cui-llama.rn 1.4.3 → 1.4.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (134) hide show
  1. package/README.md +93 -114
  2. package/android/src/main/CMakeLists.txt +5 -0
  3. package/android/src/main/java/com/rnllama/LlamaContext.java +91 -17
  4. package/android/src/main/java/com/rnllama/RNLlama.java +37 -4
  5. package/android/src/main/jni-utils.h +6 -0
  6. package/android/src/main/jni.cpp +289 -31
  7. package/android/src/main/jniLibs/arm64-v8a/librnllama.so +0 -0
  8. package/android/src/main/jniLibs/arm64-v8a/librnllama_v8.so +0 -0
  9. package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2.so +0 -0
  10. package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod.so +0 -0
  11. package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_dotprod_i8mm.so +0 -0
  12. package/android/src/main/jniLibs/arm64-v8a/librnllama_v8_2_i8mm.so +0 -0
  13. package/android/src/main/jniLibs/x86_64/librnllama.so +0 -0
  14. package/android/src/main/jniLibs/x86_64/librnllama_x86_64.so +0 -0
  15. package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +7 -2
  16. package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +7 -2
  17. package/cpp/chat-template.hpp +529 -0
  18. package/cpp/chat.cpp +1779 -0
  19. package/cpp/chat.h +135 -0
  20. package/cpp/common.cpp +2064 -1873
  21. package/cpp/common.h +700 -699
  22. package/cpp/ggml-alloc.c +1039 -1042
  23. package/cpp/ggml-alloc.h +1 -1
  24. package/cpp/ggml-backend-impl.h +255 -255
  25. package/cpp/ggml-backend-reg.cpp +586 -582
  26. package/cpp/ggml-backend.cpp +2004 -2002
  27. package/cpp/ggml-backend.h +354 -354
  28. package/cpp/ggml-common.h +1851 -1853
  29. package/cpp/ggml-cpp.h +39 -39
  30. package/cpp/ggml-cpu-aarch64.cpp +4248 -4247
  31. package/cpp/ggml-cpu-aarch64.h +8 -8
  32. package/cpp/ggml-cpu-impl.h +531 -386
  33. package/cpp/ggml-cpu-quants.c +12527 -10920
  34. package/cpp/ggml-cpu-traits.cpp +36 -36
  35. package/cpp/ggml-cpu-traits.h +38 -38
  36. package/cpp/ggml-cpu.c +15766 -14391
  37. package/cpp/ggml-cpu.cpp +655 -635
  38. package/cpp/ggml-cpu.h +138 -135
  39. package/cpp/ggml-impl.h +567 -567
  40. package/cpp/ggml-metal-impl.h +235 -0
  41. package/cpp/ggml-metal.h +1 -1
  42. package/cpp/ggml-metal.m +5146 -4884
  43. package/cpp/ggml-opt.cpp +854 -854
  44. package/cpp/ggml-opt.h +216 -216
  45. package/cpp/ggml-quants.c +5238 -5238
  46. package/cpp/ggml-threading.h +14 -14
  47. package/cpp/ggml.c +6529 -6514
  48. package/cpp/ggml.h +2198 -2194
  49. package/cpp/gguf.cpp +1329 -1329
  50. package/cpp/gguf.h +202 -202
  51. package/cpp/json-schema-to-grammar.cpp +1024 -1045
  52. package/cpp/json-schema-to-grammar.h +21 -8
  53. package/cpp/json.hpp +24766 -24766
  54. package/cpp/llama-adapter.cpp +347 -347
  55. package/cpp/llama-adapter.h +74 -74
  56. package/cpp/llama-arch.cpp +1513 -1487
  57. package/cpp/llama-arch.h +403 -400
  58. package/cpp/llama-batch.cpp +368 -368
  59. package/cpp/llama-batch.h +88 -88
  60. package/cpp/llama-chat.cpp +588 -578
  61. package/cpp/llama-chat.h +53 -52
  62. package/cpp/llama-context.cpp +1775 -1775
  63. package/cpp/llama-context.h +128 -128
  64. package/cpp/llama-cparams.cpp +1 -1
  65. package/cpp/llama-cparams.h +37 -37
  66. package/cpp/llama-cpp.h +30 -30
  67. package/cpp/llama-grammar.cpp +1219 -1139
  68. package/cpp/llama-grammar.h +173 -143
  69. package/cpp/llama-hparams.cpp +71 -71
  70. package/cpp/llama-hparams.h +139 -139
  71. package/cpp/llama-impl.cpp +167 -167
  72. package/cpp/llama-impl.h +61 -61
  73. package/cpp/llama-kv-cache.cpp +718 -718
  74. package/cpp/llama-kv-cache.h +219 -218
  75. package/cpp/llama-mmap.cpp +600 -590
  76. package/cpp/llama-mmap.h +68 -67
  77. package/cpp/llama-model-loader.cpp +1124 -1124
  78. package/cpp/llama-model-loader.h +167 -167
  79. package/cpp/llama-model.cpp +4087 -3997
  80. package/cpp/llama-model.h +370 -370
  81. package/cpp/llama-sampling.cpp +2558 -2408
  82. package/cpp/llama-sampling.h +32 -32
  83. package/cpp/llama-vocab.cpp +3264 -3247
  84. package/cpp/llama-vocab.h +125 -125
  85. package/cpp/llama.cpp +10284 -10077
  86. package/cpp/llama.h +1354 -1323
  87. package/cpp/log.cpp +393 -401
  88. package/cpp/log.h +132 -121
  89. package/cpp/minja/chat-template.hpp +529 -0
  90. package/cpp/minja/minja.hpp +2915 -0
  91. package/cpp/minja.hpp +2915 -0
  92. package/cpp/rn-llama.cpp +66 -6
  93. package/cpp/rn-llama.h +26 -1
  94. package/cpp/sampling.cpp +570 -505
  95. package/cpp/sampling.h +3 -0
  96. package/cpp/sgemm.cpp +2598 -2597
  97. package/cpp/sgemm.h +14 -14
  98. package/cpp/speculative.cpp +278 -277
  99. package/cpp/speculative.h +28 -28
  100. package/cpp/unicode.cpp +9 -2
  101. package/ios/CMakeLists.txt +6 -0
  102. package/ios/RNLlama.h +0 -8
  103. package/ios/RNLlama.mm +27 -3
  104. package/ios/RNLlamaContext.h +10 -1
  105. package/ios/RNLlamaContext.mm +269 -57
  106. package/jest/mock.js +21 -2
  107. package/lib/commonjs/NativeRNLlama.js.map +1 -1
  108. package/lib/commonjs/grammar.js +3 -0
  109. package/lib/commonjs/grammar.js.map +1 -1
  110. package/lib/commonjs/index.js +87 -13
  111. package/lib/commonjs/index.js.map +1 -1
  112. package/lib/module/NativeRNLlama.js.map +1 -1
  113. package/lib/module/grammar.js +3 -0
  114. package/lib/module/grammar.js.map +1 -1
  115. package/lib/module/index.js +86 -13
  116. package/lib/module/index.js.map +1 -1
  117. package/lib/typescript/NativeRNLlama.d.ts +107 -2
  118. package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
  119. package/lib/typescript/grammar.d.ts.map +1 -1
  120. package/lib/typescript/index.d.ts +32 -7
  121. package/lib/typescript/index.d.ts.map +1 -1
  122. package/llama-rn.podspec +1 -1
  123. package/package.json +3 -2
  124. package/src/NativeRNLlama.ts +115 -3
  125. package/src/grammar.ts +3 -0
  126. package/src/index.ts +138 -21
  127. package/android/src/main/build-arm64/CMakeFiles/3.31.4/CMakeCCompiler.cmake +0 -81
  128. package/android/src/main/build-arm64/CMakeFiles/3.31.4/CMakeSystem.cmake +0 -15
  129. package/android/src/main/build-arm64/CMakeFiles/3.31.4/CompilerIdC/CMakeCCompilerId.c +0 -904
  130. package/android/src/main/build-arm64/CMakeFiles/3.31.4/CompilerIdC/CMakeCCompilerId.o +0 -0
  131. package/android/src/main/build-arm64/CMakeFiles/3.31.4/CompilerIdCXX/CMakeCXXCompilerId.cpp +0 -919
  132. package/android/src/main/build-arm64/CMakeFiles/3.31.4/CompilerIdCXX/CMakeCXXCompilerId.o +0 -0
  133. package/android/src/main/build-arm64/CMakeFiles/CMakeConfigureLog.yaml +0 -55
  134. package/cpp/rn-llama.hpp +0 -913
package/cpp/ggml-cpu.h CHANGED
@@ -1,135 +1,138 @@
1
- #pragma once
2
-
3
- #include "ggml.h"
4
- #include "ggml-backend.h"
5
-
6
- #ifdef __cplusplus
7
- extern "C" {
8
- #endif
9
-
10
- // the compute plan that needs to be prepared for lm_ggml_graph_compute()
11
- // since https://github.com/ggerganov/ggml/issues/287
12
- struct lm_ggml_cplan {
13
- size_t work_size; // size of work buffer, calculated by `lm_ggml_graph_plan()`
14
- uint8_t * work_data; // work buffer, to be allocated by caller before calling to `lm_ggml_graph_compute()`
15
-
16
- int n_threads;
17
- struct lm_ggml_threadpool * threadpool;
18
-
19
- // abort lm_ggml_graph_compute when true
20
- lm_ggml_abort_callback abort_callback;
21
- void * abort_callback_data;
22
- };
23
-
24
- // numa strategies
25
- enum lm_ggml_numa_strategy {
26
- LM_GGML_NUMA_STRATEGY_DISABLED = 0,
27
- LM_GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
28
- LM_GGML_NUMA_STRATEGY_ISOLATE = 2,
29
- LM_GGML_NUMA_STRATEGY_NUMACTL = 3,
30
- LM_GGML_NUMA_STRATEGY_MIRROR = 4,
31
- LM_GGML_NUMA_STRATEGY_COUNT
32
- };
33
-
34
- LM_GGML_BACKEND_API void lm_ggml_numa_init(enum lm_ggml_numa_strategy numa); // call once for better performance on NUMA systems
35
- LM_GGML_BACKEND_API bool lm_ggml_is_numa(void); // true if init detected that system has >1 NUMA node
36
-
37
- LM_GGML_BACKEND_API struct lm_ggml_tensor * lm_ggml_new_i32(struct lm_ggml_context * ctx, int32_t value);
38
- LM_GGML_BACKEND_API struct lm_ggml_tensor * lm_ggml_new_f32(struct lm_ggml_context * ctx, float value);
39
-
40
- LM_GGML_BACKEND_API struct lm_ggml_tensor * lm_ggml_set_i32 (struct lm_ggml_tensor * tensor, int32_t value);
41
- LM_GGML_BACKEND_API struct lm_ggml_tensor * lm_ggml_set_f32 (struct lm_ggml_tensor * tensor, float value);
42
-
43
- LM_GGML_BACKEND_API int32_t lm_ggml_get_i32_1d(const struct lm_ggml_tensor * tensor, int i);
44
- LM_GGML_BACKEND_API void lm_ggml_set_i32_1d(const struct lm_ggml_tensor * tensor, int i, int32_t value);
45
-
46
- LM_GGML_BACKEND_API int32_t lm_ggml_get_i32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, int i2, int i3);
47
- LM_GGML_BACKEND_API void lm_ggml_set_i32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
48
-
49
- LM_GGML_BACKEND_API float lm_ggml_get_f32_1d(const struct lm_ggml_tensor * tensor, int i);
50
- LM_GGML_BACKEND_API void lm_ggml_set_f32_1d(const struct lm_ggml_tensor * tensor, int i, float value);
51
-
52
- LM_GGML_BACKEND_API float lm_ggml_get_f32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, int i2, int i3);
53
- LM_GGML_BACKEND_API void lm_ggml_set_f32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
54
-
55
- LM_GGML_BACKEND_API struct lm_ggml_threadpool * lm_ggml_threadpool_new (struct lm_ggml_threadpool_params * params);
56
- LM_GGML_BACKEND_API void lm_ggml_threadpool_free (struct lm_ggml_threadpool * threadpool);
57
- LM_GGML_BACKEND_API int lm_ggml_threadpool_get_n_threads (struct lm_ggml_threadpool * threadpool);
58
- LM_GGML_BACKEND_API void lm_ggml_threadpool_pause (struct lm_ggml_threadpool * threadpool);
59
- LM_GGML_BACKEND_API void lm_ggml_threadpool_resume (struct lm_ggml_threadpool * threadpool);
60
-
61
- // lm_ggml_graph_plan() has to be called before lm_ggml_graph_compute()
62
- // when plan.work_size > 0, caller must allocate memory for plan.work_data
63
- LM_GGML_BACKEND_API struct lm_ggml_cplan lm_ggml_graph_plan(
64
- const struct lm_ggml_cgraph * cgraph,
65
- int n_threads, /* = LM_GGML_DEFAULT_N_THREADS */
66
- struct lm_ggml_threadpool * threadpool /* = NULL */ );
67
- LM_GGML_BACKEND_API enum lm_ggml_status lm_ggml_graph_compute(struct lm_ggml_cgraph * cgraph, struct lm_ggml_cplan * cplan);
68
-
69
- // same as lm_ggml_graph_compute() but the work data is allocated as a part of the context
70
- // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
71
- LM_GGML_BACKEND_API enum lm_ggml_status lm_ggml_graph_compute_with_ctx(struct lm_ggml_context * ctx, struct lm_ggml_cgraph * cgraph, int n_threads);
72
-
73
- //
74
- // system info
75
- //
76
-
77
- // x86
78
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_sse3 (void);
79
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_ssse3 (void);
80
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx (void);
81
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx_vnni (void);
82
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx2 (void);
83
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_f16c (void);
84
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_fma (void);
85
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx512 (void);
86
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx512_vbmi(void);
87
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx512_vnni(void);
88
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx512_bf16(void);
89
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_amx_int8 (void);
90
- // ARM
91
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_neon (void);
92
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_arm_fma (void);
93
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_fp16_va (void);
94
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_dotprod (void);
95
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_matmul_int8(void);
96
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_sve (void);
97
- LM_GGML_BACKEND_API int lm_ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
98
- // other
99
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_riscv_v (void);
100
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_vsx (void);
101
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_wasm_simd (void);
102
- LM_GGML_BACKEND_API int lm_ggml_cpu_has_llamafile (void);
103
-
104
- // Internal types and functions exposed for tests and benchmarks
105
-
106
- typedef void (*lm_ggml_vec_dot_t) (int n, float * LM_GGML_RESTRICT s, size_t bs, const void * LM_GGML_RESTRICT x, size_t bx,
107
- const void * LM_GGML_RESTRICT y, size_t by, int nrc);
108
-
109
- struct lm_ggml_type_traits_cpu {
110
- lm_ggml_from_float_t from_float;
111
- lm_ggml_vec_dot_t vec_dot;
112
- enum lm_ggml_type vec_dot_type;
113
- int64_t nrows; // number of rows to process simultaneously
114
- };
115
-
116
- LM_GGML_BACKEND_API const struct lm_ggml_type_traits_cpu * lm_ggml_get_type_traits_cpu(enum lm_ggml_type type);
117
-
118
- LM_GGML_BACKEND_API void lm_ggml_cpu_init(void);
119
-
120
- //
121
- // CPU backend
122
- //
123
-
124
- LM_GGML_BACKEND_API lm_ggml_backend_t lm_ggml_backend_cpu_init(void);
125
-
126
- LM_GGML_BACKEND_API bool lm_ggml_backend_is_cpu (lm_ggml_backend_t backend);
127
- LM_GGML_BACKEND_API void lm_ggml_backend_cpu_set_n_threads (lm_ggml_backend_t backend_cpu, int n_threads);
128
- LM_GGML_BACKEND_API void lm_ggml_backend_cpu_set_threadpool (lm_ggml_backend_t backend_cpu, lm_ggml_threadpool_t threadpool);
129
- LM_GGML_BACKEND_API void lm_ggml_backend_cpu_set_abort_callback(lm_ggml_backend_t backend_cpu, lm_ggml_abort_callback abort_callback, void * abort_callback_data);
130
-
131
- LM_GGML_BACKEND_API lm_ggml_backend_reg_t lm_ggml_backend_cpu_reg(void);
132
-
133
- #ifdef __cplusplus
134
- }
135
- #endif
1
+ #pragma once
2
+
3
+ #include "ggml.h"
4
+ #include "ggml-backend.h"
5
+
6
+ #ifdef __cplusplus
7
+ extern "C" {
8
+ #endif
9
+
10
+ // the compute plan that needs to be prepared for lm_ggml_graph_compute()
11
+ // since https://github.com/ggml-org/ggml/issues/287
12
+ struct lm_ggml_cplan {
13
+ size_t work_size; // size of work buffer, calculated by `lm_ggml_graph_plan()`
14
+ uint8_t * work_data; // work buffer, to be allocated by caller before calling to `lm_ggml_graph_compute()`
15
+
16
+ int n_threads;
17
+ struct lm_ggml_threadpool * threadpool;
18
+
19
+ // abort lm_ggml_graph_compute when true
20
+ lm_ggml_abort_callback abort_callback;
21
+ void * abort_callback_data;
22
+ };
23
+
24
+ // numa strategies
25
+ enum lm_ggml_numa_strategy {
26
+ LM_GGML_NUMA_STRATEGY_DISABLED = 0,
27
+ LM_GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
28
+ LM_GGML_NUMA_STRATEGY_ISOLATE = 2,
29
+ LM_GGML_NUMA_STRATEGY_NUMACTL = 3,
30
+ LM_GGML_NUMA_STRATEGY_MIRROR = 4,
31
+ LM_GGML_NUMA_STRATEGY_COUNT
32
+ };
33
+
34
+ LM_GGML_BACKEND_API void lm_ggml_numa_init(enum lm_ggml_numa_strategy numa); // call once for better performance on NUMA systems
35
+ LM_GGML_BACKEND_API bool lm_ggml_is_numa(void); // true if init detected that system has >1 NUMA node
36
+
37
+ LM_GGML_BACKEND_API struct lm_ggml_tensor * lm_ggml_new_i32(struct lm_ggml_context * ctx, int32_t value);
38
+ LM_GGML_BACKEND_API struct lm_ggml_tensor * lm_ggml_new_f32(struct lm_ggml_context * ctx, float value);
39
+
40
+ LM_GGML_BACKEND_API struct lm_ggml_tensor * lm_ggml_set_i32 (struct lm_ggml_tensor * tensor, int32_t value);
41
+ LM_GGML_BACKEND_API struct lm_ggml_tensor * lm_ggml_set_f32 (struct lm_ggml_tensor * tensor, float value);
42
+
43
+ LM_GGML_BACKEND_API int32_t lm_ggml_get_i32_1d(const struct lm_ggml_tensor * tensor, int i);
44
+ LM_GGML_BACKEND_API void lm_ggml_set_i32_1d(const struct lm_ggml_tensor * tensor, int i, int32_t value);
45
+
46
+ LM_GGML_BACKEND_API int32_t lm_ggml_get_i32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, int i2, int i3);
47
+ LM_GGML_BACKEND_API void lm_ggml_set_i32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
48
+
49
+ LM_GGML_BACKEND_API float lm_ggml_get_f32_1d(const struct lm_ggml_tensor * tensor, int i);
50
+ LM_GGML_BACKEND_API void lm_ggml_set_f32_1d(const struct lm_ggml_tensor * tensor, int i, float value);
51
+
52
+ LM_GGML_BACKEND_API float lm_ggml_get_f32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, int i2, int i3);
53
+ LM_GGML_BACKEND_API void lm_ggml_set_f32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
54
+
55
+ LM_GGML_BACKEND_API struct lm_ggml_threadpool * lm_ggml_threadpool_new (struct lm_ggml_threadpool_params * params);
56
+ LM_GGML_BACKEND_API void lm_ggml_threadpool_free (struct lm_ggml_threadpool * threadpool);
57
+ LM_GGML_BACKEND_API int lm_ggml_threadpool_get_n_threads (struct lm_ggml_threadpool * threadpool);
58
+ LM_GGML_BACKEND_API void lm_ggml_threadpool_pause (struct lm_ggml_threadpool * threadpool);
59
+ LM_GGML_BACKEND_API void lm_ggml_threadpool_resume (struct lm_ggml_threadpool * threadpool);
60
+
61
+ // lm_ggml_graph_plan() has to be called before lm_ggml_graph_compute()
62
+ // when plan.work_size > 0, caller must allocate memory for plan.work_data
63
+ LM_GGML_BACKEND_API struct lm_ggml_cplan lm_ggml_graph_plan(
64
+ const struct lm_ggml_cgraph * cgraph,
65
+ int n_threads, /* = LM_GGML_DEFAULT_N_THREADS */
66
+ struct lm_ggml_threadpool * threadpool /* = NULL */ );
67
+ LM_GGML_BACKEND_API enum lm_ggml_status lm_ggml_graph_compute(struct lm_ggml_cgraph * cgraph, struct lm_ggml_cplan * cplan);
68
+
69
+ // same as lm_ggml_graph_compute() but the work data is allocated as a part of the context
70
+ // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
71
+ LM_GGML_BACKEND_API enum lm_ggml_status lm_ggml_graph_compute_with_ctx(struct lm_ggml_context * ctx, struct lm_ggml_cgraph * cgraph, int n_threads);
72
+
73
+ //
74
+ // system info
75
+ //
76
+
77
+ // x86
78
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_sse3 (void);
79
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_ssse3 (void);
80
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx (void);
81
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx_vnni (void);
82
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx2 (void);
83
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_bmi2 (void);
84
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_f16c (void);
85
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_fma (void);
86
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx512 (void);
87
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx512_vbmi(void);
88
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx512_vnni(void);
89
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_avx512_bf16(void);
90
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_amx_int8 (void);
91
+ // ARM
92
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_neon (void);
93
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_arm_fma (void);
94
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_fp16_va (void);
95
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_dotprod (void);
96
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_matmul_int8(void);
97
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_sve (void);
98
+ LM_GGML_BACKEND_API int lm_ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
99
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_sme (void);
100
+ // other
101
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_riscv_v (void);
102
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_vsx (void);
103
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_vxe (void);
104
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_wasm_simd (void);
105
+ LM_GGML_BACKEND_API int lm_ggml_cpu_has_llamafile (void);
106
+
107
+ // Internal types and functions exposed for tests and benchmarks
108
+
109
+ typedef void (*lm_ggml_vec_dot_t) (int n, float * LM_GGML_RESTRICT s, size_t bs, const void * LM_GGML_RESTRICT x, size_t bx,
110
+ const void * LM_GGML_RESTRICT y, size_t by, int nrc);
111
+
112
+ struct lm_ggml_type_traits_cpu {
113
+ lm_ggml_from_float_t from_float;
114
+ lm_ggml_vec_dot_t vec_dot;
115
+ enum lm_ggml_type vec_dot_type;
116
+ int64_t nrows; // number of rows to process simultaneously
117
+ };
118
+
119
+ LM_GGML_BACKEND_API const struct lm_ggml_type_traits_cpu * lm_ggml_get_type_traits_cpu(enum lm_ggml_type type);
120
+
121
+ LM_GGML_BACKEND_API void lm_ggml_cpu_init(void);
122
+
123
+ //
124
+ // CPU backend
125
+ //
126
+
127
+ LM_GGML_BACKEND_API lm_ggml_backend_t lm_ggml_backend_cpu_init(void);
128
+
129
+ LM_GGML_BACKEND_API bool lm_ggml_backend_is_cpu (lm_ggml_backend_t backend);
130
+ LM_GGML_BACKEND_API void lm_ggml_backend_cpu_set_n_threads (lm_ggml_backend_t backend_cpu, int n_threads);
131
+ LM_GGML_BACKEND_API void lm_ggml_backend_cpu_set_threadpool (lm_ggml_backend_t backend_cpu, lm_ggml_threadpool_t threadpool);
132
+ LM_GGML_BACKEND_API void lm_ggml_backend_cpu_set_abort_callback(lm_ggml_backend_t backend_cpu, lm_ggml_abort_callback abort_callback, void * abort_callback_data);
133
+
134
+ LM_GGML_BACKEND_API lm_ggml_backend_reg_t lm_ggml_backend_cpu_reg(void);
135
+
136
+ #ifdef __cplusplus
137
+ }
138
+ #endif