cui-llama.rn 1.4.6 → 1.6.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE +20 -20
- package/README.md +317 -319
- package/android/build.gradle +116 -116
- package/android/gradle.properties +5 -5
- package/android/src/main/AndroidManifest.xml +4 -4
- package/android/src/main/CMakeLists.txt +124 -117
- package/android/src/main/java/com/rnllama/LlamaContext.java +645 -645
- package/android/src/main/java/com/rnllama/RNLlama.java +695 -695
- package/android/src/main/java/com/rnllama/RNLlamaPackage.java +48 -48
- package/android/src/main/jni-utils.h +100 -100
- package/android/src/main/jni.cpp +1263 -1245
- package/android/src/main/jniLibs/arm64-v8a/librnllama.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod_i8mm.so +0 -0
- package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_i8mm.so +0 -0
- package/android/src/main/jniLibs/x86_64/librnllama.so +0 -0
- package/android/src/main/jniLibs/x86_64/librnllama_x86_64.so +0 -0
- package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +135 -135
- package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +136 -136
- package/cpp/README.md +4 -4
- package/cpp/binary-ops.cpp +158 -0
- package/cpp/binary-ops.h +16 -0
- package/cpp/chat.cpp +1769 -1779
- package/cpp/chat.h +9 -1
- package/cpp/common.cpp +20 -522
- package/cpp/common.h +13 -36
- package/cpp/cpu-common.h +72 -0
- package/cpp/ggml-common.h +12 -6
- package/cpp/ggml-cpu-aarch64.cpp +1557 -80
- package/cpp/ggml-cpu-impl.h +2 -21
- package/cpp/ggml-cpu-quants.c +904 -405
- package/cpp/ggml-cpu.c +909 -13237
- package/cpp/ggml-impl.h +50 -23
- package/cpp/ggml-llama-sim.metallib +0 -0
- package/cpp/ggml-llama.metallib +0 -0
- package/cpp/ggml-metal-impl.h +597 -523
- package/cpp/ggml-metal.m +798 -580
- package/cpp/ggml.c +92 -3
- package/cpp/ggml.h +30 -6
- package/cpp/gguf.cpp +1 -0
- package/cpp/llama-adapter.cpp +55 -20
- package/cpp/llama-adapter.h +11 -9
- package/cpp/llama-arch.cpp +217 -16
- package/cpp/llama-arch.h +25 -0
- package/cpp/llama-batch.h +2 -2
- package/cpp/llama-chat.cpp +54 -2
- package/cpp/llama-chat.h +3 -0
- package/cpp/llama-context.cpp +2294 -1238
- package/cpp/llama-context.h +214 -77
- package/cpp/llama-cparams.h +1 -0
- package/cpp/llama-graph.cpp +1695 -0
- package/cpp/llama-graph.h +592 -0
- package/cpp/llama-hparams.cpp +8 -0
- package/cpp/llama-hparams.h +17 -0
- package/cpp/llama-io.cpp +15 -0
- package/cpp/llama-io.h +35 -0
- package/cpp/llama-kv-cache.cpp +965 -303
- package/cpp/llama-kv-cache.h +145 -151
- package/cpp/llama-memory.cpp +1 -0
- package/cpp/llama-memory.h +21 -0
- package/cpp/llama-mmap.cpp +1 -1
- package/cpp/llama-model-loader.cpp +10 -5
- package/cpp/llama-model-loader.h +5 -3
- package/cpp/llama-model.cpp +9194 -201
- package/cpp/llama-model.h +40 -1
- package/cpp/llama-sampling.cpp +5 -0
- package/cpp/llama-vocab.cpp +36 -5
- package/cpp/llama.cpp +51 -9984
- package/cpp/llama.h +102 -22
- package/cpp/log.cpp +34 -0
- package/cpp/minja/chat-template.hpp +15 -7
- package/cpp/minja/minja.hpp +120 -94
- package/cpp/ops.cpp +8723 -0
- package/cpp/ops.h +128 -0
- package/cpp/rn-llama.cpp +873 -882
- package/cpp/rn-llama.h +138 -148
- package/cpp/sampling.cpp +3 -0
- package/cpp/sampling.h +107 -107
- package/cpp/sgemm.cpp +533 -88
- package/cpp/simd-mappings.h +888 -0
- package/cpp/speculative.cpp +4 -4
- package/cpp/unary-ops.cpp +186 -0
- package/cpp/unary-ops.h +28 -0
- package/cpp/unicode-data.cpp +7034 -7034
- package/cpp/unicode-data.h +20 -20
- package/cpp/unicode.cpp +849 -849
- package/cpp/unicode.h +66 -66
- package/cpp/vec.cpp +258 -0
- package/cpp/vec.h +802 -0
- package/ios/CMakeLists.txt +116 -105
- package/ios/RNLlama.h +7 -7
- package/ios/RNLlama.mm +418 -405
- package/ios/RNLlamaContext.h +57 -57
- package/ios/RNLlamaContext.mm +835 -819
- package/ios/rnllama.xcframework/Info.plist +74 -74
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/binary-ops.h +16 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/chat.h +143 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/common.h +677 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/cpu-common.h +72 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-common.h +1857 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu-aarch64.h +8 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu-impl.h +512 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu-quants.h +63 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu-traits.h +38 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-cpu.h +138 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-impl.h +594 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-metal-impl.h +597 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-opt.h +216 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ggml.h +2222 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/gguf.h +202 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/json-schema-to-grammar.h +21 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/json.hpp +24766 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-adapter.h +76 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-arch.h +428 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-batch.h +88 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-chat.h +56 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-context.h +265 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-cparams.h +38 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-cpp.h +30 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-grammar.h +173 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-graph.h +592 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-hparams.h +156 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-impl.h +61 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-io.h +35 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-kv-cache.h +213 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-memory.h +21 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-mmap.h +68 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-model-loader.h +169 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-model.h +409 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-sampling.h +32 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama-vocab.h +125 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/llama.h +1434 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/log.h +132 -0
- package/{cpp → ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/minja}/chat-template.hpp +15 -7
- package/{cpp → ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/minja}/minja.hpp +120 -94
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/ops.h +128 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/rn-llama.h +138 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/sampling.h +107 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/sgemm.h +14 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/simd-mappings.h +888 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/speculative.h +28 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/unary-ops.h +28 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/unicode-data.h +20 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/unicode.h +66 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Headers/vec.h +802 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/ggml-llama.metallib +0 -0
- package/ios/rnllama.xcframework/ios-arm64/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/binary-ops.h +16 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/chat.h +143 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/common.h +677 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/cpu-common.h +72 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-common.h +1857 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-aarch64.h +8 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-impl.h +512 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-quants.h +63 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-traits.h +38 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu.h +138 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-impl.h +594 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal-impl.h +597 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-opt.h +216 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ggml.h +2222 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/gguf.h +202 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/json-schema-to-grammar.h +21 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/json.hpp +24766 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-adapter.h +76 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-arch.h +428 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-batch.h +88 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-chat.h +56 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-context.h +265 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cparams.h +38 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cpp.h +30 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-grammar.h +173 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-graph.h +592 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-hparams.h +156 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-impl.h +61 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-io.h +35 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-kv-cache.h +213 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-memory.h +21 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-mmap.h +68 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model-loader.h +169 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model.h +409 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-sampling.h +32 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama-vocab.h +125 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/llama.h +1434 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/log.h +132 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/minja/chat-template.hpp +537 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/minja/minja.hpp +2941 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/ops.h +128 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/rn-llama.h +138 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/sampling.h +107 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/sgemm.h +14 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/simd-mappings.h +888 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/speculative.h +28 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/unary-ops.h +28 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/unicode-data.h +20 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/unicode.h +66 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Headers/vec.h +802 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/_CodeSignature/CodeResources +101 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/ggml-llama-sim.metallib +0 -0
- package/ios/rnllama.xcframework/ios-arm64_x86_64-simulator/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/binary-ops.h +16 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/chat.h +143 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/common.h +677 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/cpu-common.h +72 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-common.h +1857 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu-aarch64.h +8 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu-impl.h +512 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu-quants.h +63 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu-traits.h +38 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-cpu.h +138 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-impl.h +594 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-metal-impl.h +597 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-opt.h +216 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ggml.h +2222 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/gguf.h +202 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/json-schema-to-grammar.h +21 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/json.hpp +24766 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-adapter.h +76 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-arch.h +428 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-batch.h +88 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-chat.h +56 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-context.h +265 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-cparams.h +38 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-cpp.h +30 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-grammar.h +173 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-graph.h +592 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-hparams.h +156 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-impl.h +61 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-io.h +35 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-kv-cache.h +213 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-memory.h +21 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-mmap.h +68 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-model-loader.h +169 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-model.h +409 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-sampling.h +32 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama-vocab.h +125 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/llama.h +1434 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/log.h +132 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/minja/chat-template.hpp +537 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/minja/minja.hpp +2941 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/ops.h +128 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/rn-llama.h +138 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/sampling.h +107 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/sgemm.h +14 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/simd-mappings.h +888 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/speculative.h +28 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/unary-ops.h +28 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/unicode-data.h +20 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/unicode.h +66 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Headers/vec.h +802 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/ggml-llama.metallib +0 -0
- package/ios/rnllama.xcframework/tvos-arm64/rnllama.framework/rnllama +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/binary-ops.h +16 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/chat.h +143 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/common.h +677 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/cpu-common.h +72 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-alloc.h +76 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend-impl.h +255 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-backend.h +354 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-common.h +1857 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpp.h +39 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-aarch64.h +8 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-impl.h +512 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-quants.h +63 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu-traits.h +38 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-cpu.h +138 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-impl.h +594 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal-impl.h +597 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-metal.h +66 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-opt.h +216 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-quants.h +100 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml-threading.h +14 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ggml.h +2222 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/gguf.h +202 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/json-schema-to-grammar.h +21 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/json.hpp +24766 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-adapter.h +76 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-arch.h +428 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-batch.h +88 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-chat.h +56 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-context.h +265 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cparams.h +38 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-cpp.h +30 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-grammar.h +173 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-graph.h +592 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-hparams.h +156 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-impl.h +61 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-io.h +35 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-kv-cache.h +213 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-memory.h +21 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-mmap.h +68 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model-loader.h +169 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-model.h +409 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-sampling.h +32 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama-vocab.h +125 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/llama.h +1434 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/log.h +132 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/minja/chat-template.hpp +537 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/minja/minja.hpp +2941 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/ops.h +128 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/rn-llama.h +138 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/sampling.h +107 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/sgemm.h +14 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/simd-mappings.h +888 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/speculative.h +28 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/unary-ops.h +28 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/unicode-data.h +20 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/unicode.h +66 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Headers/vec.h +802 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/Info.plist +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/_CodeSignature/CodeResources +101 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/ggml-llama-sim.metallib +0 -0
- package/ios/rnllama.xcframework/tvos-arm64_x86_64-simulator/rnllama.framework/rnllama +0 -0
- package/jest/mock.js +203 -203
- package/lib/commonjs/NativeRNLlama.js +1 -2
- package/lib/commonjs/NativeRNLlama.js.map +1 -1
- package/lib/commonjs/chat.js.map +1 -1
- package/lib/commonjs/grammar.js +12 -31
- package/lib/commonjs/grammar.js.map +1 -1
- package/lib/commonjs/index.js +47 -47
- package/lib/commonjs/index.js.map +1 -1
- package/lib/commonjs/package.json +1 -0
- package/lib/module/NativeRNLlama.js +2 -0
- package/lib/module/NativeRNLlama.js.map +1 -1
- package/lib/module/chat.js +2 -0
- package/lib/module/chat.js.map +1 -1
- package/lib/module/grammar.js +14 -31
- package/lib/module/grammar.js.map +1 -1
- package/lib/module/index.js +47 -45
- package/lib/module/index.js.map +1 -1
- package/lib/module/package.json +1 -0
- package/lib/typescript/NativeRNLlama.d.ts +6 -4
- package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
- package/lib/typescript/index.d.ts.map +1 -1
- package/llama-rn.podspec +48 -48
- package/package.json +233 -233
- package/src/NativeRNLlama.ts +426 -424
- package/src/chat.ts +44 -44
- package/src/grammar.ts +854 -854
- package/src/index.ts +495 -485
@@ -0,0 +1,1695 @@
|
|
1
|
+
#include "llama-graph.h"
|
2
|
+
|
3
|
+
#include "llama-impl.h"
|
4
|
+
#include "llama-batch.h"
|
5
|
+
#include "llama-cparams.h"
|
6
|
+
#include "llama-kv-cache.h"
|
7
|
+
|
8
|
+
#include <cassert>
|
9
|
+
#include <cmath>
|
10
|
+
#include <cstring>
|
11
|
+
|
12
|
+
static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
|
13
|
+
// TODO move to hparams if a T5 variant appears that uses a different value
|
14
|
+
const int64_t max_distance = 128;
|
15
|
+
|
16
|
+
if (bidirectional) {
|
17
|
+
n_buckets >>= 1;
|
18
|
+
}
|
19
|
+
|
20
|
+
const int64_t max_exact = n_buckets >> 1;
|
21
|
+
|
22
|
+
int32_t relative_position = x - y;
|
23
|
+
int32_t relative_bucket = 0;
|
24
|
+
|
25
|
+
if (bidirectional) {
|
26
|
+
relative_bucket += (relative_position > 0) * n_buckets;
|
27
|
+
relative_position = abs(relative_position);
|
28
|
+
} else {
|
29
|
+
relative_position = -std::min<int32_t>(relative_position, 0);
|
30
|
+
}
|
31
|
+
|
32
|
+
int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
|
33
|
+
relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
|
34
|
+
relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
|
35
|
+
|
36
|
+
return relative_bucket;
|
37
|
+
}
|
38
|
+
|
39
|
+
void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
|
40
|
+
if (ubatch->token) {
|
41
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
42
|
+
|
43
|
+
lm_ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*lm_ggml_element_size(tokens));
|
44
|
+
}
|
45
|
+
|
46
|
+
if (ubatch->embd) {
|
47
|
+
const int64_t n_embd = embd->ne[0];
|
48
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
49
|
+
|
50
|
+
lm_ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*lm_ggml_element_size(embd));
|
51
|
+
}
|
52
|
+
}
|
53
|
+
|
54
|
+
void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
|
55
|
+
if (ubatch->pos && pos) {
|
56
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
57
|
+
|
58
|
+
lm_ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_token*lm_ggml_element_size(pos));
|
59
|
+
}
|
60
|
+
}
|
61
|
+
|
62
|
+
void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
|
63
|
+
if (ubatch->pos && attn_scale) {
|
64
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
65
|
+
|
66
|
+
std::vector<float> attn_scale_data(n_tokens, 0.0f);
|
67
|
+
for (int i = 0; i < n_tokens; ++i) {
|
68
|
+
const float pos = ubatch->pos[i];
|
69
|
+
attn_scale_data[i] = std::log(
|
70
|
+
std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
|
71
|
+
) * f_attn_temp_scale + 1.0;
|
72
|
+
}
|
73
|
+
|
74
|
+
lm_ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*n_pos_per_token*lm_ggml_element_size(attn_scale));
|
75
|
+
}
|
76
|
+
}
|
77
|
+
|
78
|
+
void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
|
79
|
+
if (pos_bucket) {
|
80
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
81
|
+
|
82
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(pos_bucket->buffer));
|
83
|
+
LM_GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
|
84
|
+
|
85
|
+
int32_t * data = (int32_t *) pos_bucket->data;
|
86
|
+
|
87
|
+
for (int h = 0; h < 1; ++h) {
|
88
|
+
for (int j = 0; j < n_tokens; ++j) {
|
89
|
+
for (int i = 0; i < n_tokens; ++i) {
|
90
|
+
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
|
91
|
+
}
|
92
|
+
}
|
93
|
+
}
|
94
|
+
}
|
95
|
+
}
|
96
|
+
|
97
|
+
void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
|
98
|
+
if (pos_bucket) {
|
99
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
100
|
+
|
101
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(pos_bucket->buffer));
|
102
|
+
LM_GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
|
103
|
+
|
104
|
+
int32_t * data = (int32_t *) pos_bucket->data;
|
105
|
+
|
106
|
+
const int64_t n_kv = kv_self->n;
|
107
|
+
|
108
|
+
for (int h = 0; h < 1; ++h) {
|
109
|
+
for (int j = 0; j < n_tokens; ++j) {
|
110
|
+
for (int i = 0; i < n_kv; ++i) {
|
111
|
+
data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(kv_self->cells[i].pos, ubatch->pos[j], hparams.n_rel_attn_bkts, false);
|
112
|
+
}
|
113
|
+
}
|
114
|
+
}
|
115
|
+
}
|
116
|
+
}
|
117
|
+
|
118
|
+
void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
|
119
|
+
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
120
|
+
//LM_GGML_ASSERT(out_ids && "every model that can must skip unused outputs");
|
121
|
+
|
122
|
+
if (!out_ids) {
|
123
|
+
LLAMA_LOG_WARN("%s: 'out_ids' is not created\n", __func__);
|
124
|
+
} else {
|
125
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
126
|
+
|
127
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(out_ids->buffer));
|
128
|
+
int32_t * data = (int32_t *) out_ids->data;
|
129
|
+
|
130
|
+
if (n_outputs == n_tokens) {
|
131
|
+
for (int i = 0; i < n_tokens; ++i) {
|
132
|
+
data[i] = i;
|
133
|
+
}
|
134
|
+
} else if (ubatch->output) {
|
135
|
+
int32_t n_outputs = 0;
|
136
|
+
for (int i = 0; i < n_tokens; ++i) {
|
137
|
+
if (ubatch->output[i]) {
|
138
|
+
data[n_outputs++] = i;
|
139
|
+
}
|
140
|
+
}
|
141
|
+
// the graph needs to have been passed the correct number of outputs
|
142
|
+
LM_GGML_ASSERT(n_outputs == n_outputs);
|
143
|
+
} else if (n_outputs == 1) {
|
144
|
+
// only keep last output
|
145
|
+
data[0] = n_tokens - 1;
|
146
|
+
} else {
|
147
|
+
LM_GGML_ASSERT(n_outputs == 0);
|
148
|
+
}
|
149
|
+
}
|
150
|
+
}
|
151
|
+
}
|
152
|
+
|
153
|
+
void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
|
154
|
+
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
|
155
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
156
|
+
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
|
157
|
+
const int64_t n_seqs = ubatch->n_seqs;
|
158
|
+
|
159
|
+
LM_GGML_ASSERT(mean);
|
160
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(mean->buffer));
|
161
|
+
|
162
|
+
float * data = (float *) mean->data;
|
163
|
+
memset(mean->data, 0, n_tokens * n_tokens * lm_ggml_element_size(mean));
|
164
|
+
|
165
|
+
std::vector<uint64_t> sum(n_tokens, 0);
|
166
|
+
|
167
|
+
for (int s = 0; s < n_seqs; ++s) {
|
168
|
+
const llama_seq_id seq_id = ubatch->seq_id[s][0];
|
169
|
+
|
170
|
+
// TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
|
171
|
+
LM_GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
|
172
|
+
|
173
|
+
sum[seq_id] += ubatch->n_seq_tokens;
|
174
|
+
}
|
175
|
+
|
176
|
+
std::vector<float> div(n_tokens, 0.0f);
|
177
|
+
for (int i = 0; i < n_tokens; ++i) {
|
178
|
+
const uint64_t s = sum[i];
|
179
|
+
if (s > 0) {
|
180
|
+
div[i] = 1.0f/float(s);
|
181
|
+
}
|
182
|
+
}
|
183
|
+
|
184
|
+
for (int s = 0; s < n_seqs; ++s) {
|
185
|
+
const llama_seq_id seq_id = ubatch->seq_id[s][0];
|
186
|
+
|
187
|
+
for (int i = 0; i < n_seq_tokens; ++i) {
|
188
|
+
data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
|
189
|
+
}
|
190
|
+
}
|
191
|
+
}
|
192
|
+
}
|
193
|
+
|
194
|
+
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
|
195
|
+
if (cparams.embeddings && (
|
196
|
+
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
|
197
|
+
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) {
|
198
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
199
|
+
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
|
200
|
+
const int64_t n_seqs = ubatch->n_seqs;
|
201
|
+
|
202
|
+
LM_GGML_ASSERT(cls);
|
203
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(cls->buffer));
|
204
|
+
|
205
|
+
uint32_t * data = (uint32_t *) cls->data;
|
206
|
+
memset(cls->data, 0, n_tokens * lm_ggml_element_size(cls));
|
207
|
+
|
208
|
+
for (int s = 0; s < n_seqs; ++s) {
|
209
|
+
const llama_seq_id seq_id = ubatch->seq_id[s][0];
|
210
|
+
|
211
|
+
// TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
|
212
|
+
LM_GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK");
|
213
|
+
|
214
|
+
for (int i = 0; i < n_seq_tokens; ++i) {
|
215
|
+
const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
|
216
|
+
|
217
|
+
if (pos == 0) {
|
218
|
+
data[seq_id] = s*n_seq_tokens + i;
|
219
|
+
}
|
220
|
+
}
|
221
|
+
}
|
222
|
+
}
|
223
|
+
|
224
|
+
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
|
225
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
226
|
+
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
|
227
|
+
const int64_t n_seqs = ubatch->n_seqs;
|
228
|
+
|
229
|
+
LM_GGML_ASSERT(cls);
|
230
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(cls->buffer));
|
231
|
+
|
232
|
+
uint32_t * data = (uint32_t *) cls->data;
|
233
|
+
memset(cls->data, 0, n_tokens * lm_ggml_element_size(cls));
|
234
|
+
|
235
|
+
std::vector<int> last_pos(n_tokens, -1);
|
236
|
+
std::vector<int> last_row(n_tokens, -1);
|
237
|
+
|
238
|
+
for (int s = 0; s < n_seqs; ++s) {
|
239
|
+
const llama_seq_id seq_id = ubatch->seq_id[s][0];
|
240
|
+
|
241
|
+
// TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
|
242
|
+
LM_GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
|
243
|
+
|
244
|
+
for (int i = 0; i < n_seq_tokens; ++i) {
|
245
|
+
const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
|
246
|
+
|
247
|
+
if (pos >= last_pos[seq_id]) {
|
248
|
+
last_pos[seq_id] = pos;
|
249
|
+
last_row[seq_id] = s*n_seq_tokens + i;
|
250
|
+
}
|
251
|
+
}
|
252
|
+
}
|
253
|
+
|
254
|
+
for (int i = 0; i < n_tokens; ++i) {
|
255
|
+
if (last_row[i] >= 0) {
|
256
|
+
data[i] = last_row[i];
|
257
|
+
}
|
258
|
+
}
|
259
|
+
}
|
260
|
+
}
|
261
|
+
|
262
|
+
void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
|
263
|
+
LM_GGML_UNUSED(ubatch);
|
264
|
+
|
265
|
+
const int64_t n_kv = kv_self->n;
|
266
|
+
|
267
|
+
if (s_copy) {
|
268
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(s_copy->buffer));
|
269
|
+
int32_t * data = (int32_t *) s_copy->data;
|
270
|
+
|
271
|
+
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
272
|
+
for (uint32_t i = 0; i < n_kv; ++i) {
|
273
|
+
const uint32_t cell_id = i + kv_self->head;
|
274
|
+
|
275
|
+
//////////////////////////////////////////////
|
276
|
+
// TODO: this should not mutate the KV cache !
|
277
|
+
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
|
278
|
+
|
279
|
+
// prevent out-of-bound sources
|
280
|
+
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
|
281
|
+
kv_cell.src = cell_id;
|
282
|
+
}
|
283
|
+
|
284
|
+
data[i] = kv_cell.src;
|
285
|
+
|
286
|
+
// TODO: do not mutate the KV cache
|
287
|
+
// ensure copy only happens once
|
288
|
+
if (kv_cell.src != (int32_t) cell_id) {
|
289
|
+
kv_cell.src = cell_id;
|
290
|
+
}
|
291
|
+
}
|
292
|
+
}
|
293
|
+
}
|
294
|
+
|
295
|
+
void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
|
296
|
+
LM_GGML_UNUSED(ubatch);
|
297
|
+
|
298
|
+
const int64_t n_kv = kv_self->n;
|
299
|
+
|
300
|
+
if (s_mask) {
|
301
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(s_mask->buffer));
|
302
|
+
float * data = (float *) s_mask->data;
|
303
|
+
|
304
|
+
// clear unused states
|
305
|
+
for (int i = 0; i < n_kv; ++i) {
|
306
|
+
const uint32_t cell_id = i + kv_self->head;
|
307
|
+
|
308
|
+
//////////////////////////////////////////////
|
309
|
+
// TODO: this should not mutate the KV cache !
|
310
|
+
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
|
311
|
+
|
312
|
+
data[i] = (float) (kv_cell.src >= 0);
|
313
|
+
|
314
|
+
// only clear once
|
315
|
+
if (kv_cell.src < 0) {
|
316
|
+
kv_cell.src = cell_id;
|
317
|
+
}
|
318
|
+
}
|
319
|
+
}
|
320
|
+
}
|
321
|
+
|
322
|
+
void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
|
323
|
+
LM_GGML_UNUSED(ubatch);
|
324
|
+
|
325
|
+
if (cross_embd && !cross->v_embd.empty()) {
|
326
|
+
assert(cross_embd->type == LM_GGML_TYPE_F32);
|
327
|
+
|
328
|
+
lm_ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, lm_ggml_nbytes(cross_embd));
|
329
|
+
}
|
330
|
+
}
|
331
|
+
|
332
|
+
void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
|
333
|
+
if (kq_mask) {
|
334
|
+
if (cparams.causal_attn) {
|
335
|
+
const int64_t n_kv = ubatch->n_tokens;
|
336
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
337
|
+
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
|
338
|
+
const int64_t n_seqs = ubatch->n_seqs;
|
339
|
+
|
340
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(kq_mask->buffer));
|
341
|
+
float * data = (float *) kq_mask->data;
|
342
|
+
|
343
|
+
for (int h = 0; h < 1; ++h) {
|
344
|
+
for (int s1 = 0; s1 < n_seqs; ++s1) {
|
345
|
+
const llama_seq_id seq_id = ubatch->seq_id[s1][0];
|
346
|
+
|
347
|
+
for (int j = 0; j < n_seq_tokens; ++j) {
|
348
|
+
const int32_t tj = s1*n_seq_tokens + j;
|
349
|
+
|
350
|
+
for (int s0 = 0; s0 < n_seqs; ++s0) {
|
351
|
+
for (int i = 0; i < n_seq_tokens; ++i) {
|
352
|
+
const int32_t ti = s0*n_seq_tokens + i;
|
353
|
+
float f = -INFINITY;
|
354
|
+
|
355
|
+
for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
|
356
|
+
if (ubatch->seq_id[s0][s] == seq_id && ubatch->pos[ti] <= ubatch->pos[tj]) {
|
357
|
+
if (hparams.use_alibi) {
|
358
|
+
f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
|
359
|
+
} else {
|
360
|
+
f = 0.0f;
|
361
|
+
}
|
362
|
+
break;
|
363
|
+
}
|
364
|
+
}
|
365
|
+
|
366
|
+
data[h*(n_kv*n_tokens) + tj*n_kv + ti] = f;
|
367
|
+
}
|
368
|
+
}
|
369
|
+
}
|
370
|
+
}
|
371
|
+
}
|
372
|
+
} else {
|
373
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
374
|
+
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
|
375
|
+
const int64_t n_seqs = ubatch->n_seqs;
|
376
|
+
const int64_t n_stride = ubatch->n_tokens;
|
377
|
+
|
378
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(kq_mask->buffer));
|
379
|
+
|
380
|
+
float * data = (float *) kq_mask->data;
|
381
|
+
|
382
|
+
for (int h = 0; h < 1; ++h) {
|
383
|
+
for (int s1 = 0; s1 < n_seqs; ++s1) {
|
384
|
+
const llama_seq_id seq_id = ubatch->seq_id[s1][0];
|
385
|
+
|
386
|
+
for (int j = 0; j < n_seq_tokens; ++j) {
|
387
|
+
const int32_t tj = s1*n_seq_tokens + j;
|
388
|
+
|
389
|
+
for (int s0 = 0; s0 < n_seqs; ++s0) {
|
390
|
+
for (int i = 0; i < n_seq_tokens; ++i) {
|
391
|
+
const int32_t ti = s0*n_seq_tokens + i;
|
392
|
+
float f = -INFINITY;
|
393
|
+
|
394
|
+
for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
|
395
|
+
if (ubatch->seq_id[s0][s] == seq_id) {
|
396
|
+
if (hparams.use_alibi) {
|
397
|
+
f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
|
398
|
+
} else {
|
399
|
+
f = 0.0f;
|
400
|
+
}
|
401
|
+
break;
|
402
|
+
}
|
403
|
+
}
|
404
|
+
|
405
|
+
data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
|
406
|
+
}
|
407
|
+
}
|
408
|
+
|
409
|
+
for (int i = n_tokens; i < n_stride; ++i) {
|
410
|
+
data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
|
411
|
+
}
|
412
|
+
}
|
413
|
+
}
|
414
|
+
}
|
415
|
+
}
|
416
|
+
}
|
417
|
+
}
|
418
|
+
|
419
|
+
void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
|
420
|
+
if (self_kq_mask || self_kq_mask_swa) {
|
421
|
+
const int64_t n_kv = kv_self->n;
|
422
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
423
|
+
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
|
424
|
+
const int64_t n_seqs = ubatch->n_seqs;
|
425
|
+
|
426
|
+
float * data = nullptr;
|
427
|
+
float * data_swa = nullptr;
|
428
|
+
|
429
|
+
if (self_kq_mask) {
|
430
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(self_kq_mask->buffer));
|
431
|
+
data = (float *) self_kq_mask->data;
|
432
|
+
}
|
433
|
+
|
434
|
+
if (self_kq_mask_swa) {
|
435
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(self_kq_mask_swa->buffer));
|
436
|
+
data_swa = (float *) self_kq_mask_swa->data;
|
437
|
+
}
|
438
|
+
|
439
|
+
// Use only the previous KV cells of the correct sequence for each token of the ubatch.
|
440
|
+
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
|
441
|
+
// Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
|
442
|
+
// Causal mask:
|
443
|
+
// xxx-------
|
444
|
+
// xxxx------
|
445
|
+
// xxxxx-----
|
446
|
+
// Non-causal mask:
|
447
|
+
// xxxxx-----
|
448
|
+
// xxxxx-----
|
449
|
+
// xxxxx-----
|
450
|
+
// To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
|
451
|
+
for (int h = 0; h < 1; ++h) {
|
452
|
+
for (int s = 0; s < n_seqs; ++s) {
|
453
|
+
const llama_seq_id seq_id = ubatch->seq_id[s][0];
|
454
|
+
|
455
|
+
for (int j = 0; j < n_seq_tokens; ++j) {
|
456
|
+
const llama_pos pos = ubatch->pos[s*n_seq_tokens + j];
|
457
|
+
for (int i = 0; i < n_kv; ++i) {
|
458
|
+
float f;
|
459
|
+
// mask the token if:
|
460
|
+
if (!kv_self->cells[i].has_seq_id(seq_id) // not the correct sequence
|
461
|
+
|| (cparams.causal_attn && kv_self->cells[i].pos > pos) // for causal, mask future tokens
|
462
|
+
) {
|
463
|
+
f = -INFINITY;
|
464
|
+
} else {
|
465
|
+
if (hparams.use_alibi) {
|
466
|
+
f = -std::abs(kv_self->cells[i].pos - pos);
|
467
|
+
} else {
|
468
|
+
f = 0.0f;
|
469
|
+
}
|
470
|
+
}
|
471
|
+
|
472
|
+
if (data) {
|
473
|
+
data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
|
474
|
+
}
|
475
|
+
|
476
|
+
// may need to cut off old tokens for sliding window
|
477
|
+
// TODO @ngxson : we are currently re-using the swa logic to store the chunked mask, we should rename SWA to something more generic like "aux mask"
|
478
|
+
if (data_swa) {
|
479
|
+
if (hparams.n_attn_chunk) {
|
480
|
+
llama_pos pos_chunk_start = (pos / hparams.n_attn_chunk) * hparams.n_attn_chunk;
|
481
|
+
if (kv_self->cells[i].pos < pos_chunk_start || pos < pos_chunk_start) {
|
482
|
+
f = -INFINITY;
|
483
|
+
}
|
484
|
+
} else {
|
485
|
+
if (pos - kv_self->cells[i].pos >= (int32_t)hparams.n_swa) {
|
486
|
+
f = -INFINITY;
|
487
|
+
}
|
488
|
+
}
|
489
|
+
data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
|
490
|
+
}
|
491
|
+
}
|
492
|
+
}
|
493
|
+
}
|
494
|
+
|
495
|
+
// mask padded tokens
|
496
|
+
if (data) {
|
497
|
+
for (int i = n_tokens; i < LM_GGML_PAD(n_tokens, LM_GGML_KQ_MASK_PAD); ++i) {
|
498
|
+
for (int j = 0; j < n_kv; ++j) {
|
499
|
+
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
|
500
|
+
}
|
501
|
+
}
|
502
|
+
}
|
503
|
+
|
504
|
+
// mask padded tokens
|
505
|
+
if (data_swa) {
|
506
|
+
for (int i = n_tokens; i < LM_GGML_PAD(n_tokens, LM_GGML_KQ_MASK_PAD); ++i) {
|
507
|
+
for (int j = 0; j < n_kv; ++j) {
|
508
|
+
data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
|
509
|
+
}
|
510
|
+
}
|
511
|
+
}
|
512
|
+
}
|
513
|
+
}
|
514
|
+
}
|
515
|
+
|
516
|
+
void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
|
517
|
+
if (cross_kq_mask) {
|
518
|
+
const int64_t n_enc = cross_kq_mask->ne[0];
|
519
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
520
|
+
|
521
|
+
LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(cross_kq_mask->buffer));
|
522
|
+
LM_GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
|
523
|
+
|
524
|
+
float * data = (float *) cross_kq_mask->data;
|
525
|
+
|
526
|
+
for (int h = 0; h < 1; ++h) {
|
527
|
+
for (int j = 0; j < n_tokens; ++j) {
|
528
|
+
for (int i = 0; i < n_enc; ++i) {
|
529
|
+
float f = -INFINITY;
|
530
|
+
for (int s = 0; s < ubatch->n_seq_id[j]; ++s) {
|
531
|
+
const llama_seq_id seq_id = ubatch->seq_id[j][s];
|
532
|
+
if (cross->seq_ids_enc[i].find(seq_id) != cross->seq_ids_enc[i].end()) {
|
533
|
+
f = 0.0f;
|
534
|
+
}
|
535
|
+
}
|
536
|
+
data[h*(n_enc*n_tokens) + j*n_enc + i] = f;
|
537
|
+
}
|
538
|
+
}
|
539
|
+
|
540
|
+
for (int i = n_tokens; i < LM_GGML_PAD(n_tokens, LM_GGML_KQ_MASK_PAD); ++i) {
|
541
|
+
for (int j = 0; j < n_enc; ++j) {
|
542
|
+
data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
|
543
|
+
}
|
544
|
+
}
|
545
|
+
}
|
546
|
+
}
|
547
|
+
}
|
548
|
+
|
549
|
+
//
|
550
|
+
// llm_graph_context
|
551
|
+
//
|
552
|
+
|
553
|
+
llm_graph_context::llm_graph_context(const llm_graph_params & params) :
|
554
|
+
arch (params.arch),
|
555
|
+
hparams (params.hparams),
|
556
|
+
cparams (params.cparams),
|
557
|
+
ubatch (params.ubatch),
|
558
|
+
n_embd (hparams.n_embd),
|
559
|
+
n_layer (hparams.n_layer),
|
560
|
+
n_rot (hparams.n_rot),
|
561
|
+
n_ctx (cparams.n_ctx),
|
562
|
+
n_ctx_per_seq (cparams.n_ctx / cparams.n_seq_max),
|
563
|
+
n_head (hparams.n_head()),
|
564
|
+
n_head_kv (hparams.n_head_kv()),
|
565
|
+
n_embd_head_k (hparams.n_embd_head_k),
|
566
|
+
n_embd_k_gqa (hparams.n_embd_k_gqa()),
|
567
|
+
n_embd_head_v (hparams.n_embd_head_v),
|
568
|
+
n_embd_v_gqa (hparams.n_embd_v_gqa()),
|
569
|
+
n_expert (hparams.n_expert),
|
570
|
+
n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
|
571
|
+
freq_base (cparams.rope_freq_base),
|
572
|
+
freq_scale (cparams.rope_freq_scale),
|
573
|
+
ext_factor (cparams.yarn_ext_factor),
|
574
|
+
attn_factor (cparams.yarn_attn_factor),
|
575
|
+
beta_fast (cparams.yarn_beta_fast),
|
576
|
+
beta_slow (cparams.yarn_beta_slow),
|
577
|
+
norm_eps (hparams.f_norm_eps),
|
578
|
+
norm_rms_eps (hparams.f_norm_rms_eps),
|
579
|
+
n_tokens (ubatch.n_tokens),
|
580
|
+
n_outputs (params.n_outputs),
|
581
|
+
n_ctx_orig (cparams.n_ctx_orig_yarn),
|
582
|
+
pooling_type (cparams.pooling_type),
|
583
|
+
rope_type (hparams.rope_type),
|
584
|
+
ctx0 (params.ctx),
|
585
|
+
sched (params.sched),
|
586
|
+
backend_cpu (params.backend_cpu),
|
587
|
+
cvec (params.cvec),
|
588
|
+
loras (params.loras),
|
589
|
+
memory (params.memory),
|
590
|
+
cross (params.cross),
|
591
|
+
cb_func (params.cb),
|
592
|
+
res (std::make_unique<llm_graph_result>()) {
|
593
|
+
}
|
594
|
+
|
595
|
+
int64_t llm_graph_context::n_pos_per_token() const {
|
596
|
+
return arch == LLM_ARCH_QWEN2VL ? 4 : 1;
|
597
|
+
}
|
598
|
+
|
599
|
+
void llm_graph_context::cb(lm_ggml_tensor * cur, const char * name, int il) const {
|
600
|
+
if (cb_func) {
|
601
|
+
cb_func(ubatch, cur, name, il);
|
602
|
+
}
|
603
|
+
}
|
604
|
+
|
605
|
+
lm_ggml_tensor * llm_graph_context::build_cvec(
|
606
|
+
lm_ggml_tensor * cur,
|
607
|
+
int il) const {
|
608
|
+
return cvec->apply_to(ctx0, cur, il);
|
609
|
+
}
|
610
|
+
|
611
|
+
lm_ggml_tensor * llm_graph_context::build_lora_mm(
|
612
|
+
lm_ggml_tensor * w,
|
613
|
+
lm_ggml_tensor * cur) const {
|
614
|
+
lm_ggml_tensor * res = lm_ggml_mul_mat(ctx0, w, cur);
|
615
|
+
|
616
|
+
for (const auto & lora : *loras) {
|
617
|
+
llama_adapter_lora_weight * lw = lora.first->get_weight(w);
|
618
|
+
if (lw == nullptr) {
|
619
|
+
continue;
|
620
|
+
}
|
621
|
+
|
622
|
+
const float adapter_scale = lora.second;
|
623
|
+
const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
|
624
|
+
|
625
|
+
lm_ggml_tensor * ab_cur = lm_ggml_mul_mat(
|
626
|
+
ctx0, lw->b,
|
627
|
+
lm_ggml_mul_mat(ctx0, lw->a, cur)
|
628
|
+
);
|
629
|
+
|
630
|
+
ab_cur = lm_ggml_scale(ctx0, ab_cur, scale);
|
631
|
+
res = lm_ggml_add(ctx0, res, ab_cur);
|
632
|
+
}
|
633
|
+
|
634
|
+
return res;
|
635
|
+
}
|
636
|
+
|
637
|
+
lm_ggml_tensor * llm_graph_context::build_lora_mm_id(
|
638
|
+
lm_ggml_tensor * w, // lm_ggml_tensor * as
|
639
|
+
lm_ggml_tensor * cur, // lm_ggml_tensor * b
|
640
|
+
lm_ggml_tensor * ids) const {
|
641
|
+
lm_ggml_tensor * res = lm_ggml_mul_mat_id(ctx0, w, cur, ids);
|
642
|
+
for (const auto & lora : *loras) {
|
643
|
+
llama_adapter_lora_weight * lw = lora.first->get_weight(w);
|
644
|
+
if (lw == nullptr) {
|
645
|
+
continue;
|
646
|
+
}
|
647
|
+
|
648
|
+
const float alpha = lora.first->alpha;
|
649
|
+
const float rank = (float) lw->b->ne[0];
|
650
|
+
const float scale = alpha ? lora.second * alpha / rank : lora.second;
|
651
|
+
|
652
|
+
lm_ggml_tensor * ab_cur = lm_ggml_mul_mat_id(
|
653
|
+
ctx0, lw->b,
|
654
|
+
lm_ggml_mul_mat_id(ctx0, lw->a, cur, ids),
|
655
|
+
ids
|
656
|
+
);
|
657
|
+
|
658
|
+
ab_cur = lm_ggml_scale(ctx0, ab_cur, scale);
|
659
|
+
res = lm_ggml_add(ctx0, res, ab_cur);
|
660
|
+
}
|
661
|
+
|
662
|
+
return res;
|
663
|
+
}
|
664
|
+
|
665
|
+
lm_ggml_tensor * llm_graph_context::build_norm(
|
666
|
+
lm_ggml_tensor * cur,
|
667
|
+
lm_ggml_tensor * mw,
|
668
|
+
lm_ggml_tensor * mb,
|
669
|
+
llm_norm_type type,
|
670
|
+
int il) const {
|
671
|
+
switch (type) {
|
672
|
+
case LLM_NORM: cur = lm_ggml_norm (ctx0, cur, hparams.f_norm_eps); break;
|
673
|
+
case LLM_NORM_RMS: cur = lm_ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
|
674
|
+
case LLM_NORM_GROUP:
|
675
|
+
{
|
676
|
+
cur = lm_ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
|
677
|
+
cur = lm_ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
|
678
|
+
cur = lm_ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]);
|
679
|
+
} break;
|
680
|
+
}
|
681
|
+
|
682
|
+
if (mw || mb) {
|
683
|
+
cb(cur, "norm", il);
|
684
|
+
}
|
685
|
+
|
686
|
+
if (mw) {
|
687
|
+
cur = lm_ggml_mul(ctx0, cur, mw);
|
688
|
+
if (mb) {
|
689
|
+
cb(cur, "norm_w", il);
|
690
|
+
}
|
691
|
+
}
|
692
|
+
|
693
|
+
if (mb) {
|
694
|
+
cur = lm_ggml_add(ctx0, cur, mb);
|
695
|
+
}
|
696
|
+
|
697
|
+
return cur;
|
698
|
+
}
|
699
|
+
|
700
|
+
lm_ggml_tensor * llm_graph_context::build_ffn(
|
701
|
+
lm_ggml_tensor * cur,
|
702
|
+
lm_ggml_tensor * up,
|
703
|
+
lm_ggml_tensor * up_b,
|
704
|
+
lm_ggml_tensor * up_s,
|
705
|
+
lm_ggml_tensor * gate,
|
706
|
+
lm_ggml_tensor * gate_b,
|
707
|
+
lm_ggml_tensor * gate_s,
|
708
|
+
lm_ggml_tensor * down,
|
709
|
+
lm_ggml_tensor * down_b,
|
710
|
+
lm_ggml_tensor * down_s,
|
711
|
+
lm_ggml_tensor * act_scales,
|
712
|
+
llm_ffn_op_type type_op,
|
713
|
+
llm_ffn_gate_type type_gate,
|
714
|
+
int il) const {
|
715
|
+
lm_ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
|
716
|
+
cb(tmp, "ffn_up", il);
|
717
|
+
|
718
|
+
if (up_b) {
|
719
|
+
tmp = lm_ggml_add(ctx0, tmp, up_b);
|
720
|
+
cb(tmp, "ffn_up_b", il);
|
721
|
+
}
|
722
|
+
|
723
|
+
if (up_s) {
|
724
|
+
tmp = lm_ggml_mul(ctx0, tmp, up_s);
|
725
|
+
cb(tmp, "ffn_up_s", il);
|
726
|
+
}
|
727
|
+
|
728
|
+
if (gate) {
|
729
|
+
switch (type_gate) {
|
730
|
+
case LLM_FFN_SEQ:
|
731
|
+
{
|
732
|
+
cur = build_lora_mm(gate, tmp);
|
733
|
+
cb(cur, "ffn_gate", il);
|
734
|
+
} break;
|
735
|
+
case LLM_FFN_PAR:
|
736
|
+
{
|
737
|
+
cur = build_lora_mm(gate, cur);
|
738
|
+
cb(cur, "ffn_gate", il);
|
739
|
+
} break;
|
740
|
+
}
|
741
|
+
|
742
|
+
if (gate_b) {
|
743
|
+
cur = lm_ggml_add(ctx0, cur, gate_b);
|
744
|
+
cb(cur, "ffn_gate_b", il);
|
745
|
+
}
|
746
|
+
|
747
|
+
if (gate_s) {
|
748
|
+
cur = lm_ggml_mul(ctx0, cur, gate_s);
|
749
|
+
cb(cur, "ffn_gate_s", il);
|
750
|
+
}
|
751
|
+
|
752
|
+
} else {
|
753
|
+
cur = tmp;
|
754
|
+
}
|
755
|
+
|
756
|
+
switch (type_op) {
|
757
|
+
case LLM_FFN_SILU:
|
758
|
+
{
|
759
|
+
cur = lm_ggml_silu(ctx0, cur);
|
760
|
+
cb(cur, "ffn_silu", il);
|
761
|
+
} break;
|
762
|
+
case LLM_FFN_GELU:
|
763
|
+
{
|
764
|
+
cur = lm_ggml_gelu(ctx0, cur);
|
765
|
+
cb(cur, "ffn_gelu", il);
|
766
|
+
if (act_scales != NULL) {
|
767
|
+
cur = lm_ggml_div(ctx0, cur, act_scales);
|
768
|
+
cb(cur, "ffn_act", il);
|
769
|
+
}
|
770
|
+
} break;
|
771
|
+
case LLM_FFN_RELU:
|
772
|
+
{
|
773
|
+
cur = lm_ggml_relu(ctx0, cur);
|
774
|
+
cb(cur, "ffn_relu", il);
|
775
|
+
} break;
|
776
|
+
case LLM_FFN_RELU_SQR:
|
777
|
+
{
|
778
|
+
cur = lm_ggml_relu(ctx0, cur);
|
779
|
+
cb(cur, "ffn_relu", il);
|
780
|
+
|
781
|
+
cur = lm_ggml_sqr(ctx0, cur);
|
782
|
+
cb(cur, "ffn_sqr(relu)", il);
|
783
|
+
} break;
|
784
|
+
case LLM_FFN_SWIGLU:
|
785
|
+
{
|
786
|
+
// Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
|
787
|
+
int64_t split_point = cur->ne[0] / 2;
|
788
|
+
lm_ggml_tensor * x0 = lm_ggml_cont(ctx0, lm_ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
|
789
|
+
lm_ggml_tensor * x1 = lm_ggml_cont(ctx0, lm_ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * lm_ggml_element_size(cur)));
|
790
|
+
|
791
|
+
x0 = lm_ggml_silu(ctx0, x0);
|
792
|
+
cb(cur, "ffn_silu", il);
|
793
|
+
|
794
|
+
cur = lm_ggml_mul(ctx0, x0, x1);
|
795
|
+
cb(cur, "ffn_mul", il);
|
796
|
+
} break;
|
797
|
+
}
|
798
|
+
|
799
|
+
if (type_gate == LLM_FFN_PAR) {
|
800
|
+
cur = lm_ggml_mul(ctx0, cur, tmp);
|
801
|
+
cb(cur, "ffn_gate_par", il);
|
802
|
+
}
|
803
|
+
|
804
|
+
if (down) {
|
805
|
+
cur = build_lora_mm(down, cur);
|
806
|
+
}
|
807
|
+
|
808
|
+
if (down_b) {
|
809
|
+
cb(cur, "ffn_down", il);
|
810
|
+
}
|
811
|
+
|
812
|
+
if (down_b) {
|
813
|
+
cur = lm_ggml_add(ctx0, cur, down_b);
|
814
|
+
}
|
815
|
+
|
816
|
+
if (down_s) {
|
817
|
+
cur = lm_ggml_mul(ctx0, cur, down_s);
|
818
|
+
cb(cur, "ffn_down_s", il);
|
819
|
+
}
|
820
|
+
|
821
|
+
return cur;
|
822
|
+
}
|
823
|
+
|
824
|
+
lm_ggml_tensor * llm_graph_context::build_moe_ffn(
|
825
|
+
lm_ggml_tensor * cur,
|
826
|
+
lm_ggml_tensor * gate_inp,
|
827
|
+
lm_ggml_tensor * up_exps,
|
828
|
+
lm_ggml_tensor * gate_exps,
|
829
|
+
lm_ggml_tensor * down_exps,
|
830
|
+
lm_ggml_tensor * exp_probs_b,
|
831
|
+
int64_t n_expert,
|
832
|
+
int64_t n_expert_used,
|
833
|
+
llm_ffn_op_type type_op,
|
834
|
+
bool norm_w,
|
835
|
+
bool scale_w,
|
836
|
+
float w_scale,
|
837
|
+
llama_expert_gating_func_type gating_op,
|
838
|
+
int il) const {
|
839
|
+
const int64_t n_embd = cur->ne[0];
|
840
|
+
const int64_t n_tokens = cur->ne[1];
|
841
|
+
const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
|
842
|
+
|
843
|
+
lm_ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
|
844
|
+
cb(logits, "ffn_moe_logits", il);
|
845
|
+
|
846
|
+
lm_ggml_tensor * probs = nullptr;
|
847
|
+
switch (gating_op) {
|
848
|
+
case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
|
849
|
+
{
|
850
|
+
probs = lm_ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
|
851
|
+
} break;
|
852
|
+
case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
|
853
|
+
{
|
854
|
+
probs = lm_ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
|
855
|
+
} break;
|
856
|
+
default:
|
857
|
+
LM_GGML_ABORT("fatal error");
|
858
|
+
}
|
859
|
+
cb(probs, "ffn_moe_probs", il);
|
860
|
+
|
861
|
+
// add experts selection bias - introduced in DeepSeek V3
|
862
|
+
// leave probs unbiased as it's later used to get expert weights
|
863
|
+
lm_ggml_tensor * selection_probs = probs;
|
864
|
+
if (exp_probs_b != nullptr) {
|
865
|
+
selection_probs = lm_ggml_add(ctx0, probs, exp_probs_b);
|
866
|
+
cb(selection_probs, "ffn_moe_probs_biased", il);
|
867
|
+
}
|
868
|
+
|
869
|
+
// llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
|
870
|
+
// see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
|
871
|
+
if (arch == LLM_ARCH_LLAMA4) {
|
872
|
+
selection_probs = logits;
|
873
|
+
}
|
874
|
+
|
875
|
+
// select experts
|
876
|
+
lm_ggml_tensor * selected_experts = lm_ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
|
877
|
+
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
878
|
+
cb(selected_experts, "ffn_moe_topk", il);
|
879
|
+
|
880
|
+
lm_ggml_tensor * weights = lm_ggml_get_rows(ctx0,
|
881
|
+
lm_ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
|
882
|
+
cb(weights, "ffn_moe_weights", il);
|
883
|
+
|
884
|
+
if (norm_w) {
|
885
|
+
weights = lm_ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
|
886
|
+
|
887
|
+
lm_ggml_tensor * weights_sum = lm_ggml_sum_rows(ctx0, weights); // [1, n_tokens]
|
888
|
+
cb(weights_sum, "ffn_moe_weights_sum", il);
|
889
|
+
|
890
|
+
weights = lm_ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
|
891
|
+
cb(weights, "ffn_moe_weights_norm", il);
|
892
|
+
|
893
|
+
weights = lm_ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
|
894
|
+
}
|
895
|
+
if (scale_w) {
|
896
|
+
weights = lm_ggml_scale(ctx0, weights, w_scale);
|
897
|
+
cb(weights, "ffn_moe_weights_scaled", il);
|
898
|
+
}
|
899
|
+
|
900
|
+
cur = lm_ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
|
901
|
+
|
902
|
+
if (weight_before_ffn) {
|
903
|
+
// TODO: this is a workaround as we don't yet have a repeat op that takes custom dim (lm_ggml_repeat_4d)
|
904
|
+
lm_ggml_tensor * repeated = lm_ggml_new_tensor_3d(ctx0, cur->type, n_embd, n_expert_used, n_tokens);
|
905
|
+
repeated = lm_ggml_repeat(ctx0, cur, repeated); // [n_embd, n_expert_used, n_tokens]
|
906
|
+
cur = lm_ggml_mul(ctx0, repeated, weights);
|
907
|
+
cb(cur, "ffn_moe_weighted", il);
|
908
|
+
}
|
909
|
+
|
910
|
+
lm_ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
911
|
+
cb(up, "ffn_moe_up", il);
|
912
|
+
|
913
|
+
lm_ggml_tensor * gate = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
914
|
+
cb(gate, "ffn_moe_gate", il);
|
915
|
+
|
916
|
+
switch (type_op) {
|
917
|
+
case LLM_FFN_SILU:
|
918
|
+
{
|
919
|
+
gate = lm_ggml_silu(ctx0, gate);
|
920
|
+
cb(gate, "ffn_moe_silu", il);
|
921
|
+
} break;
|
922
|
+
case LLM_FFN_GELU:
|
923
|
+
{
|
924
|
+
gate = lm_ggml_gelu(ctx0, gate);
|
925
|
+
cb(gate, "ffn_moe_gelu", il);
|
926
|
+
} break;
|
927
|
+
default:
|
928
|
+
LM_GGML_ABORT("fatal error");
|
929
|
+
}
|
930
|
+
|
931
|
+
lm_ggml_tensor * par = lm_ggml_mul(ctx0, up, gate); // [n_ff, n_expert_used, n_tokens]
|
932
|
+
cb(par, "ffn_moe_gate_par", il);
|
933
|
+
|
934
|
+
lm_ggml_tensor * experts = build_lora_mm_id(down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
|
935
|
+
cb(experts, "ffn_moe_down", il);
|
936
|
+
|
937
|
+
if (!weight_before_ffn) {
|
938
|
+
experts = lm_ggml_mul(ctx0, experts, weights);
|
939
|
+
cb(cur, "ffn_moe_weighted", il);
|
940
|
+
}
|
941
|
+
|
942
|
+
// aggregate experts
|
943
|
+
lm_ggml_tensor * moe_out = nullptr;
|
944
|
+
for (int i = 0; i < n_expert_used; ++i) {
|
945
|
+
lm_ggml_tensor * cur_expert = lm_ggml_view_2d(ctx0, experts, n_embd, n_tokens,
|
946
|
+
experts->nb[2], i*experts->nb[1]);
|
947
|
+
|
948
|
+
if (i == 0) {
|
949
|
+
moe_out = cur_expert;
|
950
|
+
} else {
|
951
|
+
moe_out = lm_ggml_add(ctx0, moe_out, cur_expert);
|
952
|
+
}
|
953
|
+
}
|
954
|
+
|
955
|
+
if (n_expert_used == 1) {
|
956
|
+
// avoid returning a non-contiguous tensor
|
957
|
+
moe_out = lm_ggml_cont(ctx0, moe_out);
|
958
|
+
}
|
959
|
+
|
960
|
+
cb(moe_out, "ffn_moe_out", il);
|
961
|
+
|
962
|
+
return moe_out;
|
963
|
+
}
|
964
|
+
|
965
|
+
// input embeddings with optional lora
|
966
|
+
lm_ggml_tensor * llm_graph_context::build_inp_embd(lm_ggml_tensor * tok_embd) const {
|
967
|
+
const int64_t n_embd = hparams.n_embd;
|
968
|
+
|
969
|
+
auto inp = std::make_unique<llm_graph_input_embd>();
|
970
|
+
|
971
|
+
lm_ggml_tensor * cur = nullptr;
|
972
|
+
|
973
|
+
if (ubatch.token) {
|
974
|
+
inp->tokens = lm_ggml_new_tensor_1d(ctx0, LM_GGML_TYPE_I32, ubatch.n_tokens);
|
975
|
+
//cb(inp->tokens, "inp_tokens", -1);
|
976
|
+
lm_ggml_set_input(inp->tokens);
|
977
|
+
|
978
|
+
cur = lm_ggml_get_rows(ctx0, tok_embd, inp->tokens);
|
979
|
+
|
980
|
+
// apply lora for embedding tokens if needed
|
981
|
+
for (const auto & lora : *loras) {
|
982
|
+
llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
|
983
|
+
if (lw == nullptr) {
|
984
|
+
continue;
|
985
|
+
}
|
986
|
+
|
987
|
+
const float adapter_scale = lora.second;
|
988
|
+
const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
|
989
|
+
|
990
|
+
lm_ggml_tensor * inpL_delta = lm_ggml_scale(ctx0, lm_ggml_mul_mat(
|
991
|
+
ctx0, lw->b, // non-transposed lora_b
|
992
|
+
lm_ggml_get_rows(ctx0, lw->a, inp->tokens)
|
993
|
+
), scale);
|
994
|
+
|
995
|
+
cur = lm_ggml_add(ctx0, cur, inpL_delta);
|
996
|
+
}
|
997
|
+
} else {
|
998
|
+
inp->embd = lm_ggml_new_tensor_2d(ctx0, LM_GGML_TYPE_F32, n_embd, ubatch.n_tokens);
|
999
|
+
lm_ggml_set_input(inp->embd);
|
1000
|
+
|
1001
|
+
cur = inp->embd;
|
1002
|
+
}
|
1003
|
+
|
1004
|
+
// For Granite architecture
|
1005
|
+
if (hparams.f_embedding_scale != 0.0f) {
|
1006
|
+
cur = lm_ggml_scale(ctx0, cur, hparams.f_embedding_scale);
|
1007
|
+
}
|
1008
|
+
|
1009
|
+
cb(cur, "inp_embd", -1);
|
1010
|
+
|
1011
|
+
res->add_input(std::move(inp));
|
1012
|
+
|
1013
|
+
return cur;
|
1014
|
+
}
|
1015
|
+
|
1016
|
+
lm_ggml_tensor * llm_graph_context::build_inp_pos() const {
|
1017
|
+
auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_token());
|
1018
|
+
|
1019
|
+
auto & cur = inp->pos;
|
1020
|
+
|
1021
|
+
cur = lm_ggml_new_tensor_1d(ctx0, LM_GGML_TYPE_I32, n_tokens*n_pos_per_token());
|
1022
|
+
lm_ggml_set_input(cur);
|
1023
|
+
|
1024
|
+
res->add_input(std::move(inp));
|
1025
|
+
|
1026
|
+
return cur;
|
1027
|
+
}
|
1028
|
+
|
1029
|
+
lm_ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
|
1030
|
+
auto inp = std::make_unique<llm_graph_input_attn_temp>(n_pos_per_token(), hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
|
1031
|
+
|
1032
|
+
auto & cur = inp->attn_scale;
|
1033
|
+
|
1034
|
+
cur = lm_ggml_new_tensor_3d(ctx0, LM_GGML_TYPE_F32, 1, 1, n_tokens*n_pos_per_token());
|
1035
|
+
lm_ggml_set_input(cur);
|
1036
|
+
|
1037
|
+
res->add_input(std::move(inp));
|
1038
|
+
|
1039
|
+
return cur;
|
1040
|
+
}
|
1041
|
+
|
1042
|
+
lm_ggml_tensor * llm_graph_context::build_inp_out_ids() const {
|
1043
|
+
auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
|
1044
|
+
|
1045
|
+
auto & cur = inp->out_ids;
|
1046
|
+
|
1047
|
+
cur = lm_ggml_new_tensor_1d(ctx0, LM_GGML_TYPE_I32, n_outputs);
|
1048
|
+
lm_ggml_set_input(cur);
|
1049
|
+
|
1050
|
+
res->add_input(std::move(inp));
|
1051
|
+
|
1052
|
+
return cur;
|
1053
|
+
}
|
1054
|
+
|
1055
|
+
lm_ggml_tensor * llm_graph_context::build_inp_mean() const {
|
1056
|
+
auto inp = std::make_unique<llm_graph_input_mean>(cparams);
|
1057
|
+
|
1058
|
+
auto & cur = inp->mean;
|
1059
|
+
|
1060
|
+
cur = lm_ggml_new_tensor_2d(ctx0, LM_GGML_TYPE_F32, n_tokens, n_tokens);
|
1061
|
+
lm_ggml_set_input(cur);
|
1062
|
+
|
1063
|
+
res->add_input(std::move(inp));
|
1064
|
+
|
1065
|
+
return cur;
|
1066
|
+
}
|
1067
|
+
|
1068
|
+
lm_ggml_tensor * llm_graph_context::build_inp_cls() const {
|
1069
|
+
auto inp = std::make_unique<llm_graph_input_cls>(cparams);
|
1070
|
+
|
1071
|
+
auto & cur = inp->cls;
|
1072
|
+
|
1073
|
+
cur = lm_ggml_new_tensor_1d(ctx0, LM_GGML_TYPE_I32, n_tokens);
|
1074
|
+
lm_ggml_set_input(cur);
|
1075
|
+
|
1076
|
+
res->add_input(std::move(inp));
|
1077
|
+
|
1078
|
+
return cur;
|
1079
|
+
}
|
1080
|
+
|
1081
|
+
lm_ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
1082
|
+
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
1083
|
+
|
1084
|
+
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
|
1085
|
+
|
1086
|
+
const auto n_kv = kv_self->n;
|
1087
|
+
|
1088
|
+
auto & cur = inp->s_copy;
|
1089
|
+
|
1090
|
+
cur = lm_ggml_new_tensor_1d(ctx0, LM_GGML_TYPE_I32, n_kv);
|
1091
|
+
lm_ggml_set_input(cur);
|
1092
|
+
|
1093
|
+
res->add_input(std::move(inp));
|
1094
|
+
|
1095
|
+
return cur;
|
1096
|
+
}
|
1097
|
+
|
1098
|
+
lm_ggml_tensor * llm_graph_context::build_inp_s_mask() const {
|
1099
|
+
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
1100
|
+
|
1101
|
+
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
|
1102
|
+
|
1103
|
+
const auto n_kv = kv_self->n;
|
1104
|
+
|
1105
|
+
auto & cur = inp->s_mask;
|
1106
|
+
|
1107
|
+
cur = lm_ggml_new_tensor_2d(ctx0, LM_GGML_TYPE_F32, 1, n_kv);
|
1108
|
+
lm_ggml_set_input(cur);
|
1109
|
+
|
1110
|
+
res->add_input(std::move(inp));
|
1111
|
+
|
1112
|
+
return cur;
|
1113
|
+
}
|
1114
|
+
|
1115
|
+
lm_ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
|
1116
|
+
auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
|
1117
|
+
|
1118
|
+
auto & cur = inp->cross_embd;
|
1119
|
+
|
1120
|
+
// if we have the output embeddings from the encoder, use them directly
|
1121
|
+
// TODO: needs more work to be correct, for now just use the tensor shape
|
1122
|
+
//if (cross->t_embd) {
|
1123
|
+
// cur = lm_ggml_view_tensor(ctx0, cross->t_embd);
|
1124
|
+
|
1125
|
+
// return cur;
|
1126
|
+
//}
|
1127
|
+
|
1128
|
+
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
|
1129
|
+
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
|
1130
|
+
|
1131
|
+
cur = lm_ggml_new_tensor_2d(ctx0, LM_GGML_TYPE_F32, n_embd, n_enc);
|
1132
|
+
lm_ggml_set_input(cur);
|
1133
|
+
|
1134
|
+
res->add_input(std::move(inp));
|
1135
|
+
|
1136
|
+
return cur;
|
1137
|
+
}
|
1138
|
+
|
1139
|
+
lm_ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
|
1140
|
+
auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
|
1141
|
+
|
1142
|
+
auto & cur = inp->pos_bucket;
|
1143
|
+
|
1144
|
+
cur = lm_ggml_new_tensor_2d(ctx0, LM_GGML_TYPE_I32, n_tokens, n_tokens);
|
1145
|
+
lm_ggml_set_input(cur);
|
1146
|
+
|
1147
|
+
res->add_input(std::move(inp));
|
1148
|
+
|
1149
|
+
return cur;
|
1150
|
+
}
|
1151
|
+
|
1152
|
+
lm_ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
|
1153
|
+
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
1154
|
+
|
1155
|
+
auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, kv_self);
|
1156
|
+
|
1157
|
+
const auto n_kv = kv_self->n;
|
1158
|
+
|
1159
|
+
auto & cur = inp->pos_bucket;
|
1160
|
+
|
1161
|
+
cur = lm_ggml_new_tensor_2d(ctx0, LM_GGML_TYPE_I32, n_kv, n_tokens);
|
1162
|
+
lm_ggml_set_input(cur);
|
1163
|
+
|
1164
|
+
res->add_input(std::move(inp));
|
1165
|
+
|
1166
|
+
return cur;
|
1167
|
+
}
|
1168
|
+
|
1169
|
+
lm_ggml_tensor * llm_graph_context::build_pos_bias(lm_ggml_tensor * pos_bucket, lm_ggml_tensor * attn_rel_b) const {
|
1170
|
+
lm_ggml_tensor * pos_bucket_1d = lm_ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
|
1171
|
+
cb(pos_bucket_1d, "pos_bucket_1d", -1);
|
1172
|
+
|
1173
|
+
lm_ggml_tensor * pos_bias = lm_ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
|
1174
|
+
|
1175
|
+
pos_bias = lm_ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
|
1176
|
+
pos_bias = lm_ggml_permute (ctx0, pos_bias, 2, 0, 1, 3);
|
1177
|
+
pos_bias = lm_ggml_cont (ctx0, pos_bias);
|
1178
|
+
|
1179
|
+
cb(pos_bias, "pos_bias", -1);
|
1180
|
+
|
1181
|
+
return pos_bias;
|
1182
|
+
}
|
1183
|
+
|
1184
|
+
lm_ggml_tensor * llm_graph_context::build_attn_mha(
|
1185
|
+
lm_ggml_cgraph * gf,
|
1186
|
+
lm_ggml_tensor * q,
|
1187
|
+
lm_ggml_tensor * k,
|
1188
|
+
lm_ggml_tensor * v,
|
1189
|
+
lm_ggml_tensor * kq_b,
|
1190
|
+
lm_ggml_tensor * kq_mask,
|
1191
|
+
bool v_trans,
|
1192
|
+
float kq_scale) const {
|
1193
|
+
//const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
1194
|
+
//const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
1195
|
+
|
1196
|
+
//const int64_t n_head = hparams.n_head(il);
|
1197
|
+
//const int64_t n_head_kv = hparams.n_head_kv(il);
|
1198
|
+
|
1199
|
+
//const auto & n_embd_head_k = hparams.n_embd_head_k;
|
1200
|
+
//const auto & n_embd_head_v = hparams.n_embd_head_v;
|
1201
|
+
|
1202
|
+
const auto n_embd_head_v = v_trans ? v->ne[1] : v->ne[0];
|
1203
|
+
|
1204
|
+
const auto n_tokens = q->ne[1];
|
1205
|
+
const auto n_head = q->ne[2];
|
1206
|
+
const auto n_kv = k->ne[1];
|
1207
|
+
|
1208
|
+
lm_ggml_tensor * cur;
|
1209
|
+
|
1210
|
+
// TODO: replace hardcoded padding with ggml-provided padding
|
1211
|
+
if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
|
1212
|
+
LM_GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
|
1213
|
+
|
1214
|
+
if (v_trans) {
|
1215
|
+
v = lm_ggml_transpose(ctx0, v);
|
1216
|
+
}
|
1217
|
+
|
1218
|
+
// this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
|
1219
|
+
if (k->type == LM_GGML_TYPE_F32) {
|
1220
|
+
k = lm_ggml_cast(ctx0, k, LM_GGML_TYPE_F16);
|
1221
|
+
}
|
1222
|
+
|
1223
|
+
if (v->type == LM_GGML_TYPE_F32) {
|
1224
|
+
v = lm_ggml_cast(ctx0, v, LM_GGML_TYPE_F16);
|
1225
|
+
}
|
1226
|
+
|
1227
|
+
cur = lm_ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
|
1228
|
+
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
|
1229
|
+
|
1230
|
+
lm_ggml_flash_attn_ext_set_prec(cur, LM_GGML_PREC_F32);
|
1231
|
+
|
1232
|
+
cur = lm_ggml_reshape_2d(ctx0, cur, n_embd_head_v*n_head, n_tokens);
|
1233
|
+
} else {
|
1234
|
+
lm_ggml_tensor * kq = lm_ggml_mul_mat(ctx0, k, q);
|
1235
|
+
|
1236
|
+
// note: this op tends to require high floating point range
|
1237
|
+
// while for some models F16 is enough, for others it is not, so we default to F32 here
|
1238
|
+
lm_ggml_mul_mat_set_prec(kq, LM_GGML_PREC_F32);
|
1239
|
+
|
1240
|
+
if (arch == LLM_ARCH_GROK) {
|
1241
|
+
// need to do the following:
|
1242
|
+
// multiply by attn_output_multiplyer of 0.08838834764831845
|
1243
|
+
// and then :
|
1244
|
+
// kq = 30 * tanh(kq / 30)
|
1245
|
+
// before the softmax below
|
1246
|
+
|
1247
|
+
kq = lm_ggml_tanh(ctx0, lm_ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
|
1248
|
+
kq = lm_ggml_scale(ctx0, kq, 30);
|
1249
|
+
}
|
1250
|
+
|
1251
|
+
if (hparams.attn_soft_cap) {
|
1252
|
+
kq = lm_ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
|
1253
|
+
kq = lm_ggml_tanh (ctx0, kq);
|
1254
|
+
kq = lm_ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
|
1255
|
+
}
|
1256
|
+
|
1257
|
+
if (kq_b) {
|
1258
|
+
kq = lm_ggml_add(ctx0, kq, kq_b);
|
1259
|
+
}
|
1260
|
+
|
1261
|
+
kq = lm_ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
|
1262
|
+
|
1263
|
+
if (!v_trans) {
|
1264
|
+
// note: avoid this branch
|
1265
|
+
v = lm_ggml_cont(ctx0, lm_ggml_transpose(ctx0, v));
|
1266
|
+
}
|
1267
|
+
|
1268
|
+
lm_ggml_tensor * kqv = lm_ggml_mul_mat(ctx0, v, kq);
|
1269
|
+
|
1270
|
+
lm_ggml_tensor * kqv_merged = lm_ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
1271
|
+
|
1272
|
+
cur = lm_ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
|
1273
|
+
|
1274
|
+
if (!cparams.offload_kqv) {
|
1275
|
+
// all nodes between the KV store and the attention output are run on the CPU
|
1276
|
+
lm_ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
|
1277
|
+
}
|
1278
|
+
}
|
1279
|
+
|
1280
|
+
lm_ggml_build_forward_expand(gf, cur);
|
1281
|
+
|
1282
|
+
return cur;
|
1283
|
+
}
|
1284
|
+
|
1285
|
+
llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
|
1286
|
+
auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
|
1287
|
+
|
1288
|
+
// note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
|
1289
|
+
inp->kq_mask = lm_ggml_new_tensor_2d(ctx0, LM_GGML_TYPE_F32, n_tokens, LM_GGML_PAD(n_tokens, LM_GGML_KQ_MASK_PAD));
|
1290
|
+
//cb(inp_kq_mask, "KQ_mask", -1);
|
1291
|
+
lm_ggml_set_input(inp->kq_mask);
|
1292
|
+
|
1293
|
+
inp->kq_mask_cnv = cparams.flash_attn ? lm_ggml_cast(ctx0, inp->kq_mask, LM_GGML_TYPE_F16) : inp->kq_mask;
|
1294
|
+
|
1295
|
+
return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
|
1296
|
+
}
|
1297
|
+
|
1298
|
+
lm_ggml_tensor * llm_graph_context::build_attn(
|
1299
|
+
llm_graph_input_attn_no_cache * inp,
|
1300
|
+
lm_ggml_cgraph * gf,
|
1301
|
+
lm_ggml_tensor * wo,
|
1302
|
+
lm_ggml_tensor * wo_b,
|
1303
|
+
lm_ggml_tensor * q_cur,
|
1304
|
+
lm_ggml_tensor * k_cur,
|
1305
|
+
lm_ggml_tensor * v_cur,
|
1306
|
+
lm_ggml_tensor * kq_b,
|
1307
|
+
float kq_scale,
|
1308
|
+
int il) const {
|
1309
|
+
LM_GGML_UNUSED(n_tokens);
|
1310
|
+
|
1311
|
+
// these nodes are added to the graph together so that they are not reordered
|
1312
|
+
// by doing so, the number of splits in the graph is reduced
|
1313
|
+
lm_ggml_build_forward_expand(gf, q_cur);
|
1314
|
+
lm_ggml_build_forward_expand(gf, k_cur);
|
1315
|
+
lm_ggml_build_forward_expand(gf, v_cur);
|
1316
|
+
|
1317
|
+
const auto & kq_mask = inp->get_kq_mask();
|
1318
|
+
|
1319
|
+
lm_ggml_tensor * q = lm_ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
|
1320
|
+
//cb(q, "q", il);
|
1321
|
+
|
1322
|
+
lm_ggml_tensor * k = lm_ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
|
1323
|
+
//cb(k, "k", il);
|
1324
|
+
|
1325
|
+
lm_ggml_tensor * v = lm_ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
|
1326
|
+
//cb(k, "v", il);
|
1327
|
+
|
1328
|
+
lm_ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, false, kq_scale);
|
1329
|
+
|
1330
|
+
cb(cur, "kqv_out", il);
|
1331
|
+
|
1332
|
+
if (wo) {
|
1333
|
+
cur = build_lora_mm(wo, cur);
|
1334
|
+
}
|
1335
|
+
|
1336
|
+
if (wo_b) {
|
1337
|
+
//cb(cur, "kqv_wo", il);
|
1338
|
+
}
|
1339
|
+
|
1340
|
+
if (wo_b) {
|
1341
|
+
cur = lm_ggml_add(ctx0, cur, wo_b);
|
1342
|
+
}
|
1343
|
+
|
1344
|
+
return cur;
|
1345
|
+
}
|
1346
|
+
|
1347
|
+
llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
|
1348
|
+
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
1349
|
+
|
1350
|
+
auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, kv_self);
|
1351
|
+
|
1352
|
+
const auto n_kv = kv_self->n;
|
1353
|
+
|
1354
|
+
inp->self_kq_mask = lm_ggml_new_tensor_2d(ctx0, LM_GGML_TYPE_F32, n_kv, LM_GGML_PAD(n_tokens, LM_GGML_KQ_MASK_PAD));
|
1355
|
+
//cb(inp->self_kq_mask, "KQ_mask", -1);
|
1356
|
+
lm_ggml_set_input(inp->self_kq_mask);
|
1357
|
+
|
1358
|
+
inp->self_kq_mask_cnv = cparams.flash_attn ? lm_ggml_cast(ctx0, inp->self_kq_mask, LM_GGML_TYPE_F16) : inp->self_kq_mask;
|
1359
|
+
|
1360
|
+
if (hparams.n_swa_pattern > 1) {
|
1361
|
+
LM_GGML_ASSERT(hparams.n_swa > 0);
|
1362
|
+
|
1363
|
+
inp->self_kq_mask_swa = lm_ggml_new_tensor_2d(ctx0, LM_GGML_TYPE_F32, n_kv, LM_GGML_PAD(n_tokens, LM_GGML_KQ_MASK_PAD));
|
1364
|
+
//cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
|
1365
|
+
lm_ggml_set_input(inp->self_kq_mask_swa);
|
1366
|
+
|
1367
|
+
inp->self_kq_mask_swa_cnv = cparams.flash_attn ? lm_ggml_cast(ctx0, inp->self_kq_mask_swa, LM_GGML_TYPE_F16) : inp->self_kq_mask_swa;
|
1368
|
+
}
|
1369
|
+
|
1370
|
+
return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
|
1371
|
+
}
|
1372
|
+
|
1373
|
+
lm_ggml_tensor * llm_graph_context::build_attn(
|
1374
|
+
llm_graph_input_attn_kv_unified * inp,
|
1375
|
+
lm_ggml_cgraph * gf,
|
1376
|
+
lm_ggml_tensor * wo,
|
1377
|
+
lm_ggml_tensor * wo_b,
|
1378
|
+
lm_ggml_tensor * q_cur,
|
1379
|
+
lm_ggml_tensor * k_cur,
|
1380
|
+
lm_ggml_tensor * v_cur,
|
1381
|
+
lm_ggml_tensor * kq_b,
|
1382
|
+
float kq_scale,
|
1383
|
+
int il) const {
|
1384
|
+
// these nodes are added to the graph together so that they are not reordered
|
1385
|
+
// by doing so, the number of splits in the graph is reduced
|
1386
|
+
lm_ggml_build_forward_expand(gf, q_cur);
|
1387
|
+
lm_ggml_build_forward_expand(gf, k_cur);
|
1388
|
+
lm_ggml_build_forward_expand(gf, v_cur);
|
1389
|
+
|
1390
|
+
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
1391
|
+
const auto & n_ctx = cparams.n_ctx;
|
1392
|
+
|
1393
|
+
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
1394
|
+
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
1395
|
+
|
1396
|
+
const auto n_tokens = q_cur->ne[2];
|
1397
|
+
|
1398
|
+
const bool v_trans = !cparams.flash_attn;
|
1399
|
+
|
1400
|
+
// store to KV cache
|
1401
|
+
{
|
1402
|
+
LM_GGML_ASSERT(!kv_self->recurrent);
|
1403
|
+
|
1404
|
+
const auto kv_head = kv_self->head;
|
1405
|
+
|
1406
|
+
LM_GGML_ASSERT(kv_self->size == n_ctx);
|
1407
|
+
|
1408
|
+
lm_ggml_tensor * k_cache_view = lm_ggml_view_1d(ctx0, kv_self->k_l[il], n_tokens*n_embd_k_gqa, lm_ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa)*kv_head);
|
1409
|
+
//cb(k_cache_view, "k_cache_view", il);
|
1410
|
+
|
1411
|
+
// note: storing RoPE-ed version of K in the KV cache
|
1412
|
+
lm_ggml_build_forward_expand(gf, lm_ggml_cpy(ctx0, k_cur, k_cache_view));
|
1413
|
+
|
1414
|
+
v_cur = lm_ggml_reshape_2d(ctx0, v_cur, n_embd_v_gqa, n_tokens);
|
1415
|
+
|
1416
|
+
lm_ggml_tensor * v_cache_view = nullptr;
|
1417
|
+
|
1418
|
+
if (!v_trans) {
|
1419
|
+
v_cache_view = lm_ggml_view_1d(ctx0, kv_self->v_l[il], n_tokens*n_embd_v_gqa, lm_ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa)*kv_head);
|
1420
|
+
} else {
|
1421
|
+
// note: the V cache is transposed when not using flash attention
|
1422
|
+
v_cache_view = lm_ggml_view_2d(ctx0, kv_self->v_l[il], n_tokens, n_embd_v_gqa,
|
1423
|
+
( n_ctx)*lm_ggml_element_size(kv_self->v_l[il]),
|
1424
|
+
(kv_head)*lm_ggml_element_size(kv_self->v_l[il]));
|
1425
|
+
|
1426
|
+
v_cur = lm_ggml_transpose(ctx0, v_cur);
|
1427
|
+
}
|
1428
|
+
//cb(v_cache_view, "v_cache_view", il);
|
1429
|
+
|
1430
|
+
lm_ggml_build_forward_expand(gf, lm_ggml_cpy(ctx0, v_cur, v_cache_view));
|
1431
|
+
}
|
1432
|
+
|
1433
|
+
const bool is_swa = hparams.is_swa(il);
|
1434
|
+
|
1435
|
+
const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
|
1436
|
+
|
1437
|
+
const auto n_kv = kv_self->n;
|
1438
|
+
|
1439
|
+
const int64_t n_head_kv = hparams.n_head_kv(il);
|
1440
|
+
|
1441
|
+
const auto & n_embd_head_k = hparams.n_embd_head_k;
|
1442
|
+
const auto & n_embd_head_v = hparams.n_embd_head_v;
|
1443
|
+
|
1444
|
+
lm_ggml_tensor * q = lm_ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
|
1445
|
+
//cb(q, "q", il);
|
1446
|
+
|
1447
|
+
lm_ggml_tensor * k =
|
1448
|
+
lm_ggml_view_3d(ctx0, kv_self->k_l[il],
|
1449
|
+
n_embd_head_k, n_kv, n_head_kv,
|
1450
|
+
lm_ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
|
1451
|
+
lm_ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k),
|
1452
|
+
0);
|
1453
|
+
//cb(k, "k", il);
|
1454
|
+
|
1455
|
+
lm_ggml_tensor * v = !v_trans ?
|
1456
|
+
lm_ggml_view_3d(ctx0, kv_self->v_l[il],
|
1457
|
+
n_embd_head_v, n_kv, n_head_kv,
|
1458
|
+
lm_ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
|
1459
|
+
lm_ggml_row_size(kv_self->v_l[il]->type, n_embd_head_v),
|
1460
|
+
0) :
|
1461
|
+
lm_ggml_view_3d(ctx0, kv_self->v_l[il],
|
1462
|
+
n_kv, n_embd_head_v, n_head_kv,
|
1463
|
+
lm_ggml_element_size(kv_self->v_l[il])*n_ctx,
|
1464
|
+
lm_ggml_element_size(kv_self->v_l[il])*n_ctx*n_embd_head_v,
|
1465
|
+
0);
|
1466
|
+
|
1467
|
+
lm_ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_trans, kq_scale);
|
1468
|
+
cb(cur, "kqv_out", il);
|
1469
|
+
|
1470
|
+
if (wo) {
|
1471
|
+
cur = build_lora_mm(wo, cur);
|
1472
|
+
}
|
1473
|
+
|
1474
|
+
if (wo_b) {
|
1475
|
+
//cb(cur, "kqv_wo", il);
|
1476
|
+
}
|
1477
|
+
|
1478
|
+
if (wo_b) {
|
1479
|
+
cur = lm_ggml_add(ctx0, cur, wo_b);
|
1480
|
+
}
|
1481
|
+
|
1482
|
+
return cur;
|
1483
|
+
}
|
1484
|
+
|
1485
|
+
llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
|
1486
|
+
auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
|
1487
|
+
|
1488
|
+
const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
|
1489
|
+
|
1490
|
+
inp->cross_kq_mask = lm_ggml_new_tensor_2d(ctx0, LM_GGML_TYPE_F32, n_enc, LM_GGML_PAD(n_tokens, LM_GGML_KQ_MASK_PAD));
|
1491
|
+
lm_ggml_set_input(inp->cross_kq_mask);
|
1492
|
+
|
1493
|
+
inp->cross_kq_mask_cnv = cparams.flash_attn ? lm_ggml_cast(ctx0, inp->cross_kq_mask, LM_GGML_TYPE_F16) : inp->cross_kq_mask;
|
1494
|
+
|
1495
|
+
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
|
1496
|
+
}
|
1497
|
+
|
1498
|
+
lm_ggml_tensor * llm_graph_context::build_attn(
|
1499
|
+
llm_graph_input_attn_cross * inp,
|
1500
|
+
lm_ggml_cgraph * gf,
|
1501
|
+
lm_ggml_tensor * wo,
|
1502
|
+
lm_ggml_tensor * wo_b,
|
1503
|
+
lm_ggml_tensor * q_cur,
|
1504
|
+
lm_ggml_tensor * k_cur,
|
1505
|
+
lm_ggml_tensor * v_cur,
|
1506
|
+
lm_ggml_tensor * kq_b,
|
1507
|
+
float kq_scale,
|
1508
|
+
int il) const {
|
1509
|
+
// these nodes are added to the graph together so that they are not reordered
|
1510
|
+
// by doing so, the number of splits in the graph is reduced
|
1511
|
+
lm_ggml_build_forward_expand(gf, q_cur);
|
1512
|
+
lm_ggml_build_forward_expand(gf, k_cur);
|
1513
|
+
lm_ggml_build_forward_expand(gf, v_cur);
|
1514
|
+
|
1515
|
+
const auto & kq_mask = inp->get_kq_mask_cross();
|
1516
|
+
|
1517
|
+
lm_ggml_tensor * q = lm_ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
|
1518
|
+
//cb(q, "q", il);
|
1519
|
+
|
1520
|
+
lm_ggml_tensor * k = lm_ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
|
1521
|
+
//cb(k, "k", il);
|
1522
|
+
|
1523
|
+
lm_ggml_tensor * v = lm_ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
|
1524
|
+
//cb(k, "v", il);
|
1525
|
+
|
1526
|
+
lm_ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, false, kq_scale);
|
1527
|
+
|
1528
|
+
cb(cur, "kqv_out", il);
|
1529
|
+
|
1530
|
+
if (wo) {
|
1531
|
+
cur = build_lora_mm(wo, cur);
|
1532
|
+
}
|
1533
|
+
|
1534
|
+
if (wo_b) {
|
1535
|
+
//cb(cur, "kqv_wo", il);
|
1536
|
+
}
|
1537
|
+
|
1538
|
+
if (wo_b) {
|
1539
|
+
cur = lm_ggml_add(ctx0, cur, wo_b);
|
1540
|
+
}
|
1541
|
+
|
1542
|
+
return cur;
|
1543
|
+
}
|
1544
|
+
|
1545
|
+
lm_ggml_tensor * llm_graph_context::build_copy_mask_state(
|
1546
|
+
lm_ggml_cgraph * gf,
|
1547
|
+
lm_ggml_tensor * s,
|
1548
|
+
lm_ggml_tensor * state_copy,
|
1549
|
+
lm_ggml_tensor * state_mask,
|
1550
|
+
int32_t n_state,
|
1551
|
+
int32_t n_seqs) const {
|
1552
|
+
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
1553
|
+
|
1554
|
+
const auto n_kv = kv_self->n;
|
1555
|
+
const auto kv_head = kv_self->head;
|
1556
|
+
|
1557
|
+
lm_ggml_tensor * states = lm_ggml_reshape_2d(ctx0, s, n_state, kv_self->size);
|
1558
|
+
|
1559
|
+
// copy states
|
1560
|
+
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
|
1561
|
+
// this shrinks the tensors's ne[1] to n_kv
|
1562
|
+
states = lm_ggml_get_rows(ctx0, states, state_copy);
|
1563
|
+
|
1564
|
+
// clear states of sequences which are starting at the beginning of this batch
|
1565
|
+
// FIXME: zero-out NANs?
|
1566
|
+
states = lm_ggml_mul(ctx0, states, state_mask);
|
1567
|
+
|
1568
|
+
// copy states which won't be changed further (between n_seqs and n_kv)
|
1569
|
+
lm_ggml_build_forward_expand(gf,
|
1570
|
+
lm_ggml_cpy(ctx0,
|
1571
|
+
lm_ggml_view_1d(ctx0, states, n_state*(n_kv - n_seqs), (n_seqs )*n_state*lm_ggml_element_size(states)),
|
1572
|
+
lm_ggml_view_1d(ctx0, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*lm_ggml_element_size(s))));
|
1573
|
+
|
1574
|
+
// the part of the states that will be used and modified
|
1575
|
+
return lm_ggml_view_2d(ctx0, states, n_state, n_seqs, states->nb[1], 0);
|
1576
|
+
}
|
1577
|
+
|
1578
|
+
lm_ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
|
1579
|
+
lm_ggml_cgraph * gf,
|
1580
|
+
lm_ggml_tensor * state_copy,
|
1581
|
+
lm_ggml_tensor * state_mask,
|
1582
|
+
const llama_ubatch & ubatch,
|
1583
|
+
int il) const {
|
1584
|
+
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
1585
|
+
|
1586
|
+
const auto token_shift_count = hparams.token_shift_count;
|
1587
|
+
|
1588
|
+
const int64_t n_seqs = ubatch.n_seqs;
|
1589
|
+
|
1590
|
+
lm_ggml_tensor * token_shift_all = kv_self->k_l[il];
|
1591
|
+
|
1592
|
+
lm_ggml_tensor * token_shift = build_copy_mask_state(
|
1593
|
+
gf, token_shift_all, state_copy, state_mask,
|
1594
|
+
hparams.n_embd_k_s(), n_seqs);
|
1595
|
+
|
1596
|
+
token_shift = lm_ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
|
1597
|
+
|
1598
|
+
return token_shift;
|
1599
|
+
}
|
1600
|
+
|
1601
|
+
lm_ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
|
1602
|
+
lm_ggml_tensor * token_shift,
|
1603
|
+
const llama_ubatch & ubatch,
|
1604
|
+
int il) const {
|
1605
|
+
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
1606
|
+
|
1607
|
+
const auto token_shift_count = hparams.token_shift_count;
|
1608
|
+
const auto n_embd = hparams.n_embd;
|
1609
|
+
|
1610
|
+
const int64_t n_seqs = ubatch.n_seqs;
|
1611
|
+
|
1612
|
+
const auto kv_head = kv_self->head;
|
1613
|
+
|
1614
|
+
return lm_ggml_cpy(
|
1615
|
+
ctx0,
|
1616
|
+
lm_ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
|
1617
|
+
lm_ggml_view_1d(ctx0, kv_self->k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * lm_ggml_element_size(kv_self->k_l[il]))
|
1618
|
+
);
|
1619
|
+
}
|
1620
|
+
|
1621
|
+
void llm_graph_context::build_pooling(
|
1622
|
+
lm_ggml_cgraph * gf,
|
1623
|
+
lm_ggml_tensor * cls,
|
1624
|
+
lm_ggml_tensor * cls_b,
|
1625
|
+
lm_ggml_tensor * cls_out,
|
1626
|
+
lm_ggml_tensor * cls_out_b) const {
|
1627
|
+
if (!cparams.embeddings) {
|
1628
|
+
return;
|
1629
|
+
}
|
1630
|
+
|
1631
|
+
lm_ggml_tensor * inp = res->t_embd;
|
1632
|
+
|
1633
|
+
//// find result_norm tensor for input
|
1634
|
+
//for (int i = lm_ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
|
1635
|
+
// inp = lm_ggml_graph_node(gf, i);
|
1636
|
+
// if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
|
1637
|
+
// break;
|
1638
|
+
// }
|
1639
|
+
|
1640
|
+
// inp = nullptr;
|
1641
|
+
//}
|
1642
|
+
|
1643
|
+
LM_GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
|
1644
|
+
|
1645
|
+
lm_ggml_tensor * cur;
|
1646
|
+
|
1647
|
+
switch (pooling_type) {
|
1648
|
+
case LLAMA_POOLING_TYPE_NONE:
|
1649
|
+
{
|
1650
|
+
cur = inp;
|
1651
|
+
} break;
|
1652
|
+
case LLAMA_POOLING_TYPE_MEAN:
|
1653
|
+
{
|
1654
|
+
lm_ggml_tensor * inp_mean = build_inp_mean();
|
1655
|
+
cur = lm_ggml_mul_mat(ctx0, lm_ggml_cont(ctx0, lm_ggml_transpose(ctx0, inp)), inp_mean);
|
1656
|
+
} break;
|
1657
|
+
case LLAMA_POOLING_TYPE_CLS:
|
1658
|
+
case LLAMA_POOLING_TYPE_LAST:
|
1659
|
+
{
|
1660
|
+
lm_ggml_tensor * inp_cls = build_inp_cls();
|
1661
|
+
cur = lm_ggml_get_rows(ctx0, inp, inp_cls);
|
1662
|
+
} break;
|
1663
|
+
case LLAMA_POOLING_TYPE_RANK:
|
1664
|
+
{
|
1665
|
+
lm_ggml_tensor * inp_cls = build_inp_cls();
|
1666
|
+
inp = lm_ggml_get_rows(ctx0, inp, inp_cls);
|
1667
|
+
|
1668
|
+
// classification head
|
1669
|
+
// https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
|
1670
|
+
LM_GGML_ASSERT(cls != nullptr);
|
1671
|
+
LM_GGML_ASSERT(cls_b != nullptr);
|
1672
|
+
|
1673
|
+
cur = lm_ggml_add (ctx0, lm_ggml_mul_mat(ctx0, cls, inp), cls_b);
|
1674
|
+
cur = lm_ggml_tanh(ctx0, cur);
|
1675
|
+
|
1676
|
+
// some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
|
1677
|
+
// https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
|
1678
|
+
if (cls_out) {
|
1679
|
+
LM_GGML_ASSERT(cls_out_b != nullptr);
|
1680
|
+
|
1681
|
+
cur = lm_ggml_add (ctx0, lm_ggml_mul_mat(ctx0, cls_out, cur), cls_out_b);
|
1682
|
+
}
|
1683
|
+
} break;
|
1684
|
+
default:
|
1685
|
+
{
|
1686
|
+
LM_GGML_ABORT("unknown pooling type");
|
1687
|
+
}
|
1688
|
+
}
|
1689
|
+
|
1690
|
+
cb(cur, "result_embd_pooled", -1);
|
1691
|
+
res->t_embd_pooled = cur;
|
1692
|
+
|
1693
|
+
lm_ggml_build_forward_expand(gf, cur);
|
1694
|
+
}
|
1695
|
+
|