cui-llama.rn 1.2.4 → 1.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +3 -4
- package/android/src/main/CMakeLists.txt +21 -5
- package/android/src/main/java/com/rnllama/LlamaContext.java +115 -30
- package/android/src/main/java/com/rnllama/RNLlama.java +40 -7
- package/android/src/main/jni.cpp +222 -36
- package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +9 -4
- package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +9 -4
- package/cpp/common.cpp +1682 -2122
- package/cpp/common.h +600 -594
- package/cpp/ggml-aarch64.c +129 -3209
- package/cpp/ggml-aarch64.h +19 -39
- package/cpp/ggml-alloc.c +1040 -1040
- package/cpp/ggml-alloc.h +76 -76
- package/cpp/ggml-backend-impl.h +216 -227
- package/cpp/ggml-backend-reg.cpp +195 -0
- package/cpp/ggml-backend.cpp +1997 -2625
- package/cpp/ggml-backend.h +328 -326
- package/cpp/ggml-common.h +1853 -1853
- package/cpp/ggml-cpp.h +38 -0
- package/cpp/ggml-cpu-aarch64.c +3560 -0
- package/cpp/ggml-cpu-aarch64.h +30 -0
- package/cpp/ggml-cpu-impl.h +371 -614
- package/cpp/ggml-cpu-quants.c +10822 -0
- package/cpp/ggml-cpu-quants.h +63 -0
- package/cpp/ggml-cpu.c +13975 -0
- package/cpp/ggml-cpu.cpp +663 -0
- package/cpp/ggml-cpu.h +177 -0
- package/cpp/ggml-impl.h +550 -209
- package/cpp/ggml-metal.h +66 -66
- package/cpp/ggml-metal.m +4294 -3819
- package/cpp/ggml-quants.c +5247 -15752
- package/cpp/ggml-quants.h +100 -147
- package/cpp/ggml-threading.cpp +12 -0
- package/cpp/ggml-threading.h +12 -0
- package/cpp/ggml.c +8180 -23464
- package/cpp/ggml.h +2411 -2562
- package/cpp/llama-grammar.cpp +1138 -1138
- package/cpp/llama-grammar.h +144 -144
- package/cpp/llama-impl.h +181 -181
- package/cpp/llama-sampling.cpp +2348 -2194
- package/cpp/llama-sampling.h +48 -30
- package/cpp/llama-vocab.cpp +1984 -1968
- package/cpp/llama-vocab.h +170 -165
- package/cpp/llama.cpp +22132 -21969
- package/cpp/llama.h +1253 -1253
- package/cpp/log.cpp +401 -401
- package/cpp/log.h +121 -121
- package/cpp/rn-llama.hpp +83 -19
- package/cpp/sampling.cpp +466 -458
- package/cpp/sgemm.cpp +1884 -1219
- package/ios/RNLlama.mm +43 -20
- package/ios/RNLlamaContext.h +9 -3
- package/ios/RNLlamaContext.mm +133 -33
- package/jest/mock.js +0 -1
- package/lib/commonjs/NativeRNLlama.js.map +1 -1
- package/lib/commonjs/index.js +52 -15
- package/lib/commonjs/index.js.map +1 -1
- package/lib/module/NativeRNLlama.js.map +1 -1
- package/lib/module/index.js +51 -15
- package/lib/module/index.js.map +1 -1
- package/lib/typescript/NativeRNLlama.d.ts +29 -6
- package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
- package/lib/typescript/index.d.ts +12 -5
- package/lib/typescript/index.d.ts.map +1 -1
- package/package.json +1 -1
- package/src/NativeRNLlama.ts +41 -7
- package/src/index.ts +82 -27
- package/cpp/json-schema-to-grammar.cpp +0 -1045
- package/cpp/json-schema-to-grammar.h +0 -8
- package/cpp/json.hpp +0 -24766
package/cpp/ggml-backend.h
CHANGED
@@ -1,326 +1,328 @@
|
|
1
|
-
#pragma once
|
2
|
-
|
3
|
-
#include "ggml.h"
|
4
|
-
#include "ggml-alloc.h"
|
5
|
-
|
6
|
-
#ifdef
|
7
|
-
|
8
|
-
#
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
//
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
LM_GGML_API
|
42
|
-
LM_GGML_API
|
43
|
-
LM_GGML_API
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
LM_GGML_API void
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
LM_GGML_API
|
64
|
-
LM_GGML_API
|
65
|
-
LM_GGML_API void
|
66
|
-
|
67
|
-
LM_GGML_API lm_ggml_backend_buffer_type_t
|
68
|
-
LM_GGML_API lm_ggml_backend_buffer_t
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
//
|
76
|
-
|
77
|
-
LM_GGML_API
|
78
|
-
LM_GGML_API
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
LM_GGML_API
|
83
|
-
LM_GGML_API
|
84
|
-
|
85
|
-
|
86
|
-
LM_GGML_API
|
87
|
-
LM_GGML_API
|
88
|
-
|
89
|
-
//
|
90
|
-
LM_GGML_API
|
91
|
-
LM_GGML_API
|
92
|
-
LM_GGML_API
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
LM_GGML_API
|
101
|
-
|
102
|
-
|
103
|
-
//
|
104
|
-
|
105
|
-
|
106
|
-
LM_GGML_API
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
LM_GGML_API
|
166
|
-
LM_GGML_API
|
167
|
-
LM_GGML_API lm_ggml_backend_dev_t
|
168
|
-
LM_GGML_API
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
//
|
177
|
-
//
|
178
|
-
|
179
|
-
|
180
|
-
LM_GGML_API
|
181
|
-
LM_GGML_API lm_ggml_backend_reg_t
|
182
|
-
LM_GGML_API
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
//
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
//
|
196
|
-
|
197
|
-
|
198
|
-
//
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
//
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
//
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
//
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
//
|
268
|
-
LM_GGML_API
|
269
|
-
LM_GGML_API
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
LM_GGML_API
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
struct
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
//
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
LM_GGML_API
|
311
|
-
LM_GGML_API void
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
LM_GGML_API
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
#
|
1
|
+
#pragma once
|
2
|
+
|
3
|
+
#include "ggml.h"
|
4
|
+
#include "ggml-alloc.h"
|
5
|
+
|
6
|
+
#ifdef LM_GGML_BACKEND_SHARED
|
7
|
+
# if defined(_WIN32) && !defined(__MINGW32__)
|
8
|
+
# ifdef LM_GGML_BACKEND_BUILD
|
9
|
+
# define LM_GGML_BACKEND_API __declspec(dllexport) extern
|
10
|
+
# else
|
11
|
+
# define LM_GGML_BACKEND_API __declspec(dllimport) extern
|
12
|
+
# endif
|
13
|
+
# else
|
14
|
+
# define LM_GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern
|
15
|
+
# endif
|
16
|
+
#else
|
17
|
+
# define LM_GGML_BACKEND_API extern
|
18
|
+
#endif
|
19
|
+
|
20
|
+
#ifdef __cplusplus
|
21
|
+
extern "C" {
|
22
|
+
#endif
|
23
|
+
|
24
|
+
typedef struct lm_ggml_backend_buffer_type * lm_ggml_backend_buffer_type_t;
|
25
|
+
typedef struct lm_ggml_backend_buffer * lm_ggml_backend_buffer_t;
|
26
|
+
typedef struct lm_ggml_backend_event * lm_ggml_backend_event_t;
|
27
|
+
typedef struct lm_ggml_backend * lm_ggml_backend_t;
|
28
|
+
typedef void * lm_ggml_backend_graph_plan_t;
|
29
|
+
typedef struct lm_ggml_backend_reg * lm_ggml_backend_reg_t;
|
30
|
+
typedef struct lm_ggml_backend_device * lm_ggml_backend_dev_t;
|
31
|
+
|
32
|
+
|
33
|
+
//
|
34
|
+
// Backend buffer type
|
35
|
+
//
|
36
|
+
|
37
|
+
LM_GGML_API const char * lm_ggml_backend_buft_name (lm_ggml_backend_buffer_type_t buft);
|
38
|
+
LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_buft_alloc_buffer (lm_ggml_backend_buffer_type_t buft, size_t size);
|
39
|
+
LM_GGML_API size_t lm_ggml_backend_buft_get_alignment (lm_ggml_backend_buffer_type_t buft);
|
40
|
+
LM_GGML_API size_t lm_ggml_backend_buft_get_max_size (lm_ggml_backend_buffer_type_t buft);
|
41
|
+
LM_GGML_API size_t lm_ggml_backend_buft_get_alloc_size(lm_ggml_backend_buffer_type_t buft, struct lm_ggml_tensor * tensor);
|
42
|
+
LM_GGML_API bool lm_ggml_backend_buft_is_host (lm_ggml_backend_buffer_type_t buft);
|
43
|
+
LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_buft_get_device (lm_ggml_backend_buffer_type_t buft);
|
44
|
+
|
45
|
+
//
|
46
|
+
// Backend buffer
|
47
|
+
//
|
48
|
+
|
49
|
+
enum lm_ggml_backend_buffer_usage {
|
50
|
+
LM_GGML_BACKEND_BUFFER_USAGE_ANY = 0,
|
51
|
+
LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
|
52
|
+
LM_GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
|
53
|
+
};
|
54
|
+
|
55
|
+
LM_GGML_API const char * lm_ggml_backend_buffer_name (lm_ggml_backend_buffer_t buffer);
|
56
|
+
LM_GGML_API void lm_ggml_backend_buffer_free (lm_ggml_backend_buffer_t buffer);
|
57
|
+
LM_GGML_API void * lm_ggml_backend_buffer_get_base (lm_ggml_backend_buffer_t buffer);
|
58
|
+
LM_GGML_API size_t lm_ggml_backend_buffer_get_size (lm_ggml_backend_buffer_t buffer);
|
59
|
+
LM_GGML_API void lm_ggml_backend_buffer_init_tensor (lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor);
|
60
|
+
LM_GGML_API size_t lm_ggml_backend_buffer_get_alignment (lm_ggml_backend_buffer_t buffer);
|
61
|
+
LM_GGML_API size_t lm_ggml_backend_buffer_get_max_size (lm_ggml_backend_buffer_t buffer);
|
62
|
+
LM_GGML_API size_t lm_ggml_backend_buffer_get_alloc_size(lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor);
|
63
|
+
LM_GGML_API void lm_ggml_backend_buffer_clear (lm_ggml_backend_buffer_t buffer, uint8_t value);
|
64
|
+
LM_GGML_API bool lm_ggml_backend_buffer_is_host (lm_ggml_backend_buffer_t buffer);
|
65
|
+
LM_GGML_API void lm_ggml_backend_buffer_set_usage (lm_ggml_backend_buffer_t buffer, enum lm_ggml_backend_buffer_usage usage);
|
66
|
+
LM_GGML_API enum lm_ggml_backend_buffer_usage lm_ggml_backend_buffer_get_usage (lm_ggml_backend_buffer_t buffer);
|
67
|
+
LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_buffer_get_type (lm_ggml_backend_buffer_t buffer);
|
68
|
+
LM_GGML_API void lm_ggml_backend_buffer_reset (lm_ggml_backend_buffer_t buffer);
|
69
|
+
|
70
|
+
// tensor copy between different backends
|
71
|
+
LM_GGML_API void lm_ggml_backend_tensor_copy(struct lm_ggml_tensor * src, struct lm_ggml_tensor * dst);
|
72
|
+
|
73
|
+
//
|
74
|
+
// Backend (stream)
|
75
|
+
//
|
76
|
+
|
77
|
+
LM_GGML_API lm_ggml_guid_t lm_ggml_backend_guid(lm_ggml_backend_t backend);
|
78
|
+
LM_GGML_API const char * lm_ggml_backend_name(lm_ggml_backend_t backend);
|
79
|
+
LM_GGML_API void lm_ggml_backend_free(lm_ggml_backend_t backend);
|
80
|
+
|
81
|
+
LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_get_default_buffer_type(lm_ggml_backend_t backend);
|
82
|
+
LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_alloc_buffer(lm_ggml_backend_t backend, size_t size);
|
83
|
+
LM_GGML_API size_t lm_ggml_backend_get_alignment(lm_ggml_backend_t backend);
|
84
|
+
LM_GGML_API size_t lm_ggml_backend_get_max_size(lm_ggml_backend_t backend);
|
85
|
+
|
86
|
+
LM_GGML_API void lm_ggml_backend_tensor_set_async(lm_ggml_backend_t backend, struct lm_ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
87
|
+
LM_GGML_API void lm_ggml_backend_tensor_get_async(lm_ggml_backend_t backend, const struct lm_ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
88
|
+
|
89
|
+
// "offset" refers to the offset of the tensor data for setting/getting data
|
90
|
+
LM_GGML_API void lm_ggml_backend_tensor_set( struct lm_ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
91
|
+
LM_GGML_API void lm_ggml_backend_tensor_get(const struct lm_ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
92
|
+
LM_GGML_API void lm_ggml_backend_tensor_memset( struct lm_ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
93
|
+
|
94
|
+
LM_GGML_API void lm_ggml_backend_synchronize(lm_ggml_backend_t backend);
|
95
|
+
|
96
|
+
LM_GGML_API lm_ggml_backend_graph_plan_t lm_ggml_backend_graph_plan_create(lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
|
97
|
+
LM_GGML_API void lm_ggml_backend_graph_plan_free (lm_ggml_backend_t backend, lm_ggml_backend_graph_plan_t plan);
|
98
|
+
|
99
|
+
LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_plan_compute (lm_ggml_backend_t backend, lm_ggml_backend_graph_plan_t plan);
|
100
|
+
LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_compute (lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
|
101
|
+
LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_compute_async(lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
|
102
|
+
|
103
|
+
// NOTE: will be removed, use device version instead
|
104
|
+
LM_GGML_API bool lm_ggml_backend_supports_op(lm_ggml_backend_t backend, const struct lm_ggml_tensor * op);
|
105
|
+
LM_GGML_API bool lm_ggml_backend_supports_buft(lm_ggml_backend_t backend, lm_ggml_backend_buffer_type_t buft);
|
106
|
+
LM_GGML_API bool lm_ggml_backend_offload_op(lm_ggml_backend_t backend, const struct lm_ggml_tensor * op);
|
107
|
+
|
108
|
+
// asynchronous copy
|
109
|
+
// the copy is performed after all the currently queued operations in backend_src
|
110
|
+
// backend_dst will wait for the copy to complete before performing other operations
|
111
|
+
// automatic fallback to sync copy if async is not supported
|
112
|
+
LM_GGML_API void lm_ggml_backend_tensor_copy_async(lm_ggml_backend_t backend_src, lm_ggml_backend_t backend_dst, struct lm_ggml_tensor * src, struct lm_ggml_tensor * dst);
|
113
|
+
|
114
|
+
LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_get_device(lm_ggml_backend_t backend);
|
115
|
+
|
116
|
+
//
|
117
|
+
// Events
|
118
|
+
//
|
119
|
+
|
120
|
+
LM_GGML_API lm_ggml_backend_event_t lm_ggml_backend_event_new(lm_ggml_backend_dev_t device);
|
121
|
+
LM_GGML_API void lm_ggml_backend_event_free(lm_ggml_backend_event_t event);
|
122
|
+
LM_GGML_API void lm_ggml_backend_event_record(lm_ggml_backend_event_t event, lm_ggml_backend_t backend);
|
123
|
+
LM_GGML_API void lm_ggml_backend_event_synchronize(lm_ggml_backend_event_t event);
|
124
|
+
LM_GGML_API void lm_ggml_backend_event_wait(lm_ggml_backend_t backend, lm_ggml_backend_event_t event);
|
125
|
+
|
126
|
+
//
|
127
|
+
// Backend device
|
128
|
+
//
|
129
|
+
|
130
|
+
enum lm_ggml_backend_dev_type {
|
131
|
+
// CPU device using system memory
|
132
|
+
LM_GGML_BACKEND_DEVICE_TYPE_CPU,
|
133
|
+
// GPU device using dedicated memory
|
134
|
+
LM_GGML_BACKEND_DEVICE_TYPE_GPU,
|
135
|
+
// accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
|
136
|
+
LM_GGML_BACKEND_DEVICE_TYPE_ACCEL
|
137
|
+
};
|
138
|
+
|
139
|
+
// functionality supported by the device
|
140
|
+
struct lm_ggml_backend_dev_caps {
|
141
|
+
// asynchronous operations
|
142
|
+
bool async;
|
143
|
+
// pinned host buffer
|
144
|
+
bool host_buffer;
|
145
|
+
// creating buffers from host ptr
|
146
|
+
bool buffer_from_host_ptr;
|
147
|
+
// event synchronization
|
148
|
+
bool events;
|
149
|
+
};
|
150
|
+
|
151
|
+
// all the device properties
|
152
|
+
struct lm_ggml_backend_dev_props {
|
153
|
+
const char * name;
|
154
|
+
const char * description;
|
155
|
+
size_t memory_free;
|
156
|
+
size_t memory_total;
|
157
|
+
enum lm_ggml_backend_dev_type type;
|
158
|
+
struct lm_ggml_backend_dev_caps caps;
|
159
|
+
};
|
160
|
+
|
161
|
+
LM_GGML_API const char * lm_ggml_backend_dev_name(lm_ggml_backend_dev_t device);
|
162
|
+
LM_GGML_API const char * lm_ggml_backend_dev_description(lm_ggml_backend_dev_t device);
|
163
|
+
LM_GGML_API void lm_ggml_backend_dev_memory(lm_ggml_backend_dev_t device, size_t * free, size_t * total);
|
164
|
+
LM_GGML_API enum lm_ggml_backend_dev_type lm_ggml_backend_dev_type(lm_ggml_backend_dev_t device);
|
165
|
+
LM_GGML_API void lm_ggml_backend_dev_get_props(lm_ggml_backend_dev_t device, struct lm_ggml_backend_dev_props * props);
|
166
|
+
LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_dev_backend_reg(lm_ggml_backend_dev_t device);
|
167
|
+
LM_GGML_API lm_ggml_backend_t lm_ggml_backend_dev_init(lm_ggml_backend_dev_t device, const char * params);
|
168
|
+
LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_dev_buffer_type(lm_ggml_backend_dev_t device);
|
169
|
+
LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_dev_host_buffer_type(lm_ggml_backend_dev_t device);
|
170
|
+
LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_dev_buffer_from_host_ptr(lm_ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
|
171
|
+
|
172
|
+
LM_GGML_API bool lm_ggml_backend_dev_supports_op(lm_ggml_backend_dev_t device, const struct lm_ggml_tensor * op);
|
173
|
+
LM_GGML_API bool lm_ggml_backend_dev_supports_buft(lm_ggml_backend_dev_t device, lm_ggml_backend_buffer_type_t buft);
|
174
|
+
LM_GGML_API bool lm_ggml_backend_dev_offload_op(lm_ggml_backend_dev_t device, const struct lm_ggml_tensor * op);
|
175
|
+
|
176
|
+
//
|
177
|
+
// Backend (reg)
|
178
|
+
//
|
179
|
+
|
180
|
+
LM_GGML_API const char * lm_ggml_backend_reg_name(lm_ggml_backend_reg_t reg);
|
181
|
+
LM_GGML_API size_t lm_ggml_backend_reg_dev_count(lm_ggml_backend_reg_t reg);
|
182
|
+
LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_reg_dev_get(lm_ggml_backend_reg_t reg, size_t index);
|
183
|
+
LM_GGML_API void * lm_ggml_backend_reg_get_proc_address(lm_ggml_backend_reg_t reg, const char * name);
|
184
|
+
|
185
|
+
// Common functions that may be obtained using lm_ggml_backend_reg_get_proc_address
|
186
|
+
|
187
|
+
// Split buffer type for tensor parallelism
|
188
|
+
typedef lm_ggml_backend_buffer_type_t (*lm_ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
|
189
|
+
// Set the number of threads for the backend
|
190
|
+
typedef void (*lm_ggml_backend_set_n_threads_t)(lm_ggml_backend_t backend, int n_threads);
|
191
|
+
// Get additional buffer types provided by the device (returns a NULL-terminated array)
|
192
|
+
typedef lm_ggml_backend_buffer_type_t * (*lm_ggml_backend_dev_get_extra_bufts_t)(lm_ggml_backend_dev_t device);
|
193
|
+
|
194
|
+
//
|
195
|
+
// Backend registry
|
196
|
+
//
|
197
|
+
|
198
|
+
// Backend (reg) enumeration
|
199
|
+
LM_GGML_API size_t lm_ggml_backend_reg_count(void);
|
200
|
+
LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_reg_get(size_t index);
|
201
|
+
LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_reg_by_name(const char * name);
|
202
|
+
|
203
|
+
// Device enumeration
|
204
|
+
LM_GGML_API size_t lm_ggml_backend_dev_count(void);
|
205
|
+
LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_get(size_t index);
|
206
|
+
LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_by_name(const char * name);
|
207
|
+
LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_by_type(enum lm_ggml_backend_dev_type type);
|
208
|
+
|
209
|
+
// Direct backend (stream) initialization
|
210
|
+
// = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_name(name), params)
|
211
|
+
LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_by_name(const char * name, const char * params);
|
212
|
+
// = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_type(type), params)
|
213
|
+
LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_by_type(enum lm_ggml_backend_dev_type type, const char * params);
|
214
|
+
// = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_type(GPU) OR lm_ggml_backend_dev_by_type(CPU), NULL)
|
215
|
+
LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_best(void);
|
216
|
+
|
217
|
+
//
|
218
|
+
// Backend scheduler
|
219
|
+
//
|
220
|
+
|
221
|
+
// The backend scheduler allows for multiple backend devices to be used together
|
222
|
+
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
|
223
|
+
// The backends are selected based on:
|
224
|
+
// - the backend that supports the operation
|
225
|
+
// - the location of the pre-allocated tensors (e.g. the weights)
|
226
|
+
/*
|
227
|
+
Example usage:
|
228
|
+
|
229
|
+
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
|
230
|
+
// preferrably to run on the same backend as the buffer
|
231
|
+
lm_ggml_backend_buffer_set_usage(buf_weights, LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
232
|
+
|
233
|
+
sched = lm_ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, LM_GGML_DEFAULT_GRAPH_SIZE, false);
|
234
|
+
|
235
|
+
// initialize buffers from a max size graph (optional)
|
236
|
+
reserve_graph = build_graph(sched, max_batch_size);
|
237
|
+
|
238
|
+
// manually assign nodes to a backend (optional, should not be needed in most cases)
|
239
|
+
struct lm_ggml_tensor * node = lm_ggml_mul_mat(ctx, ...);
|
240
|
+
lm_ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
|
241
|
+
|
242
|
+
lm_ggml_backend_sched_reserve(sched, reserve_graph);
|
243
|
+
|
244
|
+
// compute
|
245
|
+
graph = build_graph(sched);
|
246
|
+
lm_ggml_backend_sched_graph_compute(sched, graph);
|
247
|
+
|
248
|
+
// if there are graph inputs:
|
249
|
+
lm_ggml_backend_sched_reset(sched);
|
250
|
+
lm_ggml_backend_sched_alloc_graph(sched, graph);
|
251
|
+
lm_ggml_backend_tensor_set(input_tensor, ...);
|
252
|
+
lm_ggml_backend_sched_graph_compute(sched, graph);
|
253
|
+
}
|
254
|
+
*/
|
255
|
+
|
256
|
+
typedef struct lm_ggml_backend_sched * lm_ggml_backend_sched_t;
|
257
|
+
|
258
|
+
// Evaluation callback for each node in the graph (set with lm_ggml_backend_sched_set_eval_callback)
|
259
|
+
// when ask == true, the scheduler wants to know if the user wants to observe this node
|
260
|
+
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
|
261
|
+
//
|
262
|
+
// when ask == false, the scheduler is passing the node tensor to the user for observation
|
263
|
+
// if the user returns false, the scheduler will cancel the graph compute
|
264
|
+
//
|
265
|
+
typedef bool (*lm_ggml_backend_sched_eval_callback)(struct lm_ggml_tensor * t, bool ask, void * user_data);
|
266
|
+
|
267
|
+
// Initialize a backend scheduler
|
268
|
+
LM_GGML_API lm_ggml_backend_sched_t lm_ggml_backend_sched_new(lm_ggml_backend_t * backends, lm_ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
|
269
|
+
LM_GGML_API void lm_ggml_backend_sched_free(lm_ggml_backend_sched_t sched);
|
270
|
+
|
271
|
+
// Initialize backend buffers from a measure graph
|
272
|
+
LM_GGML_API bool lm_ggml_backend_sched_reserve(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * measure_graph); // returns success
|
273
|
+
|
274
|
+
LM_GGML_API int lm_ggml_backend_sched_get_n_backends(lm_ggml_backend_sched_t sched);
|
275
|
+
LM_GGML_API lm_ggml_backend_t lm_ggml_backend_sched_get_backend(lm_ggml_backend_sched_t sched, int i);
|
276
|
+
|
277
|
+
// Get the number of splits of the last graph
|
278
|
+
LM_GGML_API int lm_ggml_backend_sched_get_n_splits(lm_ggml_backend_sched_t sched);
|
279
|
+
LM_GGML_API int lm_ggml_backend_sched_get_n_copies(lm_ggml_backend_sched_t sched);
|
280
|
+
|
281
|
+
LM_GGML_API size_t lm_ggml_backend_sched_get_buffer_size(lm_ggml_backend_sched_t sched, lm_ggml_backend_t backend);
|
282
|
+
|
283
|
+
LM_GGML_API void lm_ggml_backend_sched_set_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node, lm_ggml_backend_t backend);
|
284
|
+
LM_GGML_API lm_ggml_backend_t lm_ggml_backend_sched_get_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node);
|
285
|
+
|
286
|
+
// Allocate and compute graph on the backend scheduler
|
287
|
+
LM_GGML_API bool lm_ggml_backend_sched_alloc_graph(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph); // returns success
|
288
|
+
LM_GGML_API enum lm_ggml_status lm_ggml_backend_sched_graph_compute(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph);
|
289
|
+
LM_GGML_API enum lm_ggml_status lm_ggml_backend_sched_graph_compute_async(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph);
|
290
|
+
LM_GGML_API void lm_ggml_backend_sched_synchronize(lm_ggml_backend_sched_t sched);
|
291
|
+
|
292
|
+
// Reset all assignments and allocators - must be called before changing the node backends
|
293
|
+
LM_GGML_API void lm_ggml_backend_sched_reset(lm_ggml_backend_sched_t sched);
|
294
|
+
|
295
|
+
// Set a callback to be called for each resulting node during graph compute
|
296
|
+
LM_GGML_API void lm_ggml_backend_sched_set_eval_callback(lm_ggml_backend_sched_t sched, lm_ggml_backend_sched_eval_callback callback, void * user_data);
|
297
|
+
|
298
|
+
//
|
299
|
+
// Utils
|
300
|
+
//
|
301
|
+
|
302
|
+
struct lm_ggml_backend_graph_copy {
|
303
|
+
lm_ggml_backend_buffer_t buffer;
|
304
|
+
struct lm_ggml_context * ctx_allocated;
|
305
|
+
struct lm_ggml_context * ctx_unallocated;
|
306
|
+
struct lm_ggml_cgraph * graph;
|
307
|
+
};
|
308
|
+
|
309
|
+
// Copy a graph to a different backend
|
310
|
+
LM_GGML_API struct lm_ggml_backend_graph_copy lm_ggml_backend_graph_copy(lm_ggml_backend_t backend, struct lm_ggml_cgraph * graph);
|
311
|
+
LM_GGML_API void lm_ggml_backend_graph_copy_free(struct lm_ggml_backend_graph_copy copy);
|
312
|
+
|
313
|
+
typedef bool (*lm_ggml_backend_eval_callback)(int node_index, struct lm_ggml_tensor * t1, struct lm_ggml_tensor * t2, void * user_data);
|
314
|
+
|
315
|
+
// Compare the output of two backends
|
316
|
+
LM_GGML_API bool lm_ggml_backend_compare_graph_backend(lm_ggml_backend_t backend1, lm_ggml_backend_t backend2, struct lm_ggml_cgraph * graph, lm_ggml_backend_eval_callback callback, void * user_data);
|
317
|
+
|
318
|
+
// Tensor initialization
|
319
|
+
LM_GGML_API void lm_ggml_backend_tensor_alloc(lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor, void * addr);
|
320
|
+
LM_GGML_API void lm_ggml_backend_view_init(struct lm_ggml_tensor * tensor);
|
321
|
+
|
322
|
+
// CPU buffer types are always available
|
323
|
+
LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
324
|
+
LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_cpu_buffer_type(void);
|
325
|
+
|
326
|
+
#ifdef __cplusplus
|
327
|
+
}
|
328
|
+
#endif
|