cui-llama.rn 1.2.6 → 1.3.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +3 -2
- package/android/src/main/CMakeLists.txt +26 -6
- package/android/src/main/java/com/rnllama/LlamaContext.java +115 -27
- package/android/src/main/java/com/rnllama/RNLlama.java +40 -7
- package/android/src/main/jni.cpp +228 -40
- package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +9 -4
- package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +9 -4
- package/cpp/amx/amx.cpp +196 -0
- package/cpp/amx/amx.h +20 -0
- package/cpp/amx/common.h +101 -0
- package/cpp/amx/mmq.cpp +2524 -0
- package/cpp/amx/mmq.h +16 -0
- package/cpp/common.cpp +118 -251
- package/cpp/common.h +53 -30
- package/cpp/ggml-aarch64.c +46 -3395
- package/cpp/ggml-aarch64.h +0 -20
- package/cpp/ggml-alloc.c +6 -8
- package/cpp/ggml-backend-impl.h +33 -11
- package/cpp/ggml-backend-reg.cpp +423 -0
- package/cpp/ggml-backend.cpp +14 -676
- package/cpp/ggml-backend.h +46 -9
- package/cpp/ggml-common.h +6 -0
- package/cpp/ggml-cpu-aarch64.c +3823 -0
- package/cpp/ggml-cpu-aarch64.h +32 -0
- package/cpp/ggml-cpu-impl.h +14 -242
- package/cpp/ggml-cpu-quants.c +10835 -0
- package/cpp/ggml-cpu-quants.h +63 -0
- package/cpp/ggml-cpu.c +13971 -13720
- package/cpp/ggml-cpu.cpp +715 -0
- package/cpp/ggml-cpu.h +65 -63
- package/cpp/ggml-impl.h +285 -25
- package/cpp/ggml-metal.h +8 -8
- package/cpp/ggml-metal.m +1221 -728
- package/cpp/ggml-quants.c +189 -10681
- package/cpp/ggml-quants.h +78 -125
- package/cpp/ggml-threading.cpp +12 -0
- package/cpp/ggml-threading.h +12 -0
- package/cpp/ggml.c +688 -1460
- package/cpp/ggml.h +58 -244
- package/cpp/json-schema-to-grammar.cpp +1045 -1045
- package/cpp/json.hpp +24766 -24766
- package/cpp/llama-sampling.cpp +5 -2
- package/cpp/llama.cpp +409 -123
- package/cpp/llama.h +8 -4
- package/cpp/rn-llama.hpp +89 -25
- package/cpp/sampling.cpp +42 -3
- package/cpp/sampling.h +22 -1
- package/cpp/sgemm.cpp +608 -0
- package/cpp/speculative.cpp +270 -0
- package/cpp/speculative.h +28 -0
- package/cpp/unicode.cpp +11 -0
- package/ios/RNLlama.mm +43 -20
- package/ios/RNLlamaContext.h +9 -3
- package/ios/RNLlamaContext.mm +146 -33
- package/jest/mock.js +0 -1
- package/lib/commonjs/NativeRNLlama.js.map +1 -1
- package/lib/commonjs/grammar.js +4 -2
- package/lib/commonjs/grammar.js.map +1 -1
- package/lib/commonjs/index.js +52 -15
- package/lib/commonjs/index.js.map +1 -1
- package/lib/module/NativeRNLlama.js.map +1 -1
- package/lib/module/grammar.js +2 -1
- package/lib/module/grammar.js.map +1 -1
- package/lib/module/index.js +51 -15
- package/lib/module/index.js.map +1 -1
- package/lib/typescript/NativeRNLlama.d.ts +122 -8
- package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
- package/lib/typescript/grammar.d.ts +5 -6
- package/lib/typescript/grammar.d.ts.map +1 -1
- package/lib/typescript/index.d.ts +15 -6
- package/lib/typescript/index.d.ts.map +1 -1
- package/package.json +2 -1
- package/src/NativeRNLlama.ts +135 -13
- package/src/grammar.ts +10 -8
- package/src/index.ts +104 -28
package/cpp/llama.h
CHANGED
@@ -273,6 +273,9 @@ extern "C" {
|
|
273
273
|
};
|
274
274
|
|
275
275
|
struct llama_model_params {
|
276
|
+
// NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
|
277
|
+
lm_ggml_backend_dev_t * devices;
|
278
|
+
|
276
279
|
int32_t n_gpu_layers; // number of layers to store in VRAM
|
277
280
|
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
|
278
281
|
|
@@ -668,6 +671,9 @@ extern "C" {
|
|
668
671
|
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
|
669
672
|
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
|
670
673
|
|
674
|
+
// Check if the context supports KV cache shifting
|
675
|
+
LLAMA_API bool llama_kv_cache_can_shift(struct llama_context * ctx);
|
676
|
+
|
671
677
|
//
|
672
678
|
// State / sessions
|
673
679
|
//
|
@@ -798,7 +804,7 @@ extern "C" {
|
|
798
804
|
// Processes a batch of tokens with the ecoder part of the encoder-decoder model.
|
799
805
|
// Stores the encoder output internally for later use by the decoder cross-attention layers.
|
800
806
|
// 0 - success
|
801
|
-
// < 0 - error
|
807
|
+
// < 0 - error. the KV cache state is restored to the state before this call
|
802
808
|
LLAMA_API int32_t llama_encode(
|
803
809
|
struct llama_context * ctx,
|
804
810
|
struct llama_batch batch);
|
@@ -806,7 +812,7 @@ extern "C" {
|
|
806
812
|
// Positive return values does not mean a fatal error, but rather a warning.
|
807
813
|
// 0 - success
|
808
814
|
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
809
|
-
// < 0 - error
|
815
|
+
// < 0 - error. the KV cache state is restored to the state before this call
|
810
816
|
LLAMA_API int32_t llama_decode(
|
811
817
|
struct llama_context * ctx,
|
812
818
|
struct llama_batch batch);
|
@@ -1245,8 +1251,6 @@ extern "C" {
|
|
1245
1251
|
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
|
1246
1252
|
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
|
1247
1253
|
|
1248
|
-
LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx);
|
1249
|
-
|
1250
1254
|
#ifdef __cplusplus
|
1251
1255
|
}
|
1252
1256
|
#endif
|
package/cpp/rn-llama.hpp
CHANGED
@@ -4,11 +4,67 @@
|
|
4
4
|
#include <sstream>
|
5
5
|
#include <iostream>
|
6
6
|
#include "common.h"
|
7
|
+
#include "ggml.h"
|
7
8
|
#include "llama.h"
|
9
|
+
#include "llama-impl.h"
|
8
10
|
#include "sampling.h"
|
9
11
|
|
10
12
|
namespace rnllama {
|
11
13
|
|
14
|
+
static std::string lm_gguf_data_to_str(enum lm_gguf_type type, const void * data, int i) {
|
15
|
+
switch (type) {
|
16
|
+
case LM_GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
|
17
|
+
case LM_GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
|
18
|
+
case LM_GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
|
19
|
+
case LM_GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
|
20
|
+
case LM_GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
|
21
|
+
case LM_GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
|
22
|
+
case LM_GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
|
23
|
+
case LM_GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
|
24
|
+
case LM_GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
|
25
|
+
case LM_GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
|
26
|
+
case LM_GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
|
27
|
+
default: return "unknown type: " + std::to_string(type);
|
28
|
+
}
|
29
|
+
}
|
30
|
+
|
31
|
+
static std::string lm_gguf_kv_to_str(const struct lm_gguf_context * ctx_gguf, int i) {
|
32
|
+
const enum lm_gguf_type type = lm_gguf_get_kv_type(ctx_gguf, i);
|
33
|
+
|
34
|
+
switch (type) {
|
35
|
+
case LM_GGUF_TYPE_STRING:
|
36
|
+
return lm_gguf_get_val_str(ctx_gguf, i);
|
37
|
+
case LM_GGUF_TYPE_ARRAY:
|
38
|
+
{
|
39
|
+
const enum lm_gguf_type arr_type = lm_gguf_get_arr_type(ctx_gguf, i);
|
40
|
+
int arr_n = lm_gguf_get_arr_n(ctx_gguf, i);
|
41
|
+
const void * data = lm_gguf_get_arr_data(ctx_gguf, i);
|
42
|
+
std::stringstream ss;
|
43
|
+
ss << "[";
|
44
|
+
for (int j = 0; j < arr_n; j++) {
|
45
|
+
if (arr_type == LM_GGUF_TYPE_STRING) {
|
46
|
+
std::string val = lm_gguf_get_arr_str(ctx_gguf, i, j);
|
47
|
+
// escape quotes
|
48
|
+
replace_all(val, "\\", "\\\\");
|
49
|
+
replace_all(val, "\"", "\\\"");
|
50
|
+
ss << '"' << val << '"';
|
51
|
+
} else if (arr_type == LM_GGUF_TYPE_ARRAY) {
|
52
|
+
ss << "???";
|
53
|
+
} else {
|
54
|
+
ss << lm_gguf_data_to_str(arr_type, data, j);
|
55
|
+
}
|
56
|
+
if (j < arr_n - 1) {
|
57
|
+
ss << ", ";
|
58
|
+
}
|
59
|
+
}
|
60
|
+
ss << "]";
|
61
|
+
return ss.str();
|
62
|
+
}
|
63
|
+
default:
|
64
|
+
return lm_gguf_data_to_str(type, lm_gguf_get_val_data(ctx_gguf, i), 0);
|
65
|
+
}
|
66
|
+
}
|
67
|
+
|
12
68
|
static void llama_batch_clear(llama_batch *batch) {
|
13
69
|
batch->n_tokens = 0;
|
14
70
|
}
|
@@ -141,7 +197,6 @@ static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
|
141
197
|
return ret;
|
142
198
|
}
|
143
199
|
|
144
|
-
|
145
200
|
struct llama_rn_context
|
146
201
|
{
|
147
202
|
bool is_predicting = false;
|
@@ -160,9 +215,12 @@ struct llama_rn_context
|
|
160
215
|
common_params params;
|
161
216
|
|
162
217
|
llama_model *model = nullptr;
|
218
|
+
float loading_progress = 0;
|
219
|
+
bool is_load_interrupted = false;
|
220
|
+
|
163
221
|
llama_context *ctx = nullptr;
|
164
222
|
common_sampler *ctx_sampling = nullptr;
|
165
|
-
|
223
|
+
|
166
224
|
int n_ctx;
|
167
225
|
|
168
226
|
bool truncated = false;
|
@@ -194,7 +252,7 @@ struct llama_rn_context
|
|
194
252
|
{
|
195
253
|
is_interrupted = false;
|
196
254
|
params.antiprompt.clear();
|
197
|
-
params.
|
255
|
+
params.sampling.grammar.clear();
|
198
256
|
num_prompt_tokens = 0;
|
199
257
|
num_tokens_predicted = 0;
|
200
258
|
generated_text = "";
|
@@ -208,14 +266,14 @@ struct llama_rn_context
|
|
208
266
|
incomplete = false;
|
209
267
|
n_remain = 0;
|
210
268
|
n_past = 0;
|
211
|
-
params.
|
269
|
+
params.sampling.n_prev = n_ctx;
|
212
270
|
}
|
213
271
|
|
214
272
|
bool initSampling() {
|
215
273
|
if (ctx_sampling != nullptr) {
|
216
274
|
common_sampler_free(ctx_sampling);
|
217
275
|
}
|
218
|
-
ctx_sampling = common_sampler_init(model, params.
|
276
|
+
ctx_sampling = common_sampler_init(model, params.sampling);
|
219
277
|
return ctx_sampling != nullptr;
|
220
278
|
}
|
221
279
|
|
@@ -230,18 +288,22 @@ struct llama_rn_context
|
|
230
288
|
LOG_ERROR("unable to load model: %s", params_.model.c_str());
|
231
289
|
return false;
|
232
290
|
}
|
291
|
+
LOG_VERBOSE("getting n_ctx");
|
233
292
|
n_ctx = llama_n_ctx(ctx);
|
234
293
|
return true;
|
235
294
|
}
|
236
295
|
|
237
296
|
bool validateModelChatTemplate() const {
|
238
|
-
llama_chat_message chat[] = {{"user", "test"}};
|
239
|
-
|
240
297
|
std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
|
241
298
|
std::string template_key = "tokenizer.chat_template";
|
242
299
|
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
|
243
|
-
|
244
|
-
|
300
|
+
if (res >= 0) {
|
301
|
+
llama_chat_message chat[] = {{"user", "test"}};
|
302
|
+
std::string tmpl = std::string(model_template.data(), model_template.size());
|
303
|
+
int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
|
304
|
+
return chat_res > 0;
|
305
|
+
}
|
306
|
+
return res > 0;
|
245
307
|
}
|
246
308
|
|
247
309
|
void truncatePrompt(std::vector<llama_token> &prompt_tokens) {
|
@@ -376,7 +438,7 @@ struct llama_rn_context
|
|
376
438
|
n_eval = params.n_batch;
|
377
439
|
}
|
378
440
|
if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval)))
|
379
|
-
{
|
441
|
+
{
|
380
442
|
LOG_ERROR("failed to eval, n_eval: %d, n_past: %d, n_threads: %d, embd: %s",
|
381
443
|
n_eval,
|
382
444
|
n_past,
|
@@ -387,7 +449,7 @@ struct llama_rn_context
|
|
387
449
|
return result;
|
388
450
|
}
|
389
451
|
n_past += n_eval;
|
390
|
-
|
452
|
+
|
391
453
|
if(is_interrupted) {
|
392
454
|
LOG_INFO("Decoding Interrupted");
|
393
455
|
embd.resize(n_past);
|
@@ -409,11 +471,11 @@ struct llama_rn_context
|
|
409
471
|
candidates.reserve(llama_n_vocab(model));
|
410
472
|
|
411
473
|
result.tok = common_sampler_sample(ctx_sampling, ctx, -1);
|
412
|
-
|
474
|
+
|
413
475
|
llama_token_data_array cur_p = *common_sampler_get_candidates(ctx_sampling);
|
414
476
|
|
415
|
-
const int32_t n_probs = params.
|
416
|
-
|
477
|
+
const int32_t n_probs = params.sampling.n_probs;
|
478
|
+
|
417
479
|
// deprecated
|
418
480
|
/*if (params.sparams.temp <= 0 && n_probs > 0)
|
419
481
|
{
|
@@ -421,7 +483,7 @@ struct llama_rn_context
|
|
421
483
|
llama_sampler_init_softmax();
|
422
484
|
|
423
485
|
}*/
|
424
|
-
|
486
|
+
|
425
487
|
|
426
488
|
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
|
427
489
|
{
|
@@ -491,7 +553,7 @@ struct llama_rn_context
|
|
491
553
|
const std::string token_text = token_with_probs.tok == -1 ? "" : common_token_to_piece(ctx, token_with_probs.tok);
|
492
554
|
generated_text += token_text;
|
493
555
|
|
494
|
-
if (params.
|
556
|
+
if (params.sampling.n_probs > 0)
|
495
557
|
{
|
496
558
|
generated_token_probs.push_back(token_with_probs);
|
497
559
|
}
|
@@ -542,26 +604,28 @@ struct llama_rn_context
|
|
542
604
|
return token_with_probs;
|
543
605
|
}
|
544
606
|
|
545
|
-
std::vector<float> getEmbedding()
|
607
|
+
std::vector<float> getEmbedding(common_params &embd_params)
|
546
608
|
{
|
547
609
|
static const int n_embd = llama_n_embd(llama_get_model(ctx));
|
548
|
-
if (!
|
610
|
+
if (!embd_params.embedding)
|
549
611
|
{
|
550
|
-
LOG_WARNING("embedding disabled, embedding: %s",
|
612
|
+
LOG_WARNING("embedding disabled, embedding: %s", embd_params.embedding);
|
551
613
|
return std::vector<float>(n_embd, 0.0f);
|
552
614
|
}
|
553
615
|
float *data;
|
554
|
-
|
555
|
-
|
616
|
+
|
617
|
+
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
618
|
+
printf("pooling_type: %d\n", pooling_type);
|
619
|
+
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
556
620
|
data = llama_get_embeddings(ctx);
|
557
|
-
}
|
558
|
-
else {
|
621
|
+
} else {
|
559
622
|
data = llama_get_embeddings_seq(ctx, 0);
|
560
623
|
}
|
561
|
-
|
562
|
-
if(!data) {
|
624
|
+
|
625
|
+
if (!data) {
|
563
626
|
return std::vector<float>(n_embd, 0.0f);
|
564
627
|
}
|
628
|
+
|
565
629
|
std::vector<float> embedding(data, data + n_embd), out(data, data + n_embd);
|
566
630
|
common_embd_normalize(embedding.data(), out.data(), n_embd, params.embd_normalize);
|
567
631
|
return out;
|
package/cpp/sampling.cpp
CHANGED
@@ -99,7 +99,7 @@ struct ring_buffer {
|
|
99
99
|
};
|
100
100
|
|
101
101
|
struct common_sampler {
|
102
|
-
|
102
|
+
common_params_sampling params;
|
103
103
|
|
104
104
|
struct llama_sampler * grmr;
|
105
105
|
struct llama_sampler * chain;
|
@@ -125,7 +125,7 @@ struct common_sampler {
|
|
125
125
|
}
|
126
126
|
};
|
127
127
|
|
128
|
-
std::string
|
128
|
+
std::string common_params_sampling::print() const {
|
129
129
|
char result[1024];
|
130
130
|
|
131
131
|
snprintf(result, sizeof(result),
|
@@ -141,7 +141,7 @@ std::string common_sampler_params::print() const {
|
|
141
141
|
return std::string(result);
|
142
142
|
}
|
143
143
|
|
144
|
-
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct
|
144
|
+
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
|
145
145
|
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
146
146
|
|
147
147
|
lparams.no_perf = params.no_perf;
|
@@ -320,6 +320,45 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
|
|
320
320
|
return cur_p.data[cur_p.selected].id;
|
321
321
|
}
|
322
322
|
|
323
|
+
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
|
324
|
+
LM_GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
|
325
|
+
|
326
|
+
std::vector<llama_token> result;
|
327
|
+
result.reserve(idxs.size());
|
328
|
+
|
329
|
+
size_t i = 0;
|
330
|
+
for (; i < draft.size(); i++) {
|
331
|
+
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
|
332
|
+
|
333
|
+
common_sampler_accept(gsmpl, id, true);
|
334
|
+
|
335
|
+
result.push_back(id);
|
336
|
+
|
337
|
+
if (draft[i] != id) {
|
338
|
+
break;
|
339
|
+
}
|
340
|
+
}
|
341
|
+
|
342
|
+
if (i == draft.size()) {
|
343
|
+
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
|
344
|
+
|
345
|
+
common_sampler_accept(gsmpl, id, true);
|
346
|
+
|
347
|
+
result.push_back(id);
|
348
|
+
}
|
349
|
+
|
350
|
+
return result;
|
351
|
+
}
|
352
|
+
|
353
|
+
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
|
354
|
+
std::vector<int> idxs(draft.size() + 1);
|
355
|
+
for (size_t i = 0; i < idxs.size(); ++i) {
|
356
|
+
idxs[i] = i;
|
357
|
+
}
|
358
|
+
|
359
|
+
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
|
360
|
+
}
|
361
|
+
|
323
362
|
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
324
363
|
return llama_sampler_get_seed(gsmpl->chain);
|
325
364
|
}
|
package/cpp/sampling.h
CHANGED
@@ -36,7 +36,7 @@ struct common_sampler;
|
|
36
36
|
|
37
37
|
// llama_sampler API overloads
|
38
38
|
|
39
|
-
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct
|
39
|
+
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params);
|
40
40
|
|
41
41
|
void common_sampler_free(struct common_sampler * gsmpl);
|
42
42
|
|
@@ -60,6 +60,27 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
|
|
60
60
|
//
|
61
61
|
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
62
62
|
|
63
|
+
// generalized version of common_sampler_sample
|
64
|
+
//
|
65
|
+
// will cross-reference the sampled tokens with a batch of draft tokens and accept those that match
|
66
|
+
// if the sampler disagrees at some point, we stop and return the accepted tokens up to now
|
67
|
+
//
|
68
|
+
// common_sampler_sample_n(gsmpl, ctx, { idx }, {});
|
69
|
+
//
|
70
|
+
// is equivalent to
|
71
|
+
//
|
72
|
+
// common_sampler_sample(gsmpl, ctx, idx);
|
73
|
+
// common_sampler_accept(gsmpl, token, true);
|
74
|
+
//
|
75
|
+
// requires: idxs.size() == draft.size() + 1
|
76
|
+
//
|
77
|
+
// returns at least 1 token, up to idxs.size()
|
78
|
+
//
|
79
|
+
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first = false);
|
80
|
+
|
81
|
+
// assume idxs == [ 0, 1, 2, ..., draft.size() ]
|
82
|
+
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first = false);
|
83
|
+
|
63
84
|
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
|
64
85
|
|
65
86
|
// helpers
|