cui-llama.rn 1.0.7 → 1.0.9
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/android/src/main/jni.cpp +1 -1
- package/cpp/common.cpp +67 -28
- package/cpp/common.h +23 -4
- package/cpp/ggml-aarch64.c +16 -14
- package/cpp/ggml-backend.c +15 -10
- package/cpp/ggml-impl.h +4 -6
- package/cpp/ggml-metal.h +2 -0
- package/cpp/ggml-metal.m +54 -21
- package/cpp/ggml-quants.c +2 -2
- package/cpp/ggml-quants.h +4 -0
- package/cpp/ggml.c +37 -12
- package/cpp/ggml.h +6 -4
- package/cpp/llama-impl.h +15 -0
- package/cpp/llama-vocab.cpp +10 -16
- package/cpp/llama-vocab.h +2 -0
- package/cpp/llama.cpp +432 -265
- package/cpp/llama.h +4 -1
- package/cpp/rn-llama.hpp +3 -4
- package/package.json +1 -1
package/cpp/llama.cpp
CHANGED
@@ -132,20 +132,6 @@ static std::string trim(const std::string & str) {
|
|
132
132
|
return str.substr(start, end - start);
|
133
133
|
}
|
134
134
|
|
135
|
-
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
136
|
-
std::string result;
|
137
|
-
for (size_t pos = 0; ; pos += search.length()) {
|
138
|
-
auto new_pos = s.find(search, pos);
|
139
|
-
if (new_pos == std::string::npos) {
|
140
|
-
result += s.substr(pos, s.size() - pos);
|
141
|
-
break;
|
142
|
-
}
|
143
|
-
result += s.substr(pos, new_pos - pos) + replace;
|
144
|
-
pos = new_pos;
|
145
|
-
}
|
146
|
-
s = std::move(result);
|
147
|
-
}
|
148
|
-
|
149
135
|
static bool is_float_close(float a, float b, float abs_tol) {
|
150
136
|
// Check for non-negative tolerance
|
151
137
|
if (abs_tol < 0.0) {
|
@@ -233,6 +219,7 @@ enum llm_arch {
|
|
233
219
|
LLM_ARCH_CHATGLM,
|
234
220
|
LLM_ARCH_BITNET,
|
235
221
|
LLM_ARCH_T5,
|
222
|
+
LLM_ARCH_T5ENCODER,
|
236
223
|
LLM_ARCH_JAIS,
|
237
224
|
LLM_ARCH_UNKNOWN,
|
238
225
|
};
|
@@ -277,6 +264,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
277
264
|
{ LLM_ARCH_CHATGLM, "chatglm" },
|
278
265
|
{ LLM_ARCH_BITNET, "bitnet" },
|
279
266
|
{ LLM_ARCH_T5, "t5" },
|
267
|
+
{ LLM_ARCH_T5ENCODER, "t5encoder" },
|
280
268
|
{ LLM_ARCH_JAIS, "jais" },
|
281
269
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
282
270
|
};
|
@@ -373,6 +361,7 @@ enum llm_kv {
|
|
373
361
|
LLM_KV_TOKENIZER_SUFFIX_ID,
|
374
362
|
LLM_KV_TOKENIZER_MIDDLE_ID,
|
375
363
|
LLM_KV_TOKENIZER_EOT_ID,
|
364
|
+
LLM_KV_TOKENIZER_EOM_ID,
|
376
365
|
|
377
366
|
LLM_KV_ADAPTER_TYPE,
|
378
367
|
LLM_KV_ADAPTER_LORA_ALPHA,
|
@@ -470,6 +459,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|
470
459
|
{ LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
|
471
460
|
{ LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
|
472
461
|
{ LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
|
462
|
+
{ LLM_KV_TOKENIZER_EOM_ID, "tokenizer.ggml.eom_token_id" },
|
473
463
|
|
474
464
|
{ LLM_KV_ADAPTER_TYPE, "adapter.type" },
|
475
465
|
{ LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" },
|
@@ -1284,6 +1274,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|
1284
1274
|
{ LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
|
1285
1275
|
},
|
1286
1276
|
},
|
1277
|
+
{
|
1278
|
+
LLM_ARCH_T5ENCODER,
|
1279
|
+
{
|
1280
|
+
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
1281
|
+
{ LLM_TENSOR_OUTPUT, "output" },
|
1282
|
+
{ LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
|
1283
|
+
{ LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" },
|
1284
|
+
{ LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" },
|
1285
|
+
{ LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" },
|
1286
|
+
{ LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" },
|
1287
|
+
{ LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" },
|
1288
|
+
{ LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" },
|
1289
|
+
{ LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" },
|
1290
|
+
{ LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" },
|
1291
|
+
{ LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" },
|
1292
|
+
{ LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
|
1293
|
+
},
|
1294
|
+
},
|
1287
1295
|
{
|
1288
1296
|
LLM_ARCH_JAIS,
|
1289
1297
|
{
|
@@ -5210,6 +5218,12 @@ static void llm_load_hparams(
|
|
5210
5218
|
default: model.type = e_model::MODEL_UNKNOWN;
|
5211
5219
|
}
|
5212
5220
|
} break;
|
5221
|
+
case LLM_ARCH_T5ENCODER:
|
5222
|
+
{
|
5223
|
+
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
5224
|
+
ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
|
5225
|
+
model.type = e_model::MODEL_UNKNOWN;
|
5226
|
+
} break;
|
5213
5227
|
case LLM_ARCH_JAIS:
|
5214
5228
|
{
|
5215
5229
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
@@ -5597,6 +5611,7 @@ static void llm_load_vocab(
|
|
5597
5611
|
{ LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
|
5598
5612
|
{ LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
|
5599
5613
|
{ LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
|
5614
|
+
{ LLM_KV_TOKENIZER_EOM_ID, vocab.special_eom_id },
|
5600
5615
|
};
|
5601
5616
|
|
5602
5617
|
for (const auto & it : special_token_types) {
|
@@ -5649,6 +5664,17 @@ static void llm_load_vocab(
|
|
5649
5664
|
}
|
5650
5665
|
}
|
5651
5666
|
}
|
5667
|
+
|
5668
|
+
// find EOM token: "<|eom_id|>"
|
5669
|
+
//
|
5670
|
+
// TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOM_ID
|
5671
|
+
// for now, we apply this workaround to find the EOM token based on its text
|
5672
|
+
if (vocab.special_eom_id == -1) {
|
5673
|
+
const auto & t = vocab.token_to_id.find("<|eom_id|>");
|
5674
|
+
if (t != vocab.token_to_id.end()) {
|
5675
|
+
vocab.special_eom_id = t->second;
|
5676
|
+
}
|
5677
|
+
}
|
5652
5678
|
}
|
5653
5679
|
|
5654
5680
|
// build special tokens cache
|
@@ -7432,6 +7458,42 @@ static bool llm_load_tensors(
|
|
7432
7458
|
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff});
|
7433
7459
|
}
|
7434
7460
|
} break;
|
7461
|
+
case LLM_ARCH_T5ENCODER:
|
7462
|
+
{
|
7463
|
+
const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
|
7464
|
+
|
7465
|
+
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
7466
|
+
|
7467
|
+
// output
|
7468
|
+
{
|
7469
|
+
model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
|
7470
|
+
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
7471
|
+
// if output is NULL, init from the input tok embed
|
7472
|
+
if (model.output == NULL) {
|
7473
|
+
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
7474
|
+
}
|
7475
|
+
}
|
7476
|
+
|
7477
|
+
for (int i = 0; i < n_layer; ++i) {
|
7478
|
+
lm_ggml_context * ctx_layer = ctx_for_layer(i);
|
7479
|
+
lm_ggml_context * ctx_split = ctx_for_layer_split(i);
|
7480
|
+
|
7481
|
+
auto & layer = model.layers[i];
|
7482
|
+
|
7483
|
+
layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
|
7484
|
+
layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
7485
|
+
|
7486
|
+
layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
7487
|
+
layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
7488
|
+
layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
7489
|
+
layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
|
7490
|
+
|
7491
|
+
layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
|
7492
|
+
layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
7493
|
+
layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
7494
|
+
layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
|
7495
|
+
}
|
7496
|
+
} break;
|
7435
7497
|
case LLM_ARCH_JAIS:
|
7436
7498
|
{
|
7437
7499
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
@@ -13146,7 +13208,7 @@ struct llm_build_context {
|
|
13146
13208
|
return gf;
|
13147
13209
|
}
|
13148
13210
|
|
13149
|
-
struct lm_ggml_cgraph *
|
13211
|
+
struct lm_ggml_cgraph * build_t5_encoder() {
|
13150
13212
|
struct lm_ggml_cgraph * gf = lm_ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
13151
13213
|
|
13152
13214
|
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
@@ -13161,303 +13223,323 @@ struct llm_build_context {
|
|
13161
13223
|
|
13162
13224
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
13163
13225
|
|
13164
|
-
|
13165
|
-
|
13166
|
-
|
13167
|
-
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
13168
|
-
struct lm_ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);
|
13226
|
+
LM_GGML_ASSERT(lctx.is_encoding);
|
13227
|
+
struct lm_ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false);
|
13169
13228
|
|
13170
|
-
|
13171
|
-
|
13229
|
+
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
13230
|
+
struct lm_ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);
|
13172
13231
|
|
13173
|
-
|
13174
|
-
|
13175
|
-
model.layers[il].attn_norm_enc, NULL,
|
13176
|
-
LLM_NORM_RMS, cb, il);
|
13177
|
-
cb(cur, "attn_norm", il);
|
13232
|
+
for (int il = 0; il < n_layer; ++il) {
|
13233
|
+
struct lm_ggml_tensor * inpSA = inpL;
|
13178
13234
|
|
13179
|
-
|
13180
|
-
|
13181
|
-
|
13182
|
-
|
13235
|
+
// norm
|
13236
|
+
cur = llm_build_norm(ctx0, inpL, hparams,
|
13237
|
+
model.layers[il].attn_norm_enc, NULL,
|
13238
|
+
LLM_NORM_RMS, cb, il);
|
13239
|
+
cb(cur, "attn_norm", il);
|
13183
13240
|
|
13184
|
-
|
13185
|
-
|
13241
|
+
// self-attention
|
13242
|
+
{
|
13243
|
+
struct lm_ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_enc, cur);
|
13244
|
+
cb(Qcur, "Qcur", il);
|
13186
13245
|
|
13187
|
-
|
13188
|
-
|
13246
|
+
struct lm_ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_enc, cur);
|
13247
|
+
cb(Kcur, "Kcur", il);
|
13189
13248
|
|
13190
|
-
|
13191
|
-
|
13249
|
+
struct lm_ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_enc, cur);
|
13250
|
+
cb(Vcur, "Vcur", il);
|
13192
13251
|
|
13193
|
-
|
13194
|
-
|
13252
|
+
Qcur = lm_ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
13253
|
+
Kcur = lm_ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
13195
13254
|
|
13196
|
-
|
13197
|
-
|
13255
|
+
struct lm_ggml_tensor * q = lm_ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
13256
|
+
struct lm_ggml_tensor * k = lm_ggml_cont(ctx0, lm_ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
13198
13257
|
|
13199
|
-
|
13200
|
-
|
13201
|
-
struct lm_ggml_tensor * kq_b = lm_ggml_add(ctx0, kq, pos_bias);
|
13202
|
-
cb(kq_b, "kq_b", il);
|
13258
|
+
struct lm_ggml_tensor * kq = lm_ggml_mul_mat(ctx0, k, q);
|
13259
|
+
cb(kq, "kq", il);
|
13203
13260
|
|
13204
|
-
|
13205
|
-
|
13261
|
+
struct lm_ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
|
13262
|
+
struct lm_ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b);
|
13263
|
+
struct lm_ggml_tensor * kq_b = lm_ggml_add(ctx0, kq, pos_bias);
|
13264
|
+
cb(kq_b, "kq_b", il);
|
13206
13265
|
|
13207
|
-
|
13208
|
-
|
13266
|
+
kq = lm_ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias);
|
13267
|
+
cb(kq, "kq_soft_max_ext", il);
|
13209
13268
|
|
13210
|
-
|
13211
|
-
|
13269
|
+
struct lm_ggml_tensor * v = lm_ggml_cont(ctx0, lm_ggml_transpose(ctx0, lm_ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
|
13270
|
+
cb(v, "v", il);
|
13212
13271
|
|
13213
|
-
|
13214
|
-
|
13272
|
+
struct lm_ggml_tensor * kqv = lm_ggml_mul_mat(ctx0, lm_ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
|
13273
|
+
cb(kqv, "kqv", il);
|
13215
13274
|
|
13216
|
-
|
13217
|
-
|
13275
|
+
struct lm_ggml_tensor * kqv_merged = lm_ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
13276
|
+
cb(kqv_merged, "kqv_merged", il);
|
13218
13277
|
|
13219
|
-
|
13278
|
+
cur = lm_ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
|
13279
|
+
cb(cur, "kqv_merged_cont", il);
|
13220
13280
|
|
13221
|
-
|
13222
|
-
cb(cur, "kqv_out", il);
|
13223
|
-
}
|
13281
|
+
lm_ggml_build_forward_expand(gf, cur);
|
13224
13282
|
|
13225
|
-
|
13226
|
-
|
13227
|
-
|
13228
|
-
n_tokens = n_outputs;
|
13229
|
-
cur = lm_ggml_get_rows(ctx0, cur, inp_out_ids);
|
13230
|
-
inpSA = lm_ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
13231
|
-
}
|
13283
|
+
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_enc, cur);
|
13284
|
+
cb(cur, "kqv_out", il);
|
13285
|
+
}
|
13232
13286
|
|
13233
|
-
|
13234
|
-
|
13287
|
+
if (il == n_layer - 1) {
|
13288
|
+
// skip computing output for unused tokens
|
13289
|
+
struct lm_ggml_tensor * inp_out_ids = build_inp_out_ids();
|
13290
|
+
n_tokens = n_outputs;
|
13291
|
+
cur = lm_ggml_get_rows(ctx0, cur, inp_out_ids);
|
13292
|
+
inpSA = lm_ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
13293
|
+
}
|
13235
13294
|
|
13236
|
-
|
13237
|
-
|
13238
|
-
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
13239
|
-
model.layers[il].ffn_norm_enc, NULL,
|
13240
|
-
LLM_NORM_RMS, cb, il);
|
13241
|
-
cb(cur, "ffn_norm", il);
|
13295
|
+
struct lm_ggml_tensor * ffn_inp = lm_ggml_add(ctx0, cur, inpSA);
|
13296
|
+
cb(ffn_inp, "ffn_inp", il);
|
13242
13297
|
|
13243
|
-
|
13244
|
-
|
13245
|
-
|
13246
|
-
|
13247
|
-
|
13248
|
-
|
13249
|
-
model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
|
13250
|
-
model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
|
13251
|
-
cb, il);
|
13252
|
-
cb(cur, "ffn_out", il);
|
13253
|
-
}
|
13298
|
+
// feed-forward network
|
13299
|
+
{
|
13300
|
+
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
13301
|
+
model.layers[il].ffn_norm_enc, NULL,
|
13302
|
+
LLM_NORM_RMS, cb, il);
|
13303
|
+
cb(cur, "ffn_norm", il);
|
13254
13304
|
|
13255
|
-
|
13305
|
+
// T5 uses relu, flan-T5 uses gelu-gated
|
13306
|
+
cur = llm_build_ffn(ctx0, lctx, cur,
|
13307
|
+
model.layers[il].ffn_up_enc, NULL, NULL,
|
13308
|
+
model.layers[il].ffn_gate_enc, NULL, NULL,
|
13309
|
+
model.layers[il].ffn_down_enc, NULL, NULL,
|
13310
|
+
NULL,
|
13311
|
+
model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
|
13312
|
+
model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
|
13313
|
+
cb, il);
|
13256
13314
|
cb(cur, "ffn_out", il);
|
13315
|
+
}
|
13257
13316
|
|
13258
|
-
|
13259
|
-
|
13260
|
-
cur = lm_ggml_add(ctx0, cur, layer_dir);
|
13261
|
-
}
|
13262
|
-
cb(cur, "l_out", il);
|
13317
|
+
cur = lm_ggml_add(ctx0, cur, ffn_inp);
|
13318
|
+
cb(cur, "ffn_out", il);
|
13263
13319
|
|
13264
|
-
|
13265
|
-
|
13320
|
+
lm_ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
|
13321
|
+
if (layer_dir != nullptr) {
|
13322
|
+
cur = lm_ggml_add(ctx0, cur, layer_dir);
|
13266
13323
|
}
|
13324
|
+
cb(cur, "l_out", il);
|
13267
13325
|
|
13268
|
-
|
13269
|
-
|
13326
|
+
// input for next layer
|
13327
|
+
inpL = cur;
|
13328
|
+
}
|
13270
13329
|
|
13271
|
-
|
13272
|
-
|
13273
|
-
LLM_NORM_RMS, cb, -1);
|
13274
|
-
cb(cur, "result_norm", -1);
|
13275
|
-
} else {
|
13276
|
-
LM_GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
|
13330
|
+
cur = inpL;
|
13331
|
+
cb(cur, "result_embd", -1);
|
13277
13332
|
|
13278
|
-
|
13279
|
-
|
13333
|
+
cur = llm_build_norm(ctx0, cur, hparams,
|
13334
|
+
model.output_norm_enc, NULL,
|
13335
|
+
LLM_NORM_RMS, cb, -1);
|
13336
|
+
cb(cur, "result_norm", -1);
|
13280
13337
|
|
13281
|
-
|
13282
|
-
struct lm_ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();
|
13338
|
+
lm_ggml_build_forward_expand(gf, cur);
|
13283
13339
|
|
13284
|
-
|
13285
|
-
|
13340
|
+
return gf;
|
13341
|
+
}
|
13286
13342
|
|
13287
|
-
|
13288
|
-
|
13289
|
-
model.layers[il].attn_norm, NULL,
|
13290
|
-
LLM_NORM_RMS, cb, il);
|
13291
|
-
cb(cur, "attn_norm", il);
|
13343
|
+
struct lm_ggml_cgraph * build_t5_decoder() {
|
13344
|
+
struct lm_ggml_cgraph * gf = lm_ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
13292
13345
|
|
13293
|
-
|
13294
|
-
|
13295
|
-
struct lm_ggml_tensor * Qcur = lm_ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
13296
|
-
cb(Qcur, "Qcur", il);
|
13346
|
+
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
13347
|
+
int32_t n_tokens = this->n_tokens;
|
13297
13348
|
|
13298
|
-
|
13299
|
-
|
13349
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
13350
|
+
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
13351
|
+
LM_GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
13300
13352
|
|
13301
|
-
|
13302
|
-
|
13353
|
+
struct lm_ggml_tensor * cur;
|
13354
|
+
struct lm_ggml_tensor * inpL;
|
13303
13355
|
|
13304
|
-
|
13356
|
+
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
13305
13357
|
|
13306
|
-
|
13307
|
-
|
13308
|
-
n_embd_head_k, n_kv, n_head_kv,
|
13309
|
-
lm_ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
13310
|
-
lm_ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
|
13311
|
-
0);
|
13312
|
-
cb(k, "k", il);
|
13358
|
+
LM_GGML_ASSERT(!lctx.is_encoding);
|
13359
|
+
LM_GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
|
13313
13360
|
|
13314
|
-
|
13315
|
-
|
13316
|
-
n_kv, n_embd_head_v, n_head_kv,
|
13317
|
-
lm_ggml_element_size(kv_self.v_l[il])*n_ctx,
|
13318
|
-
lm_ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
|
13319
|
-
0);
|
13320
|
-
cb(v, "v", il);
|
13361
|
+
struct lm_ggml_tensor * embd_enc = llm_build_inp_embd_enc();
|
13362
|
+
struct lm_ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true);
|
13321
13363
|
|
13322
|
-
|
13364
|
+
struct lm_ggml_tensor * KQ_mask_dec = build_inp_KQ_mask();
|
13365
|
+
struct lm_ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();
|
13366
|
+
|
13367
|
+
for (int il = 0; il < n_layer; ++il) {
|
13368
|
+
struct lm_ggml_tensor * inpSA = inpL;
|
13323
13369
|
|
13324
|
-
|
13370
|
+
// norm
|
13371
|
+
cur = llm_build_norm(ctx0, inpL, hparams,
|
13372
|
+
model.layers[il].attn_norm, NULL,
|
13373
|
+
LLM_NORM_RMS, cb, il);
|
13374
|
+
cb(cur, "attn_norm", il);
|
13325
13375
|
|
13326
|
-
|
13327
|
-
|
13376
|
+
// self-attention
|
13377
|
+
{
|
13378
|
+
struct lm_ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
13379
|
+
cb(Qcur, "Qcur", il);
|
13328
13380
|
|
13329
|
-
|
13330
|
-
|
13331
|
-
struct lm_ggml_tensor * kq_b = lm_ggml_add(ctx0, kq, pos_bias);
|
13332
|
-
cb(kq_b, "kq_b", il);
|
13381
|
+
struct lm_ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
13382
|
+
cb(Kcur, "Kcur", il);
|
13333
13383
|
|
13334
|
-
|
13335
|
-
|
13384
|
+
struct lm_ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
13385
|
+
cb(Vcur, "Vcur", il);
|
13336
13386
|
|
13337
|
-
|
13338
|
-
cb(kqv, "kqv", il);
|
13387
|
+
llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
|
13339
13388
|
|
13340
|
-
|
13341
|
-
|
13389
|
+
struct lm_ggml_tensor * k =
|
13390
|
+
lm_ggml_view_3d(ctx0, kv_self.k_l[il],
|
13391
|
+
n_embd_head_k, n_kv, n_head_kv,
|
13392
|
+
lm_ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
13393
|
+
lm_ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
|
13394
|
+
0);
|
13395
|
+
cb(k, "k", il);
|
13342
13396
|
|
13343
|
-
|
13344
|
-
|
13397
|
+
struct lm_ggml_tensor * v =
|
13398
|
+
lm_ggml_view_3d(ctx0, kv_self.v_l[il],
|
13399
|
+
n_kv, n_embd_head_v, n_head_kv,
|
13400
|
+
lm_ggml_element_size(kv_self.v_l[il])*n_ctx,
|
13401
|
+
lm_ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
|
13402
|
+
0);
|
13403
|
+
cb(v, "v", il);
|
13345
13404
|
|
13346
|
-
|
13405
|
+
Qcur = lm_ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
13347
13406
|
|
13348
|
-
|
13349
|
-
cb(cur, "kqv_out", il);
|
13350
|
-
}
|
13407
|
+
struct lm_ggml_tensor * q = lm_ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
13351
13408
|
|
13352
|
-
|
13353
|
-
cb(
|
13409
|
+
struct lm_ggml_tensor * kq = lm_ggml_mul_mat(ctx0, k, q);
|
13410
|
+
cb(kq, "kq", il);
|
13354
13411
|
|
13355
|
-
struct lm_ggml_tensor *
|
13412
|
+
struct lm_ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
|
13413
|
+
struct lm_ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b);
|
13414
|
+
struct lm_ggml_tensor * kq_b = lm_ggml_add(ctx0, kq, pos_bias);
|
13415
|
+
cb(kq_b, "kq_b", il);
|
13356
13416
|
|
13357
|
-
|
13358
|
-
|
13359
|
-
model.layers[il].attn_norm_cross, NULL,
|
13360
|
-
LLM_NORM_RMS, cb, il);
|
13361
|
-
cb(cur, "attn_norm_cross", il);
|
13417
|
+
kq = lm_ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
|
13418
|
+
cb(kq, "kq_soft_max_ext", il);
|
13362
13419
|
|
13363
|
-
|
13364
|
-
|
13365
|
-
struct lm_ggml_tensor * Qcur = lm_ggml_mul_mat(ctx0, model.layers[il].wq_cross, cur);
|
13366
|
-
cb(Qcur, "Qcur", il);
|
13420
|
+
struct lm_ggml_tensor * kqv = lm_ggml_mul_mat(ctx0, v, kq);
|
13421
|
+
cb(kqv, "kqv", il);
|
13367
13422
|
|
13368
|
-
|
13369
|
-
|
13423
|
+
struct lm_ggml_tensor * kqv_merged = lm_ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
13424
|
+
cb(kqv_merged, "kqv_merged", il);
|
13370
13425
|
|
13371
|
-
|
13372
|
-
|
13426
|
+
cur = lm_ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
|
13427
|
+
cb(cur, "kqv_merged_cont", il);
|
13373
13428
|
|
13374
|
-
|
13375
|
-
Kcur = lm_ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
|
13429
|
+
lm_ggml_build_forward_expand(gf, cur);
|
13376
13430
|
|
13377
|
-
|
13378
|
-
|
13431
|
+
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
|
13432
|
+
cb(cur, "kqv_out", il);
|
13433
|
+
}
|
13379
13434
|
|
13380
|
-
|
13381
|
-
|
13435
|
+
cur = lm_ggml_add(ctx0, cur, inpSA);
|
13436
|
+
cb(cur, "cross_inp", il);
|
13382
13437
|
|
13383
|
-
|
13384
|
-
cb(kq, "kq_soft_max_ext", il);
|
13438
|
+
struct lm_ggml_tensor * inpCA = cur;
|
13385
13439
|
|
13386
|
-
|
13387
|
-
|
13440
|
+
// norm
|
13441
|
+
cur = llm_build_norm(ctx0, cur, hparams,
|
13442
|
+
model.layers[il].attn_norm_cross, NULL,
|
13443
|
+
LLM_NORM_RMS, cb, il);
|
13444
|
+
cb(cur, "attn_norm_cross", il);
|
13388
13445
|
|
13389
|
-
|
13390
|
-
|
13446
|
+
// cross-attention
|
13447
|
+
{
|
13448
|
+
struct lm_ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_cross, cur);
|
13449
|
+
cb(Qcur, "Qcur", il);
|
13391
13450
|
|
13392
|
-
|
13393
|
-
|
13451
|
+
struct lm_ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_cross, embd_enc);
|
13452
|
+
cb(Kcur, "Kcur", il);
|
13394
13453
|
|
13395
|
-
|
13396
|
-
|
13454
|
+
struct lm_ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_cross, embd_enc);
|
13455
|
+
cb(Vcur, "Vcur", il);
|
13397
13456
|
|
13398
|
-
|
13457
|
+
Qcur = lm_ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
13458
|
+
Kcur = lm_ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
|
13399
13459
|
|
13400
|
-
|
13401
|
-
|
13402
|
-
}
|
13460
|
+
struct lm_ggml_tensor * q = lm_ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
13461
|
+
struct lm_ggml_tensor * k = lm_ggml_cont(ctx0, lm_ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
13403
13462
|
|
13404
|
-
|
13405
|
-
|
13406
|
-
struct lm_ggml_tensor * inp_out_ids = build_inp_out_ids();
|
13407
|
-
n_tokens = n_outputs;
|
13408
|
-
cur = lm_ggml_get_rows(ctx0, cur, inp_out_ids);
|
13409
|
-
inpSA = lm_ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
13410
|
-
inpCA = lm_ggml_get_rows(ctx0, inpCA, inp_out_ids);
|
13411
|
-
}
|
13463
|
+
struct lm_ggml_tensor * kq = lm_ggml_mul_mat(ctx0, k, q);
|
13464
|
+
cb(kq, "kq", il);
|
13412
13465
|
|
13413
|
-
|
13414
|
-
cb(
|
13466
|
+
kq = lm_ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
|
13467
|
+
cb(kq, "kq_soft_max_ext", il);
|
13415
13468
|
|
13416
|
-
|
13417
|
-
|
13418
|
-
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
13419
|
-
model.layers[il].ffn_norm, NULL,
|
13420
|
-
LLM_NORM_RMS, cb, il);
|
13421
|
-
cb(cur, "ffn_norm", il);
|
13469
|
+
struct lm_ggml_tensor * v = lm_ggml_cont(ctx0, lm_ggml_transpose(ctx0, lm_ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
|
13470
|
+
cb(v, "v", il);
|
13422
13471
|
|
13423
|
-
|
13424
|
-
|
13425
|
-
model.layers[il].ffn_up, NULL, NULL,
|
13426
|
-
model.layers[il].ffn_gate, NULL, NULL,
|
13427
|
-
model.layers[il].ffn_down, NULL, NULL,
|
13428
|
-
NULL,
|
13429
|
-
model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
|
13430
|
-
model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
|
13431
|
-
cb, il);
|
13432
|
-
cb(cur, "ffn_out", il);
|
13433
|
-
}
|
13472
|
+
struct lm_ggml_tensor * kqv = lm_ggml_mul_mat(ctx0, lm_ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
|
13473
|
+
cb(kqv, "kqv", il);
|
13434
13474
|
|
13435
|
-
|
13436
|
-
cb(
|
13475
|
+
struct lm_ggml_tensor * kqv_merged = lm_ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
13476
|
+
cb(kqv_merged, "kqv_merged", il);
|
13437
13477
|
|
13438
|
-
|
13439
|
-
|
13440
|
-
cur = lm_ggml_add(ctx0, cur, layer_dir);
|
13441
|
-
}
|
13442
|
-
cb(cur, "l_out", il);
|
13478
|
+
cur = lm_ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
|
13479
|
+
cb(cur, "kqv_merged_cont", il);
|
13443
13480
|
|
13444
|
-
|
13445
|
-
|
13481
|
+
lm_ggml_build_forward_expand(gf, cur);
|
13482
|
+
|
13483
|
+
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_cross, cur);
|
13484
|
+
cb(cur, "kqv_out", il);
|
13446
13485
|
}
|
13447
13486
|
|
13448
|
-
|
13449
|
-
|
13487
|
+
if (il == n_layer - 1) {
|
13488
|
+
// skip computing output for unused tokens
|
13489
|
+
struct lm_ggml_tensor * inp_out_ids = build_inp_out_ids();
|
13490
|
+
n_tokens = n_outputs;
|
13491
|
+
cur = lm_ggml_get_rows(ctx0, cur, inp_out_ids);
|
13492
|
+
inpSA = lm_ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
13493
|
+
inpCA = lm_ggml_get_rows(ctx0, inpCA, inp_out_ids);
|
13494
|
+
}
|
13450
13495
|
|
13451
|
-
|
13452
|
-
|
13453
|
-
|
13454
|
-
|
13496
|
+
struct lm_ggml_tensor * ffn_inp = lm_ggml_add(ctx0, cur, inpCA);
|
13497
|
+
cb(ffn_inp, "ffn_inp", il);
|
13498
|
+
|
13499
|
+
// feed-forward network
|
13500
|
+
{
|
13501
|
+
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
13502
|
+
model.layers[il].ffn_norm, NULL,
|
13503
|
+
LLM_NORM_RMS, cb, il);
|
13504
|
+
cb(cur, "ffn_norm", il);
|
13505
|
+
|
13506
|
+
// T5 uses relu, flan-T5 uses gelu-gated
|
13507
|
+
cur = llm_build_ffn(ctx0, lctx, cur,
|
13508
|
+
model.layers[il].ffn_up, NULL, NULL,
|
13509
|
+
model.layers[il].ffn_gate, NULL, NULL,
|
13510
|
+
model.layers[il].ffn_down, NULL, NULL,
|
13511
|
+
NULL,
|
13512
|
+
model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
|
13513
|
+
model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
|
13514
|
+
cb, il);
|
13515
|
+
cb(cur, "ffn_out", il);
|
13516
|
+
}
|
13517
|
+
|
13518
|
+
cur = lm_ggml_add(ctx0, cur, ffn_inp);
|
13519
|
+
cb(cur, "ffn_out", il);
|
13520
|
+
|
13521
|
+
lm_ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
|
13522
|
+
if (layer_dir != nullptr) {
|
13523
|
+
cur = lm_ggml_add(ctx0, cur, layer_dir);
|
13524
|
+
}
|
13525
|
+
cb(cur, "l_out", il);
|
13455
13526
|
|
13456
|
-
//
|
13457
|
-
|
13458
|
-
cb(cur, "result_output", -1);
|
13527
|
+
// input for next layer
|
13528
|
+
inpL = cur;
|
13459
13529
|
}
|
13460
13530
|
|
13531
|
+
cur = inpL;
|
13532
|
+
cb(cur, "result_embd", -1);
|
13533
|
+
|
13534
|
+
cur = llm_build_norm(ctx0, cur, hparams,
|
13535
|
+
model.output_norm, NULL,
|
13536
|
+
LLM_NORM_RMS, cb, -1);
|
13537
|
+
cb(cur, "result_norm", -1);
|
13538
|
+
|
13539
|
+
// lm_head
|
13540
|
+
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
13541
|
+
cb(cur, "result_output", -1);
|
13542
|
+
|
13461
13543
|
lm_ggml_build_forward_expand(gf, cur);
|
13462
13544
|
|
13463
13545
|
return gf;
|
@@ -13909,7 +13991,15 @@ static struct lm_ggml_cgraph * llama_build_graph(
|
|
13909
13991
|
} break;
|
13910
13992
|
case LLM_ARCH_T5:
|
13911
13993
|
{
|
13912
|
-
|
13994
|
+
if (lctx.is_encoding) {
|
13995
|
+
result = llm.build_t5_encoder();
|
13996
|
+
} else {
|
13997
|
+
result = llm.build_t5_decoder();
|
13998
|
+
}
|
13999
|
+
} break;
|
14000
|
+
case LLM_ARCH_T5ENCODER:
|
14001
|
+
{
|
14002
|
+
result = llm.build_t5_encoder();
|
13913
14003
|
} break;
|
13914
14004
|
case LLM_ARCH_JAIS:
|
13915
14005
|
{
|
@@ -14357,7 +14447,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
|
|
14357
14447
|
|
14358
14448
|
// TODO: use a per-batch flag for logits presence instead
|
14359
14449
|
const bool has_logits = !cparams.embeddings;
|
14360
|
-
const bool has_embd =
|
14450
|
+
const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
|
14361
14451
|
|
14362
14452
|
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
|
14363
14453
|
const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
|
@@ -14840,9 +14930,24 @@ static int llama_encode_internal(
|
|
14840
14930
|
lm_ggml_cgraph * gf = llama_build_graph(lctx, batch, false);
|
14841
14931
|
|
14842
14932
|
// the output embeddings after the final encoder normalization
|
14843
|
-
struct lm_ggml_tensor * embd =
|
14933
|
+
struct lm_ggml_tensor * embd = nullptr;
|
14844
14934
|
|
14845
|
-
|
14935
|
+
// there are two cases here
|
14936
|
+
if (llama_model_has_decoder(&lctx.model)) {
|
14937
|
+
// first case is an encoder-decoder T5 model where embeddings are passed to decoder
|
14938
|
+
embd = gf->nodes[gf->n_nodes - 1];
|
14939
|
+
LM_GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor");
|
14940
|
+
} else {
|
14941
|
+
// second case is an encoder-only T5 model
|
14942
|
+
if (cparams.embeddings) {
|
14943
|
+
// only output embeddings if required
|
14944
|
+
embd = gf->nodes[gf->n_nodes - 1];
|
14945
|
+
if (strcmp(embd->name, "result_embd_pooled") != 0) {
|
14946
|
+
embd = gf->nodes[gf->n_nodes - 2];
|
14947
|
+
}
|
14948
|
+
LM_GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
|
14949
|
+
}
|
14950
|
+
}
|
14846
14951
|
|
14847
14952
|
lm_ggml_backend_sched_alloc_graph(lctx.sched, gf);
|
14848
14953
|
|
@@ -14855,20 +14960,54 @@ static int llama_encode_internal(
|
|
14855
14960
|
lm_ggml_backend_t backend_embd = lm_ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
|
14856
14961
|
LM_GGML_ASSERT(backend_embd != nullptr);
|
14857
14962
|
|
14858
|
-
|
14859
|
-
|
14963
|
+
if (llama_model_has_decoder(&lctx.model)) {
|
14964
|
+
lctx.embd_enc.resize(n_tokens*n_embd);
|
14965
|
+
float * embd_out = lctx.embd_enc.data();
|
14860
14966
|
|
14861
|
-
|
14862
|
-
float * embd_out = lctx.embd_enc.data();
|
14967
|
+
lm_ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
|
14863
14968
|
|
14864
|
-
|
14969
|
+
// remember the sequence ids used during the encoding - needed for cross attention later
|
14970
|
+
lctx.seq_ids_enc.resize(n_tokens);
|
14971
|
+
for (uint32_t i = 0; i < n_tokens; i++) {
|
14972
|
+
for (int s = 0; s < batch.n_seq_id[i]; s++) {
|
14973
|
+
llama_seq_id seq_id = batch.seq_id[i][s];
|
14974
|
+
lctx.seq_ids_enc[i].insert(seq_id);
|
14975
|
+
}
|
14976
|
+
}
|
14977
|
+
} else {
|
14978
|
+
LM_GGML_ASSERT(lctx.embd != nullptr);
|
14865
14979
|
|
14866
|
-
|
14867
|
-
|
14868
|
-
|
14869
|
-
|
14870
|
-
|
14871
|
-
|
14980
|
+
switch (cparams.pooling_type) {
|
14981
|
+
case LLAMA_POOLING_TYPE_NONE:
|
14982
|
+
{
|
14983
|
+
// extract token embeddings
|
14984
|
+
LM_GGML_ASSERT(lctx.embd != nullptr);
|
14985
|
+
float * embd_out = lctx.embd;
|
14986
|
+
|
14987
|
+
LM_GGML_ASSERT(n_tokens*n_embd <= (int64_t) lctx.embd_size);
|
14988
|
+
lm_ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
|
14989
|
+
} break;
|
14990
|
+
case LLAMA_POOLING_TYPE_MEAN:
|
14991
|
+
case LLAMA_POOLING_TYPE_CLS:
|
14992
|
+
case LLAMA_POOLING_TYPE_LAST:
|
14993
|
+
{
|
14994
|
+
// extract sequence embeddings
|
14995
|
+
auto & embd_seq_out = lctx.embd_seq;
|
14996
|
+
embd_seq_out.clear();
|
14997
|
+
|
14998
|
+
for (uint32_t i = 0; i < n_tokens; i++) {
|
14999
|
+
const llama_seq_id seq_id = batch.seq_id[i][0];
|
15000
|
+
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
|
15001
|
+
continue;
|
15002
|
+
}
|
15003
|
+
embd_seq_out[seq_id].resize(n_embd);
|
15004
|
+
lm_ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
|
15005
|
+
}
|
15006
|
+
} break;
|
15007
|
+
case LLAMA_POOLING_TYPE_UNSPECIFIED:
|
15008
|
+
{
|
15009
|
+
LM_GGML_ABORT("unknown pooling type");
|
15010
|
+
}
|
14872
15011
|
}
|
14873
15012
|
}
|
14874
15013
|
}
|
@@ -15304,7 +15443,7 @@ static lm_ggml_type llama_tensor_get_type(quantize_state_internal & qs, lm_ggml_
|
|
15304
15443
|
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
|
15305
15444
|
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
|
15306
15445
|
if (n_expert > 1) {
|
15307
|
-
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but
|
15446
|
+
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
|
15308
15447
|
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
|
15309
15448
|
// for getting the current layer as I initially thought, and we need to resort to parsing the
|
15310
15449
|
// tensor name.
|
@@ -16578,6 +16717,8 @@ struct llama_context * llama_new_context_with_model(
|
|
16578
16717
|
|
16579
16718
|
ctx->sampling.rng = std::mt19937(params.seed);
|
16580
16719
|
ctx->logits_all = params.logits_all;
|
16720
|
+
// build worst-case graph for encoder if a model contains encoder
|
16721
|
+
ctx->is_encoding = llama_model_has_encoder(model);
|
16581
16722
|
|
16582
16723
|
uint32_t kv_size = cparams.n_ctx;
|
16583
16724
|
lm_ggml_type type_k = params.type_k;
|
@@ -16892,6 +17033,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
16892
17033
|
case LLM_ARCH_MAMBA:
|
16893
17034
|
case LLM_ARCH_JINA_BERT_V2:
|
16894
17035
|
case LLM_ARCH_T5:
|
17036
|
+
case LLM_ARCH_T5ENCODER:
|
16895
17037
|
case LLM_ARCH_JAIS:
|
16896
17038
|
return LLAMA_ROPE_TYPE_NONE;
|
16897
17039
|
|
@@ -17039,8 +17181,16 @@ struct lm_ggml_tensor * llama_get_model_tensor(struct llama_model * model, const
|
|
17039
17181
|
|
17040
17182
|
bool llama_model_has_encoder(const struct llama_model * model) {
|
17041
17183
|
switch (model->arch) {
|
17042
|
-
case LLM_ARCH_T5:
|
17043
|
-
|
17184
|
+
case LLM_ARCH_T5: return true;
|
17185
|
+
case LLM_ARCH_T5ENCODER: return true;
|
17186
|
+
default: return false;
|
17187
|
+
}
|
17188
|
+
}
|
17189
|
+
|
17190
|
+
bool llama_model_has_decoder(const struct llama_model * model) {
|
17191
|
+
switch (model->arch) {
|
17192
|
+
case LLM_ARCH_T5ENCODER: return false;
|
17193
|
+
default: return true;
|
17044
17194
|
}
|
17045
17195
|
}
|
17046
17196
|
|
@@ -17343,6 +17493,7 @@ bool llama_save_session_file(struct llama_context * ctx, const char * path_sessi
|
|
17343
17493
|
// TODO: replace all non-fatal assertions with returned errors or exceptions
|
17344
17494
|
struct llama_data_write {
|
17345
17495
|
virtual void write(const void * src, size_t size) = 0;
|
17496
|
+
virtual void write_tensor_data(const struct lm_ggml_tensor * tensor, size_t offset, size_t size) = 0;
|
17346
17497
|
virtual size_t get_size_written() = 0;
|
17347
17498
|
virtual ~llama_data_write() = default;
|
17348
17499
|
|
@@ -17465,9 +17616,8 @@ struct llama_data_write {
|
|
17465
17616
|
// Read each range of cells of k_size length each into tmp_buf and write out
|
17466
17617
|
for (const auto & range : cell_ranges) {
|
17467
17618
|
const size_t range_size = range.second - range.first;
|
17468
|
-
|
17469
|
-
|
17470
|
-
write(tmp_buf.data(), tmp_buf.size());
|
17619
|
+
const size_t buf_size = range_size * k_size_row;
|
17620
|
+
write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size);
|
17471
17621
|
}
|
17472
17622
|
}
|
17473
17623
|
|
@@ -17486,9 +17636,8 @@ struct llama_data_write {
|
|
17486
17636
|
// Read each range of cells of v_size length each into tmp_buf and write out
|
17487
17637
|
for (const auto & range : cell_ranges) {
|
17488
17638
|
const size_t range_size = range.second - range.first;
|
17489
|
-
|
17490
|
-
|
17491
|
-
write(tmp_buf.data(), tmp_buf.size());
|
17639
|
+
const size_t buf_size = range_size * v_size_row;
|
17640
|
+
write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size);
|
17492
17641
|
}
|
17493
17642
|
}
|
17494
17643
|
} else {
|
@@ -17514,9 +17663,8 @@ struct llama_data_write {
|
|
17514
17663
|
for (const auto & range : cell_ranges) {
|
17515
17664
|
const size_t range_size = range.second - range.first;
|
17516
17665
|
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
|
17517
|
-
|
17518
|
-
|
17519
|
-
write(tmp_buf.data(), tmp_buf.size());
|
17666
|
+
const size_t buf_size = range_size * v_size_el;
|
17667
|
+
write_tensor_data(kv_self.v_l[il], src_offset, buf_size);
|
17520
17668
|
}
|
17521
17669
|
}
|
17522
17670
|
}
|
@@ -17875,12 +18023,14 @@ struct llama_data_write_dummy : llama_data_write {
|
|
17875
18023
|
|
17876
18024
|
llama_data_write_dummy() {}
|
17877
18025
|
|
17878
|
-
// TODO: avoid unnecessary calls to lm_ggml_backend_tensor_get in a dummy context
|
17879
|
-
|
17880
18026
|
void write(const void * /* src */, size_t size) override {
|
17881
18027
|
size_written += size;
|
17882
18028
|
}
|
17883
18029
|
|
18030
|
+
void write_tensor_data(const struct lm_ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override {
|
18031
|
+
size_written += size;
|
18032
|
+
}
|
18033
|
+
|
17884
18034
|
size_t get_size_written() override {
|
17885
18035
|
return size_written;
|
17886
18036
|
}
|
@@ -17903,6 +18053,16 @@ struct llama_data_write_buffer : llama_data_write {
|
|
17903
18053
|
buf_size -= size;
|
17904
18054
|
}
|
17905
18055
|
|
18056
|
+
void write_tensor_data(const struct lm_ggml_tensor * tensor, size_t offset, size_t size) override {
|
18057
|
+
if (size > buf_size) {
|
18058
|
+
throw std::runtime_error("unexpectedly reached end of buffer");
|
18059
|
+
}
|
18060
|
+
lm_ggml_backend_tensor_get(tensor, ptr, offset, size);
|
18061
|
+
ptr += size;
|
18062
|
+
size_written += size;
|
18063
|
+
buf_size -= size;
|
18064
|
+
}
|
18065
|
+
|
17906
18066
|
size_t get_size_written() override {
|
17907
18067
|
return size_written;
|
17908
18068
|
}
|
@@ -17938,6 +18098,7 @@ struct llama_data_read_buffer : llama_data_read {
|
|
17938
18098
|
struct llama_data_write_file : llama_data_write {
|
17939
18099
|
llama_file * file;
|
17940
18100
|
size_t size_written = 0;
|
18101
|
+
std::vector<uint8_t> temp_buffer;
|
17941
18102
|
|
17942
18103
|
llama_data_write_file(llama_file * f) : file(f) {}
|
17943
18104
|
|
@@ -17946,6 +18107,12 @@ struct llama_data_write_file : llama_data_write {
|
|
17946
18107
|
size_written += size;
|
17947
18108
|
}
|
17948
18109
|
|
18110
|
+
void write_tensor_data(const struct lm_ggml_tensor * tensor, size_t offset, size_t size) override {
|
18111
|
+
temp_buffer.resize(size);
|
18112
|
+
lm_ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
|
18113
|
+
write(temp_buffer.data(), temp_buffer.size());
|
18114
|
+
}
|
18115
|
+
|
17949
18116
|
size_t get_size_written() override {
|
17950
18117
|
return size_written;
|
17951
18118
|
}
|