cui-llama.rn 1.0.11 → 1.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -11,6 +11,7 @@ The following features have been added for Android:
11
11
  - `vocab_only` mode: utilize the llama.cpp tokenizer
12
12
  - tokenizeSync: non-blocking, synchronous tokenizer function
13
13
  - Context Shift taken from [kobold.cpp](https://github.com/LostRuins/koboldcpp)
14
+ - XTC sampling
14
15
 
15
16
  Original repo README.md below.
16
17
 
@@ -218,6 +218,10 @@ public class LlamaContext {
218
218
  params.hasKey("top_p") ? (float) params.getDouble("top_p") : 0.95f,
219
219
  // float min_p,
220
220
  params.hasKey("min_p") ? (float) params.getDouble("min_p") : 0.05f,
221
+ // float xtc_t,
222
+ params.hasKey("xtc_t") ? (float) params.getDouble("xtc_t") : 0.00f,
223
+ // float xtc_p,
224
+ params.hasKey("xtc_p") ? (float) params.getDouble("xtc_p") : 0.00f,
221
225
  // float tfs_z,
222
226
  params.hasKey("tfs_z") ? (float) params.getDouble("tfs_z") : 1.00f,
223
227
  // float typical_p,
@@ -399,6 +403,8 @@ public class LlamaContext {
399
403
  int top_k,
400
404
  float top_p,
401
405
  float min_p,
406
+ float xtc_t,
407
+ float xtc_p,
402
408
  float tfs_z,
403
409
  float typical_p,
404
410
  int seed,
@@ -370,6 +370,8 @@ Java_com_rnllama_LlamaContext_doCompletion(
370
370
  jint top_k,
371
371
  jfloat top_p,
372
372
  jfloat min_p,
373
+ jfloat xtc_t,
374
+ jfloat xtc_p,
373
375
  jfloat tfs_z,
374
376
  jfloat typical_p,
375
377
  jint seed,
@@ -413,6 +415,8 @@ Java_com_rnllama_LlamaContext_doCompletion(
413
415
  sparams.typical_p = typical_p;
414
416
  sparams.n_probs = n_probs;
415
417
  sparams.grammar = env->GetStringUTFChars(grammar, nullptr);
418
+ sparams.xtc_t = xtc_t;
419
+ sparams.xtc_p = xtc_p;
416
420
 
417
421
  sparams.logit_bias.clear();
418
422
  if (ignore_eos) {
package/cpp/common.cpp CHANGED
@@ -83,6 +83,41 @@ char const *LLAMA_BUILD_TARGET = "unknown";
83
83
 
84
84
  using json = nlohmann::ordered_json;
85
85
 
86
+ //
87
+ // Environment variable utils
88
+ //
89
+
90
+ template<typename T>
91
+ static typename std::enable_if<std::is_same<T, std::string>::value, void>::type
92
+ get_env(std::string name, T & target) {
93
+ char * value = std::getenv(name.c_str());
94
+ target = value ? std::string(value) : target;
95
+ }
96
+
97
+ template<typename T>
98
+ static typename std::enable_if<!std::is_same<T, bool>::value && std::is_integral<T>::value, void>::type
99
+ get_env(std::string name, T & target) {
100
+ char * value = std::getenv(name.c_str());
101
+ target = value ? std::stoi(value) : target;
102
+ }
103
+
104
+ template<typename T>
105
+ static typename std::enable_if<std::is_floating_point<T>::value, void>::type
106
+ get_env(std::string name, T & target) {
107
+ char * value = std::getenv(name.c_str());
108
+ target = value ? std::stof(value) : target;
109
+ }
110
+
111
+ template<typename T>
112
+ static typename std::enable_if<std::is_same<T, bool>::value, void>::type
113
+ get_env(std::string name, T & target) {
114
+ char * value = std::getenv(name.c_str());
115
+ if (value) {
116
+ std::string val(value);
117
+ target = val == "1" || val == "true";
118
+ }
119
+ }
120
+
86
121
  //
87
122
  // CPU utils
88
123
  //
@@ -226,12 +261,6 @@ int32_t cpu_get_num_math() {
226
261
  // CLI argument parsing
227
262
  //
228
263
 
229
- void gpt_params_handle_hf_token(gpt_params & params) {
230
- if (params.hf_token.empty() && std::getenv("HF_TOKEN")) {
231
- params.hf_token = std::getenv("HF_TOKEN");
232
- }
233
- }
234
-
235
264
  void gpt_params_handle_model_default(gpt_params & params) {
236
265
  if (!params.hf_repo.empty()) {
237
266
  // short-hand to avoid specifying --hf-file -> default it to --model
@@ -279,7 +308,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
279
308
 
280
309
  gpt_params_handle_model_default(params);
281
310
 
282
- gpt_params_handle_hf_token(params);
311
+ if (params.hf_token.empty()) {
312
+ get_env("HF_TOKEN", params.hf_token);
313
+ }
283
314
 
284
315
  if (params.escape) {
285
316
  string_process_escapes(params.prompt);
@@ -299,6 +330,25 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
299
330
  return true;
300
331
  }
301
332
 
333
+ void gpt_params_parse_from_env(gpt_params & params) {
334
+ // we only care about server-related params for now
335
+ get_env("LLAMA_ARG_MODEL", params.model);
336
+ get_env("LLAMA_ARG_THREADS", params.n_threads);
337
+ get_env("LLAMA_ARG_CTX_SIZE", params.n_ctx);
338
+ get_env("LLAMA_ARG_N_PARALLEL", params.n_parallel);
339
+ get_env("LLAMA_ARG_BATCH", params.n_batch);
340
+ get_env("LLAMA_ARG_UBATCH", params.n_ubatch);
341
+ get_env("LLAMA_ARG_N_GPU_LAYERS", params.n_gpu_layers);
342
+ get_env("LLAMA_ARG_THREADS_HTTP", params.n_threads_http);
343
+ get_env("LLAMA_ARG_CHAT_TEMPLATE", params.chat_template);
344
+ get_env("LLAMA_ARG_N_PREDICT", params.n_predict);
345
+ get_env("LLAMA_ARG_ENDPOINT_METRICS", params.endpoint_metrics);
346
+ get_env("LLAMA_ARG_ENDPOINT_SLOTS", params.endpoint_slots);
347
+ get_env("LLAMA_ARG_EMBEDDINGS", params.embedding);
348
+ get_env("LLAMA_ARG_FLASH_ATTN", params.flash_attn);
349
+ get_env("LLAMA_ARG_DEFRAG_THOLD", params.defrag_thold);
350
+ }
351
+
302
352
  bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
303
353
  const auto params_org = params; // the example can modify the default params
304
354
 
package/cpp/common.h CHANGED
@@ -81,7 +81,7 @@ enum dimre_method {
81
81
  struct gpt_params {
82
82
  uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
83
83
 
84
- bool vocab_only = false;
84
+ bool vocab_only = false;
85
85
  int32_t n_threads = cpu_get_num_math();
86
86
  int32_t n_threads_draft = -1;
87
87
  int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
@@ -279,7 +279,7 @@ struct gpt_params {
279
279
  std::string lora_outfile = "ggml-lora-merged-f16.gguf";
280
280
  };
281
281
 
282
- void gpt_params_handle_hf_token(gpt_params & params);
282
+ void gpt_params_parse_from_env(gpt_params & params);
283
283
  void gpt_params_handle_model_default(gpt_params & params);
284
284
 
285
285
  bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
@@ -171,6 +171,100 @@ void llama_sample_top_p_impl(struct llama_sampling * smpl, llama_token_data_arra
171
171
  }
172
172
  }
173
173
 
174
+ void llama_sample_xtc_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float xtc_threshold, float xtc_probability, size_t min_keep, std::mt19937 & rng) {
175
+ if(xtc_threshold <= 0.0f || !candidates-> size) {
176
+ return;
177
+ }
178
+
179
+ bool xtc_applied = false;
180
+ const int64_t t_start_sample_us = lm_ggml_time_us();
181
+ llama_sample_softmax(nullptr, candidates);
182
+
183
+ // unsorted iteration
184
+ if (!candidates->sorted) {
185
+ std::vector<llama_token_data> top_tokens, low_tokens;
186
+
187
+ // split candidates into two arrays for low and high tokens
188
+ for (size_t i = 0; i < candidates->size; ++i) {
189
+ if (candidates->data[i].logit >= xtc_threshold) {
190
+ top_tokens.push_back(candidates->data[i]);
191
+ } else {
192
+ low_tokens.push_back(candidates-> data[i]);
193
+ }
194
+ }
195
+ // if there is only one or no top_tokens, do not truncate
196
+
197
+ if (top_tokens.size() <= 1) {
198
+ return;
199
+ }
200
+
201
+ // sort top_tokens
202
+ std::sort(top_tokens.begin(), top_tokens.end(), [](const llama_token_data & a, const llama_token_data & b) {
203
+ return a.logit < b.logit;
204
+ });
205
+
206
+ // insert top_tokens with probability. Always insert lowest top_token
207
+ low_tokens.push_back(top_tokens[0]);
208
+ std::uniform_real_distribution<float> random_float(0.0 , 1.0);
209
+ for (size_t i = 1; i < top_tokens.size(); ++i) {
210
+ if(random_float(rng) <= xtc_probability) {
211
+ low_tokens.push_back(top_tokens[i]);
212
+ }
213
+ }
214
+ if(low_tokens.size() >= min_keep) {
215
+ memcpy(candidates->data, low_tokens.data(), low_tokens.size()*sizeof(llama_token_data));
216
+ candidates->size = low_tokens.size();
217
+ xtc_applied = true;
218
+ }
219
+ }
220
+ // sorted iteration
221
+
222
+ if (!xtc_applied) {
223
+ // Sort the logits in descending order
224
+ if (!candidates->sorted) {
225
+ std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
226
+ return a.logit > b.logit;
227
+ });
228
+ candidates->sorted = true;
229
+ }
230
+
231
+ // find last token over threshold
232
+
233
+ size_t last_index = 0;
234
+
235
+ for (; last_index < candidates -> size; ++last_index) {
236
+ if(candidates -> data[last_index].p < xtc_threshold) {
237
+ break;
238
+ }
239
+ }
240
+
241
+ // check if only 1 token above threshold
242
+ if(last_index <= 1) {
243
+ return;
244
+ }
245
+ last_index--;
246
+ // items beyond safe index will be ignored
247
+ size_t safe_index = candidates -> size;
248
+
249
+ // remove tokens until last threshold item
250
+ std::uniform_real_distribution<float> random_float(0.0 , 1.0);
251
+ for (size_t i = 0; i < last_index; i++) {
252
+ if(random_float(rng) < xtc_probability) {
253
+ std::swap(candidates-> data[i], candidates->data[safe_index - 1]);
254
+ safe_index--;
255
+ if (candidates-> sorted) {
256
+ candidates -> sorted = false;
257
+ }
258
+ }
259
+ }
260
+ candidates -> size = safe_index;
261
+ }
262
+
263
+ if (smpl) {
264
+ smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us;
265
+ }
266
+ }
267
+
174
268
  void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
175
269
  if (p <= 0.0f || !candidates->size) {
176
270
  return;
@@ -32,6 +32,7 @@ void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_
32
32
  void llama_sample_typical_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
33
33
  void llama_sample_entropy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val);
34
34
  void llama_sample_temp_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float temp);
35
+ void llama_sample_xtc_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float xtc_threshold, float xtc_probability, size_t min_keep, std::mt19937 & rng);
35
36
 
36
37
  void llama_sample_repetition_penalties_impl(
37
38
  struct llama_sampling * smpl,
@@ -321,6 +321,21 @@ private:
321
321
 
322
322
  // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
323
323
 
324
+ template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>>
325
+ class llama_priority_queue : public std::priority_queue<T, Container, Compare> {
326
+ public:
327
+ using std::priority_queue<T, Container, Compare>::priority_queue;
328
+
329
+ T pop_move() {
330
+ T item = std::move(this->c.front());
331
+ std::pop_heap(this->c.begin(), this->c.end(), this->comp);
332
+ this->c.pop_back();
333
+ return item;
334
+ }
335
+
336
+ void pop() = delete;
337
+ };
338
+
324
339
  struct llm_bigram_bpe {
325
340
  struct comparator {
326
341
  bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
@@ -329,7 +344,7 @@ struct llm_bigram_bpe {
329
344
  };
330
345
 
331
346
  using queue_storage = std::vector<llm_bigram_bpe>;
332
- using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
347
+ using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>;
333
348
  llm_symbol::index left;
334
349
  llm_symbol::index right;
335
350
  std::string text;
@@ -520,8 +535,7 @@ struct llm_tokenizer_bpe {
520
535
 
521
536
  // build token(s)
522
537
  while (!work_queue.empty()) {
523
- auto bigram = work_queue.top();
524
- work_queue.pop();
538
+ auto bigram = work_queue.pop_move();
525
539
 
526
540
  auto & left_symbol = symbols[bigram.left];
527
541
  auto & right_symbol = symbols[bigram.right];
package/cpp/llama.cpp CHANGED
@@ -339,6 +339,7 @@ enum llm_kv {
339
339
  LLM_KV_SSM_CONV_KERNEL,
340
340
  LLM_KV_SSM_STATE_SIZE,
341
341
  LLM_KV_SSM_TIME_STEP_RANK,
342
+ LLM_KV_SSM_DT_B_C_RMS,
342
343
 
343
344
  LLM_KV_TOKENIZER_MODEL,
344
345
  LLM_KV_TOKENIZER_PRE,
@@ -437,6 +438,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
437
438
  { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
438
439
  { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
439
440
  { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
441
+ { LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" },
440
442
 
441
443
  { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
442
444
  { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
@@ -2248,6 +2250,7 @@ struct llama_hparams {
2248
2250
  uint32_t ssm_d_inner = 0;
2249
2251
  uint32_t ssm_d_state = 0;
2250
2252
  uint32_t ssm_dt_rank = 0;
2253
+ bool ssm_dt_b_c_rms = false;
2251
2254
 
2252
2255
  float f_clamp_kqv = 0.0f;
2253
2256
  float f_max_alibi_bias = 0.0f;
@@ -2297,6 +2300,7 @@ struct llama_hparams {
2297
2300
  if (this->ssm_d_inner != other.ssm_d_inner) return true;
2298
2301
  if (this->ssm_d_state != other.ssm_d_state) return true;
2299
2302
  if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
2303
+ if (this->ssm_dt_b_c_rms != other.ssm_dt_b_c_rms) return true;
2300
2304
 
2301
2305
  if (this->dec_start_token_id != other.dec_start_token_id) return true;
2302
2306
 
@@ -5063,6 +5067,7 @@ static void llm_load_hparams(
5063
5067
  ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
5064
5068
  ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
5065
5069
  ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
5070
+ ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
5066
5071
 
5067
5072
  ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
5068
5073
 
@@ -5918,6 +5923,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
5918
5923
  LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
5919
5924
  LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
5920
5925
  LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
5926
+ LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
5921
5927
  }
5922
5928
 
5923
5929
  LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
@@ -6183,9 +6189,9 @@ static bool llm_load_tensors(
6183
6189
  layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
6184
6190
 
6185
6191
  // optional MLP bias
6186
- layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
6187
- layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
6188
- layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
6192
+ layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
6193
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
6194
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
6189
6195
  } else {
6190
6196
  layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
6191
6197
 
@@ -6509,7 +6515,7 @@ static bool llm_load_tensors(
6509
6515
  layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
6510
6516
 
6511
6517
  layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
6512
- layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
6518
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
6513
6519
 
6514
6520
  layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
6515
6521
  layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
@@ -12172,6 +12178,10 @@ struct llm_build_context {
12172
12178
  LM_GGML_ASSERT(2 * d_model == d_inner);
12173
12179
  const int64_t d_state = hparams.ssm_d_state;
12174
12180
  const int64_t dt_rank = hparams.ssm_dt_rank;
12181
+ // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
12182
+ const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
12183
+ // Use the same RMS norm as the final layer norm
12184
+ const float norm_rms_eps = hparams.f_norm_rms_eps;
12175
12185
 
12176
12186
  struct lm_ggml_tensor * cur;
12177
12187
  struct lm_ggml_tensor * inpL;
@@ -12252,6 +12262,13 @@ struct llm_build_context {
12252
12262
  struct lm_ggml_tensor * B = lm_ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], lm_ggml_element_size(x_db)*dt_rank);
12253
12263
  struct lm_ggml_tensor * C = lm_ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], lm_ggml_element_size(x_db)*(dt_rank+d_state));
12254
12264
 
12265
+ // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
12266
+ if (ssm_dt_b_c_rms) {
12267
+ dt = lm_ggml_rms_norm(ctx0, dt, norm_rms_eps);
12268
+ B = lm_ggml_rms_norm(ctx0, B, norm_rms_eps);
12269
+ C = lm_ggml_rms_norm(ctx0, C, norm_rms_eps);
12270
+ }
12271
+
12255
12272
  // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
12256
12273
  dt = llm_build_lora_mm(lctx, ctx0, model.layers[il].ssm_dt, dt);
12257
12274
  dt = lm_ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
@@ -16116,6 +16133,9 @@ static lm_ggml_type llama_tensor_get_type(quantize_state_internal & qs, lm_ggml_
16116
16133
  case LM_GGML_TYPE_Q6_K: new_type = LM_GGML_TYPE_Q8_0; break;
16117
16134
  default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
16118
16135
  }
16136
+ if (tensor->ne[0] % lm_ggml_blck_size(new_type) != 0) {
16137
+ new_type = LM_GGML_TYPE_F16;
16138
+ }
16119
16139
  LLAMA_LOG_WARN(" - using fallback quantization %s\n", lm_ggml_type_name(new_type));
16120
16140
  ++qs.n_fallback;
16121
16141
  }
@@ -16444,8 +16464,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
16444
16464
  // do not quantize Mamba's small yet 2D weights
16445
16465
  // NOTE: can't use LLM_TN here because the layer number is not known
16446
16466
  quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
16447
- quantize &= name.find("ssm_x.weight") == std::string::npos;
16448
- quantize &= name.find("ssm_dt.weight") == std::string::npos;
16449
16467
 
16450
16468
  // do not quantize relative position bias (T5)
16451
16469
  quantize &= name.find("attn_rel_b.weight") == std::string::npos;
@@ -19541,6 +19559,10 @@ void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * can
19541
19559
  llama_sample_min_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
19542
19560
  }
19543
19561
 
19562
+ void llama_sample_xtc(struct llama_context * ctx, llama_token_data_array * candidates, float xtc_threshold, float xtc_probability, size_t min_keep, std::mt19937 rng){
19563
+ llama_sample_xtc_impl(ctx ? &ctx-> sampling: nullptr, candidates, xtc_threshold, xtc_probability, min_keep, rng);
19564
+ }
19565
+
19544
19566
  void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
19545
19567
  llama_sample_tail_free_impl(ctx ? &ctx->sampling : nullptr, candidates, z, min_keep);
19546
19568
  }
package/cpp/llama.h CHANGED
@@ -8,6 +8,7 @@
8
8
  #include <stdint.h>
9
9
  #include <stdio.h>
10
10
  #include <stdbool.h>
11
+ #include <random>
11
12
 
12
13
  #ifdef LLAMA_SHARED
13
14
  # if defined(_WIN32) && !defined(__MINGW32__)
@@ -1085,6 +1086,15 @@ extern "C" {
1085
1086
  float p,
1086
1087
  size_t min_keep);
1087
1088
 
1089
+ /// @details XTC sampling
1090
+ LLAMA_API void llama_sample_xtc(
1091
+ struct llama_context * ctx,
1092
+ llama_token_data_array * candidates,
1093
+ float xtc_threshold,
1094
+ float xtc_probability,
1095
+ size_t min_keep,
1096
+ std::mt19937 rng);
1097
+
1088
1098
  /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
1089
1099
  LLAMA_API void llama_sample_tail_free(
1090
1100
  struct llama_context * ctx,
package/cpp/sampling.cpp CHANGED
@@ -229,6 +229,7 @@ std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::strin
229
229
  // no reasons to expose this function in header
230
230
  static void sampler_queue(
231
231
  struct llama_context * ctx_main,
232
+ struct llama_sampling_context * ctx_sampling,
232
233
  const llama_sampling_params & params,
233
234
  llama_token_data_array & cur_p,
234
235
  size_t min_keep) {
@@ -238,6 +239,8 @@ static void sampler_queue(
238
239
  const int32_t top_k = params.top_k;
239
240
  const float top_p = params.top_p;
240
241
  const float min_p = params.min_p;
242
+ const float xtc_t = params.xtc_t;
243
+ const float xtc_p = params.xtc_p;
241
244
  const float tfs_z = params.tfs_z;
242
245
  const float typical_p = params.typical_p;
243
246
  const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
@@ -249,6 +252,7 @@ static void sampler_queue(
249
252
  case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
250
253
  case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
251
254
  case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
255
+ case llama_sampler_type::XTC : llama_sample_xtc (ctx_main, &cur_p, xtc_t, xtc_p, min_keep, ctx_sampling->rng); break;
252
256
  case llama_sampler_type::TEMPERATURE:
253
257
  if (dynatemp_range > 0) {
254
258
  float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
@@ -302,7 +306,7 @@ static llama_token llama_sampling_sample_impl(
302
306
  // temperature sampling
303
307
  size_t min_keep = std::max(1, params.min_keep);
304
308
 
305
- sampler_queue(ctx_main, params, cur_p, min_keep);
309
+ sampler_queue(ctx_main, ctx_sampling, params, cur_p, min_keep);
306
310
 
307
311
  id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
308
312
 
package/cpp/sampling.h CHANGED
@@ -14,6 +14,7 @@ enum class llama_sampler_type : char {
14
14
  TOP_K = 'k',
15
15
  TOP_P = 'p',
16
16
  MIN_P = 'm',
17
+ XTC = 'x',
17
18
  TFS_Z = 'f',
18
19
  TYPICAL_P = 'y',
19
20
  TEMPERATURE = 't'
@@ -27,6 +28,8 @@ typedef struct llama_sampling_params {
27
28
  int32_t top_k = 40; // <= 0 to use vocab size
28
29
  float top_p = 0.95f; // 1.0 = disabled
29
30
  float min_p = 0.05f; // 0.0 = disabled
31
+ float xtc_t = 0.0f; // 0.0 = disabled
32
+ float xtc_p = 0.0f; // controls the probability of XTC removal
30
33
  float tfs_z = 1.00f; // 1.0 = disabled
31
34
  float typical_p = 1.00f; // 1.0 = disabled
32
35
  float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
@@ -48,6 +51,7 @@ typedef struct llama_sampling_params {
48
51
  llama_sampler_type::TYPICAL_P,
49
52
  llama_sampler_type::TOP_P,
50
53
  llama_sampler_type::MIN_P,
54
+ llama_sampler_type::XTC,
51
55
  llama_sampler_type::TEMPERATURE
52
56
  };
53
57
 
@@ -1 +1 @@
1
- {"version":3,"names":["_reactNative","require","_default","TurboModuleRegistry","get","exports","default"],"sourceRoot":"..\\..\\src","sources":["NativeRNLlama.ts"],"mappings":";;;;;;AACA,IAAAA,YAAA,GAAAC,OAAA;AAAkD,IAAAC,QAAA,GA6JnCC,gCAAmB,CAACC,GAAG,CAAO,SAAS,CAAC;AAAAC,OAAA,CAAAC,OAAA,GAAAJ,QAAA"}
1
+ {"version":3,"names":["_reactNative","require","_default","TurboModuleRegistry","get","exports","default"],"sourceRoot":"..\\..\\src","sources":["NativeRNLlama.ts"],"mappings":";;;;;;AACA,IAAAA,YAAA,GAAAC,OAAA;AAAkD,IAAAC,QAAA,GA+JnCC,gCAAmB,CAACC,GAAG,CAAO,SAAS,CAAC;AAAAC,OAAA,CAAAC,OAAA,GAAAJ,QAAA"}
@@ -1 +1 @@
1
- {"version":3,"names":["TurboModuleRegistry","get"],"sourceRoot":"..\\..\\src","sources":["NativeRNLlama.ts"],"mappings":"AACA,SAASA,mBAAmB,QAAQ,cAAc;AA6JlD,eAAeA,mBAAmB,CAACC,GAAG,CAAO,SAAS,CAAC"}
1
+ {"version":3,"names":["TurboModuleRegistry","get"],"sourceRoot":"..\\..\\src","sources":["NativeRNLlama.ts"],"mappings":"AACA,SAASA,mBAAmB,QAAQ,cAAc;AA+JlD,eAAeA,mBAAmB,CAACC,GAAG,CAAO,SAAS,CAAC"}
@@ -25,6 +25,8 @@ export type NativeCompletionParams = {
25
25
  top_k?: number;
26
26
  top_p?: number;
27
27
  min_p?: number;
28
+ xtc_t?: number;
29
+ xtc_p?: number;
28
30
  tfs_z?: number;
29
31
  typical_p?: number;
30
32
  temperature?: number;
@@ -1 +1 @@
1
- {"version":3,"file":"NativeRNLlama.d.ts","sourceRoot":"","sources":["../../src/NativeRNLlama.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,WAAW,EAAE,MAAM,cAAc,CAAA;AAG/C,MAAM,MAAM,mBAAmB,GAAG;IAChC,KAAK,EAAE,MAAM,CAAA;IACb,cAAc,CAAC,EAAE,OAAO,CAAA;IAExB,SAAS,CAAC,EAAE,OAAO,CAAA;IAEnB,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,OAAO,CAAC,EAAE,MAAM,CAAA;IAEhB,SAAS,CAAC,EAAE,MAAM,CAAA;IAClB,YAAY,CAAC,EAAE,MAAM,CAAA;IAErB,SAAS,CAAC,EAAE,OAAO,CAAA;IACnB,QAAQ,CAAC,EAAE,OAAO,CAAA;IAClB,UAAU,CAAC,EAAE,OAAO,CAAA;IAEpB,IAAI,CAAC,EAAE,MAAM,CAAA;IACb,WAAW,CAAC,EAAE,MAAM,CAAA;IAEpB,cAAc,CAAC,EAAE,MAAM,CAAA;IACvB,eAAe,CAAC,EAAE,MAAM,CAAA;CACzB,CAAA;AAED,MAAM,MAAM,sBAAsB,GAAG;IACnC,MAAM,EAAE,MAAM,CAAA;IACd,OAAO,CAAC,EAAE,MAAM,CAAA;IAChB,IAAI,CAAC,EAAE,KAAK,CAAC,MAAM,CAAC,CAAA;IAEpB,SAAS,CAAC,EAAE,MAAM,CAAA;IAClB,SAAS,CAAC,EAAE,MAAM,CAAA;IAClB,OAAO,CAAC,EAAE,MAAM,CAAA;IAChB,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,SAAS,CAAC,EAAE,MAAM,CAAA;IAClB,WAAW,CAAC,EAAE,MAAM,CAAA;IACpB,cAAc,CAAC,EAAE,MAAM,CAAA;IACvB,cAAc,CAAC,EAAE,MAAM,CAAA;IACvB,YAAY,CAAC,EAAE,MAAM,CAAA;IACrB,eAAe,CAAC,EAAE,MAAM,CAAA;IACxB,QAAQ,CAAC,EAAE,MAAM,CAAA;IACjB,YAAY,CAAC,EAAE,MAAM,CAAA;IACrB,YAAY,CAAC,EAAE,MAAM,CAAA;IACrB,WAAW,CAAC,EAAE,OAAO,CAAA;IACrB,IAAI,CAAC,EAAE,MAAM,CAAA;IAEb,UAAU,CAAC,EAAE,OAAO,CAAA;IACpB,UAAU,CAAC,EAAE,KAAK,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAA;IAEjC,uBAAuB,EAAE,OAAO,CAAA;CACjC,CAAA;AAED,MAAM,MAAM,6BAA6B,GAAG;IAC1C,OAAO,EAAE,MAAM,CAAA;IACf,IAAI,EAAE,MAAM,CAAA;CACb,CAAA;AAED,MAAM,MAAM,yBAAyB,GAAG;IACtC,OAAO,EAAE,MAAM,CAAA;IACf,KAAK,EAAE,KAAK,CAAC,6BAA6B,CAAC,CAAA;CAC5C,CAAA;AAED,MAAM,MAAM,6BAA6B,GAAG;IAC1C,QAAQ,EAAE,MAAM,CAAA;IAChB,SAAS,EAAE,MAAM,CAAA;IACjB,mBAAmB,EAAE,MAAM,CAAA;IAC3B,iBAAiB,EAAE,MAAM,CAAA;IACzB,WAAW,EAAE,MAAM,CAAA;IACnB,YAAY,EAAE,MAAM,CAAA;IACpB,sBAAsB,EAAE,MAAM,CAAA;IAC9B,oBAAoB,EAAE,MAAM,CAAA;CAC7B,CAAA;AAED,MAAM,MAAM,sBAAsB,GAAG;IACnC,IAAI,EAAE,MAAM,CAAA;IAEZ,gBAAgB,EAAE,MAAM,CAAA;IACxB,gBAAgB,EAAE,MAAM,CAAA;IACxB,SAAS,EAAE,OAAO,CAAA;IAClB,WAAW,EAAE,OAAO,CAAA;IACpB,YAAY,EAAE,MAAM,CAAA;IACpB,aAAa,EAAE,MAAM,CAAA;IACrB,aAAa,EAAE,MAAM,CAAA;IACrB,aAAa,EAAE,MAAM,CAAA;IACrB,OAAO,EAAE,6BAA6B,CAAA;IAEtC,wBAAwB,CAAC,EAAE,KAAK,CAAC,yBAAyB,CAAC,CAAA;CAC5D,CAAA;AAED,MAAM,MAAM,oBAAoB,GAAG;IACjC,MAAM,EAAE,KAAK,CAAC,MAAM,CAAC,CAAA;CACtB,CAAA;AAED,MAAM,MAAM,qBAAqB,GAAG;IAClC,SAAS,EAAE,KAAK,CAAC,MAAM,CAAC,CAAA;CACzB,CAAA;AAED,MAAM,MAAM,kBAAkB,GAAG;IAC/B,SAAS,EAAE,MAAM,CAAA;IACjB,GAAG,EAAE,OAAO,CAAA;IACZ,WAAW,EAAE,MAAM,CAAA;IACnB,KAAK,EAAE,MAAM,CAAA;CACd,CAAA;AAED,MAAM,MAAM,uBAAuB,GAAG;IACpC,aAAa,EAAE,MAAM,CAAA;IACrB,MAAM,EAAE,MAAM,CAAA;CACf,CAAA;AAED,MAAM,MAAM,sBAAsB,GAAG;IACnC,IAAI,EAAE,MAAM,CAAA;IACZ,OAAO,EAAE,MAAM,CAAA;CAChB,CAAA;AAED,MAAM,WAAW,IAAK,SAAQ,WAAW;IACvC,eAAe,CAAC,KAAK,EAAE,MAAM,GAAG,OAAO,CAAC,IAAI,CAAC,CAAA;IAC7C,WAAW,CAAC,MAAM,EAAE,mBAAmB,GAAG,OAAO,CAAC,kBAAkB,CAAC,CAAA;IAErE,WAAW,CACT,SAAS,EAAE,MAAM,EACjB,QAAQ,EAAE,MAAM,GACf,OAAO,CAAC,uBAAuB,CAAC,CAAA;IACnC,WAAW,CACT,SAAS,EAAE,MAAM,EACjB,QAAQ,EAAE,MAAM,EAChB,IAAI,EAAE,MAAM,GACX,OAAO,CAAC,MAAM,CAAC,CAAA;IAClB,UAAU,CACR,SAAS,EAAE,MAAM,EACjB,MAAM,EAAE,sBAAsB,GAC7B,OAAO,CAAC,sBAAsB,CAAC,CAAA;IAClC,cAAc,CAAC,SAAS,EAAE,MAAM,GAAG,OAAO,CAAC,IAAI,CAAC,CAAA;IAChD,aAAa,CAAC,SAAS,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,GAAG,OAAO,CAAC,oBAAoB,CAAC,CAAA;IAC7E,YAAY,CAAC,SAAS,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,GAAG,oBAAoB,CAAA;IACnE,gBAAgB,CACd,SAAS,EAAE,MAAM,EACjB,QAAQ,EAAE,sBAAsB,EAAE,EAClC,YAAY,CAAC,EAAE,MAAM,GACpB,OAAO,CAAC,MAAM,CAAC,CAAA;IAClB,UAAU,CAAC,SAAS,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,CAAA;IAChE,SAAS,CAAC,SAAS,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,GAAG,OAAO,CAAC,qBAAqB,CAAC,CAAA;IAC1E,KAAK,CACH,SAAS,EAAE,MAAM,EACjB,EAAE,EAAE,MAAM,EACV,EAAE,EAAE,MAAM,EACV,EAAE,EAAE,MAAM,EACV,EAAE,EAAE,MAAM,GACT,OAAO,CAAC,MAAM,CAAC,CAAA;IAElB,cAAc,CAAC,SAAS,EAAE,MAAM,GAAG,OAAO,CAAC,IAAI,CAAC,CAAA;IAEhD,kBAAkB,IAAI,OAAO,CAAC,IAAI,CAAC,CAAA;CACpC;;AAED,wBAA+D"}
1
+ {"version":3,"file":"NativeRNLlama.d.ts","sourceRoot":"","sources":["../../src/NativeRNLlama.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,WAAW,EAAE,MAAM,cAAc,CAAA;AAG/C,MAAM,MAAM,mBAAmB,GAAG;IAChC,KAAK,EAAE,MAAM,CAAA;IACb,cAAc,CAAC,EAAE,OAAO,CAAA;IAExB,SAAS,CAAC,EAAE,OAAO,CAAA;IAEnB,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,OAAO,CAAC,EAAE,MAAM,CAAA;IAEhB,SAAS,CAAC,EAAE,MAAM,CAAA;IAClB,YAAY,CAAC,EAAE,MAAM,CAAA;IAErB,SAAS,CAAC,EAAE,OAAO,CAAA;IACnB,QAAQ,CAAC,EAAE,OAAO,CAAA;IAClB,UAAU,CAAC,EAAE,OAAO,CAAA;IAEpB,IAAI,CAAC,EAAE,MAAM,CAAA;IACb,WAAW,CAAC,EAAE,MAAM,CAAA;IAEpB,cAAc,CAAC,EAAE,MAAM,CAAA;IACvB,eAAe,CAAC,EAAE,MAAM,CAAA;CACzB,CAAA;AAED,MAAM,MAAM,sBAAsB,GAAG;IACnC,MAAM,EAAE,MAAM,CAAA;IACd,OAAO,CAAC,EAAE,MAAM,CAAA;IAChB,IAAI,CAAC,EAAE,KAAK,CAAC,MAAM,CAAC,CAAA;IAEpB,SAAS,CAAC,EAAE,MAAM,CAAA;IAClB,SAAS,CAAC,EAAE,MAAM,CAAA;IAClB,OAAO,CAAC,EAAE,MAAM,CAAA;IAChB,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,KAAK,CAAC,EAAE,MAAM,CAAA;IACd,SAAS,CAAC,EAAE,MAAM,CAAA;IAClB,WAAW,CAAC,EAAE,MAAM,CAAA;IACpB,cAAc,CAAC,EAAE,MAAM,CAAA;IACvB,cAAc,CAAC,EAAE,MAAM,CAAA;IACvB,YAAY,CAAC,EAAE,MAAM,CAAA;IACrB,eAAe,CAAC,EAAE,MAAM,CAAA;IACxB,QAAQ,CAAC,EAAE,MAAM,CAAA;IACjB,YAAY,CAAC,EAAE,MAAM,CAAA;IACrB,YAAY,CAAC,EAAE,MAAM,CAAA;IACrB,WAAW,CAAC,EAAE,OAAO,CAAA;IACrB,IAAI,CAAC,EAAE,MAAM,CAAA;IAEb,UAAU,CAAC,EAAE,OAAO,CAAA;IACpB,UAAU,CAAC,EAAE,KAAK,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,CAAA;IAEjC,uBAAuB,EAAE,OAAO,CAAA;CACjC,CAAA;AAED,MAAM,MAAM,6BAA6B,GAAG;IAC1C,OAAO,EAAE,MAAM,CAAA;IACf,IAAI,EAAE,MAAM,CAAA;CACb,CAAA;AAED,MAAM,MAAM,yBAAyB,GAAG;IACtC,OAAO,EAAE,MAAM,CAAA;IACf,KAAK,EAAE,KAAK,CAAC,6BAA6B,CAAC,CAAA;CAC5C,CAAA;AAED,MAAM,MAAM,6BAA6B,GAAG;IAC1C,QAAQ,EAAE,MAAM,CAAA;IAChB,SAAS,EAAE,MAAM,CAAA;IACjB,mBAAmB,EAAE,MAAM,CAAA;IAC3B,iBAAiB,EAAE,MAAM,CAAA;IACzB,WAAW,EAAE,MAAM,CAAA;IACnB,YAAY,EAAE,MAAM,CAAA;IACpB,sBAAsB,EAAE,MAAM,CAAA;IAC9B,oBAAoB,EAAE,MAAM,CAAA;CAC7B,CAAA;AAED,MAAM,MAAM,sBAAsB,GAAG;IACnC,IAAI,EAAE,MAAM,CAAA;IAEZ,gBAAgB,EAAE,MAAM,CAAA;IACxB,gBAAgB,EAAE,MAAM,CAAA;IACxB,SAAS,EAAE,OAAO,CAAA;IAClB,WAAW,EAAE,OAAO,CAAA;IACpB,YAAY,EAAE,MAAM,CAAA;IACpB,aAAa,EAAE,MAAM,CAAA;IACrB,aAAa,EAAE,MAAM,CAAA;IACrB,aAAa,EAAE,MAAM,CAAA;IACrB,OAAO,EAAE,6BAA6B,CAAA;IAEtC,wBAAwB,CAAC,EAAE,KAAK,CAAC,yBAAyB,CAAC,CAAA;CAC5D,CAAA;AAED,MAAM,MAAM,oBAAoB,GAAG;IACjC,MAAM,EAAE,KAAK,CAAC,MAAM,CAAC,CAAA;CACtB,CAAA;AAED,MAAM,MAAM,qBAAqB,GAAG;IAClC,SAAS,EAAE,KAAK,CAAC,MAAM,CAAC,CAAA;CACzB,CAAA;AAED,MAAM,MAAM,kBAAkB,GAAG;IAC/B,SAAS,EAAE,MAAM,CAAA;IACjB,GAAG,EAAE,OAAO,CAAA;IACZ,WAAW,EAAE,MAAM,CAAA;IACnB,KAAK,EAAE,MAAM,CAAA;CACd,CAAA;AAED,MAAM,MAAM,uBAAuB,GAAG;IACpC,aAAa,EAAE,MAAM,CAAA;IACrB,MAAM,EAAE,MAAM,CAAA;CACf,CAAA;AAED,MAAM,MAAM,sBAAsB,GAAG;IACnC,IAAI,EAAE,MAAM,CAAA;IACZ,OAAO,EAAE,MAAM,CAAA;CAChB,CAAA;AAED,MAAM,WAAW,IAAK,SAAQ,WAAW;IACvC,eAAe,CAAC,KAAK,EAAE,MAAM,GAAG,OAAO,CAAC,IAAI,CAAC,CAAA;IAC7C,WAAW,CAAC,MAAM,EAAE,mBAAmB,GAAG,OAAO,CAAC,kBAAkB,CAAC,CAAA;IAErE,WAAW,CACT,SAAS,EAAE,MAAM,EACjB,QAAQ,EAAE,MAAM,GACf,OAAO,CAAC,uBAAuB,CAAC,CAAA;IACnC,WAAW,CACT,SAAS,EAAE,MAAM,EACjB,QAAQ,EAAE,MAAM,EAChB,IAAI,EAAE,MAAM,GACX,OAAO,CAAC,MAAM,CAAC,CAAA;IAClB,UAAU,CACR,SAAS,EAAE,MAAM,EACjB,MAAM,EAAE,sBAAsB,GAC7B,OAAO,CAAC,sBAAsB,CAAC,CAAA;IAClC,cAAc,CAAC,SAAS,EAAE,MAAM,GAAG,OAAO,CAAC,IAAI,CAAC,CAAA;IAChD,aAAa,CAAC,SAAS,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,GAAG,OAAO,CAAC,oBAAoB,CAAC,CAAA;IAC7E,YAAY,CAAC,SAAS,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,GAAG,oBAAoB,CAAA;IACnE,gBAAgB,CACd,SAAS,EAAE,MAAM,EACjB,QAAQ,EAAE,sBAAsB,EAAE,EAClC,YAAY,CAAC,EAAE,MAAM,GACpB,OAAO,CAAC,MAAM,CAAC,CAAA;IAClB,UAAU,CAAC,SAAS,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,CAAA;IAChE,SAAS,CAAC,SAAS,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,GAAG,OAAO,CAAC,qBAAqB,CAAC,CAAA;IAC1E,KAAK,CACH,SAAS,EAAE,MAAM,EACjB,EAAE,EAAE,MAAM,EACV,EAAE,EAAE,MAAM,EACV,EAAE,EAAE,MAAM,EACV,EAAE,EAAE,MAAM,GACT,OAAO,CAAC,MAAM,CAAC,CAAA;IAElB,cAAc,CAAC,SAAS,EAAE,MAAM,GAAG,OAAO,CAAC,IAAI,CAAC,CAAA;IAEhD,kBAAkB,IAAI,OAAO,CAAC,IAAI,CAAC,CAAA;CACpC;;AAED,wBAA+D"}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "cui-llama.rn",
3
- "version": "1.0.11",
3
+ "version": "1.1.1",
4
4
  "description": "Fork of llama.rn for ChatterUI",
5
5
  "main": "lib/commonjs/index",
6
6
  "module": "lib/module/index",
@@ -35,6 +35,8 @@ export type NativeCompletionParams = {
35
35
  top_k?: number
36
36
  top_p?: number
37
37
  min_p?: number
38
+ xtc_t?: number
39
+ xtc_p?: number
38
40
  tfs_z?: number
39
41
  typical_p?: number
40
42
  temperature?: number // -> temp