cui-llama.rn 1.3.4 → 1.3.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. package/android/src/main/CMakeLists.txt +14 -8
  2. package/android/src/main/jni.cpp +38 -37
  3. package/cpp/common.cpp +50 -30
  4. package/cpp/common.h +32 -13
  5. package/cpp/ggml-alloc.c +0 -1
  6. package/cpp/ggml-backend-reg.cpp +79 -49
  7. package/cpp/ggml-backend.cpp +5 -2
  8. package/cpp/ggml-cpp.h +1 -0
  9. package/cpp/ggml-cpu-aarch64.cpp +57 -72
  10. package/cpp/ggml-cpu-quants.c +5 -1
  11. package/cpp/ggml-cpu.c +6 -6
  12. package/cpp/ggml-cpu.cpp +9 -0
  13. package/cpp/ggml-impl.h +11 -0
  14. package/cpp/ggml-metal.m +2 -2
  15. package/cpp/ggml.c +129 -1388
  16. package/cpp/ggml.h +29 -152
  17. package/cpp/gguf.cpp +1325 -0
  18. package/cpp/gguf.h +202 -0
  19. package/cpp/llama-adapter.cpp +346 -0
  20. package/cpp/llama-adapter.h +73 -0
  21. package/cpp/llama-arch.cpp +1434 -0
  22. package/cpp/llama-arch.h +395 -0
  23. package/cpp/llama-batch.cpp +368 -0
  24. package/cpp/llama-batch.h +88 -0
  25. package/cpp/llama-chat.cpp +567 -0
  26. package/cpp/llama-chat.h +51 -0
  27. package/cpp/llama-context.cpp +1771 -0
  28. package/cpp/llama-context.h +128 -0
  29. package/cpp/llama-cparams.cpp +1 -0
  30. package/cpp/llama-cparams.h +37 -0
  31. package/cpp/llama-cpp.h +30 -0
  32. package/cpp/llama-grammar.cpp +16 -15
  33. package/cpp/llama-grammar.h +5 -6
  34. package/cpp/llama-hparams.cpp +71 -0
  35. package/cpp/llama-hparams.h +140 -0
  36. package/cpp/llama-impl.cpp +167 -0
  37. package/cpp/llama-impl.h +16 -136
  38. package/cpp/llama-kv-cache.cpp +718 -0
  39. package/cpp/llama-kv-cache.h +218 -0
  40. package/cpp/llama-mmap.cpp +589 -0
  41. package/cpp/llama-mmap.h +67 -0
  42. package/cpp/llama-model-loader.cpp +1011 -0
  43. package/cpp/llama-model-loader.h +158 -0
  44. package/cpp/llama-model.cpp +2202 -0
  45. package/cpp/llama-model.h +391 -0
  46. package/cpp/llama-sampling.cpp +117 -4
  47. package/cpp/llama-vocab.cpp +26 -29
  48. package/cpp/llama-vocab.h +14 -2
  49. package/cpp/llama.cpp +8839 -19131
  50. package/cpp/llama.cpp.rej +23 -0
  51. package/cpp/llama.h +31 -9
  52. package/cpp/rn-llama.hpp +39 -37
  53. package/cpp/sgemm.cpp +1091 -378
  54. package/cpp/sgemm.h +2 -2
  55. package/cpp/unicode.cpp +6 -0
  56. package/package.json +1 -1
@@ -0,0 +1,391 @@
1
+ #pragma once
2
+
3
+ #include "llama.h"
4
+ #include "llama-arch.h"
5
+ #include "llama-hparams.h"
6
+ #include "llama-vocab.h"
7
+ #include "llama-mmap.h"
8
+
9
+ #include "ggml-cpp.h"
10
+
11
+ #include <vector>
12
+
13
+ // available models
14
+ // TODO: this enum does not follow the enum naming convention
15
+ enum llm_type {
16
+ MODEL_UNKNOWN,
17
+ MODEL_14M,
18
+ MODEL_17M,
19
+ MODEL_22M,
20
+ MODEL_33M,
21
+ MODEL_60M,
22
+ MODEL_70M,
23
+ MODEL_80M,
24
+ MODEL_109M,
25
+ MODEL_137M,
26
+ MODEL_160M,
27
+ MODEL_220M,
28
+ MODEL_250M,
29
+ MODEL_270M,
30
+ MODEL_335M,
31
+ MODEL_410M,
32
+ MODEL_450M,
33
+ MODEL_770M,
34
+ MODEL_780M,
35
+ MODEL_0_5B,
36
+ MODEL_1B,
37
+ MODEL_1_3B,
38
+ MODEL_1_4B,
39
+ MODEL_1_5B,
40
+ MODEL_1_6B,
41
+ MODEL_2B,
42
+ MODEL_2_8B,
43
+ MODEL_3B,
44
+ MODEL_4B,
45
+ MODEL_6B,
46
+ MODEL_6_9B,
47
+ MODEL_7B,
48
+ MODEL_8B,
49
+ MODEL_9B,
50
+ MODEL_11B,
51
+ MODEL_12B,
52
+ MODEL_13B,
53
+ MODEL_14B,
54
+ MODEL_15B,
55
+ MODEL_16B,
56
+ MODEL_20B,
57
+ MODEL_30B,
58
+ MODEL_32B,
59
+ MODEL_34B,
60
+ MODEL_35B,
61
+ MODEL_40B,
62
+ MODEL_65B,
63
+ MODEL_70B,
64
+ MODEL_236B,
65
+ MODEL_314B,
66
+ MODEL_671B,
67
+ MODEL_SMALL,
68
+ MODEL_MEDIUM,
69
+ MODEL_LARGE,
70
+ MODEL_XL,
71
+ MODEL_A1_7B,
72
+ MODEL_A2_7B,
73
+ MODEL_8x7B,
74
+ MODEL_8x22B,
75
+ MODEL_16x12B,
76
+ MODEL_10B_128x3_66B,
77
+ MODEL_57B_A14B,
78
+ MODEL_27B,
79
+ };
80
+
81
+ struct llama_layer_posnet {
82
+ // resnet
83
+ struct lm_ggml_tensor * norm1 = nullptr;
84
+ struct lm_ggml_tensor * norm1_b = nullptr;
85
+
86
+ struct lm_ggml_tensor * conv1 = nullptr;
87
+ struct lm_ggml_tensor * conv1_b = nullptr;
88
+
89
+ struct lm_ggml_tensor * norm2 = nullptr;
90
+ struct lm_ggml_tensor * norm2_b = nullptr;
91
+
92
+ struct lm_ggml_tensor * conv2 = nullptr;
93
+ struct lm_ggml_tensor * conv2_b = nullptr;
94
+
95
+ // attention
96
+ struct lm_ggml_tensor * attn_norm = nullptr;
97
+ struct lm_ggml_tensor * attn_norm_b = nullptr;
98
+
99
+ struct lm_ggml_tensor * attn_q = nullptr;
100
+ struct lm_ggml_tensor * attn_q_b = nullptr;
101
+
102
+ struct lm_ggml_tensor * attn_k = nullptr;
103
+ struct lm_ggml_tensor * attn_k_b = nullptr;
104
+
105
+ struct lm_ggml_tensor * attn_v = nullptr;
106
+ struct lm_ggml_tensor * attn_v_b = nullptr;
107
+
108
+ struct lm_ggml_tensor * attn_o = nullptr;
109
+ struct lm_ggml_tensor * attn_o_b = nullptr;
110
+
111
+ // normalize
112
+ struct lm_ggml_tensor * norm = nullptr;
113
+ struct lm_ggml_tensor * norm_b = nullptr;
114
+ };
115
+
116
+ struct llama_layer_convnext {
117
+ struct lm_ggml_tensor * dw = nullptr;
118
+ struct lm_ggml_tensor * dw_b = nullptr;
119
+
120
+ struct lm_ggml_tensor * norm = nullptr;
121
+ struct lm_ggml_tensor * norm_b = nullptr;
122
+
123
+ struct lm_ggml_tensor * pw1 = nullptr;
124
+ struct lm_ggml_tensor * pw1_b = nullptr;
125
+
126
+ struct lm_ggml_tensor * pw2 = nullptr;
127
+ struct lm_ggml_tensor * pw2_b = nullptr;
128
+
129
+ struct lm_ggml_tensor * gamma = nullptr;
130
+ };
131
+
132
+ struct llama_layer {
133
+ // normalization
134
+ struct lm_ggml_tensor * attn_norm = nullptr;
135
+ struct lm_ggml_tensor * attn_norm_b = nullptr;
136
+ struct lm_ggml_tensor * attn_norm_2 = nullptr;
137
+ struct lm_ggml_tensor * attn_norm_2_b = nullptr;
138
+ struct lm_ggml_tensor * attn_q_norm = nullptr;
139
+ struct lm_ggml_tensor * attn_q_norm_b = nullptr;
140
+ struct lm_ggml_tensor * attn_k_norm = nullptr;
141
+ struct lm_ggml_tensor * attn_k_norm_b = nullptr;
142
+ struct lm_ggml_tensor * attn_out_norm = nullptr;
143
+ struct lm_ggml_tensor * attn_out_norm_b = nullptr;
144
+ struct lm_ggml_tensor * attn_q_a_norm = nullptr;
145
+ struct lm_ggml_tensor * attn_kv_a_norm = nullptr;
146
+ struct lm_ggml_tensor * attn_sub_norm = nullptr;
147
+ struct lm_ggml_tensor * attn_post_norm = nullptr;
148
+ struct lm_ggml_tensor * ffn_sub_norm = nullptr;
149
+ struct lm_ggml_tensor * attn_norm_cross = nullptr;
150
+ struct lm_ggml_tensor * attn_norm_enc = nullptr;
151
+
152
+ // attention
153
+ struct lm_ggml_tensor * wq = nullptr;
154
+ struct lm_ggml_tensor * wk = nullptr;
155
+ struct lm_ggml_tensor * wv = nullptr;
156
+ struct lm_ggml_tensor * wo = nullptr;
157
+ struct lm_ggml_tensor * wqkv = nullptr;
158
+ struct lm_ggml_tensor * wq_a = nullptr;
159
+ struct lm_ggml_tensor * wq_b = nullptr;
160
+ struct lm_ggml_tensor * wkv_a_mqa = nullptr;
161
+ struct lm_ggml_tensor * wkv_b = nullptr;
162
+ struct lm_ggml_tensor * wq_cross = nullptr;
163
+ struct lm_ggml_tensor * wk_cross = nullptr;
164
+ struct lm_ggml_tensor * wv_cross = nullptr;
165
+ struct lm_ggml_tensor * wo_cross = nullptr;
166
+ struct lm_ggml_tensor * wq_enc = nullptr;
167
+ struct lm_ggml_tensor * wk_enc = nullptr;
168
+ struct lm_ggml_tensor * wv_enc = nullptr;
169
+ struct lm_ggml_tensor * wo_enc = nullptr;
170
+
171
+ // attention bias
172
+ struct lm_ggml_tensor * bq = nullptr;
173
+ struct lm_ggml_tensor * bk = nullptr;
174
+ struct lm_ggml_tensor * bv = nullptr;
175
+ struct lm_ggml_tensor * bo = nullptr;
176
+ struct lm_ggml_tensor * bqkv = nullptr;
177
+
178
+ // relative position bias
179
+ struct lm_ggml_tensor * attn_rel_b = nullptr;
180
+ struct lm_ggml_tensor * attn_rel_b_enc = nullptr;
181
+ struct lm_ggml_tensor * attn_rel_b_cross = nullptr;
182
+
183
+ // normalization
184
+ struct lm_ggml_tensor * ffn_norm = nullptr;
185
+ struct lm_ggml_tensor * ffn_norm_b = nullptr;
186
+ struct lm_ggml_tensor * ffn_post_norm = nullptr;
187
+ struct lm_ggml_tensor * layer_out_norm = nullptr;
188
+ struct lm_ggml_tensor * layer_out_norm_b = nullptr;
189
+ struct lm_ggml_tensor * ffn_norm_exps = nullptr;
190
+ struct lm_ggml_tensor * ffn_norm_enc = nullptr;
191
+
192
+ // ff
193
+ struct lm_ggml_tensor * ffn_gate = nullptr; // w1
194
+ struct lm_ggml_tensor * ffn_down = nullptr; // w2
195
+ struct lm_ggml_tensor * ffn_up = nullptr; // w3
196
+ struct lm_ggml_tensor * ffn_gate_enc = nullptr;
197
+ struct lm_ggml_tensor * ffn_down_enc = nullptr;
198
+ struct lm_ggml_tensor * ffn_up_enc = nullptr;
199
+
200
+ // ff MoE
201
+ struct lm_ggml_tensor * ffn_gate_inp = nullptr;
202
+ struct lm_ggml_tensor * ffn_gate_exps = nullptr;
203
+ struct lm_ggml_tensor * ffn_down_exps = nullptr;
204
+ struct lm_ggml_tensor * ffn_up_exps = nullptr;
205
+
206
+ // ff shared expert (shexp)
207
+ struct lm_ggml_tensor * ffn_gate_inp_shexp = nullptr;
208
+ struct lm_ggml_tensor * ffn_gate_shexp = nullptr;
209
+ struct lm_ggml_tensor * ffn_down_shexp = nullptr;
210
+ struct lm_ggml_tensor * ffn_up_shexp = nullptr;
211
+
212
+ // ff bias
213
+ struct lm_ggml_tensor * ffn_gate_b = nullptr;
214
+ struct lm_ggml_tensor * ffn_down_b = nullptr; // b2
215
+ struct lm_ggml_tensor * ffn_up_b = nullptr; // b3
216
+ struct lm_ggml_tensor * ffn_act = nullptr;
217
+ struct lm_ggml_tensor * ffn_exp_probs_b = nullptr;
218
+
219
+ // mamba proj
220
+ struct lm_ggml_tensor * ssm_in = nullptr;
221
+ struct lm_ggml_tensor * ssm_x = nullptr;
222
+ struct lm_ggml_tensor * ssm_dt = nullptr;
223
+ struct lm_ggml_tensor * ssm_out = nullptr;
224
+
225
+ // mamba
226
+ struct lm_ggml_tensor * ssm_conv1d = nullptr;
227
+ struct lm_ggml_tensor * ssm_a = nullptr;
228
+ struct lm_ggml_tensor * ssm_d = nullptr;
229
+
230
+ // mamba bias
231
+ struct lm_ggml_tensor * ssm_conv1d_b = nullptr;
232
+ struct lm_ggml_tensor * ssm_dt_b = nullptr;
233
+
234
+ // rwkv
235
+ struct lm_ggml_tensor * time_mix_w1 = nullptr;
236
+ struct lm_ggml_tensor * time_mix_w2 = nullptr;
237
+ struct lm_ggml_tensor * time_mix_lerp_x = nullptr;
238
+ struct lm_ggml_tensor * time_mix_lerp_w = nullptr;
239
+ struct lm_ggml_tensor * time_mix_lerp_k = nullptr;
240
+ struct lm_ggml_tensor * time_mix_lerp_v = nullptr;
241
+ struct lm_ggml_tensor * time_mix_lerp_r = nullptr;
242
+ struct lm_ggml_tensor * time_mix_lerp_g = nullptr;
243
+
244
+ struct lm_ggml_tensor * time_mix_first = nullptr;
245
+ struct lm_ggml_tensor * time_mix_decay = nullptr;
246
+ struct lm_ggml_tensor * time_mix_decay_w1 = nullptr;
247
+ struct lm_ggml_tensor * time_mix_decay_w2 = nullptr;
248
+ struct lm_ggml_tensor * time_mix_key = nullptr;
249
+ struct lm_ggml_tensor * time_mix_value = nullptr;
250
+ struct lm_ggml_tensor * time_mix_receptance = nullptr;
251
+ struct lm_ggml_tensor * time_mix_gate = nullptr;
252
+
253
+ struct lm_ggml_tensor * time_mix_ln = nullptr;
254
+ struct lm_ggml_tensor * time_mix_ln_b = nullptr;
255
+ struct lm_ggml_tensor * time_mix_output = nullptr;
256
+
257
+ struct lm_ggml_tensor * channel_mix_lerp_k = nullptr;
258
+ struct lm_ggml_tensor * channel_mix_lerp_r = nullptr;
259
+
260
+ struct lm_ggml_tensor * channel_mix_key = nullptr;
261
+ struct lm_ggml_tensor * channel_mix_receptance = nullptr;
262
+ struct lm_ggml_tensor * channel_mix_value = nullptr;
263
+
264
+ // long rope factors
265
+ struct lm_ggml_tensor * rope_long = nullptr;
266
+ struct lm_ggml_tensor * rope_short = nullptr;
267
+ struct lm_ggml_tensor * rope_freqs = nullptr;
268
+
269
+ // bitnet scale
270
+ struct lm_ggml_tensor * wq_scale = nullptr;
271
+ struct lm_ggml_tensor * wk_scale = nullptr;
272
+ struct lm_ggml_tensor * wv_scale = nullptr;
273
+ struct lm_ggml_tensor * wo_scale = nullptr;
274
+ struct lm_ggml_tensor * ffn_gate_scale = nullptr;
275
+ struct lm_ggml_tensor * ffn_up_scale = nullptr;
276
+ struct lm_ggml_tensor * ffn_down_scale = nullptr;
277
+
278
+ struct llama_layer_posnet posnet;
279
+
280
+ struct llama_layer_convnext convnext;
281
+ };
282
+
283
+ struct llama_model {
284
+ llm_type type = MODEL_UNKNOWN;
285
+ llm_arch arch = LLM_ARCH_UNKNOWN;
286
+
287
+ llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
288
+
289
+ std::string name = "n/a";
290
+
291
+ llama_hparams hparams = {};
292
+ llama_vocab vocab;
293
+
294
+ struct lm_ggml_tensor * tok_embd = nullptr;
295
+ struct lm_ggml_tensor * type_embd = nullptr;
296
+ struct lm_ggml_tensor * pos_embd = nullptr;
297
+ struct lm_ggml_tensor * tok_norm = nullptr;
298
+ struct lm_ggml_tensor * tok_norm_b = nullptr;
299
+
300
+ struct lm_ggml_tensor * output_norm = nullptr;
301
+ struct lm_ggml_tensor * output_norm_b = nullptr;
302
+ struct lm_ggml_tensor * output = nullptr;
303
+ struct lm_ggml_tensor * output_b = nullptr;
304
+ struct lm_ggml_tensor * output_norm_enc = nullptr;
305
+
306
+ // classifier
307
+ struct lm_ggml_tensor * cls = nullptr;
308
+ struct lm_ggml_tensor * cls_b = nullptr;
309
+ struct lm_ggml_tensor * cls_out = nullptr;
310
+ struct lm_ggml_tensor * cls_out_b = nullptr;
311
+
312
+ struct lm_ggml_tensor * conv1d = nullptr;
313
+ struct lm_ggml_tensor * conv1d_b = nullptr;
314
+
315
+ std::vector<llama_layer> layers;
316
+
317
+ // gguf metadata
318
+ std::unordered_map<std::string, std::string> lm_gguf_kv;
319
+
320
+ llama_split_mode split_mode;
321
+ int main_gpu;
322
+ int n_gpu_layers;
323
+
324
+ std::vector<std::string> rpc_servers;
325
+
326
+ // list of devices used in this model
327
+ std::vector<lm_ggml_backend_dev_t> devices;
328
+
329
+
330
+ // lists of buffer types used for each layer
331
+ using buft_list_t = std::vector<std::pair<lm_ggml_backend_dev_t, lm_ggml_backend_buffer_type_t>>;
332
+ buft_list_t cpu_buft_list;
333
+ std::map<lm_ggml_backend_dev_t, buft_list_t> gpu_buft_list;
334
+
335
+ struct layer_dev {
336
+ lm_ggml_backend_dev_t dev;
337
+ buft_list_t * buft_list;
338
+ };
339
+
340
+ layer_dev dev_input = {};
341
+ layer_dev dev_output = {};
342
+ std::vector<layer_dev> dev_layer;
343
+
344
+ // contexts where the model tensors metadata is stored
345
+ std::vector<lm_ggml_context_ptr> ctxs;
346
+
347
+ // the model memory buffers for the tensor data
348
+ std::vector<lm_ggml_backend_buffer_ptr> bufs;
349
+
350
+ // model memory mapped files
351
+ llama_mmaps mappings;
352
+
353
+ // objects representing data potentially being locked in memory
354
+ llama_mlocks mlock_bufs;
355
+ llama_mlocks mlock_mmaps;
356
+
357
+ // for quantize-stats only
358
+ std::vector<std::pair<std::string, struct lm_ggml_tensor *>> tensors_by_name;
359
+
360
+ int64_t t_load_us = 0;
361
+ int64_t t_start_us = 0;
362
+
363
+ // total number of parameters in the model
364
+ uint64_t n_elements = 0;
365
+
366
+ // total size of all the tensors in the model in bytes
367
+ size_t n_bytes = 0;
368
+ };
369
+
370
+ const char * llm_type_name(llm_type type);
371
+
372
+ std::string llama_model_arch_name (const llama_model & model);
373
+ std::string llama_model_type_name (const llama_model & model);
374
+ std::string llama_model_ftype_name(const llama_model & model);
375
+
376
+ // used by llama_adapter_cvec
377
+ lm_ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
378
+
379
+ // used by llama_adapter_lora
380
+ struct lm_ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name);
381
+
382
+ size_t llama_model_max_nodes(const llama_model & model);
383
+
384
+ struct llama_model_loader;
385
+
386
+ // TODO: become llama_model methods
387
+ void llm_load_stats (llama_model_loader & ml, llama_model & model);
388
+ void llm_load_arch (llama_model_loader & ml, llama_model & model);
389
+ void llm_load_hparams (llama_model_loader & ml, llama_model & model);
390
+ void llm_load_vocab (llama_model_loader & ml, llama_model & model);
391
+ void llm_load_print_meta(llama_model_loader & ml, llama_model & model);
@@ -1,5 +1,6 @@
1
1
  #include "llama-sampling.h"
2
2
 
3
+ #include "llama-impl.h"
3
4
  #include "llama-vocab.h"
4
5
  #include "llama-grammar.h"
5
6
 
@@ -14,6 +15,118 @@
14
15
  #include <numeric>
15
16
  #include <random>
16
17
  #include <unordered_map>
18
+ #include <stdexcept>
19
+
20
+ // the ring buffer works similarly to std::deque, but with a fixed capacity
21
+ template<typename T>
22
+ struct ring_buffer {
23
+ ring_buffer(size_t cap) : capacity(cap), data(cap) {}
24
+
25
+ T & front() {
26
+ if (sz == 0) {
27
+ throw std::runtime_error("ring buffer is empty");
28
+ }
29
+ return data[first];
30
+ }
31
+
32
+ const T & front() const {
33
+ if (sz == 0) {
34
+ throw std::runtime_error("ring buffer is empty");
35
+ }
36
+ return data[first];
37
+ }
38
+
39
+ T & back() {
40
+ if (sz == 0) {
41
+ throw std::runtime_error("ring buffer is empty");
42
+ }
43
+ return data[pos];
44
+ }
45
+
46
+ const T & back() const {
47
+ if (sz == 0) {
48
+ throw std::runtime_error("ring buffer is empty");
49
+ }
50
+ return data[pos];
51
+ }
52
+
53
+ void push_back(const T & value) {
54
+ if (capacity == 0) {
55
+ throw std::runtime_error("ring buffer: capacity is zero");
56
+ }
57
+
58
+ if (sz == capacity) {
59
+ // advance the start when buffer is full
60
+ first = (first + 1) % capacity;
61
+ } else {
62
+ sz++;
63
+ }
64
+ data[pos] = value;
65
+ pos = (pos + 1) % capacity;
66
+ }
67
+
68
+ T pop_front() {
69
+ if (sz == 0) {
70
+ throw std::runtime_error("ring buffer is empty");
71
+ }
72
+ T value = data[first];
73
+ first = (first + 1) % capacity;
74
+ sz--;
75
+ return value;
76
+ }
77
+
78
+ //T & operator[](size_t i) {
79
+ // if (i >= sz) {
80
+ // throw std::runtime_error("ring buffer: index out of bounds");
81
+ // }
82
+ // return data[(first + i) % capacity];
83
+ //}
84
+
85
+ //const T & at(size_t i) const {
86
+ // if (i >= sz) {
87
+ // throw std::runtime_error("ring buffer: index out of bounds");
88
+ // }
89
+ // return data[(first + i) % capacity];
90
+ //}
91
+
92
+ const T & rat(size_t i) const {
93
+ if (i >= sz) {
94
+ throw std::runtime_error("ring buffer: index out of bounds");
95
+ }
96
+ return data[(first + sz - i - 1) % capacity];
97
+ }
98
+
99
+ std::vector<T> to_vector() const {
100
+ std::vector<T> result;
101
+ result.reserve(sz);
102
+ for (size_t i = 0; i < sz; i++) {
103
+ result.push_back(data[(first + i) % capacity]);
104
+ }
105
+ return result;
106
+ }
107
+
108
+ void clear() {
109
+ // here only reset the status of the buffer
110
+ sz = 0;
111
+ first = 0;
112
+ pos = 0;
113
+ }
114
+
115
+ bool empty() const {
116
+ return sz == 0;
117
+ }
118
+
119
+ size_t size() const {
120
+ return sz;
121
+ }
122
+
123
+ size_t capacity = 0;
124
+ size_t sz = 0;
125
+ size_t first = 0;
126
+ size_t pos = 0;
127
+
128
+ std::vector<T> data;
129
+ };
17
130
 
18
131
  static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
19
132
  // iterator for the probabilities
@@ -144,7 +257,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
144
257
  for (int i = 0; i < (int)cur_p->size; ++i) {
145
258
  const float val = cur_p->data[i].logit;
146
259
  int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
147
- ib = std::max(0, std::min(nbuckets-1, ib));
260
+ ib = std::max(0, std::min(nbuckets - 1, ib));
148
261
  bucket_idx[i] = ib;
149
262
  ++histo[ib];
150
263
  }
@@ -167,13 +280,13 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
167
280
  for (int i = 0; i < (int)cur_p->size; ++i) {
168
281
  int j = bucket_idx[i];
169
282
  if (j >= ib) {
170
- *bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i];
283
+ *bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i];
171
284
  }
172
285
  }
173
286
 
174
287
  ptr = tmp_tokens.data();
175
288
  int ndone = 0;
176
- for (int j = nbuckets-1; j > ib; --j) {
289
+ for (int j = nbuckets - 1; j > ib; --j) {
177
290
  std::sort(ptr, ptr + histo[j], comp);
178
291
  ptr += histo[j];
179
292
  ndone += histo[j];
@@ -1720,7 +1833,7 @@ static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_dat
1720
1833
  ctx->dry_repeat_count[last - k] = std::min(n, rep_limit);
1721
1834
  if (n > 0) {
1722
1835
  lt = k;
1723
- rt = k+n-1;
1836
+ rt = k + n - 1;
1724
1837
  }
1725
1838
  } else {
1726
1839
  // If k is inside the current Z-box, consider two cases.