cui-llama.rn 1.0.7 → 1.0.9

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/cpp/llama.cpp CHANGED
@@ -132,20 +132,6 @@ static std::string trim(const std::string & str) {
132
132
  return str.substr(start, end - start);
133
133
  }
134
134
 
135
- static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
136
- std::string result;
137
- for (size_t pos = 0; ; pos += search.length()) {
138
- auto new_pos = s.find(search, pos);
139
- if (new_pos == std::string::npos) {
140
- result += s.substr(pos, s.size() - pos);
141
- break;
142
- }
143
- result += s.substr(pos, new_pos - pos) + replace;
144
- pos = new_pos;
145
- }
146
- s = std::move(result);
147
- }
148
-
149
135
  static bool is_float_close(float a, float b, float abs_tol) {
150
136
  // Check for non-negative tolerance
151
137
  if (abs_tol < 0.0) {
@@ -233,6 +219,7 @@ enum llm_arch {
233
219
  LLM_ARCH_CHATGLM,
234
220
  LLM_ARCH_BITNET,
235
221
  LLM_ARCH_T5,
222
+ LLM_ARCH_T5ENCODER,
236
223
  LLM_ARCH_JAIS,
237
224
  LLM_ARCH_UNKNOWN,
238
225
  };
@@ -277,6 +264,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
277
264
  { LLM_ARCH_CHATGLM, "chatglm" },
278
265
  { LLM_ARCH_BITNET, "bitnet" },
279
266
  { LLM_ARCH_T5, "t5" },
267
+ { LLM_ARCH_T5ENCODER, "t5encoder" },
280
268
  { LLM_ARCH_JAIS, "jais" },
281
269
  { LLM_ARCH_UNKNOWN, "(unknown)" },
282
270
  };
@@ -373,6 +361,7 @@ enum llm_kv {
373
361
  LLM_KV_TOKENIZER_SUFFIX_ID,
374
362
  LLM_KV_TOKENIZER_MIDDLE_ID,
375
363
  LLM_KV_TOKENIZER_EOT_ID,
364
+ LLM_KV_TOKENIZER_EOM_ID,
376
365
 
377
366
  LLM_KV_ADAPTER_TYPE,
378
367
  LLM_KV_ADAPTER_LORA_ALPHA,
@@ -470,6 +459,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
470
459
  { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
471
460
  { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
472
461
  { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
462
+ { LLM_KV_TOKENIZER_EOM_ID, "tokenizer.ggml.eom_token_id" },
473
463
 
474
464
  { LLM_KV_ADAPTER_TYPE, "adapter.type" },
475
465
  { LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" },
@@ -1284,6 +1274,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
1284
1274
  { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
1285
1275
  },
1286
1276
  },
1277
+ {
1278
+ LLM_ARCH_T5ENCODER,
1279
+ {
1280
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
1281
+ { LLM_TENSOR_OUTPUT, "output" },
1282
+ { LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
1283
+ { LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" },
1284
+ { LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" },
1285
+ { LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" },
1286
+ { LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" },
1287
+ { LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" },
1288
+ { LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" },
1289
+ { LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" },
1290
+ { LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" },
1291
+ { LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" },
1292
+ { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
1293
+ },
1294
+ },
1287
1295
  {
1288
1296
  LLM_ARCH_JAIS,
1289
1297
  {
@@ -5210,6 +5218,12 @@ static void llm_load_hparams(
5210
5218
  default: model.type = e_model::MODEL_UNKNOWN;
5211
5219
  }
5212
5220
  } break;
5221
+ case LLM_ARCH_T5ENCODER:
5222
+ {
5223
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
5224
+ ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
5225
+ model.type = e_model::MODEL_UNKNOWN;
5226
+ } break;
5213
5227
  case LLM_ARCH_JAIS:
5214
5228
  {
5215
5229
  ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -5597,6 +5611,7 @@ static void llm_load_vocab(
5597
5611
  { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
5598
5612
  { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
5599
5613
  { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
5614
+ { LLM_KV_TOKENIZER_EOM_ID, vocab.special_eom_id },
5600
5615
  };
5601
5616
 
5602
5617
  for (const auto & it : special_token_types) {
@@ -5649,6 +5664,17 @@ static void llm_load_vocab(
5649
5664
  }
5650
5665
  }
5651
5666
  }
5667
+
5668
+ // find EOM token: "<|eom_id|>"
5669
+ //
5670
+ // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOM_ID
5671
+ // for now, we apply this workaround to find the EOM token based on its text
5672
+ if (vocab.special_eom_id == -1) {
5673
+ const auto & t = vocab.token_to_id.find("<|eom_id|>");
5674
+ if (t != vocab.token_to_id.end()) {
5675
+ vocab.special_eom_id = t->second;
5676
+ }
5677
+ }
5652
5678
  }
5653
5679
 
5654
5680
  // build special tokens cache
@@ -7432,6 +7458,42 @@ static bool llm_load_tensors(
7432
7458
  layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff});
7433
7459
  }
7434
7460
  } break;
7461
+ case LLM_ARCH_T5ENCODER:
7462
+ {
7463
+ const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
7464
+
7465
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
7466
+
7467
+ // output
7468
+ {
7469
+ model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
7470
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
7471
+ // if output is NULL, init from the input tok embed
7472
+ if (model.output == NULL) {
7473
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
7474
+ }
7475
+ }
7476
+
7477
+ for (int i = 0; i < n_layer; ++i) {
7478
+ lm_ggml_context * ctx_layer = ctx_for_layer(i);
7479
+ lm_ggml_context * ctx_split = ctx_for_layer_split(i);
7480
+
7481
+ auto & layer = model.layers[i];
7482
+
7483
+ layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
7484
+ layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
7485
+
7486
+ layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
7487
+ layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
7488
+ layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
7489
+ layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
7490
+
7491
+ layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
7492
+ layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
7493
+ layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd});
7494
+ layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
7495
+ }
7496
+ } break;
7435
7497
  case LLM_ARCH_JAIS:
7436
7498
  {
7437
7499
  model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -13146,7 +13208,7 @@ struct llm_build_context {
13146
13208
  return gf;
13147
13209
  }
13148
13210
 
13149
- struct lm_ggml_cgraph * build_t5() {
13211
+ struct lm_ggml_cgraph * build_t5_encoder() {
13150
13212
  struct lm_ggml_cgraph * gf = lm_ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
13151
13213
 
13152
13214
  // mutable variable, needed during the last layer of the computation to skip unused tokens
@@ -13161,303 +13223,323 @@ struct llm_build_context {
13161
13223
 
13162
13224
  inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
13163
13225
 
13164
- if (lctx.is_encoding) {
13165
- struct lm_ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false);
13166
-
13167
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
13168
- struct lm_ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);
13226
+ LM_GGML_ASSERT(lctx.is_encoding);
13227
+ struct lm_ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false);
13169
13228
 
13170
- for (int il = 0; il < n_layer; ++il) {
13171
- struct lm_ggml_tensor * inpSA = inpL;
13229
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
13230
+ struct lm_ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);
13172
13231
 
13173
- // norm
13174
- cur = llm_build_norm(ctx0, inpL, hparams,
13175
- model.layers[il].attn_norm_enc, NULL,
13176
- LLM_NORM_RMS, cb, il);
13177
- cb(cur, "attn_norm", il);
13232
+ for (int il = 0; il < n_layer; ++il) {
13233
+ struct lm_ggml_tensor * inpSA = inpL;
13178
13234
 
13179
- // self-attention
13180
- {
13181
- struct lm_ggml_tensor * Qcur = lm_ggml_mul_mat(ctx0, model.layers[il].wq_enc, cur);
13182
- cb(Qcur, "Qcur", il);
13235
+ // norm
13236
+ cur = llm_build_norm(ctx0, inpL, hparams,
13237
+ model.layers[il].attn_norm_enc, NULL,
13238
+ LLM_NORM_RMS, cb, il);
13239
+ cb(cur, "attn_norm", il);
13183
13240
 
13184
- struct lm_ggml_tensor * Kcur = lm_ggml_mul_mat(ctx0, model.layers[il].wk_enc, cur);
13185
- cb(Kcur, "Kcur", il);
13241
+ // self-attention
13242
+ {
13243
+ struct lm_ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_enc, cur);
13244
+ cb(Qcur, "Qcur", il);
13186
13245
 
13187
- struct lm_ggml_tensor * Vcur = lm_ggml_mul_mat(ctx0, model.layers[il].wv_enc, cur);
13188
- cb(Vcur, "Vcur", il);
13246
+ struct lm_ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_enc, cur);
13247
+ cb(Kcur, "Kcur", il);
13189
13248
 
13190
- Qcur = lm_ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
13191
- Kcur = lm_ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
13249
+ struct lm_ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_enc, cur);
13250
+ cb(Vcur, "Vcur", il);
13192
13251
 
13193
- struct lm_ggml_tensor * q = lm_ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
13194
- struct lm_ggml_tensor * k = lm_ggml_cont(ctx0, lm_ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
13252
+ Qcur = lm_ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
13253
+ Kcur = lm_ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
13195
13254
 
13196
- struct lm_ggml_tensor * kq = lm_ggml_mul_mat(ctx0, k, q);
13197
- cb(kq, "kq", il);
13255
+ struct lm_ggml_tensor * q = lm_ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
13256
+ struct lm_ggml_tensor * k = lm_ggml_cont(ctx0, lm_ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
13198
13257
 
13199
- struct lm_ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
13200
- struct lm_ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b);
13201
- struct lm_ggml_tensor * kq_b = lm_ggml_add(ctx0, kq, pos_bias);
13202
- cb(kq_b, "kq_b", il);
13258
+ struct lm_ggml_tensor * kq = lm_ggml_mul_mat(ctx0, k, q);
13259
+ cb(kq, "kq", il);
13203
13260
 
13204
- kq = lm_ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias);
13205
- cb(kq, "kq_soft_max_ext", il);
13261
+ struct lm_ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
13262
+ struct lm_ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b);
13263
+ struct lm_ggml_tensor * kq_b = lm_ggml_add(ctx0, kq, pos_bias);
13264
+ cb(kq_b, "kq_b", il);
13206
13265
 
13207
- struct lm_ggml_tensor * v = lm_ggml_cont(ctx0, lm_ggml_transpose(ctx0, lm_ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
13208
- cb(v, "v", il);
13266
+ kq = lm_ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias);
13267
+ cb(kq, "kq_soft_max_ext", il);
13209
13268
 
13210
- struct lm_ggml_tensor * kqv = lm_ggml_mul_mat(ctx0, lm_ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
13211
- cb(kqv, "kqv", il);
13269
+ struct lm_ggml_tensor * v = lm_ggml_cont(ctx0, lm_ggml_transpose(ctx0, lm_ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
13270
+ cb(v, "v", il);
13212
13271
 
13213
- struct lm_ggml_tensor * kqv_merged = lm_ggml_permute(ctx0, kqv, 0, 2, 1, 3);
13214
- cb(kqv_merged, "kqv_merged", il);
13272
+ struct lm_ggml_tensor * kqv = lm_ggml_mul_mat(ctx0, lm_ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
13273
+ cb(kqv, "kqv", il);
13215
13274
 
13216
- cur = lm_ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
13217
- cb(cur, "kqv_merged_cont", il);
13275
+ struct lm_ggml_tensor * kqv_merged = lm_ggml_permute(ctx0, kqv, 0, 2, 1, 3);
13276
+ cb(kqv_merged, "kqv_merged", il);
13218
13277
 
13219
- lm_ggml_build_forward_expand(gf, cur);
13278
+ cur = lm_ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
13279
+ cb(cur, "kqv_merged_cont", il);
13220
13280
 
13221
- cur = lm_ggml_mul_mat(ctx0, model.layers[il].wo_enc, cur);
13222
- cb(cur, "kqv_out", il);
13223
- }
13281
+ lm_ggml_build_forward_expand(gf, cur);
13224
13282
 
13225
- if (il == n_layer - 1) {
13226
- // skip computing output for unused tokens
13227
- struct lm_ggml_tensor * inp_out_ids = build_inp_out_ids();
13228
- n_tokens = n_outputs;
13229
- cur = lm_ggml_get_rows(ctx0, cur, inp_out_ids);
13230
- inpSA = lm_ggml_get_rows(ctx0, inpSA, inp_out_ids);
13231
- }
13283
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_enc, cur);
13284
+ cb(cur, "kqv_out", il);
13285
+ }
13232
13286
 
13233
- struct lm_ggml_tensor * ffn_inp = lm_ggml_add(ctx0, cur, inpSA);
13234
- cb(ffn_inp, "ffn_inp", il);
13287
+ if (il == n_layer - 1) {
13288
+ // skip computing output for unused tokens
13289
+ struct lm_ggml_tensor * inp_out_ids = build_inp_out_ids();
13290
+ n_tokens = n_outputs;
13291
+ cur = lm_ggml_get_rows(ctx0, cur, inp_out_ids);
13292
+ inpSA = lm_ggml_get_rows(ctx0, inpSA, inp_out_ids);
13293
+ }
13235
13294
 
13236
- // feed-forward network
13237
- {
13238
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
13239
- model.layers[il].ffn_norm_enc, NULL,
13240
- LLM_NORM_RMS, cb, il);
13241
- cb(cur, "ffn_norm", il);
13295
+ struct lm_ggml_tensor * ffn_inp = lm_ggml_add(ctx0, cur, inpSA);
13296
+ cb(ffn_inp, "ffn_inp", il);
13242
13297
 
13243
- // T5 uses relu, flan-T5 uses gelu-gated
13244
- cur = llm_build_ffn(ctx0, lctx, cur,
13245
- model.layers[il].ffn_up_enc, NULL, NULL,
13246
- model.layers[il].ffn_gate_enc, NULL, NULL,
13247
- model.layers[il].ffn_down_enc, NULL, NULL,
13248
- NULL,
13249
- model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
13250
- model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
13251
- cb, il);
13252
- cb(cur, "ffn_out", il);
13253
- }
13298
+ // feed-forward network
13299
+ {
13300
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
13301
+ model.layers[il].ffn_norm_enc, NULL,
13302
+ LLM_NORM_RMS, cb, il);
13303
+ cb(cur, "ffn_norm", il);
13254
13304
 
13255
- cur = lm_ggml_add(ctx0, cur, ffn_inp);
13305
+ // T5 uses relu, flan-T5 uses gelu-gated
13306
+ cur = llm_build_ffn(ctx0, lctx, cur,
13307
+ model.layers[il].ffn_up_enc, NULL, NULL,
13308
+ model.layers[il].ffn_gate_enc, NULL, NULL,
13309
+ model.layers[il].ffn_down_enc, NULL, NULL,
13310
+ NULL,
13311
+ model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
13312
+ model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
13313
+ cb, il);
13256
13314
  cb(cur, "ffn_out", il);
13315
+ }
13257
13316
 
13258
- lm_ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
13259
- if (layer_dir != nullptr) {
13260
- cur = lm_ggml_add(ctx0, cur, layer_dir);
13261
- }
13262
- cb(cur, "l_out", il);
13317
+ cur = lm_ggml_add(ctx0, cur, ffn_inp);
13318
+ cb(cur, "ffn_out", il);
13263
13319
 
13264
- // input for next layer
13265
- inpL = cur;
13320
+ lm_ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
13321
+ if (layer_dir != nullptr) {
13322
+ cur = lm_ggml_add(ctx0, cur, layer_dir);
13266
13323
  }
13324
+ cb(cur, "l_out", il);
13267
13325
 
13268
- cur = inpL;
13269
- cb(cur, "result_embd", -1);
13326
+ // input for next layer
13327
+ inpL = cur;
13328
+ }
13270
13329
 
13271
- cur = llm_build_norm(ctx0, cur, hparams,
13272
- model.output_norm_enc, NULL,
13273
- LLM_NORM_RMS, cb, -1);
13274
- cb(cur, "result_norm", -1);
13275
- } else {
13276
- LM_GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
13330
+ cur = inpL;
13331
+ cb(cur, "result_embd", -1);
13277
13332
 
13278
- struct lm_ggml_tensor * embd_enc = llm_build_inp_embd_enc();
13279
- struct lm_ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true);
13333
+ cur = llm_build_norm(ctx0, cur, hparams,
13334
+ model.output_norm_enc, NULL,
13335
+ LLM_NORM_RMS, cb, -1);
13336
+ cb(cur, "result_norm", -1);
13280
13337
 
13281
- struct lm_ggml_tensor * KQ_mask_dec = build_inp_KQ_mask();
13282
- struct lm_ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();
13338
+ lm_ggml_build_forward_expand(gf, cur);
13283
13339
 
13284
- for (int il = 0; il < n_layer; ++il) {
13285
- struct lm_ggml_tensor * inpSA = inpL;
13340
+ return gf;
13341
+ }
13286
13342
 
13287
- // norm
13288
- cur = llm_build_norm(ctx0, inpL, hparams,
13289
- model.layers[il].attn_norm, NULL,
13290
- LLM_NORM_RMS, cb, il);
13291
- cb(cur, "attn_norm", il);
13343
+ struct lm_ggml_cgraph * build_t5_decoder() {
13344
+ struct lm_ggml_cgraph * gf = lm_ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
13292
13345
 
13293
- // self-attention
13294
- {
13295
- struct lm_ggml_tensor * Qcur = lm_ggml_mul_mat(ctx0, model.layers[il].wq, cur);
13296
- cb(Qcur, "Qcur", il);
13346
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
13347
+ int32_t n_tokens = this->n_tokens;
13297
13348
 
13298
- struct lm_ggml_tensor * Kcur = lm_ggml_mul_mat(ctx0, model.layers[il].wk, cur);
13299
- cb(Kcur, "Kcur", il);
13349
+ const int64_t n_embd_head = hparams.n_embd_head_v;
13350
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
13351
+ LM_GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
13300
13352
 
13301
- struct lm_ggml_tensor * Vcur = lm_ggml_mul_mat(ctx0, model.layers[il].wv, cur);
13302
- cb(Vcur, "Vcur", il);
13353
+ struct lm_ggml_tensor * cur;
13354
+ struct lm_ggml_tensor * inpL;
13303
13355
 
13304
- llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
13356
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
13305
13357
 
13306
- struct lm_ggml_tensor * k =
13307
- lm_ggml_view_3d(ctx0, kv_self.k_l[il],
13308
- n_embd_head_k, n_kv, n_head_kv,
13309
- lm_ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
13310
- lm_ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
13311
- 0);
13312
- cb(k, "k", il);
13358
+ LM_GGML_ASSERT(!lctx.is_encoding);
13359
+ LM_GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
13313
13360
 
13314
- struct lm_ggml_tensor * v =
13315
- lm_ggml_view_3d(ctx0, kv_self.v_l[il],
13316
- n_kv, n_embd_head_v, n_head_kv,
13317
- lm_ggml_element_size(kv_self.v_l[il])*n_ctx,
13318
- lm_ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
13319
- 0);
13320
- cb(v, "v", il);
13361
+ struct lm_ggml_tensor * embd_enc = llm_build_inp_embd_enc();
13362
+ struct lm_ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true);
13321
13363
 
13322
- Qcur = lm_ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
13364
+ struct lm_ggml_tensor * KQ_mask_dec = build_inp_KQ_mask();
13365
+ struct lm_ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();
13366
+
13367
+ for (int il = 0; il < n_layer; ++il) {
13368
+ struct lm_ggml_tensor * inpSA = inpL;
13323
13369
 
13324
- struct lm_ggml_tensor * q = lm_ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
13370
+ // norm
13371
+ cur = llm_build_norm(ctx0, inpL, hparams,
13372
+ model.layers[il].attn_norm, NULL,
13373
+ LLM_NORM_RMS, cb, il);
13374
+ cb(cur, "attn_norm", il);
13325
13375
 
13326
- struct lm_ggml_tensor * kq = lm_ggml_mul_mat(ctx0, k, q);
13327
- cb(kq, "kq", il);
13376
+ // self-attention
13377
+ {
13378
+ struct lm_ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
13379
+ cb(Qcur, "Qcur", il);
13328
13380
 
13329
- struct lm_ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
13330
- struct lm_ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b);
13331
- struct lm_ggml_tensor * kq_b = lm_ggml_add(ctx0, kq, pos_bias);
13332
- cb(kq_b, "kq_b", il);
13381
+ struct lm_ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
13382
+ cb(Kcur, "Kcur", il);
13333
13383
 
13334
- kq = lm_ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
13335
- cb(kq, "kq_soft_max_ext", il);
13384
+ struct lm_ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
13385
+ cb(Vcur, "Vcur", il);
13336
13386
 
13337
- struct lm_ggml_tensor * kqv = lm_ggml_mul_mat(ctx0, v, kq);
13338
- cb(kqv, "kqv", il);
13387
+ llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
13339
13388
 
13340
- struct lm_ggml_tensor * kqv_merged = lm_ggml_permute(ctx0, kqv, 0, 2, 1, 3);
13341
- cb(kqv_merged, "kqv_merged", il);
13389
+ struct lm_ggml_tensor * k =
13390
+ lm_ggml_view_3d(ctx0, kv_self.k_l[il],
13391
+ n_embd_head_k, n_kv, n_head_kv,
13392
+ lm_ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
13393
+ lm_ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
13394
+ 0);
13395
+ cb(k, "k", il);
13342
13396
 
13343
- cur = lm_ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
13344
- cb(cur, "kqv_merged_cont", il);
13397
+ struct lm_ggml_tensor * v =
13398
+ lm_ggml_view_3d(ctx0, kv_self.v_l[il],
13399
+ n_kv, n_embd_head_v, n_head_kv,
13400
+ lm_ggml_element_size(kv_self.v_l[il])*n_ctx,
13401
+ lm_ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
13402
+ 0);
13403
+ cb(v, "v", il);
13345
13404
 
13346
- lm_ggml_build_forward_expand(gf, cur);
13405
+ Qcur = lm_ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
13347
13406
 
13348
- cur = lm_ggml_mul_mat(ctx0, model.layers[il].wo, cur);
13349
- cb(cur, "kqv_out", il);
13350
- }
13407
+ struct lm_ggml_tensor * q = lm_ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
13351
13408
 
13352
- cur = lm_ggml_add(ctx0, cur, inpSA);
13353
- cb(cur, "cross_inp", il);
13409
+ struct lm_ggml_tensor * kq = lm_ggml_mul_mat(ctx0, k, q);
13410
+ cb(kq, "kq", il);
13354
13411
 
13355
- struct lm_ggml_tensor * inpCA = cur;
13412
+ struct lm_ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
13413
+ struct lm_ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b);
13414
+ struct lm_ggml_tensor * kq_b = lm_ggml_add(ctx0, kq, pos_bias);
13415
+ cb(kq_b, "kq_b", il);
13356
13416
 
13357
- // norm
13358
- cur = llm_build_norm(ctx0, cur, hparams,
13359
- model.layers[il].attn_norm_cross, NULL,
13360
- LLM_NORM_RMS, cb, il);
13361
- cb(cur, "attn_norm_cross", il);
13417
+ kq = lm_ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
13418
+ cb(kq, "kq_soft_max_ext", il);
13362
13419
 
13363
- // cross-attention
13364
- {
13365
- struct lm_ggml_tensor * Qcur = lm_ggml_mul_mat(ctx0, model.layers[il].wq_cross, cur);
13366
- cb(Qcur, "Qcur", il);
13420
+ struct lm_ggml_tensor * kqv = lm_ggml_mul_mat(ctx0, v, kq);
13421
+ cb(kqv, "kqv", il);
13367
13422
 
13368
- struct lm_ggml_tensor * Kcur = lm_ggml_mul_mat(ctx0, model.layers[il].wk_cross, embd_enc);
13369
- cb(Kcur, "Kcur", il);
13423
+ struct lm_ggml_tensor * kqv_merged = lm_ggml_permute(ctx0, kqv, 0, 2, 1, 3);
13424
+ cb(kqv_merged, "kqv_merged", il);
13370
13425
 
13371
- struct lm_ggml_tensor * Vcur = lm_ggml_mul_mat(ctx0, model.layers[il].wv_cross, embd_enc);
13372
- cb(Vcur, "Vcur", il);
13426
+ cur = lm_ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
13427
+ cb(cur, "kqv_merged_cont", il);
13373
13428
 
13374
- Qcur = lm_ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
13375
- Kcur = lm_ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
13429
+ lm_ggml_build_forward_expand(gf, cur);
13376
13430
 
13377
- struct lm_ggml_tensor * q = lm_ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
13378
- struct lm_ggml_tensor * k = lm_ggml_cont(ctx0, lm_ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
13431
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
13432
+ cb(cur, "kqv_out", il);
13433
+ }
13379
13434
 
13380
- struct lm_ggml_tensor * kq = lm_ggml_mul_mat(ctx0, k, q);
13381
- cb(kq, "kq", il);
13435
+ cur = lm_ggml_add(ctx0, cur, inpSA);
13436
+ cb(cur, "cross_inp", il);
13382
13437
 
13383
- kq = lm_ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
13384
- cb(kq, "kq_soft_max_ext", il);
13438
+ struct lm_ggml_tensor * inpCA = cur;
13385
13439
 
13386
- struct lm_ggml_tensor * v = lm_ggml_cont(ctx0, lm_ggml_transpose(ctx0, lm_ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
13387
- cb(v, "v", il);
13440
+ // norm
13441
+ cur = llm_build_norm(ctx0, cur, hparams,
13442
+ model.layers[il].attn_norm_cross, NULL,
13443
+ LLM_NORM_RMS, cb, il);
13444
+ cb(cur, "attn_norm_cross", il);
13388
13445
 
13389
- struct lm_ggml_tensor * kqv = lm_ggml_mul_mat(ctx0, lm_ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
13390
- cb(kqv, "kqv", il);
13446
+ // cross-attention
13447
+ {
13448
+ struct lm_ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_cross, cur);
13449
+ cb(Qcur, "Qcur", il);
13391
13450
 
13392
- struct lm_ggml_tensor * kqv_merged = lm_ggml_permute(ctx0, kqv, 0, 2, 1, 3);
13393
- cb(kqv_merged, "kqv_merged", il);
13451
+ struct lm_ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_cross, embd_enc);
13452
+ cb(Kcur, "Kcur", il);
13394
13453
 
13395
- cur = lm_ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
13396
- cb(cur, "kqv_merged_cont", il);
13454
+ struct lm_ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_cross, embd_enc);
13455
+ cb(Vcur, "Vcur", il);
13397
13456
 
13398
- lm_ggml_build_forward_expand(gf, cur);
13457
+ Qcur = lm_ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
13458
+ Kcur = lm_ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
13399
13459
 
13400
- cur = lm_ggml_mul_mat(ctx0, model.layers[il].wo_cross, cur);
13401
- cb(cur, "kqv_out", il);
13402
- }
13460
+ struct lm_ggml_tensor * q = lm_ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
13461
+ struct lm_ggml_tensor * k = lm_ggml_cont(ctx0, lm_ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
13403
13462
 
13404
- if (il == n_layer - 1) {
13405
- // skip computing output for unused tokens
13406
- struct lm_ggml_tensor * inp_out_ids = build_inp_out_ids();
13407
- n_tokens = n_outputs;
13408
- cur = lm_ggml_get_rows(ctx0, cur, inp_out_ids);
13409
- inpSA = lm_ggml_get_rows(ctx0, inpSA, inp_out_ids);
13410
- inpCA = lm_ggml_get_rows(ctx0, inpCA, inp_out_ids);
13411
- }
13463
+ struct lm_ggml_tensor * kq = lm_ggml_mul_mat(ctx0, k, q);
13464
+ cb(kq, "kq", il);
13412
13465
 
13413
- struct lm_ggml_tensor * ffn_inp = lm_ggml_add(ctx0, cur, inpCA);
13414
- cb(ffn_inp, "ffn_inp", il);
13466
+ kq = lm_ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
13467
+ cb(kq, "kq_soft_max_ext", il);
13415
13468
 
13416
- // feed-forward network
13417
- {
13418
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
13419
- model.layers[il].ffn_norm, NULL,
13420
- LLM_NORM_RMS, cb, il);
13421
- cb(cur, "ffn_norm", il);
13469
+ struct lm_ggml_tensor * v = lm_ggml_cont(ctx0, lm_ggml_transpose(ctx0, lm_ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
13470
+ cb(v, "v", il);
13422
13471
 
13423
- // T5 uses relu, flan-T5 uses gelu-gated
13424
- cur = llm_build_ffn(ctx0, lctx, cur,
13425
- model.layers[il].ffn_up, NULL, NULL,
13426
- model.layers[il].ffn_gate, NULL, NULL,
13427
- model.layers[il].ffn_down, NULL, NULL,
13428
- NULL,
13429
- model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
13430
- model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
13431
- cb, il);
13432
- cb(cur, "ffn_out", il);
13433
- }
13472
+ struct lm_ggml_tensor * kqv = lm_ggml_mul_mat(ctx0, lm_ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
13473
+ cb(kqv, "kqv", il);
13434
13474
 
13435
- cur = lm_ggml_add(ctx0, cur, ffn_inp);
13436
- cb(cur, "ffn_out", il);
13475
+ struct lm_ggml_tensor * kqv_merged = lm_ggml_permute(ctx0, kqv, 0, 2, 1, 3);
13476
+ cb(kqv_merged, "kqv_merged", il);
13437
13477
 
13438
- lm_ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
13439
- if (layer_dir != nullptr) {
13440
- cur = lm_ggml_add(ctx0, cur, layer_dir);
13441
- }
13442
- cb(cur, "l_out", il);
13478
+ cur = lm_ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
13479
+ cb(cur, "kqv_merged_cont", il);
13443
13480
 
13444
- // input for next layer
13445
- inpL = cur;
13481
+ lm_ggml_build_forward_expand(gf, cur);
13482
+
13483
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_cross, cur);
13484
+ cb(cur, "kqv_out", il);
13446
13485
  }
13447
13486
 
13448
- cur = inpL;
13449
- cb(cur, "result_embd", -1);
13487
+ if (il == n_layer - 1) {
13488
+ // skip computing output for unused tokens
13489
+ struct lm_ggml_tensor * inp_out_ids = build_inp_out_ids();
13490
+ n_tokens = n_outputs;
13491
+ cur = lm_ggml_get_rows(ctx0, cur, inp_out_ids);
13492
+ inpSA = lm_ggml_get_rows(ctx0, inpSA, inp_out_ids);
13493
+ inpCA = lm_ggml_get_rows(ctx0, inpCA, inp_out_ids);
13494
+ }
13450
13495
 
13451
- cur = llm_build_norm(ctx0, cur, hparams,
13452
- model.output_norm, NULL,
13453
- LLM_NORM_RMS, cb, -1);
13454
- cb(cur, "result_norm", -1);
13496
+ struct lm_ggml_tensor * ffn_inp = lm_ggml_add(ctx0, cur, inpCA);
13497
+ cb(ffn_inp, "ffn_inp", il);
13498
+
13499
+ // feed-forward network
13500
+ {
13501
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
13502
+ model.layers[il].ffn_norm, NULL,
13503
+ LLM_NORM_RMS, cb, il);
13504
+ cb(cur, "ffn_norm", il);
13505
+
13506
+ // T5 uses relu, flan-T5 uses gelu-gated
13507
+ cur = llm_build_ffn(ctx0, lctx, cur,
13508
+ model.layers[il].ffn_up, NULL, NULL,
13509
+ model.layers[il].ffn_gate, NULL, NULL,
13510
+ model.layers[il].ffn_down, NULL, NULL,
13511
+ NULL,
13512
+ model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
13513
+ model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
13514
+ cb, il);
13515
+ cb(cur, "ffn_out", il);
13516
+ }
13517
+
13518
+ cur = lm_ggml_add(ctx0, cur, ffn_inp);
13519
+ cb(cur, "ffn_out", il);
13520
+
13521
+ lm_ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
13522
+ if (layer_dir != nullptr) {
13523
+ cur = lm_ggml_add(ctx0, cur, layer_dir);
13524
+ }
13525
+ cb(cur, "l_out", il);
13455
13526
 
13456
- // lm_head
13457
- cur = lm_ggml_mul_mat(ctx0, model.output, cur);
13458
- cb(cur, "result_output", -1);
13527
+ // input for next layer
13528
+ inpL = cur;
13459
13529
  }
13460
13530
 
13531
+ cur = inpL;
13532
+ cb(cur, "result_embd", -1);
13533
+
13534
+ cur = llm_build_norm(ctx0, cur, hparams,
13535
+ model.output_norm, NULL,
13536
+ LLM_NORM_RMS, cb, -1);
13537
+ cb(cur, "result_norm", -1);
13538
+
13539
+ // lm_head
13540
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
13541
+ cb(cur, "result_output", -1);
13542
+
13461
13543
  lm_ggml_build_forward_expand(gf, cur);
13462
13544
 
13463
13545
  return gf;
@@ -13909,7 +13991,15 @@ static struct lm_ggml_cgraph * llama_build_graph(
13909
13991
  } break;
13910
13992
  case LLM_ARCH_T5:
13911
13993
  {
13912
- result = llm.build_t5();
13994
+ if (lctx.is_encoding) {
13995
+ result = llm.build_t5_encoder();
13996
+ } else {
13997
+ result = llm.build_t5_decoder();
13998
+ }
13999
+ } break;
14000
+ case LLM_ARCH_T5ENCODER:
14001
+ {
14002
+ result = llm.build_t5_encoder();
13913
14003
  } break;
13914
14004
  case LLM_ARCH_JAIS:
13915
14005
  {
@@ -14357,7 +14447,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
14357
14447
 
14358
14448
  // TODO: use a per-batch flag for logits presence instead
14359
14449
  const bool has_logits = !cparams.embeddings;
14360
- const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE));
14450
+ const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
14361
14451
 
14362
14452
  const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
14363
14453
  const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
@@ -14840,9 +14930,24 @@ static int llama_encode_internal(
14840
14930
  lm_ggml_cgraph * gf = llama_build_graph(lctx, batch, false);
14841
14931
 
14842
14932
  // the output embeddings after the final encoder normalization
14843
- struct lm_ggml_tensor * embd = gf->nodes[gf->n_nodes - 1];
14933
+ struct lm_ggml_tensor * embd = nullptr;
14844
14934
 
14845
- LM_GGML_ASSERT(strcmp(embd->name, "result_norm") == 0);
14935
+ // there are two cases here
14936
+ if (llama_model_has_decoder(&lctx.model)) {
14937
+ // first case is an encoder-decoder T5 model where embeddings are passed to decoder
14938
+ embd = gf->nodes[gf->n_nodes - 1];
14939
+ LM_GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor");
14940
+ } else {
14941
+ // second case is an encoder-only T5 model
14942
+ if (cparams.embeddings) {
14943
+ // only output embeddings if required
14944
+ embd = gf->nodes[gf->n_nodes - 1];
14945
+ if (strcmp(embd->name, "result_embd_pooled") != 0) {
14946
+ embd = gf->nodes[gf->n_nodes - 2];
14947
+ }
14948
+ LM_GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
14949
+ }
14950
+ }
14846
14951
 
14847
14952
  lm_ggml_backend_sched_alloc_graph(lctx.sched, gf);
14848
14953
 
@@ -14855,20 +14960,54 @@ static int llama_encode_internal(
14855
14960
  lm_ggml_backend_t backend_embd = lm_ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
14856
14961
  LM_GGML_ASSERT(backend_embd != nullptr);
14857
14962
 
14858
- // extract token embeddings
14859
- LM_GGML_ASSERT(lctx.embd != nullptr);
14963
+ if (llama_model_has_decoder(&lctx.model)) {
14964
+ lctx.embd_enc.resize(n_tokens*n_embd);
14965
+ float * embd_out = lctx.embd_enc.data();
14860
14966
 
14861
- lctx.embd_enc.resize(n_tokens*n_embd);
14862
- float * embd_out = lctx.embd_enc.data();
14967
+ lm_ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
14863
14968
 
14864
- lm_ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
14969
+ // remember the sequence ids used during the encoding - needed for cross attention later
14970
+ lctx.seq_ids_enc.resize(n_tokens);
14971
+ for (uint32_t i = 0; i < n_tokens; i++) {
14972
+ for (int s = 0; s < batch.n_seq_id[i]; s++) {
14973
+ llama_seq_id seq_id = batch.seq_id[i][s];
14974
+ lctx.seq_ids_enc[i].insert(seq_id);
14975
+ }
14976
+ }
14977
+ } else {
14978
+ LM_GGML_ASSERT(lctx.embd != nullptr);
14865
14979
 
14866
- // remember the sequence ids used during the encoding - needed for cross attention later
14867
- lctx.seq_ids_enc.resize(n_tokens);
14868
- for (uint32_t i = 0; i < n_tokens; i++) {
14869
- for (int s = 0; s < batch.n_seq_id[i]; s++) {
14870
- llama_seq_id seq_id = batch.seq_id[i][s];
14871
- lctx.seq_ids_enc[i].insert(seq_id);
14980
+ switch (cparams.pooling_type) {
14981
+ case LLAMA_POOLING_TYPE_NONE:
14982
+ {
14983
+ // extract token embeddings
14984
+ LM_GGML_ASSERT(lctx.embd != nullptr);
14985
+ float * embd_out = lctx.embd;
14986
+
14987
+ LM_GGML_ASSERT(n_tokens*n_embd <= (int64_t) lctx.embd_size);
14988
+ lm_ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
14989
+ } break;
14990
+ case LLAMA_POOLING_TYPE_MEAN:
14991
+ case LLAMA_POOLING_TYPE_CLS:
14992
+ case LLAMA_POOLING_TYPE_LAST:
14993
+ {
14994
+ // extract sequence embeddings
14995
+ auto & embd_seq_out = lctx.embd_seq;
14996
+ embd_seq_out.clear();
14997
+
14998
+ for (uint32_t i = 0; i < n_tokens; i++) {
14999
+ const llama_seq_id seq_id = batch.seq_id[i][0];
15000
+ if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
15001
+ continue;
15002
+ }
15003
+ embd_seq_out[seq_id].resize(n_embd);
15004
+ lm_ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
15005
+ }
15006
+ } break;
15007
+ case LLAMA_POOLING_TYPE_UNSPECIFIED:
15008
+ {
15009
+ LM_GGML_ABORT("unknown pooling type");
15010
+ }
14872
15011
  }
14873
15012
  }
14874
15013
  }
@@ -15304,7 +15443,7 @@ static lm_ggml_type llama_tensor_get_type(quantize_state_internal & qs, lm_ggml_
15304
15443
  const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
15305
15444
  auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
15306
15445
  if (n_expert > 1) {
15307
- // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
15446
+ // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
15308
15447
  // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
15309
15448
  // for getting the current layer as I initially thought, and we need to resort to parsing the
15310
15449
  // tensor name.
@@ -16578,6 +16717,8 @@ struct llama_context * llama_new_context_with_model(
16578
16717
 
16579
16718
  ctx->sampling.rng = std::mt19937(params.seed);
16580
16719
  ctx->logits_all = params.logits_all;
16720
+ // build worst-case graph for encoder if a model contains encoder
16721
+ ctx->is_encoding = llama_model_has_encoder(model);
16581
16722
 
16582
16723
  uint32_t kv_size = cparams.n_ctx;
16583
16724
  lm_ggml_type type_k = params.type_k;
@@ -16892,6 +17033,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
16892
17033
  case LLM_ARCH_MAMBA:
16893
17034
  case LLM_ARCH_JINA_BERT_V2:
16894
17035
  case LLM_ARCH_T5:
17036
+ case LLM_ARCH_T5ENCODER:
16895
17037
  case LLM_ARCH_JAIS:
16896
17038
  return LLAMA_ROPE_TYPE_NONE;
16897
17039
 
@@ -17039,8 +17181,16 @@ struct lm_ggml_tensor * llama_get_model_tensor(struct llama_model * model, const
17039
17181
 
17040
17182
  bool llama_model_has_encoder(const struct llama_model * model) {
17041
17183
  switch (model->arch) {
17042
- case LLM_ARCH_T5: return true;
17043
- default: return false;
17184
+ case LLM_ARCH_T5: return true;
17185
+ case LLM_ARCH_T5ENCODER: return true;
17186
+ default: return false;
17187
+ }
17188
+ }
17189
+
17190
+ bool llama_model_has_decoder(const struct llama_model * model) {
17191
+ switch (model->arch) {
17192
+ case LLM_ARCH_T5ENCODER: return false;
17193
+ default: return true;
17044
17194
  }
17045
17195
  }
17046
17196
 
@@ -17343,6 +17493,7 @@ bool llama_save_session_file(struct llama_context * ctx, const char * path_sessi
17343
17493
  // TODO: replace all non-fatal assertions with returned errors or exceptions
17344
17494
  struct llama_data_write {
17345
17495
  virtual void write(const void * src, size_t size) = 0;
17496
+ virtual void write_tensor_data(const struct lm_ggml_tensor * tensor, size_t offset, size_t size) = 0;
17346
17497
  virtual size_t get_size_written() = 0;
17347
17498
  virtual ~llama_data_write() = default;
17348
17499
 
@@ -17465,9 +17616,8 @@ struct llama_data_write {
17465
17616
  // Read each range of cells of k_size length each into tmp_buf and write out
17466
17617
  for (const auto & range : cell_ranges) {
17467
17618
  const size_t range_size = range.second - range.first;
17468
- tmp_buf.resize(range_size * k_size_row);
17469
- lm_ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
17470
- write(tmp_buf.data(), tmp_buf.size());
17619
+ const size_t buf_size = range_size * k_size_row;
17620
+ write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size);
17471
17621
  }
17472
17622
  }
17473
17623
 
@@ -17486,9 +17636,8 @@ struct llama_data_write {
17486
17636
  // Read each range of cells of v_size length each into tmp_buf and write out
17487
17637
  for (const auto & range : cell_ranges) {
17488
17638
  const size_t range_size = range.second - range.first;
17489
- tmp_buf.resize(range_size * v_size_row);
17490
- lm_ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
17491
- write(tmp_buf.data(), tmp_buf.size());
17639
+ const size_t buf_size = range_size * v_size_row;
17640
+ write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size);
17492
17641
  }
17493
17642
  }
17494
17643
  } else {
@@ -17514,9 +17663,8 @@ struct llama_data_write {
17514
17663
  for (const auto & range : cell_ranges) {
17515
17664
  const size_t range_size = range.second - range.first;
17516
17665
  const size_t src_offset = (range.first + j * kv_size) * v_size_el;
17517
- tmp_buf.resize(range_size * v_size_el);
17518
- lm_ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
17519
- write(tmp_buf.data(), tmp_buf.size());
17666
+ const size_t buf_size = range_size * v_size_el;
17667
+ write_tensor_data(kv_self.v_l[il], src_offset, buf_size);
17520
17668
  }
17521
17669
  }
17522
17670
  }
@@ -17875,12 +18023,14 @@ struct llama_data_write_dummy : llama_data_write {
17875
18023
 
17876
18024
  llama_data_write_dummy() {}
17877
18025
 
17878
- // TODO: avoid unnecessary calls to lm_ggml_backend_tensor_get in a dummy context
17879
-
17880
18026
  void write(const void * /* src */, size_t size) override {
17881
18027
  size_written += size;
17882
18028
  }
17883
18029
 
18030
+ void write_tensor_data(const struct lm_ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override {
18031
+ size_written += size;
18032
+ }
18033
+
17884
18034
  size_t get_size_written() override {
17885
18035
  return size_written;
17886
18036
  }
@@ -17903,6 +18053,16 @@ struct llama_data_write_buffer : llama_data_write {
17903
18053
  buf_size -= size;
17904
18054
  }
17905
18055
 
18056
+ void write_tensor_data(const struct lm_ggml_tensor * tensor, size_t offset, size_t size) override {
18057
+ if (size > buf_size) {
18058
+ throw std::runtime_error("unexpectedly reached end of buffer");
18059
+ }
18060
+ lm_ggml_backend_tensor_get(tensor, ptr, offset, size);
18061
+ ptr += size;
18062
+ size_written += size;
18063
+ buf_size -= size;
18064
+ }
18065
+
17906
18066
  size_t get_size_written() override {
17907
18067
  return size_written;
17908
18068
  }
@@ -17938,6 +18098,7 @@ struct llama_data_read_buffer : llama_data_read {
17938
18098
  struct llama_data_write_file : llama_data_write {
17939
18099
  llama_file * file;
17940
18100
  size_t size_written = 0;
18101
+ std::vector<uint8_t> temp_buffer;
17941
18102
 
17942
18103
  llama_data_write_file(llama_file * f) : file(f) {}
17943
18104
 
@@ -17946,6 +18107,12 @@ struct llama_data_write_file : llama_data_write {
17946
18107
  size_written += size;
17947
18108
  }
17948
18109
 
18110
+ void write_tensor_data(const struct lm_ggml_tensor * tensor, size_t offset, size_t size) override {
18111
+ temp_buffer.resize(size);
18112
+ lm_ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
18113
+ write(temp_buffer.data(), temp_buffer.size());
18114
+ }
18115
+
17949
18116
  size_t get_size_written() override {
17950
18117
  return size_written;
17951
18118
  }