cui-llama.rn 1.5.0 → 1.6.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE +20 -20
- package/README.md +345 -319
- package/android/build.gradle +116 -116
- package/android/gradle.properties +5 -5
- package/android/src/main/AndroidManifest.xml +4 -4
- package/android/src/main/CMakeLists.txt +129 -124
- package/android/src/main/java/com/rnllama/LlamaContext.java +648 -645
- package/android/src/main/java/com/rnllama/RNLlama.java +695 -695
- package/android/src/main/java/com/rnllama/RNLlamaPackage.java +48 -48
- package/android/src/main/jni-utils.h +100 -100
- package/android/src/main/jni.cpp +1279 -1263
- package/android/src/main/jniLibs/arm64-v8a/librnllama.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod_i8mm.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_i8mm.so +0 -0
- package/android/src/main/jniLibs/x86_64/librnllama.so +0 -0
- package/android/src/main/jniLibs/x86_64/librnllama_x86_64.so +0 -0
- package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +135 -135
- package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +136 -136
- package/cpp/LICENSE +21 -0
- package/cpp/README.md +4 -4
- package/cpp/chat.cpp +1 -1
- package/cpp/common.cpp +17 -2
- package/cpp/common.h +7 -3
- package/cpp/ggml-alloc.c +4 -1
- package/cpp/ggml-cpp.h +1 -1
- package/cpp/ggml-cpu/amx/amx.cpp +221 -0
- package/cpp/ggml-cpu/amx/amx.h +8 -0
- package/cpp/ggml-cpu/amx/common.h +91 -0
- package/cpp/ggml-cpu/amx/mmq.cpp +2511 -0
- package/cpp/ggml-cpu/amx/mmq.h +10 -0
- package/cpp/{binary-ops.h → ggml-cpu/binary-ops.h} +1 -1
- package/cpp/ggml-cpu/common.h +72 -0
- package/cpp/{ggml-cpu-aarch64.cpp → ggml-cpu/ggml-cpu-aarch64.cpp} +809 -101
- package/cpp/{ggml-cpu.c → ggml-cpu/ggml-cpu.c} +109 -42
- package/cpp/{ggml-cpu.cpp → ggml-cpu/ggml-cpu.cpp} +3 -0
- package/cpp/{ops.cpp → ggml-cpu/ops.cpp} +246 -160
- package/cpp/{ops.h → ggml-cpu/ops.h} +2 -20
- package/cpp/{sgemm.cpp → ggml-cpu/sgemm.cpp} +501 -0
- package/cpp/{simd-mappings.h → ggml-cpu/simd-mappings.h} +7 -3
- package/cpp/{unary-ops.h → ggml-cpu/unary-ops.h} +1 -1
- package/cpp/ggml-cpu.h +5 -0
- package/cpp/ggml-impl.h +16 -9
- package/cpp/ggml-llama-sim.metallib +0 -0
- package/cpp/ggml-llama.metallib +0 -0
- package/cpp/ggml-metal-impl.h +597 -597
- package/cpp/ggml-metal.m +496 -47
- package/cpp/ggml.c +134 -244
- package/cpp/ggml.h +62 -95
- package/cpp/json-schema-to-grammar.cpp +3 -0
- package/cpp/llama-arch.cpp +46 -17
- package/cpp/llama-arch.h +9 -0
- package/cpp/llama-batch.cpp +5 -1
- package/cpp/llama-batch.h +2 -1
- package/cpp/llama-chat.cpp +31 -10
- package/cpp/llama-chat.h +3 -2
- package/cpp/llama-context.cpp +104 -489
- package/cpp/llama-context.h +14 -30
- package/cpp/llama-graph.cpp +69 -62
- package/cpp/llama-graph.h +21 -18
- package/cpp/llama-hparams.h +5 -0
- package/cpp/llama-kv-cache.cpp +1497 -391
- package/cpp/llama-kv-cache.h +272 -80
- package/cpp/llama-memory.h +11 -1
- package/cpp/llama-model.cpp +502 -176
- package/cpp/llama-model.h +13 -3
- package/cpp/llama-sampling.cpp +2 -1
- package/cpp/llama-vocab.cpp +8 -1
- package/cpp/llama.h +14 -11
- package/cpp/rn-llama.cpp +721 -873
- package/cpp/rn-llama.h +134 -138
- package/cpp/sampling.h +107 -107
- package/cpp/unicode-data.cpp +7034 -7034
- package/cpp/unicode-data.h +20 -20
- package/cpp/unicode.cpp +849 -849
- package/cpp/unicode.h +66 -66
- package/ios/CMakeLists.txt +119 -108
- package/ios/RNLlama.h +13 -7
- package/ios/RNLlama.mm +423 -405
- package/ios/RNLlamaContext.h +57 -57
- package/ios/RNLlamaContext.mm +833 -835
- package/ios/rnllama.xcframework/Info.plist +74 -74
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/chat.h +143 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/common.h +681 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/cpu-common.h +72 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-common.h +1857 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu.h +143 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-impl.h +601 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-metal-impl.h +597 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-opt.h +216 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml.h +2189 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/gguf.h +202 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/json-schema-to-grammar.h +21 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/json.hpp +24766 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-adapter.h +76 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-arch.h +437 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-batch.h +89 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-chat.h +57 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-context.h +249 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-cparams.h +38 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-cpp.h +30 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-grammar.h +173 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-graph.h +595 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-hparams.h +161 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-impl.h +61 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-io.h +35 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-kv-cache.h +405 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-memory.h +31 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-mmap.h +68 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-model-loader.h +169 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-model.h +419 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-sampling.h +32 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-vocab.h +125 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama.h +1437 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/log.h +132 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/minja/chat-template.hpp +537 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/minja/minja.hpp +2941 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/rn-llama.h +134 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/sampling.h +107 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/speculative.h +28 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/unicode-data.h +20 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/unicode.h +66 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/ggml-llama.metallib +0 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/chat.h +143 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/common.h +681 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/cpu-common.h +72 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-common.h +1857 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu.h +143 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-impl.h +601 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal-impl.h +597 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-opt.h +216 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml.h +2189 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/gguf.h +202 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/json-schema-to-grammar.h +21 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/json.hpp +24766 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-adapter.h +76 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-arch.h +437 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-batch.h +89 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-chat.h +57 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-context.h +249 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cparams.h +38 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cpp.h +30 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-grammar.h +173 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-graph.h +595 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-hparams.h +161 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-impl.h +61 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-io.h +35 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-kv-cache.h +405 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-memory.h +31 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-mmap.h +68 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model-loader.h +169 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model.h +419 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-sampling.h +32 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-vocab.h +125 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama.h +1437 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/log.h +132 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/minja/chat-template.hpp +537 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/minja/minja.hpp +2941 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/rn-llama.h +134 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/sampling.h +107 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/speculative.h +28 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/unicode-data.h +20 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/unicode.h +66 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/_CodeSignature/CodeResources +101 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/ggml-llama-sim.metallib +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/chat.h +143 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/common.h +681 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/cpu-common.h +72 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-common.h +1857 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu.h +143 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-impl.h +601 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-metal-impl.h +597 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-opt.h +216 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml.h +2189 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/gguf.h +202 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/json-schema-to-grammar.h +21 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/json.hpp +24766 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-adapter.h +76 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-arch.h +437 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-batch.h +89 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-chat.h +57 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-context.h +249 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-cparams.h +38 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-cpp.h +30 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-grammar.h +173 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-graph.h +595 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-hparams.h +161 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-impl.h +61 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-io.h +35 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-kv-cache.h +405 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-memory.h +31 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-mmap.h +68 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-model-loader.h +169 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-model.h +419 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-sampling.h +32 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-vocab.h +125 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama.h +1437 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/log.h +132 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/minja/chat-template.hpp +537 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/minja/minja.hpp +2941 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/rn-llama.h +134 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/sampling.h +107 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/speculative.h +28 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/unicode-data.h +20 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/unicode.h +66 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/ggml-llama.metallib +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/chat.h +143 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/common.h +681 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/cpu-common.h +72 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-common.h +1857 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu.h +143 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-impl.h +601 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal-impl.h +597 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-opt.h +216 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml.h +2189 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/gguf.h +202 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/json-schema-to-grammar.h +21 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/json.hpp +24766 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-adapter.h +76 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-arch.h +437 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-batch.h +89 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-chat.h +57 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-context.h +249 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cparams.h +38 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cpp.h +30 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-grammar.h +173 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-graph.h +595 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-hparams.h +161 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-impl.h +61 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-io.h +35 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-kv-cache.h +405 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-memory.h +31 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-mmap.h +68 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model-loader.h +169 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model.h +419 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-sampling.h +32 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-vocab.h +125 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama.h +1437 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/log.h +132 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/minja/chat-template.hpp +537 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/minja/minja.hpp +2941 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/rn-llama.h +134 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/sampling.h +107 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/speculative.h +28 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/unicode-data.h +20 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/unicode.h +66 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/_CodeSignature/CodeResources +101 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/ggml-llama-sim.metallib +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/rnllama +0 -0
- package/jest/mock.js +203 -203
- package/lib/commonjs/NativeRNLlama.js +1 -2
- package/lib/commonjs/NativeRNLlama.js.map +1 -1
- package/lib/commonjs/chat.js.map +1 -1
- package/lib/commonjs/grammar.js +12 -31
- package/lib/commonjs/grammar.js.map +1 -1
- package/lib/commonjs/index.js +47 -47
- package/lib/commonjs/index.js.map +1 -1
- package/lib/commonjs/package.json +1 -0
- package/lib/module/NativeRNLlama.js +2 -0
- package/lib/module/NativeRNLlama.js.map +1 -1
- package/lib/module/chat.js +2 -0
- package/lib/module/chat.js.map +1 -1
- package/lib/module/grammar.js +14 -31
- package/lib/module/grammar.js.map +1 -1
- package/lib/module/index.js +47 -45
- package/lib/module/index.js.map +1 -1
- package/lib/module/package.json +1 -0
- package/lib/typescript/NativeRNLlama.d.ts +10 -4
- package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
- package/lib/typescript/index.d.ts.map +1 -1
- package/llama-rn.podspec +48 -48
- package/package.json +233 -233
- package/src/NativeRNLlama.ts +431 -426
- package/src/chat.ts +44 -44
- package/src/grammar.ts +854 -854
- package/src/index.ts +495 -487
- /package/cpp/{binary-ops.cpp → ggml-cpu/binary-ops.cpp} +0 -0
- /package/cpp/{ggml-cpu-aarch64.h → ggml-cpu/ggml-cpu-aarch64.h} +0 -0
- /package/cpp/{ggml-cpu-impl.h → ggml-cpu/ggml-cpu-impl.h} +0 -0
- /package/cpp/{ggml-cpu-quants.c → ggml-cpu/ggml-cpu-quants.c} +0 -0
- /package/cpp/{ggml-cpu-quants.h → ggml-cpu/ggml-cpu-quants.h} +0 -0
- /package/cpp/{ggml-cpu-traits.cpp → ggml-cpu/ggml-cpu-traits.cpp} +0 -0
- /package/cpp/{ggml-cpu-traits.h → ggml-cpu/ggml-cpu-traits.h} +0 -0
- /package/cpp/{sgemm.h → ggml-cpu/sgemm.h} +0 -0
- /package/cpp/{unary-ops.cpp → ggml-cpu/unary-ops.cpp} +0 -0
- /package/cpp/{vec.cpp → ggml-cpu/vec.cpp} +0 -0
- /package/cpp/{vec.h → ggml-cpu/vec.h} +0 -0
@@ -0,0 +1,2189 @@
|
|
1
|
+
#pragma once
|
2
|
+
|
3
|
+
//
|
4
|
+
// GGML Tensor Library
|
5
|
+
//
|
6
|
+
// This documentation is still a work in progress.
|
7
|
+
// If you wish some specific topics to be covered, feel free to drop a comment:
|
8
|
+
//
|
9
|
+
// https://github.com/ggerganov/whisper.cpp/issues/40
|
10
|
+
//
|
11
|
+
// ## Overview
|
12
|
+
//
|
13
|
+
// This library implements:
|
14
|
+
//
|
15
|
+
// - a set of tensor operations
|
16
|
+
// - automatic differentiation
|
17
|
+
// - basic optimization algorithms
|
18
|
+
//
|
19
|
+
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
20
|
+
// but is not limited to, the following:
|
21
|
+
//
|
22
|
+
// - linear regression
|
23
|
+
// - support vector machines
|
24
|
+
// - neural networks
|
25
|
+
//
|
26
|
+
// The library allows the user to define a certain function using the available tensor operations. This function
|
27
|
+
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
28
|
+
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
29
|
+
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
30
|
+
// using one of the available optimization algorithms.
|
31
|
+
//
|
32
|
+
// For example, here we define the function: f(x) = a*x^2 + b
|
33
|
+
//
|
34
|
+
// {
|
35
|
+
// struct lm_ggml_init_params params = {
|
36
|
+
// .mem_size = 16*1024*1024,
|
37
|
+
// .mem_buffer = NULL,
|
38
|
+
// };
|
39
|
+
//
|
40
|
+
// // memory allocation happens here
|
41
|
+
// struct lm_ggml_context * ctx = lm_ggml_init(params);
|
42
|
+
//
|
43
|
+
// struct lm_ggml_tensor * x = lm_ggml_new_tensor_1d(ctx, LM_GGML_TYPE_F32, 1);
|
44
|
+
//
|
45
|
+
// lm_ggml_set_param(ctx, x); // x is an input variable
|
46
|
+
//
|
47
|
+
// struct lm_ggml_tensor * a = lm_ggml_new_tensor_1d(ctx, LM_GGML_TYPE_F32, 1);
|
48
|
+
// struct lm_ggml_tensor * b = lm_ggml_new_tensor_1d(ctx, LM_GGML_TYPE_F32, 1);
|
49
|
+
// struct lm_ggml_tensor * x2 = lm_ggml_mul(ctx, x, x);
|
50
|
+
// struct lm_ggml_tensor * f = lm_ggml_add(ctx, lm_ggml_mul(ctx, a, x2), b);
|
51
|
+
//
|
52
|
+
// ...
|
53
|
+
// }
|
54
|
+
//
|
55
|
+
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
56
|
+
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
57
|
+
//
|
58
|
+
// {
|
59
|
+
// ...
|
60
|
+
//
|
61
|
+
// struct lm_ggml_cgraph * gf = lm_ggml_new_graph(ctx);
|
62
|
+
// lm_ggml_build_forward_expand(gf, f);
|
63
|
+
//
|
64
|
+
// // set the input variable and parameter values
|
65
|
+
// lm_ggml_set_f32(x, 2.0f);
|
66
|
+
// lm_ggml_set_f32(a, 3.0f);
|
67
|
+
// lm_ggml_set_f32(b, 4.0f);
|
68
|
+
//
|
69
|
+
// lm_ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
|
70
|
+
//
|
71
|
+
// printf("f = %f\n", lm_ggml_get_f32_1d(f, 0));
|
72
|
+
//
|
73
|
+
// ...
|
74
|
+
// }
|
75
|
+
//
|
76
|
+
// The actual computation is performed in the lm_ggml_graph_compute() function.
|
77
|
+
//
|
78
|
+
// The lm_ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
79
|
+
// lm_ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
80
|
+
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
81
|
+
// and after defining the computation graph, call the lm_ggml_used_mem() function to find out how much memory was
|
82
|
+
// actually needed.
|
83
|
+
//
|
84
|
+
// The lm_ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
85
|
+
// differentiation and optimization algorithms.
|
86
|
+
//
|
87
|
+
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
88
|
+
// multiple times. All computations will use the same memory buffer allocated in the lm_ggml_init() function. This way
|
89
|
+
// the user can avoid the memory allocation overhead at runtime.
|
90
|
+
//
|
91
|
+
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
92
|
+
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
93
|
+
//
|
94
|
+
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
95
|
+
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
96
|
+
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
97
|
+
// yet, but a few examples are demonstrated in the following operations:
|
98
|
+
//
|
99
|
+
// - lm_ggml_permute()
|
100
|
+
// - lm_ggml_conv_1d_1s()
|
101
|
+
// - lm_ggml_conv_1d_2s()
|
102
|
+
//
|
103
|
+
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
104
|
+
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
105
|
+
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
106
|
+
// calculus class, or watch the following video:
|
107
|
+
//
|
108
|
+
// What is Automatic Differentiation?
|
109
|
+
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
110
|
+
//
|
111
|
+
//
|
112
|
+
// ## Tensor data (struct lm_ggml_tensor)
|
113
|
+
//
|
114
|
+
// The tensors are stored in memory via the lm_ggml_tensor struct. The structure provides information about the size of
|
115
|
+
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
116
|
+
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
117
|
+
//
|
118
|
+
// {
|
119
|
+
// struct lm_ggml_tensor * c = lm_ggml_add(ctx, a, b);
|
120
|
+
//
|
121
|
+
// assert(c->src[0] == a);
|
122
|
+
// assert(c->src[1] == b);
|
123
|
+
// }
|
124
|
+
//
|
125
|
+
// The multi-dimensional tensors are stored in row-major order. The lm_ggml_tensor struct contains fields for the
|
126
|
+
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
127
|
+
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
128
|
+
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
129
|
+
// contiguous in memory.
|
130
|
+
//
|
131
|
+
// The data of the tensor is accessed via the "data" pointer. For example:
|
132
|
+
//
|
133
|
+
// {
|
134
|
+
// const int nx = 2;
|
135
|
+
// const int ny = 3;
|
136
|
+
//
|
137
|
+
// struct lm_ggml_tensor * a = lm_ggml_new_tensor_2d(ctx, LM_GGML_TYPE_F32, nx, ny);
|
138
|
+
//
|
139
|
+
// for (int y = 0; y < ny; y++) {
|
140
|
+
// for (int x = 0; x < nx; x++) {
|
141
|
+
// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
|
142
|
+
// }
|
143
|
+
// }
|
144
|
+
//
|
145
|
+
// ...
|
146
|
+
// }
|
147
|
+
//
|
148
|
+
// Alternatively, there are helper functions, such as lm_ggml_get_f32_1d() and lm_ggml_set_f32_1d() that can be used.
|
149
|
+
//
|
150
|
+
// ## The matrix multiplication operator (lm_ggml_mul_mat)
|
151
|
+
//
|
152
|
+
// TODO
|
153
|
+
//
|
154
|
+
//
|
155
|
+
// ## Multi-threading
|
156
|
+
//
|
157
|
+
// TODO
|
158
|
+
//
|
159
|
+
//
|
160
|
+
// ## Overview of ggml.c
|
161
|
+
//
|
162
|
+
// TODO
|
163
|
+
//
|
164
|
+
//
|
165
|
+
// ## SIMD optimizations
|
166
|
+
//
|
167
|
+
// TODO
|
168
|
+
//
|
169
|
+
//
|
170
|
+
// ## Debugging ggml
|
171
|
+
//
|
172
|
+
// TODO
|
173
|
+
//
|
174
|
+
//
|
175
|
+
|
176
|
+
#ifdef LM_GGML_SHARED
|
177
|
+
# if defined(_WIN32) && !defined(__MINGW32__)
|
178
|
+
# ifdef LM_GGML_BUILD
|
179
|
+
# define LM_GGML_API __declspec(dllexport) extern
|
180
|
+
# else
|
181
|
+
# define LM_GGML_API __declspec(dllimport) extern
|
182
|
+
# endif
|
183
|
+
# else
|
184
|
+
# define LM_GGML_API __attribute__ ((visibility ("default"))) extern
|
185
|
+
# endif
|
186
|
+
#else
|
187
|
+
# define LM_GGML_API extern
|
188
|
+
#endif
|
189
|
+
|
190
|
+
// TODO: support for clang
|
191
|
+
#ifdef __GNUC__
|
192
|
+
# define LM_GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
193
|
+
#elif defined(_MSC_VER)
|
194
|
+
# define LM_GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
195
|
+
#else
|
196
|
+
# define LM_GGML_DEPRECATED(func, hint) func
|
197
|
+
#endif
|
198
|
+
|
199
|
+
#ifndef __GNUC__
|
200
|
+
# define LM_GGML_ATTRIBUTE_FORMAT(...)
|
201
|
+
#elif defined(__MINGW32__) && !defined(__clang__)
|
202
|
+
# define LM_GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
203
|
+
#else
|
204
|
+
# define LM_GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
205
|
+
#endif
|
206
|
+
|
207
|
+
#include <stdbool.h>
|
208
|
+
#include <stddef.h>
|
209
|
+
#include <stdint.h>
|
210
|
+
#include <stdio.h>
|
211
|
+
#include <string.h>
|
212
|
+
|
213
|
+
#define LM_GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
214
|
+
#define LM_GGML_FILE_VERSION 2
|
215
|
+
|
216
|
+
#define LM_GGML_QNT_VERSION 2 // bump this on quantization format changes
|
217
|
+
#define LM_GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
218
|
+
|
219
|
+
#define LM_GGML_MAX_DIMS 4
|
220
|
+
#define LM_GGML_MAX_PARAMS 2048
|
221
|
+
#define LM_GGML_MAX_SRC 10
|
222
|
+
#define LM_GGML_MAX_N_THREADS 512
|
223
|
+
#define LM_GGML_MAX_OP_PARAMS 64
|
224
|
+
|
225
|
+
#ifndef LM_GGML_MAX_NAME
|
226
|
+
# define LM_GGML_MAX_NAME 64
|
227
|
+
#endif
|
228
|
+
|
229
|
+
#define LM_GGML_DEFAULT_N_THREADS 4
|
230
|
+
#define LM_GGML_DEFAULT_GRAPH_SIZE 2048
|
231
|
+
|
232
|
+
#if UINTPTR_MAX == 0xFFFFFFFF
|
233
|
+
#define LM_GGML_MEM_ALIGN 4
|
234
|
+
#else
|
235
|
+
#define LM_GGML_MEM_ALIGN 16
|
236
|
+
#endif
|
237
|
+
|
238
|
+
#define LM_GGML_EXIT_SUCCESS 0
|
239
|
+
#define LM_GGML_EXIT_ABORTED 1
|
240
|
+
|
241
|
+
#define LM_GGML_ROPE_TYPE_NEOX 2
|
242
|
+
#define LM_GGML_ROPE_TYPE_MROPE 8
|
243
|
+
#define LM_GGML_ROPE_TYPE_VISION 24
|
244
|
+
|
245
|
+
#define LM_GGML_UNUSED(x) (void)(x)
|
246
|
+
|
247
|
+
#define LM_GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
248
|
+
|
249
|
+
#ifndef NDEBUG
|
250
|
+
# define LM_GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
|
251
|
+
#elif defined(__GNUC__)
|
252
|
+
# define LM_GGML_UNREACHABLE() __builtin_unreachable()
|
253
|
+
#elif defined(_MSC_VER)
|
254
|
+
# define LM_GGML_UNREACHABLE() __assume(0)
|
255
|
+
#else
|
256
|
+
# define LM_GGML_UNREACHABLE() ((void) 0)
|
257
|
+
#endif
|
258
|
+
|
259
|
+
#ifdef __cplusplus
|
260
|
+
# define LM_GGML_NORETURN [[noreturn]]
|
261
|
+
#elif defined(_MSC_VER)
|
262
|
+
# define LM_GGML_NORETURN __declspec(noreturn)
|
263
|
+
#else
|
264
|
+
# define LM_GGML_NORETURN _Noreturn
|
265
|
+
#endif
|
266
|
+
|
267
|
+
#define LM_GGML_ABORT(...) lm_ggml_abort((strrchr(__FILE__, '/' ) ? strrchr(__FILE__, '/' ) + 1 : __FILE__), __LINE__, __VA_ARGS__)
|
268
|
+
#define LM_GGML_ASSERT(x) if (!(x)) LM_GGML_ABORT("LM_GGML_ASSERT(%s) failed", #x)
|
269
|
+
|
270
|
+
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
271
|
+
// main purpose is to reduce code duplication and improve readability.
|
272
|
+
//
|
273
|
+
// example:
|
274
|
+
//
|
275
|
+
// LM_GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
276
|
+
// LM_GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
|
277
|
+
//
|
278
|
+
#define LM_GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
|
279
|
+
const type prefix##0 = (pointer)->array[0]; \
|
280
|
+
LM_GGML_UNUSED(prefix##0);
|
281
|
+
#define LM_GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
|
282
|
+
LM_GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
|
283
|
+
const type prefix##1 = (pointer)->array[1]; \
|
284
|
+
LM_GGML_UNUSED(prefix##1);
|
285
|
+
#define LM_GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
|
286
|
+
LM_GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
|
287
|
+
const type prefix##2 = (pointer)->array[2]; \
|
288
|
+
LM_GGML_UNUSED(prefix##2);
|
289
|
+
#define LM_GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
|
290
|
+
LM_GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
|
291
|
+
const type prefix##3 = (pointer)->array[3]; \
|
292
|
+
LM_GGML_UNUSED(prefix##3);
|
293
|
+
|
294
|
+
#define LM_GGML_TENSOR_UNARY_OP_LOCALS \
|
295
|
+
LM_GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
296
|
+
LM_GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
297
|
+
LM_GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
298
|
+
LM_GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
299
|
+
|
300
|
+
#define LM_GGML_TENSOR_BINARY_OP_LOCALS \
|
301
|
+
LM_GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
302
|
+
LM_GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
303
|
+
LM_GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
304
|
+
LM_GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
|
305
|
+
LM_GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
306
|
+
LM_GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
307
|
+
|
308
|
+
#define LM_GGML_TENSOR_BINARY_OP_LOCALS01 \
|
309
|
+
LM_GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
310
|
+
LM_GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
311
|
+
LM_GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
312
|
+
LM_GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
313
|
+
|
314
|
+
#ifdef __cplusplus
|
315
|
+
extern "C" {
|
316
|
+
#endif
|
317
|
+
|
318
|
+
LM_GGML_NORETURN LM_GGML_ATTRIBUTE_FORMAT(3, 4)
|
319
|
+
LM_GGML_API void lm_ggml_abort(const char * file, int line, const char * fmt, ...);
|
320
|
+
|
321
|
+
enum lm_ggml_status {
|
322
|
+
LM_GGML_STATUS_ALLOC_FAILED = -2,
|
323
|
+
LM_GGML_STATUS_FAILED = -1,
|
324
|
+
LM_GGML_STATUS_SUCCESS = 0,
|
325
|
+
LM_GGML_STATUS_ABORTED = 1,
|
326
|
+
};
|
327
|
+
|
328
|
+
// get lm_ggml_status name string
|
329
|
+
LM_GGML_API const char * lm_ggml_status_to_string(enum lm_ggml_status status);
|
330
|
+
|
331
|
+
// ieee 754-2008 half-precision float16
|
332
|
+
// todo: make this not an integral type
|
333
|
+
typedef uint16_t lm_ggml_fp16_t;
|
334
|
+
LM_GGML_API float lm_ggml_fp16_to_fp32(lm_ggml_fp16_t);
|
335
|
+
LM_GGML_API lm_ggml_fp16_t lm_ggml_fp32_to_fp16(float);
|
336
|
+
LM_GGML_API void lm_ggml_fp16_to_fp32_row(const lm_ggml_fp16_t *, float *, int64_t);
|
337
|
+
LM_GGML_API void lm_ggml_fp32_to_fp16_row(const float *, lm_ggml_fp16_t *, int64_t);
|
338
|
+
|
339
|
+
// google brain half-precision bfloat16
|
340
|
+
typedef struct { uint16_t bits; } lm_ggml_bf16_t;
|
341
|
+
LM_GGML_API lm_ggml_bf16_t lm_ggml_fp32_to_bf16(float);
|
342
|
+
LM_GGML_API float lm_ggml_bf16_to_fp32(lm_ggml_bf16_t); // consider just doing << 16
|
343
|
+
LM_GGML_API void lm_ggml_bf16_to_fp32_row(const lm_ggml_bf16_t *, float *, int64_t);
|
344
|
+
LM_GGML_API void lm_ggml_fp32_to_bf16_row_ref(const float *, lm_ggml_bf16_t *, int64_t);
|
345
|
+
LM_GGML_API void lm_ggml_fp32_to_bf16_row(const float *, lm_ggml_bf16_t *, int64_t);
|
346
|
+
|
347
|
+
struct lm_ggml_object;
|
348
|
+
struct lm_ggml_context;
|
349
|
+
struct lm_ggml_cgraph;
|
350
|
+
|
351
|
+
// NOTE: always add types at the end of the enum to keep backward compatibility
|
352
|
+
enum lm_ggml_type {
|
353
|
+
LM_GGML_TYPE_F32 = 0,
|
354
|
+
LM_GGML_TYPE_F16 = 1,
|
355
|
+
LM_GGML_TYPE_Q4_0 = 2,
|
356
|
+
LM_GGML_TYPE_Q4_1 = 3,
|
357
|
+
// LM_GGML_TYPE_Q4_2 = 4, support has been removed
|
358
|
+
// LM_GGML_TYPE_Q4_3 = 5, support has been removed
|
359
|
+
LM_GGML_TYPE_Q5_0 = 6,
|
360
|
+
LM_GGML_TYPE_Q5_1 = 7,
|
361
|
+
LM_GGML_TYPE_Q8_0 = 8,
|
362
|
+
LM_GGML_TYPE_Q8_1 = 9,
|
363
|
+
LM_GGML_TYPE_Q2_K = 10,
|
364
|
+
LM_GGML_TYPE_Q3_K = 11,
|
365
|
+
LM_GGML_TYPE_Q4_K = 12,
|
366
|
+
LM_GGML_TYPE_Q5_K = 13,
|
367
|
+
LM_GGML_TYPE_Q6_K = 14,
|
368
|
+
LM_GGML_TYPE_Q8_K = 15,
|
369
|
+
LM_GGML_TYPE_IQ2_XXS = 16,
|
370
|
+
LM_GGML_TYPE_IQ2_XS = 17,
|
371
|
+
LM_GGML_TYPE_IQ3_XXS = 18,
|
372
|
+
LM_GGML_TYPE_IQ1_S = 19,
|
373
|
+
LM_GGML_TYPE_IQ4_NL = 20,
|
374
|
+
LM_GGML_TYPE_IQ3_S = 21,
|
375
|
+
LM_GGML_TYPE_IQ2_S = 22,
|
376
|
+
LM_GGML_TYPE_IQ4_XS = 23,
|
377
|
+
LM_GGML_TYPE_I8 = 24,
|
378
|
+
LM_GGML_TYPE_I16 = 25,
|
379
|
+
LM_GGML_TYPE_I32 = 26,
|
380
|
+
LM_GGML_TYPE_I64 = 27,
|
381
|
+
LM_GGML_TYPE_F64 = 28,
|
382
|
+
LM_GGML_TYPE_IQ1_M = 29,
|
383
|
+
LM_GGML_TYPE_BF16 = 30,
|
384
|
+
// LM_GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
|
385
|
+
// LM_GGML_TYPE_Q4_0_4_8 = 32,
|
386
|
+
// LM_GGML_TYPE_Q4_0_8_8 = 33,
|
387
|
+
LM_GGML_TYPE_TQ1_0 = 34,
|
388
|
+
LM_GGML_TYPE_TQ2_0 = 35,
|
389
|
+
// LM_GGML_TYPE_IQ4_NL_4_4 = 36,
|
390
|
+
// LM_GGML_TYPE_IQ4_NL_4_8 = 37,
|
391
|
+
// LM_GGML_TYPE_IQ4_NL_8_8 = 38,
|
392
|
+
LM_GGML_TYPE_COUNT = 39,
|
393
|
+
};
|
394
|
+
|
395
|
+
// precision
|
396
|
+
enum lm_ggml_prec {
|
397
|
+
LM_GGML_PREC_DEFAULT = 0, // stored as lm_ggml_tensor.op_params, 0 by default
|
398
|
+
LM_GGML_PREC_F32 = 10,
|
399
|
+
};
|
400
|
+
|
401
|
+
// model file types
|
402
|
+
enum lm_ggml_ftype {
|
403
|
+
LM_GGML_FTYPE_UNKNOWN = -1,
|
404
|
+
LM_GGML_FTYPE_ALL_F32 = 0,
|
405
|
+
LM_GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
406
|
+
LM_GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
407
|
+
LM_GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
408
|
+
LM_GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
409
|
+
LM_GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
410
|
+
LM_GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
411
|
+
LM_GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
412
|
+
LM_GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
413
|
+
LM_GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
|
414
|
+
LM_GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
|
415
|
+
LM_GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
|
416
|
+
LM_GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
417
|
+
LM_GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
|
418
|
+
LM_GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
419
|
+
LM_GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
420
|
+
LM_GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
|
421
|
+
LM_GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
|
422
|
+
LM_GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
423
|
+
LM_GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
424
|
+
LM_GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
425
|
+
LM_GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
|
426
|
+
LM_GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
|
427
|
+
};
|
428
|
+
|
429
|
+
// available tensor operations:
|
430
|
+
enum lm_ggml_op {
|
431
|
+
LM_GGML_OP_NONE = 0,
|
432
|
+
|
433
|
+
LM_GGML_OP_DUP,
|
434
|
+
LM_GGML_OP_ADD,
|
435
|
+
LM_GGML_OP_ADD1,
|
436
|
+
LM_GGML_OP_ACC,
|
437
|
+
LM_GGML_OP_SUB,
|
438
|
+
LM_GGML_OP_MUL,
|
439
|
+
LM_GGML_OP_DIV,
|
440
|
+
LM_GGML_OP_SQR,
|
441
|
+
LM_GGML_OP_SQRT,
|
442
|
+
LM_GGML_OP_LOG,
|
443
|
+
LM_GGML_OP_SIN,
|
444
|
+
LM_GGML_OP_COS,
|
445
|
+
LM_GGML_OP_SUM,
|
446
|
+
LM_GGML_OP_SUM_ROWS,
|
447
|
+
LM_GGML_OP_MEAN,
|
448
|
+
LM_GGML_OP_ARGMAX,
|
449
|
+
LM_GGML_OP_COUNT_EQUAL,
|
450
|
+
LM_GGML_OP_REPEAT,
|
451
|
+
LM_GGML_OP_REPEAT_BACK,
|
452
|
+
LM_GGML_OP_CONCAT,
|
453
|
+
LM_GGML_OP_SILU_BACK,
|
454
|
+
LM_GGML_OP_NORM, // normalize
|
455
|
+
LM_GGML_OP_RMS_NORM,
|
456
|
+
LM_GGML_OP_RMS_NORM_BACK,
|
457
|
+
LM_GGML_OP_GROUP_NORM,
|
458
|
+
LM_GGML_OP_L2_NORM,
|
459
|
+
|
460
|
+
LM_GGML_OP_MUL_MAT,
|
461
|
+
LM_GGML_OP_MUL_MAT_ID,
|
462
|
+
LM_GGML_OP_OUT_PROD,
|
463
|
+
|
464
|
+
LM_GGML_OP_SCALE,
|
465
|
+
LM_GGML_OP_SET,
|
466
|
+
LM_GGML_OP_CPY,
|
467
|
+
LM_GGML_OP_CONT,
|
468
|
+
LM_GGML_OP_RESHAPE,
|
469
|
+
LM_GGML_OP_VIEW,
|
470
|
+
LM_GGML_OP_PERMUTE,
|
471
|
+
LM_GGML_OP_TRANSPOSE,
|
472
|
+
LM_GGML_OP_GET_ROWS,
|
473
|
+
LM_GGML_OP_GET_ROWS_BACK,
|
474
|
+
LM_GGML_OP_DIAG,
|
475
|
+
LM_GGML_OP_DIAG_MASK_INF,
|
476
|
+
LM_GGML_OP_DIAG_MASK_ZERO,
|
477
|
+
LM_GGML_OP_SOFT_MAX,
|
478
|
+
LM_GGML_OP_SOFT_MAX_BACK,
|
479
|
+
LM_GGML_OP_ROPE,
|
480
|
+
LM_GGML_OP_ROPE_BACK,
|
481
|
+
LM_GGML_OP_CLAMP,
|
482
|
+
LM_GGML_OP_CONV_TRANSPOSE_1D,
|
483
|
+
LM_GGML_OP_IM2COL,
|
484
|
+
LM_GGML_OP_IM2COL_BACK,
|
485
|
+
LM_GGML_OP_CONV_2D_DW,
|
486
|
+
LM_GGML_OP_CONV_TRANSPOSE_2D,
|
487
|
+
LM_GGML_OP_POOL_1D,
|
488
|
+
LM_GGML_OP_POOL_2D,
|
489
|
+
LM_GGML_OP_POOL_2D_BACK,
|
490
|
+
LM_GGML_OP_UPSCALE, // nearest interpolate
|
491
|
+
LM_GGML_OP_PAD,
|
492
|
+
LM_GGML_OP_PAD_REFLECT_1D,
|
493
|
+
LM_GGML_OP_ARANGE,
|
494
|
+
LM_GGML_OP_TIMESTEP_EMBEDDING,
|
495
|
+
LM_GGML_OP_ARGSORT,
|
496
|
+
LM_GGML_OP_LEAKY_RELU,
|
497
|
+
|
498
|
+
LM_GGML_OP_FLASH_ATTN_EXT,
|
499
|
+
LM_GGML_OP_FLASH_ATTN_BACK,
|
500
|
+
LM_GGML_OP_SSM_CONV,
|
501
|
+
LM_GGML_OP_SSM_SCAN,
|
502
|
+
LM_GGML_OP_WIN_PART,
|
503
|
+
LM_GGML_OP_WIN_UNPART,
|
504
|
+
LM_GGML_OP_GET_REL_POS,
|
505
|
+
LM_GGML_OP_ADD_REL_POS,
|
506
|
+
LM_GGML_OP_RWKV_WKV6,
|
507
|
+
LM_GGML_OP_GATED_LINEAR_ATTN,
|
508
|
+
LM_GGML_OP_RWKV_WKV7,
|
509
|
+
|
510
|
+
LM_GGML_OP_UNARY,
|
511
|
+
|
512
|
+
LM_GGML_OP_MAP_CUSTOM1,
|
513
|
+
LM_GGML_OP_MAP_CUSTOM2,
|
514
|
+
LM_GGML_OP_MAP_CUSTOM3,
|
515
|
+
|
516
|
+
LM_GGML_OP_CUSTOM,
|
517
|
+
|
518
|
+
LM_GGML_OP_CROSS_ENTROPY_LOSS,
|
519
|
+
LM_GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
520
|
+
LM_GGML_OP_OPT_STEP_ADAMW,
|
521
|
+
|
522
|
+
LM_GGML_OP_COUNT,
|
523
|
+
};
|
524
|
+
|
525
|
+
enum lm_ggml_unary_op {
|
526
|
+
LM_GGML_UNARY_OP_ABS,
|
527
|
+
LM_GGML_UNARY_OP_SGN,
|
528
|
+
LM_GGML_UNARY_OP_NEG,
|
529
|
+
LM_GGML_UNARY_OP_STEP,
|
530
|
+
LM_GGML_UNARY_OP_TANH,
|
531
|
+
LM_GGML_UNARY_OP_ELU,
|
532
|
+
LM_GGML_UNARY_OP_RELU,
|
533
|
+
LM_GGML_UNARY_OP_SIGMOID,
|
534
|
+
LM_GGML_UNARY_OP_GELU,
|
535
|
+
LM_GGML_UNARY_OP_GELU_QUICK,
|
536
|
+
LM_GGML_UNARY_OP_SILU,
|
537
|
+
LM_GGML_UNARY_OP_HARDSWISH,
|
538
|
+
LM_GGML_UNARY_OP_HARDSIGMOID,
|
539
|
+
LM_GGML_UNARY_OP_EXP,
|
540
|
+
|
541
|
+
LM_GGML_UNARY_OP_COUNT,
|
542
|
+
};
|
543
|
+
|
544
|
+
enum lm_ggml_object_type {
|
545
|
+
LM_GGML_OBJECT_TYPE_TENSOR,
|
546
|
+
LM_GGML_OBJECT_TYPE_GRAPH,
|
547
|
+
LM_GGML_OBJECT_TYPE_WORK_BUFFER
|
548
|
+
};
|
549
|
+
|
550
|
+
enum lm_ggml_log_level {
|
551
|
+
LM_GGML_LOG_LEVEL_NONE = 0,
|
552
|
+
LM_GGML_LOG_LEVEL_DEBUG = 1,
|
553
|
+
LM_GGML_LOG_LEVEL_INFO = 2,
|
554
|
+
LM_GGML_LOG_LEVEL_WARN = 3,
|
555
|
+
LM_GGML_LOG_LEVEL_ERROR = 4,
|
556
|
+
LM_GGML_LOG_LEVEL_CONT = 5, // continue previous log
|
557
|
+
};
|
558
|
+
|
559
|
+
// this tensor...
|
560
|
+
enum lm_ggml_tensor_flag {
|
561
|
+
LM_GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
|
562
|
+
LM_GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
|
563
|
+
LM_GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
|
564
|
+
LM_GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
|
565
|
+
};
|
566
|
+
|
567
|
+
struct lm_ggml_init_params {
|
568
|
+
// memory pool
|
569
|
+
size_t mem_size; // bytes
|
570
|
+
void * mem_buffer; // if NULL, memory will be allocated internally
|
571
|
+
bool no_alloc; // don't allocate memory for the tensor data
|
572
|
+
};
|
573
|
+
|
574
|
+
// n-dimensional tensor
|
575
|
+
struct lm_ggml_tensor {
|
576
|
+
enum lm_ggml_type type;
|
577
|
+
|
578
|
+
struct lm_ggml_backend_buffer * buffer;
|
579
|
+
|
580
|
+
int64_t ne[LM_GGML_MAX_DIMS]; // number of elements
|
581
|
+
size_t nb[LM_GGML_MAX_DIMS]; // stride in bytes:
|
582
|
+
// nb[0] = lm_ggml_type_size(type)
|
583
|
+
// nb[1] = nb[0] * (ne[0] / lm_ggml_blck_size(type)) + padding
|
584
|
+
// nb[i] = nb[i-1] * ne[i-1]
|
585
|
+
|
586
|
+
// compute data
|
587
|
+
enum lm_ggml_op op;
|
588
|
+
|
589
|
+
// op params - allocated as int32_t for alignment
|
590
|
+
int32_t op_params[LM_GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
591
|
+
|
592
|
+
int32_t flags;
|
593
|
+
|
594
|
+
struct lm_ggml_tensor * src[LM_GGML_MAX_SRC];
|
595
|
+
|
596
|
+
// source tensor and offset for views
|
597
|
+
struct lm_ggml_tensor * view_src;
|
598
|
+
size_t view_offs;
|
599
|
+
|
600
|
+
void * data;
|
601
|
+
|
602
|
+
char name[LM_GGML_MAX_NAME];
|
603
|
+
|
604
|
+
void * extra; // extra things e.g. for ggml-cuda.cu
|
605
|
+
|
606
|
+
char padding[8];
|
607
|
+
};
|
608
|
+
|
609
|
+
static const size_t LM_GGML_TENSOR_SIZE = sizeof(struct lm_ggml_tensor);
|
610
|
+
|
611
|
+
// Abort callback
|
612
|
+
// If not NULL, called before ggml computation
|
613
|
+
// If it returns true, the computation is aborted
|
614
|
+
typedef bool (*lm_ggml_abort_callback)(void * data);
|
615
|
+
|
616
|
+
|
617
|
+
//
|
618
|
+
// GUID
|
619
|
+
//
|
620
|
+
|
621
|
+
// GUID types
|
622
|
+
typedef uint8_t lm_ggml_guid[16];
|
623
|
+
typedef lm_ggml_guid * lm_ggml_guid_t;
|
624
|
+
|
625
|
+
LM_GGML_API bool lm_ggml_guid_matches(lm_ggml_guid_t guid_a, lm_ggml_guid_t guid_b);
|
626
|
+
|
627
|
+
// misc
|
628
|
+
|
629
|
+
LM_GGML_API void lm_ggml_time_init(void); // call this once at the beginning of the program
|
630
|
+
LM_GGML_API int64_t lm_ggml_time_ms(void);
|
631
|
+
LM_GGML_API int64_t lm_ggml_time_us(void);
|
632
|
+
LM_GGML_API int64_t lm_ggml_cycles(void);
|
633
|
+
LM_GGML_API int64_t lm_ggml_cycles_per_ms(void);
|
634
|
+
|
635
|
+
// accepts a UTF-8 path, even on Windows
|
636
|
+
LM_GGML_API FILE * lm_ggml_fopen(const char * fname, const char * mode);
|
637
|
+
|
638
|
+
LM_GGML_API void lm_ggml_print_object (const struct lm_ggml_object * obj);
|
639
|
+
LM_GGML_API void lm_ggml_print_objects(const struct lm_ggml_context * ctx);
|
640
|
+
|
641
|
+
LM_GGML_API int64_t lm_ggml_nelements (const struct lm_ggml_tensor * tensor);
|
642
|
+
LM_GGML_API int64_t lm_ggml_nrows (const struct lm_ggml_tensor * tensor);
|
643
|
+
LM_GGML_API size_t lm_ggml_nbytes (const struct lm_ggml_tensor * tensor);
|
644
|
+
LM_GGML_API size_t lm_ggml_nbytes_pad(const struct lm_ggml_tensor * tensor); // same as lm_ggml_nbytes() but padded to LM_GGML_MEM_ALIGN
|
645
|
+
|
646
|
+
LM_GGML_API int64_t lm_ggml_blck_size(enum lm_ggml_type type);
|
647
|
+
LM_GGML_API size_t lm_ggml_type_size(enum lm_ggml_type type); // size in bytes for all elements in a block
|
648
|
+
LM_GGML_API size_t lm_ggml_row_size (enum lm_ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
649
|
+
|
650
|
+
LM_GGML_DEPRECATED(
|
651
|
+
LM_GGML_API double lm_ggml_type_sizef(enum lm_ggml_type type), // lm_ggml_type_size()/lm_ggml_blck_size() as float
|
652
|
+
"use lm_ggml_row_size() instead");
|
653
|
+
|
654
|
+
LM_GGML_API const char * lm_ggml_type_name(enum lm_ggml_type type);
|
655
|
+
LM_GGML_API const char * lm_ggml_op_name (enum lm_ggml_op op);
|
656
|
+
LM_GGML_API const char * lm_ggml_op_symbol(enum lm_ggml_op op);
|
657
|
+
|
658
|
+
LM_GGML_API const char * lm_ggml_unary_op_name(enum lm_ggml_unary_op op);
|
659
|
+
LM_GGML_API const char * lm_ggml_op_desc(const struct lm_ggml_tensor * t); // unary or op name
|
660
|
+
|
661
|
+
LM_GGML_API size_t lm_ggml_element_size(const struct lm_ggml_tensor * tensor);
|
662
|
+
|
663
|
+
LM_GGML_API bool lm_ggml_is_quantized(enum lm_ggml_type type);
|
664
|
+
|
665
|
+
// TODO: temporary until model loading of ggml examples is refactored
|
666
|
+
LM_GGML_API enum lm_ggml_type lm_ggml_ftype_to_lm_ggml_type(enum lm_ggml_ftype ftype);
|
667
|
+
|
668
|
+
LM_GGML_API bool lm_ggml_is_transposed(const struct lm_ggml_tensor * tensor);
|
669
|
+
LM_GGML_API bool lm_ggml_is_permuted (const struct lm_ggml_tensor * tensor);
|
670
|
+
LM_GGML_API bool lm_ggml_is_empty (const struct lm_ggml_tensor * tensor);
|
671
|
+
LM_GGML_API bool lm_ggml_is_scalar (const struct lm_ggml_tensor * tensor);
|
672
|
+
LM_GGML_API bool lm_ggml_is_vector (const struct lm_ggml_tensor * tensor);
|
673
|
+
LM_GGML_API bool lm_ggml_is_matrix (const struct lm_ggml_tensor * tensor);
|
674
|
+
LM_GGML_API bool lm_ggml_is_3d (const struct lm_ggml_tensor * tensor);
|
675
|
+
LM_GGML_API int lm_ggml_n_dims (const struct lm_ggml_tensor * tensor); // returns 1 for scalars
|
676
|
+
|
677
|
+
LM_GGML_API bool lm_ggml_is_contiguous (const struct lm_ggml_tensor * tensor);
|
678
|
+
LM_GGML_API bool lm_ggml_is_contiguous_0(const struct lm_ggml_tensor * tensor); // same as lm_ggml_is_contiguous()
|
679
|
+
LM_GGML_API bool lm_ggml_is_contiguous_1(const struct lm_ggml_tensor * tensor); // contiguous for dims >= 1
|
680
|
+
LM_GGML_API bool lm_ggml_is_contiguous_2(const struct lm_ggml_tensor * tensor); // contiguous for dims >= 2
|
681
|
+
|
682
|
+
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
|
683
|
+
LM_GGML_API bool lm_ggml_is_contiguous_channels(const struct lm_ggml_tensor * tensor);
|
684
|
+
|
685
|
+
LM_GGML_API bool lm_ggml_are_same_shape (const struct lm_ggml_tensor * t0, const struct lm_ggml_tensor * t1);
|
686
|
+
LM_GGML_API bool lm_ggml_are_same_stride(const struct lm_ggml_tensor * t0, const struct lm_ggml_tensor * t1);
|
687
|
+
|
688
|
+
LM_GGML_API bool lm_ggml_can_repeat(const struct lm_ggml_tensor * t0, const struct lm_ggml_tensor * t1);
|
689
|
+
|
690
|
+
// use this to compute the memory overhead of a tensor
|
691
|
+
LM_GGML_API size_t lm_ggml_tensor_overhead(void);
|
692
|
+
|
693
|
+
LM_GGML_API bool lm_ggml_validate_row_data(enum lm_ggml_type type, const void * data, size_t nbytes);
|
694
|
+
|
695
|
+
// main
|
696
|
+
|
697
|
+
LM_GGML_API struct lm_ggml_context * lm_ggml_init (struct lm_ggml_init_params params);
|
698
|
+
LM_GGML_API void lm_ggml_reset(struct lm_ggml_context * ctx);
|
699
|
+
LM_GGML_API void lm_ggml_free (struct lm_ggml_context * ctx);
|
700
|
+
|
701
|
+
LM_GGML_API size_t lm_ggml_used_mem(const struct lm_ggml_context * ctx);
|
702
|
+
|
703
|
+
LM_GGML_API bool lm_ggml_get_no_alloc(struct lm_ggml_context * ctx);
|
704
|
+
LM_GGML_API void lm_ggml_set_no_alloc(struct lm_ggml_context * ctx, bool no_alloc);
|
705
|
+
|
706
|
+
LM_GGML_API void * lm_ggml_get_mem_buffer (const struct lm_ggml_context * ctx);
|
707
|
+
LM_GGML_API size_t lm_ggml_get_mem_size (const struct lm_ggml_context * ctx);
|
708
|
+
LM_GGML_API size_t lm_ggml_get_max_tensor_size(const struct lm_ggml_context * ctx);
|
709
|
+
|
710
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_new_tensor(
|
711
|
+
struct lm_ggml_context * ctx,
|
712
|
+
enum lm_ggml_type type,
|
713
|
+
int n_dims,
|
714
|
+
const int64_t *ne);
|
715
|
+
|
716
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_new_tensor_1d(
|
717
|
+
struct lm_ggml_context * ctx,
|
718
|
+
enum lm_ggml_type type,
|
719
|
+
int64_t ne0);
|
720
|
+
|
721
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_new_tensor_2d(
|
722
|
+
struct lm_ggml_context * ctx,
|
723
|
+
enum lm_ggml_type type,
|
724
|
+
int64_t ne0,
|
725
|
+
int64_t ne1);
|
726
|
+
|
727
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_new_tensor_3d(
|
728
|
+
struct lm_ggml_context * ctx,
|
729
|
+
enum lm_ggml_type type,
|
730
|
+
int64_t ne0,
|
731
|
+
int64_t ne1,
|
732
|
+
int64_t ne2);
|
733
|
+
|
734
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_new_tensor_4d(
|
735
|
+
struct lm_ggml_context * ctx,
|
736
|
+
enum lm_ggml_type type,
|
737
|
+
int64_t ne0,
|
738
|
+
int64_t ne1,
|
739
|
+
int64_t ne2,
|
740
|
+
int64_t ne3);
|
741
|
+
|
742
|
+
LM_GGML_API void * lm_ggml_new_buffer(struct lm_ggml_context * ctx, size_t nbytes);
|
743
|
+
|
744
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_dup_tensor (struct lm_ggml_context * ctx, const struct lm_ggml_tensor * src);
|
745
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_view_tensor(struct lm_ggml_context * ctx, struct lm_ggml_tensor * src);
|
746
|
+
|
747
|
+
// Context tensor enumeration and lookup
|
748
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_get_first_tensor(const struct lm_ggml_context * ctx);
|
749
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_get_next_tensor (const struct lm_ggml_context * ctx, struct lm_ggml_tensor * tensor);
|
750
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_get_tensor(struct lm_ggml_context * ctx, const char * name);
|
751
|
+
|
752
|
+
// Converts a flat index into coordinates
|
753
|
+
LM_GGML_API void lm_ggml_unravel_index(const struct lm_ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
754
|
+
|
755
|
+
LM_GGML_API enum lm_ggml_unary_op lm_ggml_get_unary_op(const struct lm_ggml_tensor * tensor);
|
756
|
+
|
757
|
+
LM_GGML_API void * lm_ggml_get_data (const struct lm_ggml_tensor * tensor);
|
758
|
+
LM_GGML_API float * lm_ggml_get_data_f32(const struct lm_ggml_tensor * tensor);
|
759
|
+
|
760
|
+
LM_GGML_API const char * lm_ggml_get_name (const struct lm_ggml_tensor * tensor);
|
761
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_set_name ( struct lm_ggml_tensor * tensor, const char * name);
|
762
|
+
LM_GGML_ATTRIBUTE_FORMAT(2, 3)
|
763
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_format_name( struct lm_ggml_tensor * tensor, const char * fmt, ...);
|
764
|
+
|
765
|
+
// Tensor flags
|
766
|
+
LM_GGML_API void lm_ggml_set_input(struct lm_ggml_tensor * tensor);
|
767
|
+
LM_GGML_API void lm_ggml_set_output(struct lm_ggml_tensor * tensor);
|
768
|
+
LM_GGML_API void lm_ggml_set_param(struct lm_ggml_context * ctx, struct lm_ggml_tensor * tensor);
|
769
|
+
LM_GGML_API void lm_ggml_set_loss(struct lm_ggml_tensor * tensor);
|
770
|
+
|
771
|
+
//
|
772
|
+
// operations on tensors with backpropagation
|
773
|
+
//
|
774
|
+
|
775
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_dup(
|
776
|
+
struct lm_ggml_context * ctx,
|
777
|
+
struct lm_ggml_tensor * a);
|
778
|
+
|
779
|
+
// in-place, returns view(a)
|
780
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_dup_inplace(
|
781
|
+
struct lm_ggml_context * ctx,
|
782
|
+
struct lm_ggml_tensor * a);
|
783
|
+
|
784
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_add(
|
785
|
+
struct lm_ggml_context * ctx,
|
786
|
+
struct lm_ggml_tensor * a,
|
787
|
+
struct lm_ggml_tensor * b);
|
788
|
+
|
789
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_add_inplace(
|
790
|
+
struct lm_ggml_context * ctx,
|
791
|
+
struct lm_ggml_tensor * a,
|
792
|
+
struct lm_ggml_tensor * b);
|
793
|
+
|
794
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_add_cast(
|
795
|
+
struct lm_ggml_context * ctx,
|
796
|
+
struct lm_ggml_tensor * a,
|
797
|
+
struct lm_ggml_tensor * b,
|
798
|
+
enum lm_ggml_type type);
|
799
|
+
|
800
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_add1(
|
801
|
+
struct lm_ggml_context * ctx,
|
802
|
+
struct lm_ggml_tensor * a,
|
803
|
+
struct lm_ggml_tensor * b);
|
804
|
+
|
805
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_add1_inplace(
|
806
|
+
struct lm_ggml_context * ctx,
|
807
|
+
struct lm_ggml_tensor * a,
|
808
|
+
struct lm_ggml_tensor * b);
|
809
|
+
|
810
|
+
// dst = a
|
811
|
+
// view(dst, nb1, nb2, nb3, offset) += b
|
812
|
+
// return dst
|
813
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_acc(
|
814
|
+
struct lm_ggml_context * ctx,
|
815
|
+
struct lm_ggml_tensor * a,
|
816
|
+
struct lm_ggml_tensor * b,
|
817
|
+
size_t nb1,
|
818
|
+
size_t nb2,
|
819
|
+
size_t nb3,
|
820
|
+
size_t offset);
|
821
|
+
|
822
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_acc_inplace(
|
823
|
+
struct lm_ggml_context * ctx,
|
824
|
+
struct lm_ggml_tensor * a,
|
825
|
+
struct lm_ggml_tensor * b,
|
826
|
+
size_t nb1,
|
827
|
+
size_t nb2,
|
828
|
+
size_t nb3,
|
829
|
+
size_t offset);
|
830
|
+
|
831
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sub(
|
832
|
+
struct lm_ggml_context * ctx,
|
833
|
+
struct lm_ggml_tensor * a,
|
834
|
+
struct lm_ggml_tensor * b);
|
835
|
+
|
836
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sub_inplace(
|
837
|
+
struct lm_ggml_context * ctx,
|
838
|
+
struct lm_ggml_tensor * a,
|
839
|
+
struct lm_ggml_tensor * b);
|
840
|
+
|
841
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_mul(
|
842
|
+
struct lm_ggml_context * ctx,
|
843
|
+
struct lm_ggml_tensor * a,
|
844
|
+
struct lm_ggml_tensor * b);
|
845
|
+
|
846
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_mul_inplace(
|
847
|
+
struct lm_ggml_context * ctx,
|
848
|
+
struct lm_ggml_tensor * a,
|
849
|
+
struct lm_ggml_tensor * b);
|
850
|
+
|
851
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_div(
|
852
|
+
struct lm_ggml_context * ctx,
|
853
|
+
struct lm_ggml_tensor * a,
|
854
|
+
struct lm_ggml_tensor * b);
|
855
|
+
|
856
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_div_inplace(
|
857
|
+
struct lm_ggml_context * ctx,
|
858
|
+
struct lm_ggml_tensor * a,
|
859
|
+
struct lm_ggml_tensor * b);
|
860
|
+
|
861
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sqr(
|
862
|
+
struct lm_ggml_context * ctx,
|
863
|
+
struct lm_ggml_tensor * a);
|
864
|
+
|
865
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sqr_inplace(
|
866
|
+
struct lm_ggml_context * ctx,
|
867
|
+
struct lm_ggml_tensor * a);
|
868
|
+
|
869
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sqrt(
|
870
|
+
struct lm_ggml_context * ctx,
|
871
|
+
struct lm_ggml_tensor * a);
|
872
|
+
|
873
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sqrt_inplace(
|
874
|
+
struct lm_ggml_context * ctx,
|
875
|
+
struct lm_ggml_tensor * a);
|
876
|
+
|
877
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_log(
|
878
|
+
struct lm_ggml_context * ctx,
|
879
|
+
struct lm_ggml_tensor * a);
|
880
|
+
|
881
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_log_inplace(
|
882
|
+
struct lm_ggml_context * ctx,
|
883
|
+
struct lm_ggml_tensor * a);
|
884
|
+
|
885
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sin(
|
886
|
+
struct lm_ggml_context * ctx,
|
887
|
+
struct lm_ggml_tensor * a);
|
888
|
+
|
889
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sin_inplace(
|
890
|
+
struct lm_ggml_context * ctx,
|
891
|
+
struct lm_ggml_tensor * a);
|
892
|
+
|
893
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cos(
|
894
|
+
struct lm_ggml_context * ctx,
|
895
|
+
struct lm_ggml_tensor * a);
|
896
|
+
|
897
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cos_inplace(
|
898
|
+
struct lm_ggml_context * ctx,
|
899
|
+
struct lm_ggml_tensor * a);
|
900
|
+
|
901
|
+
// return scalar
|
902
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sum(
|
903
|
+
struct lm_ggml_context * ctx,
|
904
|
+
struct lm_ggml_tensor * a);
|
905
|
+
|
906
|
+
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
|
907
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sum_rows(
|
908
|
+
struct lm_ggml_context * ctx,
|
909
|
+
struct lm_ggml_tensor * a);
|
910
|
+
|
911
|
+
// mean along rows
|
912
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_mean(
|
913
|
+
struct lm_ggml_context * ctx,
|
914
|
+
struct lm_ggml_tensor * a);
|
915
|
+
|
916
|
+
// argmax along rows
|
917
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_argmax(
|
918
|
+
struct lm_ggml_context * ctx,
|
919
|
+
struct lm_ggml_tensor * a);
|
920
|
+
|
921
|
+
// count number of equal elements in a and b
|
922
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_count_equal(
|
923
|
+
struct lm_ggml_context * ctx,
|
924
|
+
struct lm_ggml_tensor * a,
|
925
|
+
struct lm_ggml_tensor * b);
|
926
|
+
|
927
|
+
// if a is the same shape as b, and a is not parameter, return a
|
928
|
+
// otherwise, return a new tensor: repeat(a) to fit in b
|
929
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_repeat(
|
930
|
+
struct lm_ggml_context * ctx,
|
931
|
+
struct lm_ggml_tensor * a,
|
932
|
+
struct lm_ggml_tensor * b);
|
933
|
+
|
934
|
+
// sums repetitions in a into shape of b
|
935
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_repeat_back(
|
936
|
+
struct lm_ggml_context * ctx,
|
937
|
+
struct lm_ggml_tensor * a,
|
938
|
+
struct lm_ggml_tensor * b);
|
939
|
+
|
940
|
+
// concat a and b along dim
|
941
|
+
// used in stable-diffusion
|
942
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_concat(
|
943
|
+
struct lm_ggml_context * ctx,
|
944
|
+
struct lm_ggml_tensor * a,
|
945
|
+
struct lm_ggml_tensor * b,
|
946
|
+
int dim);
|
947
|
+
|
948
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_abs(
|
949
|
+
struct lm_ggml_context * ctx,
|
950
|
+
struct lm_ggml_tensor * a);
|
951
|
+
|
952
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_abs_inplace(
|
953
|
+
struct lm_ggml_context * ctx,
|
954
|
+
struct lm_ggml_tensor * a);
|
955
|
+
|
956
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sgn(
|
957
|
+
struct lm_ggml_context * ctx,
|
958
|
+
struct lm_ggml_tensor * a);
|
959
|
+
|
960
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sgn_inplace(
|
961
|
+
struct lm_ggml_context * ctx,
|
962
|
+
struct lm_ggml_tensor * a);
|
963
|
+
|
964
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_neg(
|
965
|
+
struct lm_ggml_context * ctx,
|
966
|
+
struct lm_ggml_tensor * a);
|
967
|
+
|
968
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_neg_inplace(
|
969
|
+
struct lm_ggml_context * ctx,
|
970
|
+
struct lm_ggml_tensor * a);
|
971
|
+
|
972
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_step(
|
973
|
+
struct lm_ggml_context * ctx,
|
974
|
+
struct lm_ggml_tensor * a);
|
975
|
+
|
976
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_step_inplace(
|
977
|
+
struct lm_ggml_context * ctx,
|
978
|
+
struct lm_ggml_tensor * a);
|
979
|
+
|
980
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_tanh(
|
981
|
+
struct lm_ggml_context * ctx,
|
982
|
+
struct lm_ggml_tensor * a);
|
983
|
+
|
984
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_tanh_inplace(
|
985
|
+
struct lm_ggml_context * ctx,
|
986
|
+
struct lm_ggml_tensor * a);
|
987
|
+
|
988
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_elu(
|
989
|
+
struct lm_ggml_context * ctx,
|
990
|
+
struct lm_ggml_tensor * a);
|
991
|
+
|
992
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_elu_inplace(
|
993
|
+
struct lm_ggml_context * ctx,
|
994
|
+
struct lm_ggml_tensor * a);
|
995
|
+
|
996
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_relu(
|
997
|
+
struct lm_ggml_context * ctx,
|
998
|
+
struct lm_ggml_tensor * a);
|
999
|
+
|
1000
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_leaky_relu(
|
1001
|
+
struct lm_ggml_context * ctx,
|
1002
|
+
struct lm_ggml_tensor * a, float negative_slope, bool inplace);
|
1003
|
+
|
1004
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_relu_inplace(
|
1005
|
+
struct lm_ggml_context * ctx,
|
1006
|
+
struct lm_ggml_tensor * a);
|
1007
|
+
|
1008
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sigmoid(
|
1009
|
+
struct lm_ggml_context * ctx,
|
1010
|
+
struct lm_ggml_tensor * a);
|
1011
|
+
|
1012
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_sigmoid_inplace(
|
1013
|
+
struct lm_ggml_context * ctx,
|
1014
|
+
struct lm_ggml_tensor * a);
|
1015
|
+
|
1016
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_gelu(
|
1017
|
+
struct lm_ggml_context * ctx,
|
1018
|
+
struct lm_ggml_tensor * a);
|
1019
|
+
|
1020
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_gelu_inplace(
|
1021
|
+
struct lm_ggml_context * ctx,
|
1022
|
+
struct lm_ggml_tensor * a);
|
1023
|
+
|
1024
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_gelu_quick(
|
1025
|
+
struct lm_ggml_context * ctx,
|
1026
|
+
struct lm_ggml_tensor * a);
|
1027
|
+
|
1028
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_gelu_quick_inplace(
|
1029
|
+
struct lm_ggml_context * ctx,
|
1030
|
+
struct lm_ggml_tensor * a);
|
1031
|
+
|
1032
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_silu(
|
1033
|
+
struct lm_ggml_context * ctx,
|
1034
|
+
struct lm_ggml_tensor * a);
|
1035
|
+
|
1036
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_silu_inplace(
|
1037
|
+
struct lm_ggml_context * ctx,
|
1038
|
+
struct lm_ggml_tensor * a);
|
1039
|
+
|
1040
|
+
// a - x
|
1041
|
+
// b - dy
|
1042
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_silu_back(
|
1043
|
+
struct lm_ggml_context * ctx,
|
1044
|
+
struct lm_ggml_tensor * a,
|
1045
|
+
struct lm_ggml_tensor * b);
|
1046
|
+
|
1047
|
+
// hardswish(x) = x * relu6(x + 3) / 6
|
1048
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_hardswish(
|
1049
|
+
struct lm_ggml_context * ctx,
|
1050
|
+
struct lm_ggml_tensor * a);
|
1051
|
+
|
1052
|
+
// hardsigmoid(x) = relu6(x + 3) / 6
|
1053
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_hardsigmoid(
|
1054
|
+
struct lm_ggml_context * ctx,
|
1055
|
+
struct lm_ggml_tensor * a);
|
1056
|
+
|
1057
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_exp(
|
1058
|
+
struct lm_ggml_context * ctx,
|
1059
|
+
struct lm_ggml_tensor * a);
|
1060
|
+
|
1061
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_exp_inplace(
|
1062
|
+
struct lm_ggml_context * ctx,
|
1063
|
+
struct lm_ggml_tensor * a);
|
1064
|
+
|
1065
|
+
// normalize along rows
|
1066
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_norm(
|
1067
|
+
struct lm_ggml_context * ctx,
|
1068
|
+
struct lm_ggml_tensor * a,
|
1069
|
+
float eps);
|
1070
|
+
|
1071
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_norm_inplace(
|
1072
|
+
struct lm_ggml_context * ctx,
|
1073
|
+
struct lm_ggml_tensor * a,
|
1074
|
+
float eps);
|
1075
|
+
|
1076
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rms_norm(
|
1077
|
+
struct lm_ggml_context * ctx,
|
1078
|
+
struct lm_ggml_tensor * a,
|
1079
|
+
float eps);
|
1080
|
+
|
1081
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rms_norm_inplace(
|
1082
|
+
struct lm_ggml_context * ctx,
|
1083
|
+
struct lm_ggml_tensor * a,
|
1084
|
+
float eps);
|
1085
|
+
|
1086
|
+
// group normalize along ne0*ne1*n_groups
|
1087
|
+
// used in stable-diffusion
|
1088
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_group_norm(
|
1089
|
+
struct lm_ggml_context * ctx,
|
1090
|
+
struct lm_ggml_tensor * a,
|
1091
|
+
int n_groups,
|
1092
|
+
float eps);
|
1093
|
+
|
1094
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_group_norm_inplace(
|
1095
|
+
struct lm_ggml_context * ctx,
|
1096
|
+
struct lm_ggml_tensor * a,
|
1097
|
+
int n_groups,
|
1098
|
+
float eps);
|
1099
|
+
|
1100
|
+
// l2 normalize along rows
|
1101
|
+
// used in rwkv v7
|
1102
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_l2_norm(
|
1103
|
+
struct lm_ggml_context * ctx,
|
1104
|
+
struct lm_ggml_tensor * a,
|
1105
|
+
float eps);
|
1106
|
+
|
1107
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_l2_norm_inplace(
|
1108
|
+
struct lm_ggml_context * ctx,
|
1109
|
+
struct lm_ggml_tensor * a,
|
1110
|
+
float eps);
|
1111
|
+
|
1112
|
+
// a - x
|
1113
|
+
// b - dy
|
1114
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rms_norm_back(
|
1115
|
+
struct lm_ggml_context * ctx,
|
1116
|
+
struct lm_ggml_tensor * a,
|
1117
|
+
struct lm_ggml_tensor * b,
|
1118
|
+
float eps);
|
1119
|
+
|
1120
|
+
// A: k columns, n rows => [ne03, ne02, n, k]
|
1121
|
+
// B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
|
1122
|
+
// result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
|
1123
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_mul_mat(
|
1124
|
+
struct lm_ggml_context * ctx,
|
1125
|
+
struct lm_ggml_tensor * a,
|
1126
|
+
struct lm_ggml_tensor * b);
|
1127
|
+
|
1128
|
+
// change the precision of a matrix multiplication
|
1129
|
+
// set to LM_GGML_PREC_F32 for higher precision (useful for phi-2)
|
1130
|
+
LM_GGML_API void lm_ggml_mul_mat_set_prec(
|
1131
|
+
struct lm_ggml_tensor * a,
|
1132
|
+
enum lm_ggml_prec prec);
|
1133
|
+
|
1134
|
+
// indirect matrix multiplication
|
1135
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_mul_mat_id(
|
1136
|
+
struct lm_ggml_context * ctx,
|
1137
|
+
struct lm_ggml_tensor * as,
|
1138
|
+
struct lm_ggml_tensor * b,
|
1139
|
+
struct lm_ggml_tensor * ids);
|
1140
|
+
|
1141
|
+
// A: m columns, n rows,
|
1142
|
+
// B: p columns, n rows,
|
1143
|
+
// result is m columns, p rows
|
1144
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_out_prod(
|
1145
|
+
struct lm_ggml_context * ctx,
|
1146
|
+
struct lm_ggml_tensor * a,
|
1147
|
+
struct lm_ggml_tensor * b);
|
1148
|
+
|
1149
|
+
//
|
1150
|
+
// operations on tensors without backpropagation
|
1151
|
+
//
|
1152
|
+
|
1153
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_scale(
|
1154
|
+
struct lm_ggml_context * ctx,
|
1155
|
+
struct lm_ggml_tensor * a,
|
1156
|
+
float s);
|
1157
|
+
|
1158
|
+
// in-place, returns view(a)
|
1159
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_scale_inplace(
|
1160
|
+
struct lm_ggml_context * ctx,
|
1161
|
+
struct lm_ggml_tensor * a,
|
1162
|
+
float s);
|
1163
|
+
|
1164
|
+
// b -> view(a,offset,nb1,nb2,3), return modified a
|
1165
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_set(
|
1166
|
+
struct lm_ggml_context * ctx,
|
1167
|
+
struct lm_ggml_tensor * a,
|
1168
|
+
struct lm_ggml_tensor * b,
|
1169
|
+
size_t nb1,
|
1170
|
+
size_t nb2,
|
1171
|
+
size_t nb3,
|
1172
|
+
size_t offset); // in bytes
|
1173
|
+
|
1174
|
+
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
1175
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_set_inplace(
|
1176
|
+
struct lm_ggml_context * ctx,
|
1177
|
+
struct lm_ggml_tensor * a,
|
1178
|
+
struct lm_ggml_tensor * b,
|
1179
|
+
size_t nb1,
|
1180
|
+
size_t nb2,
|
1181
|
+
size_t nb3,
|
1182
|
+
size_t offset); // in bytes
|
1183
|
+
|
1184
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_set_1d(
|
1185
|
+
struct lm_ggml_context * ctx,
|
1186
|
+
struct lm_ggml_tensor * a,
|
1187
|
+
struct lm_ggml_tensor * b,
|
1188
|
+
size_t offset); // in bytes
|
1189
|
+
|
1190
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_set_1d_inplace(
|
1191
|
+
struct lm_ggml_context * ctx,
|
1192
|
+
struct lm_ggml_tensor * a,
|
1193
|
+
struct lm_ggml_tensor * b,
|
1194
|
+
size_t offset); // in bytes
|
1195
|
+
|
1196
|
+
// b -> view(a,offset,nb1,nb2,3), return modified a
|
1197
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_set_2d(
|
1198
|
+
struct lm_ggml_context * ctx,
|
1199
|
+
struct lm_ggml_tensor * a,
|
1200
|
+
struct lm_ggml_tensor * b,
|
1201
|
+
size_t nb1,
|
1202
|
+
size_t offset); // in bytes
|
1203
|
+
|
1204
|
+
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
1205
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_set_2d_inplace(
|
1206
|
+
struct lm_ggml_context * ctx,
|
1207
|
+
struct lm_ggml_tensor * a,
|
1208
|
+
struct lm_ggml_tensor * b,
|
1209
|
+
size_t nb1,
|
1210
|
+
size_t offset); // in bytes
|
1211
|
+
|
1212
|
+
// a -> b, return view(b)
|
1213
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cpy(
|
1214
|
+
struct lm_ggml_context * ctx,
|
1215
|
+
struct lm_ggml_tensor * a,
|
1216
|
+
struct lm_ggml_tensor * b);
|
1217
|
+
|
1218
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cast(
|
1219
|
+
struct lm_ggml_context * ctx,
|
1220
|
+
struct lm_ggml_tensor * a,
|
1221
|
+
enum lm_ggml_type type);
|
1222
|
+
|
1223
|
+
// make contiguous
|
1224
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cont(
|
1225
|
+
struct lm_ggml_context * ctx,
|
1226
|
+
struct lm_ggml_tensor * a);
|
1227
|
+
|
1228
|
+
// make contiguous, with new shape
|
1229
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cont_1d(
|
1230
|
+
struct lm_ggml_context * ctx,
|
1231
|
+
struct lm_ggml_tensor * a,
|
1232
|
+
int64_t ne0);
|
1233
|
+
|
1234
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cont_2d(
|
1235
|
+
struct lm_ggml_context * ctx,
|
1236
|
+
struct lm_ggml_tensor * a,
|
1237
|
+
int64_t ne0,
|
1238
|
+
int64_t ne1);
|
1239
|
+
|
1240
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cont_3d(
|
1241
|
+
struct lm_ggml_context * ctx,
|
1242
|
+
struct lm_ggml_tensor * a,
|
1243
|
+
int64_t ne0,
|
1244
|
+
int64_t ne1,
|
1245
|
+
int64_t ne2);
|
1246
|
+
|
1247
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cont_4d(
|
1248
|
+
struct lm_ggml_context * ctx,
|
1249
|
+
struct lm_ggml_tensor * a,
|
1250
|
+
int64_t ne0,
|
1251
|
+
int64_t ne1,
|
1252
|
+
int64_t ne2,
|
1253
|
+
int64_t ne3);
|
1254
|
+
|
1255
|
+
// return view(a), b specifies the new shape
|
1256
|
+
// TODO: when we start computing gradient, make a copy instead of view
|
1257
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_reshape(
|
1258
|
+
struct lm_ggml_context * ctx,
|
1259
|
+
struct lm_ggml_tensor * a,
|
1260
|
+
struct lm_ggml_tensor * b);
|
1261
|
+
|
1262
|
+
// return view(a)
|
1263
|
+
// TODO: when we start computing gradient, make a copy instead of view
|
1264
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_reshape_1d(
|
1265
|
+
struct lm_ggml_context * ctx,
|
1266
|
+
struct lm_ggml_tensor * a,
|
1267
|
+
int64_t ne0);
|
1268
|
+
|
1269
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_reshape_2d(
|
1270
|
+
struct lm_ggml_context * ctx,
|
1271
|
+
struct lm_ggml_tensor * a,
|
1272
|
+
int64_t ne0,
|
1273
|
+
int64_t ne1);
|
1274
|
+
|
1275
|
+
// return view(a)
|
1276
|
+
// TODO: when we start computing gradient, make a copy instead of view
|
1277
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_reshape_3d(
|
1278
|
+
struct lm_ggml_context * ctx,
|
1279
|
+
struct lm_ggml_tensor * a,
|
1280
|
+
int64_t ne0,
|
1281
|
+
int64_t ne1,
|
1282
|
+
int64_t ne2);
|
1283
|
+
|
1284
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_reshape_4d(
|
1285
|
+
struct lm_ggml_context * ctx,
|
1286
|
+
struct lm_ggml_tensor * a,
|
1287
|
+
int64_t ne0,
|
1288
|
+
int64_t ne1,
|
1289
|
+
int64_t ne2,
|
1290
|
+
int64_t ne3);
|
1291
|
+
|
1292
|
+
// offset in bytes
|
1293
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_view_1d(
|
1294
|
+
struct lm_ggml_context * ctx,
|
1295
|
+
struct lm_ggml_tensor * a,
|
1296
|
+
int64_t ne0,
|
1297
|
+
size_t offset);
|
1298
|
+
|
1299
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_view_2d(
|
1300
|
+
struct lm_ggml_context * ctx,
|
1301
|
+
struct lm_ggml_tensor * a,
|
1302
|
+
int64_t ne0,
|
1303
|
+
int64_t ne1,
|
1304
|
+
size_t nb1, // row stride in bytes
|
1305
|
+
size_t offset);
|
1306
|
+
|
1307
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_view_3d(
|
1308
|
+
struct lm_ggml_context * ctx,
|
1309
|
+
struct lm_ggml_tensor * a,
|
1310
|
+
int64_t ne0,
|
1311
|
+
int64_t ne1,
|
1312
|
+
int64_t ne2,
|
1313
|
+
size_t nb1, // row stride in bytes
|
1314
|
+
size_t nb2, // slice stride in bytes
|
1315
|
+
size_t offset);
|
1316
|
+
|
1317
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_view_4d(
|
1318
|
+
struct lm_ggml_context * ctx,
|
1319
|
+
struct lm_ggml_tensor * a,
|
1320
|
+
int64_t ne0,
|
1321
|
+
int64_t ne1,
|
1322
|
+
int64_t ne2,
|
1323
|
+
int64_t ne3,
|
1324
|
+
size_t nb1, // row stride in bytes
|
1325
|
+
size_t nb2, // slice stride in bytes
|
1326
|
+
size_t nb3,
|
1327
|
+
size_t offset);
|
1328
|
+
|
1329
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_permute(
|
1330
|
+
struct lm_ggml_context * ctx,
|
1331
|
+
struct lm_ggml_tensor * a,
|
1332
|
+
int axis0,
|
1333
|
+
int axis1,
|
1334
|
+
int axis2,
|
1335
|
+
int axis3);
|
1336
|
+
|
1337
|
+
// alias for lm_ggml_permute(ctx, a, 1, 0, 2, 3)
|
1338
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_transpose(
|
1339
|
+
struct lm_ggml_context * ctx,
|
1340
|
+
struct lm_ggml_tensor * a);
|
1341
|
+
|
1342
|
+
// supports 3D: a->ne[2] == b->ne[1]
|
1343
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_get_rows(
|
1344
|
+
struct lm_ggml_context * ctx,
|
1345
|
+
struct lm_ggml_tensor * a, // data
|
1346
|
+
struct lm_ggml_tensor * b); // row indices
|
1347
|
+
|
1348
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_get_rows_back(
|
1349
|
+
struct lm_ggml_context * ctx,
|
1350
|
+
struct lm_ggml_tensor * a, // gradients of lm_ggml_get_rows result
|
1351
|
+
struct lm_ggml_tensor * b, // row indices
|
1352
|
+
struct lm_ggml_tensor * c); // data for lm_ggml_get_rows, only used for its shape
|
1353
|
+
|
1354
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_diag(
|
1355
|
+
struct lm_ggml_context * ctx,
|
1356
|
+
struct lm_ggml_tensor * a);
|
1357
|
+
|
1358
|
+
// set elements above the diagonal to -INF
|
1359
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_diag_mask_inf(
|
1360
|
+
struct lm_ggml_context * ctx,
|
1361
|
+
struct lm_ggml_tensor * a,
|
1362
|
+
int n_past);
|
1363
|
+
|
1364
|
+
// in-place, returns view(a)
|
1365
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_diag_mask_inf_inplace(
|
1366
|
+
struct lm_ggml_context * ctx,
|
1367
|
+
struct lm_ggml_tensor * a,
|
1368
|
+
int n_past);
|
1369
|
+
|
1370
|
+
// set elements above the diagonal to 0
|
1371
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_diag_mask_zero(
|
1372
|
+
struct lm_ggml_context * ctx,
|
1373
|
+
struct lm_ggml_tensor * a,
|
1374
|
+
int n_past);
|
1375
|
+
|
1376
|
+
// in-place, returns view(a)
|
1377
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_diag_mask_zero_inplace(
|
1378
|
+
struct lm_ggml_context * ctx,
|
1379
|
+
struct lm_ggml_tensor * a,
|
1380
|
+
int n_past);
|
1381
|
+
|
1382
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_soft_max(
|
1383
|
+
struct lm_ggml_context * ctx,
|
1384
|
+
struct lm_ggml_tensor * a);
|
1385
|
+
|
1386
|
+
// in-place, returns view(a)
|
1387
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_soft_max_inplace(
|
1388
|
+
struct lm_ggml_context * ctx,
|
1389
|
+
struct lm_ggml_tensor * a);
|
1390
|
+
|
1391
|
+
// fused soft_max(a*scale + mask*(ALiBi slope))
|
1392
|
+
// mask is optional
|
1393
|
+
// max_bias = 0.0f for no ALiBi
|
1394
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_soft_max_ext(
|
1395
|
+
struct lm_ggml_context * ctx,
|
1396
|
+
struct lm_ggml_tensor * a,
|
1397
|
+
struct lm_ggml_tensor * mask,
|
1398
|
+
float scale,
|
1399
|
+
float max_bias);
|
1400
|
+
|
1401
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_soft_max_ext_back(
|
1402
|
+
struct lm_ggml_context * ctx,
|
1403
|
+
struct lm_ggml_tensor * a,
|
1404
|
+
struct lm_ggml_tensor * b,
|
1405
|
+
float scale,
|
1406
|
+
float max_bias);
|
1407
|
+
|
1408
|
+
// in-place, returns view(a)
|
1409
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_soft_max_ext_back_inplace(
|
1410
|
+
struct lm_ggml_context * ctx,
|
1411
|
+
struct lm_ggml_tensor * a,
|
1412
|
+
struct lm_ggml_tensor * b,
|
1413
|
+
float scale,
|
1414
|
+
float max_bias);
|
1415
|
+
|
1416
|
+
// rotary position embedding
|
1417
|
+
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)
|
1418
|
+
// if (mode & LM_GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
|
1419
|
+
//
|
1420
|
+
// b is an int32 vector with size a->ne[2], it contains the positions
|
1421
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rope(
|
1422
|
+
struct lm_ggml_context * ctx,
|
1423
|
+
struct lm_ggml_tensor * a,
|
1424
|
+
struct lm_ggml_tensor * b,
|
1425
|
+
int n_dims,
|
1426
|
+
int mode);
|
1427
|
+
|
1428
|
+
// in-place, returns view(a)
|
1429
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rope_inplace(
|
1430
|
+
struct lm_ggml_context * ctx,
|
1431
|
+
struct lm_ggml_tensor * a,
|
1432
|
+
struct lm_ggml_tensor * b,
|
1433
|
+
int n_dims,
|
1434
|
+
int mode);
|
1435
|
+
|
1436
|
+
// custom RoPE
|
1437
|
+
// c is freq factors (e.g. phi3-128k), (optional)
|
1438
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rope_ext(
|
1439
|
+
struct lm_ggml_context * ctx,
|
1440
|
+
struct lm_ggml_tensor * a,
|
1441
|
+
struct lm_ggml_tensor * b,
|
1442
|
+
struct lm_ggml_tensor * c,
|
1443
|
+
int n_dims,
|
1444
|
+
int mode,
|
1445
|
+
int n_ctx_orig,
|
1446
|
+
float freq_base,
|
1447
|
+
float freq_scale,
|
1448
|
+
float ext_factor,
|
1449
|
+
float attn_factor,
|
1450
|
+
float beta_fast,
|
1451
|
+
float beta_slow);
|
1452
|
+
|
1453
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rope_multi(
|
1454
|
+
struct lm_ggml_context * ctx,
|
1455
|
+
struct lm_ggml_tensor * a,
|
1456
|
+
struct lm_ggml_tensor * b,
|
1457
|
+
struct lm_ggml_tensor * c,
|
1458
|
+
int n_dims,
|
1459
|
+
int sections[4],
|
1460
|
+
int mode,
|
1461
|
+
int n_ctx_orig,
|
1462
|
+
float freq_base,
|
1463
|
+
float freq_scale,
|
1464
|
+
float ext_factor,
|
1465
|
+
float attn_factor,
|
1466
|
+
float beta_fast,
|
1467
|
+
float beta_slow);
|
1468
|
+
|
1469
|
+
// in-place, returns view(a)
|
1470
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rope_ext_inplace(
|
1471
|
+
struct lm_ggml_context * ctx,
|
1472
|
+
struct lm_ggml_tensor * a,
|
1473
|
+
struct lm_ggml_tensor * b,
|
1474
|
+
struct lm_ggml_tensor * c,
|
1475
|
+
int n_dims,
|
1476
|
+
int mode,
|
1477
|
+
int n_ctx_orig,
|
1478
|
+
float freq_base,
|
1479
|
+
float freq_scale,
|
1480
|
+
float ext_factor,
|
1481
|
+
float attn_factor,
|
1482
|
+
float beta_fast,
|
1483
|
+
float beta_slow);
|
1484
|
+
|
1485
|
+
LM_GGML_DEPRECATED(LM_GGML_API struct lm_ggml_tensor * lm_ggml_rope_custom(
|
1486
|
+
struct lm_ggml_context * ctx,
|
1487
|
+
struct lm_ggml_tensor * a,
|
1488
|
+
struct lm_ggml_tensor * b,
|
1489
|
+
int n_dims,
|
1490
|
+
int mode,
|
1491
|
+
int n_ctx_orig,
|
1492
|
+
float freq_base,
|
1493
|
+
float freq_scale,
|
1494
|
+
float ext_factor,
|
1495
|
+
float attn_factor,
|
1496
|
+
float beta_fast,
|
1497
|
+
float beta_slow),
|
1498
|
+
"use lm_ggml_rope_ext instead");
|
1499
|
+
|
1500
|
+
LM_GGML_DEPRECATED(LM_GGML_API struct lm_ggml_tensor * lm_ggml_rope_custom_inplace(
|
1501
|
+
struct lm_ggml_context * ctx,
|
1502
|
+
struct lm_ggml_tensor * a,
|
1503
|
+
struct lm_ggml_tensor * b,
|
1504
|
+
int n_dims,
|
1505
|
+
int mode,
|
1506
|
+
int n_ctx_orig,
|
1507
|
+
float freq_base,
|
1508
|
+
float freq_scale,
|
1509
|
+
float ext_factor,
|
1510
|
+
float attn_factor,
|
1511
|
+
float beta_fast,
|
1512
|
+
float beta_slow),
|
1513
|
+
"use lm_ggml_rope_ext_inplace instead");
|
1514
|
+
|
1515
|
+
// compute correction dims for YaRN RoPE scaling
|
1516
|
+
LM_GGML_API void lm_ggml_rope_yarn_corr_dims(
|
1517
|
+
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
1518
|
+
|
1519
|
+
// rotary position embedding backward, i.e compute dx from dy
|
1520
|
+
// a - dy
|
1521
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rope_ext_back(
|
1522
|
+
struct lm_ggml_context * ctx,
|
1523
|
+
struct lm_ggml_tensor * a, // gradients of lm_ggml_rope result
|
1524
|
+
struct lm_ggml_tensor * b, // positions
|
1525
|
+
struct lm_ggml_tensor * c, // freq factors
|
1526
|
+
int n_dims,
|
1527
|
+
int mode,
|
1528
|
+
int n_ctx_orig,
|
1529
|
+
float freq_base,
|
1530
|
+
float freq_scale,
|
1531
|
+
float ext_factor,
|
1532
|
+
float attn_factor,
|
1533
|
+
float beta_fast,
|
1534
|
+
float beta_slow);
|
1535
|
+
|
1536
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rope_multi_back(
|
1537
|
+
struct lm_ggml_context * ctx,
|
1538
|
+
struct lm_ggml_tensor * a,
|
1539
|
+
struct lm_ggml_tensor * b,
|
1540
|
+
struct lm_ggml_tensor * c,
|
1541
|
+
int n_dims,
|
1542
|
+
int sections[4],
|
1543
|
+
int mode,
|
1544
|
+
int n_ctx_orig,
|
1545
|
+
float freq_base,
|
1546
|
+
float freq_scale,
|
1547
|
+
float ext_factor,
|
1548
|
+
float attn_factor,
|
1549
|
+
float beta_fast,
|
1550
|
+
float beta_slow);
|
1551
|
+
|
1552
|
+
|
1553
|
+
// clamp
|
1554
|
+
// in-place, returns view(a)
|
1555
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_clamp(
|
1556
|
+
struct lm_ggml_context * ctx,
|
1557
|
+
struct lm_ggml_tensor * a,
|
1558
|
+
float min,
|
1559
|
+
float max);
|
1560
|
+
|
1561
|
+
// im2col
|
1562
|
+
// converts data into a format that effectively results in a convolution when combined with matrix multiplication
|
1563
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_im2col(
|
1564
|
+
struct lm_ggml_context * ctx,
|
1565
|
+
struct lm_ggml_tensor * a, // convolution kernel
|
1566
|
+
struct lm_ggml_tensor * b, // data
|
1567
|
+
int s0, // stride dimension 0
|
1568
|
+
int s1, // stride dimension 1
|
1569
|
+
int p0, // padding dimension 0
|
1570
|
+
int p1, // padding dimension 1
|
1571
|
+
int d0, // dilation dimension 0
|
1572
|
+
int d1, // dilation dimension 1
|
1573
|
+
bool is_2D,
|
1574
|
+
enum lm_ggml_type dst_type);
|
1575
|
+
|
1576
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_im2col_back(
|
1577
|
+
struct lm_ggml_context * ctx,
|
1578
|
+
struct lm_ggml_tensor * a, // convolution kernel
|
1579
|
+
struct lm_ggml_tensor * b, // gradient of im2col output
|
1580
|
+
int64_t * ne, // shape of im2col input
|
1581
|
+
int s0, // stride dimension 0
|
1582
|
+
int s1, // stride dimension 1
|
1583
|
+
int p0, // padding dimension 0
|
1584
|
+
int p1, // padding dimension 1
|
1585
|
+
int d0, // dilation dimension 0
|
1586
|
+
int d1, // dilation dimension 1
|
1587
|
+
bool is_2D);
|
1588
|
+
|
1589
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_1d(
|
1590
|
+
struct lm_ggml_context * ctx,
|
1591
|
+
struct lm_ggml_tensor * a, // convolution kernel
|
1592
|
+
struct lm_ggml_tensor * b, // data
|
1593
|
+
int s0, // stride
|
1594
|
+
int p0, // padding
|
1595
|
+
int d0); // dilation
|
1596
|
+
|
1597
|
+
// conv_1d with padding = half
|
1598
|
+
// alias for lm_ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
1599
|
+
LM_GGML_API struct lm_ggml_tensor* lm_ggml_conv_1d_ph(
|
1600
|
+
struct lm_ggml_context * ctx,
|
1601
|
+
struct lm_ggml_tensor * a, // convolution kernel
|
1602
|
+
struct lm_ggml_tensor * b, // data
|
1603
|
+
int s, // stride
|
1604
|
+
int d); // dilation
|
1605
|
+
|
1606
|
+
// depthwise
|
1607
|
+
// TODO: this is very likely wrong for some cases! - needs more testing
|
1608
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_1d_dw(
|
1609
|
+
struct lm_ggml_context * ctx,
|
1610
|
+
struct lm_ggml_tensor * a, // convolution kernel
|
1611
|
+
struct lm_ggml_tensor * b, // data
|
1612
|
+
int s0, // stride
|
1613
|
+
int p0, // padding
|
1614
|
+
int d0); // dilation
|
1615
|
+
|
1616
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_1d_dw_ph(
|
1617
|
+
struct lm_ggml_context * ctx,
|
1618
|
+
struct lm_ggml_tensor * a, // convolution kernel
|
1619
|
+
struct lm_ggml_tensor * b, // data
|
1620
|
+
int s0, // stride
|
1621
|
+
int d0); // dilation
|
1622
|
+
|
1623
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_transpose_1d(
|
1624
|
+
struct lm_ggml_context * ctx,
|
1625
|
+
struct lm_ggml_tensor * a, // convolution kernel
|
1626
|
+
struct lm_ggml_tensor * b, // data
|
1627
|
+
int s0, // stride
|
1628
|
+
int p0, // padding
|
1629
|
+
int d0); // dilation
|
1630
|
+
|
1631
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_2d(
|
1632
|
+
struct lm_ggml_context * ctx,
|
1633
|
+
struct lm_ggml_tensor * a, // convolution kernel
|
1634
|
+
struct lm_ggml_tensor * b, // data
|
1635
|
+
int s0, // stride dimension 0
|
1636
|
+
int s1, // stride dimension 1
|
1637
|
+
int p0, // padding dimension 0
|
1638
|
+
int p1, // padding dimension 1
|
1639
|
+
int d0, // dilation dimension 0
|
1640
|
+
int d1); // dilation dimension 1
|
1641
|
+
|
1642
|
+
// kernel size is a->ne[0] x a->ne[1]
|
1643
|
+
// stride is equal to kernel size
|
1644
|
+
// padding is zero
|
1645
|
+
// example:
|
1646
|
+
// a: 16 16 3 768
|
1647
|
+
// b: 1024 1024 3 1
|
1648
|
+
// res: 64 64 768 1
|
1649
|
+
// used in sam
|
1650
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_2d_sk_p0(
|
1651
|
+
struct lm_ggml_context * ctx,
|
1652
|
+
struct lm_ggml_tensor * a,
|
1653
|
+
struct lm_ggml_tensor * b);
|
1654
|
+
|
1655
|
+
// kernel size is a->ne[0] x a->ne[1]
|
1656
|
+
// stride is 1
|
1657
|
+
// padding is half
|
1658
|
+
// example:
|
1659
|
+
// a: 3 3 256 256
|
1660
|
+
// b: 64 64 256 1
|
1661
|
+
// res: 64 64 256 1
|
1662
|
+
// used in sam
|
1663
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_2d_s1_ph(
|
1664
|
+
struct lm_ggml_context * ctx,
|
1665
|
+
struct lm_ggml_tensor * a,
|
1666
|
+
struct lm_ggml_tensor * b);
|
1667
|
+
|
1668
|
+
// depthwise (via im2col and mul_mat)
|
1669
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_2d_dw(
|
1670
|
+
struct lm_ggml_context * ctx,
|
1671
|
+
struct lm_ggml_tensor * a, // convolution kernel
|
1672
|
+
struct lm_ggml_tensor * b, // data
|
1673
|
+
int s0, // stride dimension 0
|
1674
|
+
int s1, // stride dimension 1
|
1675
|
+
int p0, // padding dimension 0
|
1676
|
+
int p1, // padding dimension 1
|
1677
|
+
int d0, // dilation dimension 0
|
1678
|
+
int d1); // dilation dimension 1
|
1679
|
+
|
1680
|
+
// Depthwise 2D convolution
|
1681
|
+
// may be faster than lm_ggml_conv_2d_dw, but not available in all backends
|
1682
|
+
// a: KW KH 1 C convolution kernel
|
1683
|
+
// b: W H C N input data
|
1684
|
+
// res: W_out H_out C N
|
1685
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_2d_dw_direct(
|
1686
|
+
struct lm_ggml_context * ctx,
|
1687
|
+
struct lm_ggml_tensor * a,
|
1688
|
+
struct lm_ggml_tensor * b,
|
1689
|
+
int stride0,
|
1690
|
+
int stride1,
|
1691
|
+
int pad0,
|
1692
|
+
int pad1,
|
1693
|
+
int dilation0,
|
1694
|
+
int dilation1);
|
1695
|
+
|
1696
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_transpose_2d_p0(
|
1697
|
+
struct lm_ggml_context * ctx,
|
1698
|
+
struct lm_ggml_tensor * a,
|
1699
|
+
struct lm_ggml_tensor * b,
|
1700
|
+
int stride);
|
1701
|
+
|
1702
|
+
enum lm_ggml_op_pool {
|
1703
|
+
LM_GGML_OP_POOL_MAX,
|
1704
|
+
LM_GGML_OP_POOL_AVG,
|
1705
|
+
LM_GGML_OP_POOL_COUNT,
|
1706
|
+
};
|
1707
|
+
|
1708
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_pool_1d(
|
1709
|
+
struct lm_ggml_context * ctx,
|
1710
|
+
struct lm_ggml_tensor * a,
|
1711
|
+
enum lm_ggml_op_pool op,
|
1712
|
+
int k0, // kernel size
|
1713
|
+
int s0, // stride
|
1714
|
+
int p0); // padding
|
1715
|
+
|
1716
|
+
// the result will have 2*p0 padding for the first dimension
|
1717
|
+
// and 2*p1 padding for the second dimension
|
1718
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_pool_2d(
|
1719
|
+
struct lm_ggml_context * ctx,
|
1720
|
+
struct lm_ggml_tensor * a,
|
1721
|
+
enum lm_ggml_op_pool op,
|
1722
|
+
int k0,
|
1723
|
+
int k1,
|
1724
|
+
int s0,
|
1725
|
+
int s1,
|
1726
|
+
float p0,
|
1727
|
+
float p1);
|
1728
|
+
|
1729
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_pool_2d_back(
|
1730
|
+
struct lm_ggml_context * ctx,
|
1731
|
+
struct lm_ggml_tensor * a,
|
1732
|
+
struct lm_ggml_tensor * af, // "a"/input used in forward pass
|
1733
|
+
enum lm_ggml_op_pool op,
|
1734
|
+
int k0,
|
1735
|
+
int k1,
|
1736
|
+
int s0,
|
1737
|
+
int s1,
|
1738
|
+
float p0,
|
1739
|
+
float p1);
|
1740
|
+
|
1741
|
+
enum lm_ggml_scale_mode {
|
1742
|
+
LM_GGML_SCALE_MODE_NEAREST = 0,
|
1743
|
+
LM_GGML_SCALE_MODE_BILINEAR = 1,
|
1744
|
+
};
|
1745
|
+
|
1746
|
+
// interpolate
|
1747
|
+
// multiplies ne0 and ne1 by scale factor
|
1748
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_upscale(
|
1749
|
+
struct lm_ggml_context * ctx,
|
1750
|
+
struct lm_ggml_tensor * a,
|
1751
|
+
int scale_factor,
|
1752
|
+
enum lm_ggml_scale_mode mode);
|
1753
|
+
|
1754
|
+
// interpolate
|
1755
|
+
// interpolate scale to specified dimensions
|
1756
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_upscale_ext(
|
1757
|
+
struct lm_ggml_context * ctx,
|
1758
|
+
struct lm_ggml_tensor * a,
|
1759
|
+
int ne0,
|
1760
|
+
int ne1,
|
1761
|
+
int ne2,
|
1762
|
+
int ne3,
|
1763
|
+
enum lm_ggml_scale_mode mode);
|
1764
|
+
|
1765
|
+
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
1766
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_pad(
|
1767
|
+
struct lm_ggml_context * ctx,
|
1768
|
+
struct lm_ggml_tensor * a,
|
1769
|
+
int p0,
|
1770
|
+
int p1,
|
1771
|
+
int p2,
|
1772
|
+
int p3);
|
1773
|
+
|
1774
|
+
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
|
1775
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_pad_reflect_1d(
|
1776
|
+
struct lm_ggml_context * ctx,
|
1777
|
+
struct lm_ggml_tensor * a,
|
1778
|
+
int p0,
|
1779
|
+
int p1);
|
1780
|
+
|
1781
|
+
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
1782
|
+
// timesteps: [N,]
|
1783
|
+
// return: [N, dim]
|
1784
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_timestep_embedding(
|
1785
|
+
struct lm_ggml_context * ctx,
|
1786
|
+
struct lm_ggml_tensor * timesteps,
|
1787
|
+
int dim,
|
1788
|
+
int max_period);
|
1789
|
+
|
1790
|
+
// sort rows
|
1791
|
+
enum lm_ggml_sort_order {
|
1792
|
+
LM_GGML_SORT_ORDER_ASC,
|
1793
|
+
LM_GGML_SORT_ORDER_DESC,
|
1794
|
+
};
|
1795
|
+
|
1796
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_argsort(
|
1797
|
+
struct lm_ggml_context * ctx,
|
1798
|
+
struct lm_ggml_tensor * a,
|
1799
|
+
enum lm_ggml_sort_order order);
|
1800
|
+
|
1801
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_arange(
|
1802
|
+
struct lm_ggml_context * ctx,
|
1803
|
+
float start,
|
1804
|
+
float stop,
|
1805
|
+
float step);
|
1806
|
+
|
1807
|
+
// top k elements per row
|
1808
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_top_k(
|
1809
|
+
struct lm_ggml_context * ctx,
|
1810
|
+
struct lm_ggml_tensor * a,
|
1811
|
+
int k);
|
1812
|
+
|
1813
|
+
#define LM_GGML_KQ_MASK_PAD 64
|
1814
|
+
|
1815
|
+
// q: [n_embd_k, n_batch, n_head, 1]
|
1816
|
+
// k: [n_embd_k, n_kv, n_head_kv, 1]
|
1817
|
+
// v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
|
1818
|
+
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = LM_GGML_PAD(n_batch, LM_GGML_KQ_MASK_PAD) !!
|
1819
|
+
// res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
|
1820
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_flash_attn_ext(
|
1821
|
+
struct lm_ggml_context * ctx,
|
1822
|
+
struct lm_ggml_tensor * q,
|
1823
|
+
struct lm_ggml_tensor * k,
|
1824
|
+
struct lm_ggml_tensor * v,
|
1825
|
+
struct lm_ggml_tensor * mask,
|
1826
|
+
float scale,
|
1827
|
+
float max_bias,
|
1828
|
+
float logit_softcap);
|
1829
|
+
|
1830
|
+
LM_GGML_API void lm_ggml_flash_attn_ext_set_prec(
|
1831
|
+
struct lm_ggml_tensor * a,
|
1832
|
+
enum lm_ggml_prec prec);
|
1833
|
+
|
1834
|
+
LM_GGML_API enum lm_ggml_prec lm_ggml_flash_attn_ext_get_prec(
|
1835
|
+
const struct lm_ggml_tensor * a);
|
1836
|
+
|
1837
|
+
// TODO: needs to be adapted to lm_ggml_flash_attn_ext
|
1838
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_flash_attn_back(
|
1839
|
+
struct lm_ggml_context * ctx,
|
1840
|
+
struct lm_ggml_tensor * q,
|
1841
|
+
struct lm_ggml_tensor * k,
|
1842
|
+
struct lm_ggml_tensor * v,
|
1843
|
+
struct lm_ggml_tensor * d,
|
1844
|
+
bool masked);
|
1845
|
+
|
1846
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_ssm_conv(
|
1847
|
+
struct lm_ggml_context * ctx,
|
1848
|
+
struct lm_ggml_tensor * sx,
|
1849
|
+
struct lm_ggml_tensor * c);
|
1850
|
+
|
1851
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_ssm_scan(
|
1852
|
+
struct lm_ggml_context * ctx,
|
1853
|
+
struct lm_ggml_tensor * s,
|
1854
|
+
struct lm_ggml_tensor * x,
|
1855
|
+
struct lm_ggml_tensor * dt,
|
1856
|
+
struct lm_ggml_tensor * A,
|
1857
|
+
struct lm_ggml_tensor * B,
|
1858
|
+
struct lm_ggml_tensor * C);
|
1859
|
+
|
1860
|
+
// partition into non-overlapping windows with padding if needed
|
1861
|
+
// example:
|
1862
|
+
// a: 768 64 64 1
|
1863
|
+
// w: 14
|
1864
|
+
// res: 768 14 14 25
|
1865
|
+
// used in sam
|
1866
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_win_part(
|
1867
|
+
struct lm_ggml_context * ctx,
|
1868
|
+
struct lm_ggml_tensor * a,
|
1869
|
+
int w);
|
1870
|
+
|
1871
|
+
// reverse of lm_ggml_win_part
|
1872
|
+
// used in sam
|
1873
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_win_unpart(
|
1874
|
+
struct lm_ggml_context * ctx,
|
1875
|
+
struct lm_ggml_tensor * a,
|
1876
|
+
int w0,
|
1877
|
+
int h0,
|
1878
|
+
int w);
|
1879
|
+
|
1880
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_unary(
|
1881
|
+
struct lm_ggml_context * ctx,
|
1882
|
+
struct lm_ggml_tensor * a,
|
1883
|
+
enum lm_ggml_unary_op op);
|
1884
|
+
|
1885
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_unary_inplace(
|
1886
|
+
struct lm_ggml_context * ctx,
|
1887
|
+
struct lm_ggml_tensor * a,
|
1888
|
+
enum lm_ggml_unary_op op);
|
1889
|
+
|
1890
|
+
// used in sam
|
1891
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_get_rel_pos(
|
1892
|
+
struct lm_ggml_context * ctx,
|
1893
|
+
struct lm_ggml_tensor * a,
|
1894
|
+
int qh,
|
1895
|
+
int kh);
|
1896
|
+
|
1897
|
+
// used in sam
|
1898
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_add_rel_pos(
|
1899
|
+
struct lm_ggml_context * ctx,
|
1900
|
+
struct lm_ggml_tensor * a,
|
1901
|
+
struct lm_ggml_tensor * pw,
|
1902
|
+
struct lm_ggml_tensor * ph);
|
1903
|
+
|
1904
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_add_rel_pos_inplace(
|
1905
|
+
struct lm_ggml_context * ctx,
|
1906
|
+
struct lm_ggml_tensor * a,
|
1907
|
+
struct lm_ggml_tensor * pw,
|
1908
|
+
struct lm_ggml_tensor * ph);
|
1909
|
+
|
1910
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rwkv_wkv6(
|
1911
|
+
struct lm_ggml_context * ctx,
|
1912
|
+
struct lm_ggml_tensor * k,
|
1913
|
+
struct lm_ggml_tensor * v,
|
1914
|
+
struct lm_ggml_tensor * r,
|
1915
|
+
struct lm_ggml_tensor * tf,
|
1916
|
+
struct lm_ggml_tensor * td,
|
1917
|
+
struct lm_ggml_tensor * state);
|
1918
|
+
|
1919
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_gated_linear_attn(
|
1920
|
+
struct lm_ggml_context * ctx,
|
1921
|
+
struct lm_ggml_tensor * k,
|
1922
|
+
struct lm_ggml_tensor * v,
|
1923
|
+
struct lm_ggml_tensor * q,
|
1924
|
+
struct lm_ggml_tensor * g,
|
1925
|
+
struct lm_ggml_tensor * state,
|
1926
|
+
float scale);
|
1927
|
+
|
1928
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_rwkv_wkv7(
|
1929
|
+
struct lm_ggml_context * ctx,
|
1930
|
+
struct lm_ggml_tensor * r,
|
1931
|
+
struct lm_ggml_tensor * w,
|
1932
|
+
struct lm_ggml_tensor * k,
|
1933
|
+
struct lm_ggml_tensor * v,
|
1934
|
+
struct lm_ggml_tensor * a,
|
1935
|
+
struct lm_ggml_tensor * b,
|
1936
|
+
struct lm_ggml_tensor * state);
|
1937
|
+
|
1938
|
+
// custom operators
|
1939
|
+
|
1940
|
+
typedef void (*lm_ggml_custom1_op_t)(struct lm_ggml_tensor * dst , const struct lm_ggml_tensor * a, int ith, int nth, void * userdata);
|
1941
|
+
typedef void (*lm_ggml_custom2_op_t)(struct lm_ggml_tensor * dst , const struct lm_ggml_tensor * a, const struct lm_ggml_tensor * b, int ith, int nth, void * userdata);
|
1942
|
+
typedef void (*lm_ggml_custom3_op_t)(struct lm_ggml_tensor * dst , const struct lm_ggml_tensor * a, const struct lm_ggml_tensor * b, const struct lm_ggml_tensor * c, int ith, int nth, void * userdata);
|
1943
|
+
|
1944
|
+
#define LM_GGML_N_TASKS_MAX (-1)
|
1945
|
+
// n_tasks == LM_GGML_N_TASKS_MAX means to use max number of tasks
|
1946
|
+
|
1947
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_map_custom1(
|
1948
|
+
struct lm_ggml_context * ctx,
|
1949
|
+
struct lm_ggml_tensor * a,
|
1950
|
+
lm_ggml_custom1_op_t fun,
|
1951
|
+
int n_tasks,
|
1952
|
+
void * userdata);
|
1953
|
+
|
1954
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_map_custom1_inplace(
|
1955
|
+
struct lm_ggml_context * ctx,
|
1956
|
+
struct lm_ggml_tensor * a,
|
1957
|
+
lm_ggml_custom1_op_t fun,
|
1958
|
+
int n_tasks,
|
1959
|
+
void * userdata);
|
1960
|
+
|
1961
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_map_custom2(
|
1962
|
+
struct lm_ggml_context * ctx,
|
1963
|
+
struct lm_ggml_tensor * a,
|
1964
|
+
struct lm_ggml_tensor * b,
|
1965
|
+
lm_ggml_custom2_op_t fun,
|
1966
|
+
int n_tasks,
|
1967
|
+
void * userdata);
|
1968
|
+
|
1969
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_map_custom2_inplace(
|
1970
|
+
struct lm_ggml_context * ctx,
|
1971
|
+
struct lm_ggml_tensor * a,
|
1972
|
+
struct lm_ggml_tensor * b,
|
1973
|
+
lm_ggml_custom2_op_t fun,
|
1974
|
+
int n_tasks,
|
1975
|
+
void * userdata);
|
1976
|
+
|
1977
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_map_custom3(
|
1978
|
+
struct lm_ggml_context * ctx,
|
1979
|
+
struct lm_ggml_tensor * a,
|
1980
|
+
struct lm_ggml_tensor * b,
|
1981
|
+
struct lm_ggml_tensor * c,
|
1982
|
+
lm_ggml_custom3_op_t fun,
|
1983
|
+
int n_tasks,
|
1984
|
+
void * userdata);
|
1985
|
+
|
1986
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_map_custom3_inplace(
|
1987
|
+
struct lm_ggml_context * ctx,
|
1988
|
+
struct lm_ggml_tensor * a,
|
1989
|
+
struct lm_ggml_tensor * b,
|
1990
|
+
struct lm_ggml_tensor * c,
|
1991
|
+
lm_ggml_custom3_op_t fun,
|
1992
|
+
int n_tasks,
|
1993
|
+
void * userdata);
|
1994
|
+
|
1995
|
+
typedef void (*lm_ggml_custom_op_t)(struct lm_ggml_tensor * dst , int ith, int nth, void * userdata);
|
1996
|
+
|
1997
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_custom_4d(
|
1998
|
+
struct lm_ggml_context * ctx,
|
1999
|
+
enum lm_ggml_type type,
|
2000
|
+
int64_t ne0,
|
2001
|
+
int64_t ne1,
|
2002
|
+
int64_t ne2,
|
2003
|
+
int64_t ne3,
|
2004
|
+
struct lm_ggml_tensor ** args,
|
2005
|
+
int n_args,
|
2006
|
+
lm_ggml_custom_op_t fun,
|
2007
|
+
int n_tasks,
|
2008
|
+
void * userdata);
|
2009
|
+
|
2010
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_custom_inplace(
|
2011
|
+
struct lm_ggml_context * ctx,
|
2012
|
+
struct lm_ggml_tensor * a,
|
2013
|
+
struct lm_ggml_tensor ** args,
|
2014
|
+
int n_args,
|
2015
|
+
lm_ggml_custom_op_t fun,
|
2016
|
+
int n_tasks,
|
2017
|
+
void * userdata);
|
2018
|
+
|
2019
|
+
// loss function
|
2020
|
+
|
2021
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cross_entropy_loss(
|
2022
|
+
struct lm_ggml_context * ctx,
|
2023
|
+
struct lm_ggml_tensor * a, // logits
|
2024
|
+
struct lm_ggml_tensor * b); // labels
|
2025
|
+
|
2026
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_cross_entropy_loss_back(
|
2027
|
+
struct lm_ggml_context * ctx,
|
2028
|
+
struct lm_ggml_tensor * a, // logits
|
2029
|
+
struct lm_ggml_tensor * b, // labels
|
2030
|
+
struct lm_ggml_tensor * c); // gradients of cross_entropy_loss result
|
2031
|
+
|
2032
|
+
// AdamW optimizer step
|
2033
|
+
// Paper: https://arxiv.org/pdf/1711.05101v3.pdf
|
2034
|
+
// PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
|
2035
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_opt_step_adamw(
|
2036
|
+
struct lm_ggml_context * ctx,
|
2037
|
+
struct lm_ggml_tensor * a,
|
2038
|
+
struct lm_ggml_tensor * grad,
|
2039
|
+
struct lm_ggml_tensor * m,
|
2040
|
+
struct lm_ggml_tensor * v,
|
2041
|
+
struct lm_ggml_tensor * adamw_params); // parameters such a the learning rate
|
2042
|
+
|
2043
|
+
//
|
2044
|
+
// automatic differentiation
|
2045
|
+
//
|
2046
|
+
|
2047
|
+
LM_GGML_API void lm_ggml_build_forward_expand(struct lm_ggml_cgraph * cgraph, struct lm_ggml_tensor * tensor);
|
2048
|
+
LM_GGML_API void lm_ggml_build_backward_expand(
|
2049
|
+
struct lm_ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
|
2050
|
+
struct lm_ggml_context * ctx_compute, // context for gradient computation
|
2051
|
+
struct lm_ggml_cgraph * cgraph,
|
2052
|
+
bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
|
2053
|
+
|
2054
|
+
// graph allocation in a context
|
2055
|
+
LM_GGML_API struct lm_ggml_cgraph * lm_ggml_new_graph (struct lm_ggml_context * ctx); // size = LM_GGML_DEFAULT_GRAPH_SIZE, grads = false
|
2056
|
+
LM_GGML_API struct lm_ggml_cgraph * lm_ggml_new_graph_custom(struct lm_ggml_context * ctx, size_t size, bool grads);
|
2057
|
+
LM_GGML_API struct lm_ggml_cgraph * lm_ggml_graph_dup (struct lm_ggml_context * ctx, struct lm_ggml_cgraph * cgraph);
|
2058
|
+
LM_GGML_API void lm_ggml_graph_cpy (struct lm_ggml_cgraph * src, struct lm_ggml_cgraph * dst);
|
2059
|
+
LM_GGML_API void lm_ggml_graph_reset (struct lm_ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
|
2060
|
+
LM_GGML_API void lm_ggml_graph_clear (struct lm_ggml_cgraph * cgraph);
|
2061
|
+
|
2062
|
+
LM_GGML_API int lm_ggml_graph_size (struct lm_ggml_cgraph * cgraph);
|
2063
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_graph_node (struct lm_ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
|
2064
|
+
LM_GGML_API struct lm_ggml_tensor ** lm_ggml_graph_nodes (struct lm_ggml_cgraph * cgraph);
|
2065
|
+
LM_GGML_API int lm_ggml_graph_n_nodes(struct lm_ggml_cgraph * cgraph);
|
2066
|
+
|
2067
|
+
LM_GGML_API void lm_ggml_graph_add_node(struct lm_ggml_cgraph * cgraph, struct lm_ggml_tensor * tensor);
|
2068
|
+
|
2069
|
+
LM_GGML_API size_t lm_ggml_graph_overhead(void);
|
2070
|
+
LM_GGML_API size_t lm_ggml_graph_overhead_custom(size_t size, bool grads);
|
2071
|
+
|
2072
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_graph_get_tensor (const struct lm_ggml_cgraph * cgraph, const char * name);
|
2073
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_graph_get_grad (const struct lm_ggml_cgraph * cgraph, const struct lm_ggml_tensor * node);
|
2074
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_graph_get_grad_acc(const struct lm_ggml_cgraph * cgraph, const struct lm_ggml_tensor * node);
|
2075
|
+
|
2076
|
+
LM_GGML_API void lm_ggml_graph_export(const struct lm_ggml_cgraph * cgraph, const char * fname);
|
2077
|
+
LM_GGML_API struct lm_ggml_cgraph * lm_ggml_graph_import(const char * fname, struct lm_ggml_context ** ctx_data, struct lm_ggml_context ** ctx_eval);
|
2078
|
+
|
2079
|
+
// print info and performance information for the graph
|
2080
|
+
LM_GGML_API void lm_ggml_graph_print(const struct lm_ggml_cgraph * cgraph);
|
2081
|
+
|
2082
|
+
// dump the graph into a file using the dot format
|
2083
|
+
LM_GGML_API void lm_ggml_graph_dump_dot(const struct lm_ggml_cgraph * gb, const struct lm_ggml_cgraph * gf, const char * filename);
|
2084
|
+
|
2085
|
+
// TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
|
2086
|
+
typedef void (*lm_ggml_log_callback)(enum lm_ggml_log_level level, const char * text, void * user_data);
|
2087
|
+
|
2088
|
+
// Set callback for all future logging events.
|
2089
|
+
// If this is not called, or NULL is supplied, everything is output on stderr.
|
2090
|
+
LM_GGML_API void lm_ggml_log_set(lm_ggml_log_callback log_callback, void * user_data);
|
2091
|
+
|
2092
|
+
LM_GGML_API struct lm_ggml_tensor * lm_ggml_set_zero(struct lm_ggml_tensor * tensor);
|
2093
|
+
|
2094
|
+
//
|
2095
|
+
// quantization
|
2096
|
+
//
|
2097
|
+
|
2098
|
+
// - lm_ggml_quantize_init can be called multiple times with the same type
|
2099
|
+
// it will only initialize the quantization tables for the first call or after lm_ggml_quantize_free
|
2100
|
+
// automatically called by lm_ggml_quantize_chunk for convenience
|
2101
|
+
//
|
2102
|
+
// - lm_ggml_quantize_free will free any memory allocated by lm_ggml_quantize_init
|
2103
|
+
// call this at the end of the program to avoid memory leaks
|
2104
|
+
//
|
2105
|
+
// note: these are thread-safe
|
2106
|
+
//
|
2107
|
+
LM_GGML_API void lm_ggml_quantize_init(enum lm_ggml_type type);
|
2108
|
+
LM_GGML_API void lm_ggml_quantize_free(void);
|
2109
|
+
|
2110
|
+
// some quantization type cannot be used without an importance matrix
|
2111
|
+
LM_GGML_API bool lm_ggml_quantize_requires_imatrix(enum lm_ggml_type type);
|
2112
|
+
|
2113
|
+
// calls lm_ggml_quantize_init internally (i.e. can allocate memory)
|
2114
|
+
LM_GGML_API size_t lm_ggml_quantize_chunk(
|
2115
|
+
enum lm_ggml_type type,
|
2116
|
+
const float * src,
|
2117
|
+
void * dst,
|
2118
|
+
int64_t start,
|
2119
|
+
int64_t nrows,
|
2120
|
+
int64_t n_per_row,
|
2121
|
+
const float * imatrix);
|
2122
|
+
|
2123
|
+
#ifdef __cplusplus
|
2124
|
+
// restrict not standard in C++
|
2125
|
+
# if defined(__GNUC__)
|
2126
|
+
# define LM_GGML_RESTRICT __restrict__
|
2127
|
+
# elif defined(__clang__)
|
2128
|
+
# define LM_GGML_RESTRICT __restrict
|
2129
|
+
# elif defined(_MSC_VER)
|
2130
|
+
# define LM_GGML_RESTRICT __restrict
|
2131
|
+
# else
|
2132
|
+
# define LM_GGML_RESTRICT
|
2133
|
+
# endif
|
2134
|
+
#else
|
2135
|
+
# if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
|
2136
|
+
# define LM_GGML_RESTRICT __restrict
|
2137
|
+
# else
|
2138
|
+
# define LM_GGML_RESTRICT restrict
|
2139
|
+
# endif
|
2140
|
+
#endif
|
2141
|
+
typedef void (*lm_ggml_to_float_t) (const void * LM_GGML_RESTRICT x, float * LM_GGML_RESTRICT y, int64_t k);
|
2142
|
+
typedef void (*lm_ggml_from_float_t)(const float * LM_GGML_RESTRICT x, void * LM_GGML_RESTRICT y, int64_t k);
|
2143
|
+
|
2144
|
+
struct lm_ggml_type_traits {
|
2145
|
+
const char * type_name;
|
2146
|
+
int64_t blck_size;
|
2147
|
+
int64_t blck_size_interleave; // interleave elements in blocks
|
2148
|
+
size_t type_size;
|
2149
|
+
bool is_quantized;
|
2150
|
+
lm_ggml_to_float_t to_float;
|
2151
|
+
lm_ggml_from_float_t from_float_ref;
|
2152
|
+
};
|
2153
|
+
|
2154
|
+
LM_GGML_API const struct lm_ggml_type_traits * lm_ggml_get_type_traits(enum lm_ggml_type type);
|
2155
|
+
|
2156
|
+
// ggml threadpool
|
2157
|
+
// TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
|
2158
|
+
// the goal should be to create an API that other backends can use move everything to the ggml base
|
2159
|
+
|
2160
|
+
// scheduling priorities
|
2161
|
+
enum lm_ggml_sched_priority {
|
2162
|
+
LM_GGML_SCHED_PRIO_NORMAL,
|
2163
|
+
LM_GGML_SCHED_PRIO_MEDIUM,
|
2164
|
+
LM_GGML_SCHED_PRIO_HIGH,
|
2165
|
+
LM_GGML_SCHED_PRIO_REALTIME
|
2166
|
+
};
|
2167
|
+
|
2168
|
+
// threadpool params
|
2169
|
+
// Use lm_ggml_threadpool_params_default() or lm_ggml_threadpool_params_init() to populate the defaults
|
2170
|
+
struct lm_ggml_threadpool_params {
|
2171
|
+
bool cpumask[LM_GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
|
2172
|
+
int n_threads; // number of threads
|
2173
|
+
enum lm_ggml_sched_priority prio; // thread priority
|
2174
|
+
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
|
2175
|
+
bool strict_cpu; // strict cpu placement
|
2176
|
+
bool paused; // start in paused state
|
2177
|
+
};
|
2178
|
+
|
2179
|
+
struct lm_ggml_threadpool; // forward declaration, see ggml.c
|
2180
|
+
|
2181
|
+
typedef struct lm_ggml_threadpool * lm_ggml_threadpool_t;
|
2182
|
+
|
2183
|
+
LM_GGML_API struct lm_ggml_threadpool_params lm_ggml_threadpool_params_default(int n_threads);
|
2184
|
+
LM_GGML_API void lm_ggml_threadpool_params_init (struct lm_ggml_threadpool_params * p, int n_threads);
|
2185
|
+
LM_GGML_API bool lm_ggml_threadpool_params_match (const struct lm_ggml_threadpool_params * p0, const struct lm_ggml_threadpool_params * p1);
|
2186
|
+
|
2187
|
+
#ifdef __cplusplus
|
2188
|
+
}
|
2189
|
+
#endif
|