_i));
|
2107
|
+
|
2108
|
+
// Write row size of key
|
2109
|
+
const uint64_t k_size_row = lm_ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
2110
|
+
io.write(&k_size_row, sizeof(k_size_row));
|
2111
|
+
|
2112
|
+
// Read each range of cells of k_size length each into tmp_buf and write out
|
2113
|
+
for (const auto & range : cell_ranges) {
|
2114
|
+
const size_t range_size = range.second - range.first;
|
2115
|
+
const size_t buf_size = range_size * k_size_row;
|
2116
|
+
io.write_tensor(k_l[il], range.first * k_size_row, buf_size);
|
2117
|
+
}
|
2118
|
+
}
|
2119
|
+
|
2120
|
+
if (!v_trans) {
|
2121
|
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
2122
|
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
2123
|
+
|
2124
|
+
// Write value type
|
2125
|
+
const int32_t v_type_i = (int32_t)v_l[il]->type;
|
2126
|
+
io.write(&v_type_i, sizeof(v_type_i));
|
2127
|
+
|
2128
|
+
// Write row size of value
|
2129
|
+
const uint64_t v_size_row = lm_ggml_row_size(v_l[il]->type, n_embd_v_gqa);
|
2130
|
+
io.write(&v_size_row, sizeof(v_size_row));
|
2131
|
+
|
2132
|
+
// Read each range of cells of v_size length each into tmp_buf and write out
|
2133
|
+
for (const auto & range : cell_ranges) {
|
2134
|
+
const size_t range_size = range.second - range.first;
|
2135
|
+
const size_t buf_size = range_size * v_size_row;
|
2136
|
+
io.write_tensor(v_l[il], range.first * v_size_row, buf_size);
|
2137
|
+
}
|
2138
|
+
}
|
2139
|
+
} else {
|
2140
|
+
// When v is transposed, we also need the element size and get the element ranges from each row
|
2141
|
+
const uint32_t kv_size = size;
|
2142
|
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
2143
|
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
2144
|
+
|
2145
|
+
// Write value type
|
2146
|
+
const int32_t v_type_i = (int32_t)v_l[il]->type;
|
2147
|
+
io.write(&v_type_i, sizeof(v_type_i));
|
2148
|
+
|
2149
|
+
// Write element size
|
2150
|
+
const uint32_t v_size_el = lm_ggml_type_size(v_l[il]->type);
|
2151
|
+
io.write(&v_size_el, sizeof(v_size_el));
|
2152
|
+
|
2153
|
+
// Write GQA embedding size
|
2154
|
+
io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
|
2155
|
+
|
2156
|
+
// For each row, we get the element values of each cell
|
2157
|
+
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
2158
|
+
// Read each range of cells of v_size_el length each into tmp_buf and write out
|
2159
|
+
for (const auto & range : cell_ranges) {
|
2160
|
+
const size_t range_size = range.second - range.first;
|
2161
|
+
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
|
2162
|
+
const size_t buf_size = range_size * v_size_el;
|
2163
|
+
io.write_tensor(v_l[il], src_offset, buf_size);
|
2164
|
+
}
|
2165
|
+
}
|
2166
|
+
}
|
2167
|
+
}
|
2168
|
+
}
|
2169
|
+
|
2170
|
+
bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
|
2171
|
+
if (dest_seq_id != -1) {
|
2172
|
+
// single sequence
|
2173
|
+
|
2174
|
+
seq_rm(dest_seq_id, -1, -1);
|
2175
|
+
|
2176
|
+
llama_sbatch sbatch;
|
2177
|
+
llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
|
2178
|
+
|
2179
|
+
batch.n_tokens = cell_count;
|
2180
|
+
batch.n_seq_tokens = cell_count;
|
2181
|
+
batch.n_seqs = 1;
|
2182
|
+
|
2183
|
+
for (uint32_t i = 0; i < cell_count; ++i) {
|
2184
|
+
llama_pos pos;
|
2185
|
+
uint32_t n_seq_id;
|
2186
|
+
|
2187
|
+
io.read_to(&pos, sizeof(pos));
|
2188
|
+
io.read_to(&n_seq_id, sizeof(n_seq_id));
|
2189
|
+
|
2190
|
+
if (n_seq_id != 0) {
|
2191
|
+
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
|
2192
|
+
return false;
|
2193
|
+
}
|
2194
|
+
|
2195
|
+
batch.pos[i] = pos;
|
2196
|
+
}
|
2197
|
+
batch.n_seq_id[0] = 1;
|
2198
|
+
batch.seq_id[0] = &dest_seq_id;
|
2199
|
+
if (!find_slot(batch)) {
|
2200
|
+
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
|
2201
|
+
return false;
|
2202
|
+
}
|
2203
|
+
commit();
|
2204
|
+
|
2205
|
+
// DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
|
2206
|
+
// Assume that this is one contiguous block of cells
|
2207
|
+
LM_GGML_ASSERT(head + cell_count <= size);
|
2208
|
+
LM_GGML_ASSERT(cells[head].pos == batch.pos[0]);
|
2209
|
+
LM_GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]);
|
2210
|
+
LM_GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
|
2211
|
+
LM_GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
|
2212
|
+
} else {
|
2213
|
+
// whole KV cache restore
|
2214
|
+
|
2215
|
+
if (cell_count > size) {
|
2216
|
+
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
|
2217
|
+
return false;
|
2218
|
+
}
|
2219
|
+
|
2220
|
+
clear();
|
2221
|
+
|
2222
|
+
for (uint32_t i = 0; i < cell_count; ++i) {
|
2223
|
+
kv_cell & cell = cells[i];
|
2224
|
+
|
2225
|
+
llama_pos pos;
|
2226
|
+
uint32_t n_seq_id;
|
2227
|
+
|
2228
|
+
io.read_to(&pos, sizeof(pos));
|
2229
|
+
io.read_to(&n_seq_id, sizeof(n_seq_id));
|
2230
|
+
|
2231
|
+
cell.pos = pos;
|
2232
|
+
|
2233
|
+
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
2234
|
+
llama_seq_id seq_id;
|
2235
|
+
io.read_to(&seq_id, sizeof(seq_id));
|
2236
|
+
|
2237
|
+
// TODO: llama_kv_cache_recurrent should have a notion of max sequences
|
2238
|
+
//if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
|
2239
|
+
if (seq_id < 0) {
|
2240
|
+
//LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
|
2241
|
+
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
|
2242
|
+
return false;
|
2243
|
+
}
|
2244
|
+
|
2245
|
+
cell.seq_id.insert(seq_id);
|
2246
|
+
|
2247
|
+
int32_t & tail = cells[seq_id].tail;
|
2248
|
+
if (tail != -1) {
|
2249
|
+
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
|
2250
|
+
return false;
|
2251
|
+
}
|
2252
|
+
tail = i;
|
2253
|
+
}
|
2254
|
+
}
|
2255
|
+
|
2256
|
+
head = 0;
|
2257
|
+
used = cell_count;
|
2258
|
+
}
|
2259
|
+
|
2260
|
+
for (uint32_t i = 0; i < cell_count; ++i) {
|
2261
|
+
uint32_t cell_id = head + i;
|
2262
|
+
// make sure the recurrent states will keep their restored state
|
2263
|
+
cells[cell_id].src = cell_id;
|
2264
|
+
}
|
2265
|
+
|
2266
|
+
return true;
|
2267
|
+
}
|
2268
|
+
|
2269
|
+
bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
|
2270
|
+
uint32_t v_trans;
|
2271
|
+
uint32_t n_layer;
|
2272
|
+
io.read_to(&v_trans, sizeof(v_trans));
|
2273
|
+
io.read_to(&n_layer, sizeof(n_layer));
|
2274
|
+
|
2275
|
+
if (n_layer != hparams.n_layer) {
|
2276
|
+
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
|
2277
|
+
return false;
|
2278
|
+
}
|
2279
|
+
if (cell_count > size) {
|
2280
|
+
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
|
2281
|
+
return false;
|
2282
|
+
}
|
2283
|
+
if (false != (bool) v_trans) {
|
1178
2284
|
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
|
1179
2285
|
return false;
|
1180
2286
|
}
|
@@ -1326,7 +2432,7 @@ void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache
|
|
1326
2432
|
view->cells_sequences = (llama_seq_id *)p;
|
1327
2433
|
}
|
1328
2434
|
|
1329
|
-
const std::vector<
|
2435
|
+
const std::vector<llama_kv_cache_unified::kv_cell> & kv_cells = kvu->cells;
|
1330
2436
|
llama_kv_cache_view_cell * c_curr = view->cells;
|
1331
2437
|
llama_seq_id * cs_curr = view->cells_sequences;
|
1332
2438
|
int32_t used_cells = 0;
|