cortex-react-components 1.64.1 → 1.65.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (165) hide show
  1. package/dist/{chunk-MUZO74UP.mjs → chunk-2VOU42KD.mjs} +1 -1
  2. package/dist/{chunk-PFWODHNV.mjs → chunk-3AUTMBDB.mjs} +1 -1
  3. package/dist/{chunk-X3MBDMXV.mjs → chunk-5ALQQYYE.mjs} +1 -1
  4. package/dist/{chunk-OT2LLDV2.mjs → chunk-65BHP4TM.mjs} +1 -1
  5. package/dist/{chunk-ROEJPYRW.mjs → chunk-77KWI6EL.mjs} +1 -1
  6. package/dist/{chunk-RWWF3HBN.mjs → chunk-B7STYVDB.mjs} +1 -1
  7. package/dist/{chunk-4XO4HI55.mjs → chunk-CDJP2IDQ.mjs} +1 -1
  8. package/dist/{chunk-VX4NPEMC.mjs → chunk-CJF6GVGP.mjs} +1 -1
  9. package/dist/{chunk-TASJS6US.mjs → chunk-COI2LCY2.mjs} +1 -1
  10. package/dist/chunk-DVF55CWB.mjs +4 -0
  11. package/dist/{chunk-UM3WHBE7.mjs → chunk-DVGPU4EL.mjs} +1 -1
  12. package/dist/{chunk-RVI4KPBJ.mjs → chunk-EVVDCPEA.mjs} +1 -1
  13. package/dist/{chunk-YQ2YVQBS.mjs → chunk-FN5C27GW.mjs} +1 -1
  14. package/dist/{chunk-5LF662B4.mjs → chunk-FSYU3D5O.mjs} +1 -1
  15. package/dist/{chunk-UVPODMUO.mjs → chunk-FYEE5UWZ.mjs} +1 -1
  16. package/dist/{chunk-QZJGH4W6.mjs → chunk-GHXEOXV4.mjs} +1 -1
  17. package/dist/{chunk-VXGRJCCM.mjs → chunk-IC57R2EU.mjs} +1 -1
  18. package/dist/{chunk-XGEMVLT5.mjs → chunk-IH37BDR2.mjs} +1 -1
  19. package/dist/chunk-IPVKFQEY.mjs +4 -0
  20. package/dist/{chunk-X7PHWC2I.mjs → chunk-JLCWVIEP.mjs} +1 -1
  21. package/dist/{chunk-3HDDBU3J.mjs → chunk-KEM3XJKI.mjs} +1 -1
  22. package/dist/{chunk-ELPMUABW.mjs → chunk-KGSTIGCT.mjs} +1 -1
  23. package/dist/{chunk-SVYUY3VF.mjs → chunk-L5MDFQGH.mjs} +1 -1
  24. package/dist/{chunk-WLA5QCBE.mjs → chunk-MQRRCCAR.mjs} +1 -1
  25. package/dist/{chunk-Y7TUU6BG.mjs → chunk-MUBDAI2K.mjs} +1 -1
  26. package/dist/{chunk-HQTSD5A3.mjs → chunk-NP2M5K7O.mjs} +1 -1
  27. package/dist/{chunk-ISYJGX2I.mjs → chunk-NUQ6Z3WQ.mjs} +1 -1
  28. package/dist/{chunk-ZKU7UP6U.mjs → chunk-OMVXDUX7.mjs} +1 -1
  29. package/dist/{chunk-DAJNZDN6.mjs → chunk-PBRC3UOA.mjs} +1 -1
  30. package/dist/{chunk-KETV2XVN.mjs → chunk-SX5U74MW.mjs} +1 -1
  31. package/dist/{chunk-6BZPTAOQ.mjs → chunk-T5W5LMEK.mjs} +1 -1
  32. package/dist/{chunk-666KIWPS.mjs → chunk-T6W76EOH.mjs} +1 -1
  33. package/dist/{chunk-PEL6QUMS.mjs → chunk-U7Q6ZRR3.mjs} +1 -1
  34. package/dist/{chunk-VT6DWUPF.mjs → chunk-UDQTFQR7.mjs} +1 -1
  35. package/dist/chunk-URPKAQGD.mjs +1 -0
  36. package/dist/{chunk-ERUB6LU6.mjs → chunk-VGQTRTPZ.mjs} +1 -1
  37. package/dist/{chunk-MDEYJGAN.mjs → chunk-WPL2QWNG.mjs} +1 -1
  38. package/dist/{chunk-TYROOO53.mjs → chunk-X4Q7WZZS.mjs} +1 -1
  39. package/dist/{chunk-B7VQUUH3.mjs → chunk-YGFSXGAJ.mjs} +1 -1
  40. package/dist/{chunk-CXZGSPKM.mjs → chunk-YPK6OLRS.mjs} +1 -1
  41. package/dist/{chunk-G72SIYN7.mjs → chunk-ZAXQ74I3.mjs} +1 -1
  42. package/dist/{chunk-Z6NED523.mjs → chunk-ZY2PDUUB.mjs} +1 -1
  43. package/dist/components/Blocks/Banner.mjs +1 -1
  44. package/dist/components/Blocks/CallToAction.mjs +1 -1
  45. package/dist/components/Blocks/CallToAction.stories.mjs +1 -1
  46. package/dist/components/Blocks/CollapsibleArea.mjs +1 -1
  47. package/dist/components/Blocks/CollapsibleArea.stories.mjs +1 -1
  48. package/dist/components/Blocks/Content.mjs +1 -1
  49. package/dist/components/Blocks/Content.stories.mjs +1 -1
  50. package/dist/components/Blocks/FeaturesBlock.mjs +1 -1
  51. package/dist/components/Blocks/FeaturesBlock.stories.mjs +1 -1
  52. package/dist/components/Blocks/ImageBlock.mjs +1 -1
  53. package/dist/components/Blocks/MediaBlock.mjs +1 -1
  54. package/dist/components/Blocks/RelatedPosts.mjs +1 -1
  55. package/dist/components/Blocks/RenderBlocks.mjs +1 -1
  56. package/dist/components/Blocks/ReusableContentBlock.mjs +1 -1
  57. package/dist/components/Blocks/index.mjs +1 -1
  58. package/dist/components/CRM/CogeBoard.js +1 -1
  59. package/dist/components/CRM/CogeBoard.mjs +1 -1
  60. package/dist/components/CRM/CogeBoard.stories.js +1 -1
  61. package/dist/components/CRM/CogeBoard.stories.mjs +1 -1
  62. package/dist/components/CRM/DealDetails.js +1 -1
  63. package/dist/components/CRM/DealDetails.mjs +1 -1
  64. package/dist/components/CRM/DealDetails.stories.js +1 -1
  65. package/dist/components/CRM/DealDetails.stories.mjs +1 -1
  66. package/dist/components/CRM/KanbanBoard.js +1 -1
  67. package/dist/components/CRM/KanbanBoard.mjs +1 -1
  68. package/dist/components/CRM/KanbanBoard.stories.js +1 -1
  69. package/dist/components/CRM/KanbanBoard.stories.mjs +1 -1
  70. package/dist/components/CRM/KanbanColumn.mjs +1 -1
  71. package/dist/components/CRM/KanbanColumn.stories.mjs +1 -1
  72. package/dist/components/CRM/NewCustomerForm.mjs +1 -1
  73. package/dist/components/CRM/NewCustomerForm.stories.mjs +1 -1
  74. package/dist/components/CRM/NewDealForm.mjs +1 -1
  75. package/dist/components/CRM/NewDealForm.stories.mjs +1 -1
  76. package/dist/components/CRM/index.js +1 -1
  77. package/dist/components/CRM/index.mjs +1 -1
  78. package/dist/components/Cards/ContentCard.mjs +1 -1
  79. package/dist/components/Cards/ContentCard.stories.mjs +1 -1
  80. package/dist/components/Cards/FeatureCard.mjs +1 -1
  81. package/dist/components/Cards/FeatureCard.stories.mjs +1 -1
  82. package/dist/components/Cards/index.mjs +1 -1
  83. package/dist/components/DigitalColleagues/AddEpicModal.stories.mjs +1 -1
  84. package/dist/components/DigitalColleagues/KanbanBoard.mjs +1 -1
  85. package/dist/components/DigitalColleagues/KanbanBoard.stories.mjs +1 -1
  86. package/dist/components/DigitalColleagues/TaskDetailsModal.mjs +1 -1
  87. package/dist/components/DigitalColleagues/TaskDetailsModal.stories.mjs +1 -1
  88. package/dist/components/DigitalColleagues/TaskSidebar.mjs +1 -1
  89. package/dist/components/DigitalColleagues/TaskSidebar.stories.mjs +1 -1
  90. package/dist/components/HeaderFooter/SectionHeading.mjs +1 -1
  91. package/dist/components/Heros/HighImpact/index.mjs +1 -1
  92. package/dist/components/Heros/LowImpact/index.mjs +1 -1
  93. package/dist/components/Heros/MediumImpact/index.mjs +1 -1
  94. package/dist/components/Heros/PostHero/index.mjs +1 -1
  95. package/dist/components/Heros/RenderHero.mjs +1 -1
  96. package/dist/components/Heros/index.mjs +1 -1
  97. package/dist/components/Holidays/HolidayTracker.mjs +1 -1
  98. package/dist/components/Holidays/HolidayTracker.stories.mjs +1 -1
  99. package/dist/components/Holidays/index.mjs +1 -1
  100. package/dist/components/Layouts/FeatureGrid.stories.mjs +1 -1
  101. package/dist/components/Layouts/OutputHeaderFooter.mjs +1 -1
  102. package/dist/components/Layouts/Print.mjs +1 -1
  103. package/dist/components/Layouts/Print.stories.mjs +1 -1
  104. package/dist/components/Layouts/SlideShow.mjs +1 -1
  105. package/dist/components/Layouts/SlideShow.stories.mjs +1 -1
  106. package/dist/components/Layouts/index.mjs +1 -1
  107. package/dist/components/Payload/Card/index.mjs +1 -1
  108. package/dist/components/Payload/CollectionArchive/index.mjs +1 -1
  109. package/dist/components/Payload/Media/index.mjs +1 -1
  110. package/dist/components/Payload/RichText/index.mjs +1 -1
  111. package/dist/components/Payload/RichText/serialize.mjs +1 -1
  112. package/dist/components/Payload/RichText.stories.mjs +1 -1
  113. package/dist/components/Payload/index.mjs +1 -1
  114. package/dist/components/index.js +9 -8
  115. package/dist/components/index.mjs +1 -1
  116. package/dist/components/ui/index.d.ts +1 -0
  117. package/dist/components/ui/index.js +2 -1
  118. package/dist/components/ui/index.mjs +1 -1
  119. package/dist/components/ui/tabs.css +1 -0
  120. package/dist/components/ui/tabs.d.ts +7 -0
  121. package/dist/components/ui/tabs.js +4 -0
  122. package/dist/components/ui/tabs.mjs +2 -0
  123. package/dist/globals.css +1 -1
  124. package/dist/index.js +14 -13
  125. package/dist/index.mjs +1 -1
  126. package/dist/metafile-cjs.json +1 -1
  127. package/dist/metafile-esm.json +1 -1
  128. package/dist/pages/Blog.js +1 -1
  129. package/dist/pages/Blog.mjs +1 -1
  130. package/dist/pages/Blog.stories.js +1 -1
  131. package/dist/pages/Blog.stories.mjs +1 -1
  132. package/dist/pages/IndexPage.mjs +1 -1
  133. package/dist/pages/IndexPage.stories.mjs +1 -1
  134. package/dist/pages/LandingPage.mjs +1 -1
  135. package/dist/pages/LandingPage.stories.mjs +1 -1
  136. package/dist/pages/Page.mjs +1 -1
  137. package/dist/pages/Page.stories.js +8 -8
  138. package/dist/pages/Page.stories.mjs +1 -1
  139. package/dist/pages/Printable.stories.mjs +1 -1
  140. package/dist/pages/Publish.mjs +1 -1
  141. package/dist/pages/Publish.stories.mjs +1 -1
  142. package/dist/pages/Website.mjs +1 -1
  143. package/dist/pages/Website.stories.mjs +1 -1
  144. package/dist/sections/AboutSection.mjs +1 -1
  145. package/dist/sections/AboutSection.stories.mjs +1 -1
  146. package/dist/sections/BlogDetail.mjs +1 -1
  147. package/dist/sections/BlogDetail.stories.mjs +1 -1
  148. package/dist/sections/BlogList.mjs +1 -1
  149. package/dist/sections/BlogList.stories.mjs +1 -1
  150. package/dist/sections/ContactSection.mjs +1 -1
  151. package/dist/sections/ContactSection.stories.mjs +1 -1
  152. package/dist/sections/ImageSection.stories.mjs +1 -1
  153. package/dist/sections/PageSections.mjs +1 -1
  154. package/dist/sections/PageSections.stories.mjs +1 -1
  155. package/dist/sections/PricingSection.mjs +1 -1
  156. package/dist/sections/PricingSection.stories.mjs +1 -1
  157. package/dist/sections/ServiceDetail.mjs +1 -1
  158. package/dist/sections/ServiceDetailSection.mjs +1 -1
  159. package/dist/sections/ServiceDetailSection.stories.mjs +1 -1
  160. package/dist/sections/ServiceSection.mjs +1 -1
  161. package/dist/sections/ServiceSection.stories.mjs +1 -1
  162. package/dist/sections/index.mjs +1 -1
  163. package/package.json +2 -1
  164. package/dist/chunk-MEWCJ4MA.mjs +0 -1
  165. package/dist/chunk-OIQ6GXBY.mjs +0 -4
@@ -1 +1 @@
1
- import{a as t}from"../chunk-YQ2YVQBS.mjs";import"../chunk-RWWF3HBN.mjs";import"../chunk-WU3JMLSC.mjs";import"../chunk-BZAYEKYC.mjs";import"../chunk-KML6U7IE.mjs";import"../chunk-MCEK7XUK.mjs";import"../chunk-JHTGGDU5.mjs";import"../chunk-DOJR2RDB.mjs";import"../chunk-64UGFPFV.mjs";import"../chunk-KHGZULZP.mjs";import"../chunk-K4RVBOIC.mjs";import"../chunk-MU4ETGDT.mjs";import"../chunk-BMN3FVZS.mjs";import"../chunk-63W64WWD.mjs";import"../chunk-IKTCLX2C.mjs";import"../chunk-OGZERPA4.mjs";import"../chunk-6T322YHB.mjs";import"../chunk-KJIBE57R.mjs";import"../chunk-CX4XB5W2.mjs";import"../chunk-EECIYMTX.mjs";import"../chunk-YNNW2C2U.mjs";import"../chunk-ZJ56IQPQ.mjs";import"../chunk-X3MBDMXV.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-VXGRJCCM.mjs";import"../chunk-DAJNZDN6.mjs";import"../chunk-KETV2XVN.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import"../chunk-M6LJ4BNZ.mjs";import{jsx as l}from"react/jsx-runtime";var i={title:"Example Pages/Blog",component:t,tags:["autodocs"],parameters:{nextjs:{appDirectory:!0},docs:{description:{component:"Example Blog page."}}}};var e={args:{hero:{type:"postHero",post:{id:"1",title:"Sample Post Title",categories:[{id:"1",title:"Category 1"},{id:"2",title:"Category 2"}],meta:{image:{url:"stock1.jpg"}},populatedAuthors:[{id:"1",name:"Author 1",avatar:{id:"1",url:"/path/to/avatar1.jpg",alt:"Author 1 Avatar"}},{id:"2",name:"Author 2",avatar:{id:"2",url:"/path/to/avatar2.jpg",alt:"Author 2 Avatar"}}],publishedAt:"2023-10-01T12:00:00Z",content:"Sample post content..."}},blog:{edit:!0,categoryList:{title:"Categories",links:[{label:"Category 1",href:1},{label:"Category 2",href:2},{label:"Category 3",href:3}]},page:{id:2,title:"Test Post 2",content:{root:{type:"root",format:"",indent:0,version:1,children:[{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus lacinia odio vitae vestibulum vestibulum. Cras vehicula, libero a pharetra dictum, urna lectus porttitor lacus, at dapibus justo quam vel metus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Sed non velit nec arcu volutpat dignissim in a lorem.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:"Proin sagittis sem et elit fringilla, nec fringilla eros maximus. Nulla facilisi. Ut sit amet facilisis lectus. Fusce ornare metus at ante tristique, nec elementum eros fermentum. Integer volutpat magna sed justo tincidunt, sit amet aliquam arcu pellentesque. Phasellus imperdiet mi vitae ligula pharetra, a dignissim velit vehicula.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:"Suspendisse potenti. Donec malesuada arcu at velit laoreet convallis. Sed at eros vel lacus varius varius nec id metus. Praesent faucibus, orci a varius dapibus, lorem libero convallis est, et consequat libero magna sit amet risus. Maecenas tincidunt erat et felis sodales, nec malesuada sem tincidunt. Duis sed nisl euismod, ullamcorper augue at, rutrum felis.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:"Aenean ut ligula ac libero vehicula luctus. Integer ultricies nisl id mi dictum, eget tincidunt augue interdum. Sed eu malesuada erat. Nam fringilla lectus id dolor gravida lacinia. Aliquam erat volutpat. Vestibulum nec ipsum vitae elit dapibus suscipit vel at ipsum.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr"}},relatedPosts:[],categories:[{id:1,title:"Test Category 1",slug:"test-category-1",updatedAt:"2025-01-06T20:16:54.416Z",createdAt:"2025-01-06T20:16:54.416Z",_status:"published"}],meta:{title:"Test Post 1",image:null,description:null},publishedAt:"2025-01-06T20:17:25.595Z",authors:[{id:1,name:"Rob",jobRole:null,profilePicture:null,workHistory:[],certifications:[],areasOfExpertise:[],dateOfBirth:null,joinDate:null,role:"admin",sub:null,updatedAt:"2025-01-06T20:16:54.416Z",createdAt:"2025-01-06T20:16:54.416Z",enableAPIKey:null,apiKey:null,email:"rob@sdsdd.com",loginAttempts:0},{id:2,name:"Dave",jobRole:null,profilePicture:null,workHistory:[],certifications:[],areasOfExpertise:[],dateOfBirth:null,joinDate:null,role:"admin",sub:null,updatedAt:"2025-01-06T20:16:54.416Z",createdAt:"2025-01-06T20:16:54.416Z",enableAPIKey:null,apiKey:null,email:"rob@sdsdd.com",loginAttempts:0}],populatedAuthors:[{id:1,name:"Rob Ellison"}],publishedToWebsite:!1,slug:"test-post-2",slugLock:!0,updatedAt:"2025-01-06T20:17:31.465Z",createdAt:"2025-01-06T20:17:27.818Z",_status:"published"}}}},n={args:{...e.args,hero:{...e.args.hero,post:{...e.args.hero.post,title:"Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas."}}}},o={args:{...e.args,blog:{edit:!0,categoryList:{title:"Categories",links:[{label:"Category 1",href:1},{label:"Category 2",href:2},{label:"Category 3",href:3}]},page:{id:3,title:"FinOps-enhanced GenAI: Inform, Optimise, Operate, Innovate",content:{root:{type:"root",format:"",indent:0,version:1,children:[{tag:"h4",type:"heading",format:"start",indent:0,version:1,children:[{mode:"normal",text:"The Next Wave of IT Innovation: Generative AI",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"quote",format:"start",indent:0,version:1,children:[{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"\u201CGenerative AI could expand to 10-12% of total information-technology hardware, software, services, advertising, and gaming expenditures by 2032 from less than 1% today, according to our analysis. Training of AI platforms (creating a machine-learning model using large datasets) will be key, driven initially by spending on servers and storage and eventually by cloud-related infrastructure\u201D Bloomberg, 8th March 2024",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Over the past six months, we have seen an increase in boardroom discussions about AI solutions. This is a clear indication that leadership recognises AI's transformative potential to enhance business operations and deliver significant value. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"However, as exciting as these possibilities are, we must not overlook a critical factor: ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"cost",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:".",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:"ltr",textStyle:"",textFormat:0},{tag:"h4",type:"heading",format:"",indent:0,version:1,children:[{mode:"normal",text:"Drive cost awareness in generative AI with FinOps",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"From a cost perspective, generative AI tools and applications follow the same principles as every other digital product implemented in the cloud.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Organisations will use their existing FinOps processes and tools to:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Ingest and normalise cost and usage data",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Allocate and share the cost of cloud services",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Manage spend anomalies",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:4,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Define a budget for cloud spend and forecast digital product costs",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"When approaching generative AI, the main cost that a FinOps team should focus on is the one the organisation will be charged for model inference and customisation.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{mode:"normal",text:"This expense is caused by the consumption of computing resources every time an LLM is given an input (or prompt) in order to produce an output (or completion).",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Generative AI models break down text data into units called tokens for processing. The way text data is converted into tokens depends on the tokenizer used. A token can be characters, words, or phrases. Generative AI usually charges by every 1000 tokens of input (prompt) and output (response): i.e.:",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"An application developer makes the following API calls to Amazon Bedrock in the US West (Oregon) Region: a request to Anthropic\u2019s Claude model to summarise an input of 11K tokens of input text to an output of 4K tokens. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Total cost incurred = 11K tokens/1000 x $0.008 + 4K tokens/1000 x $0.024 = $0.088 + $0.096 = ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"$0.184",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:"ltr",textStyle:"",textFormat:0},{tag:"h4",type:"heading",format:"",indent:0,version:1,children:[{mode:"normal",text:"Cost-Effective GenAI: Design for Efficiency",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"The cost optimisation techniques supported by FinOps translate perfectly to the realm of generative AI. Just like any cloud-based service, GenAI tools incur ongoing expenses that require careful management. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"FinOps tenets like rightsizing resources, leveraging automation for cost control, and negotiating committed-use discounts with cloud providers can effectively be applied to GenAI. However, since inference is a major cost driver for GenAI products, we must architect solutions accurately. This ensures prompts minimise token counts while maintaining desired response accuracy, and uses the appropriate foundational model for maximum value.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"To illustrate a poorly architected solution's cost impact, consider 200 large text documents (around 10,000 tokens each) containing detailed information on a specific topic. For each document, we want to distil the information into a concise summary and generate additional content based on that summary.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Lazy option",type:"text",style:"",detail:0,format:1,version:1},{type:"linebreak",version:1},{mode:"normal",text:"We decide to utilise the Claude 3 Sonnet model from AWS Bedrock, which would perform the task and produce 1000 tokens output",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Total cost = Claude (0.003 x 10 + 0.015 x 1) = 0.045$ for a single inference x 200 = ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"9$ for 200 summaries",type:"text",style:"",detail:0,format:1,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Well-architected option",type:"text",style:"",detail:0,format:1,version:1},{type:"linebreak",version:1},{mode:"normal",text:"We decide to implement a model chaining pattern, to separate the summarisation and the content creation stages. A simple Mistral 8*7B would create a 500 output tokens per document, feeding into Claude 3 Sonnet, to produce the same 1000 tokens output",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Total cost = Mistral (0.00045 x 10 + 0.0007 x 0.5) + Claude (0.003 x 0.5 + 0.015 x 1) = 0.021$ for a single inference x 200 = ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"4.2$ for 200 summaries",type:"text",style:"",detail:0,format:1,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"By carefully designing the solution (model selection and chaining), we achieved a ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"46% cost saving",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" without compromising accuracy.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"When building a chaining model for your AI implementation, using the right LLM at each stage is key to keeping costs low. For example, if you have to implement ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"pre-scanning",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" and ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"post-scanning",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" of a user inference, each potentially requires a separate LLM. ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"A poorly architected chaining model can incur LLM charges that are ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"100 times higher",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" than necessary.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Here are a few ideas for a well-architected AI pattern:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Use smaller, task-specific models for pre-scanning (intent) and post-scanning (response generation). This leverages their strengths and avoids paying for unnecessary capabilities.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Hard-code common responses (confirmations, refusals, etc.) to eliminate LLM usage entirely.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pre-compute responses for limited user inputs (e.g. category selections) and store them for retrieval, minimising real-time LLM calls.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{type:"linebreak",version:1},{mode:"normal",text:"Let us look at another scenario: ",type:"text",style:"",detail:0,format:1,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"An e-commerce chatbot is designed to handle customer inquiries about product availability and order status. ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:1},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Poorly Architected Approach",type:"text",style:"",detail:0,format:9,version:1}],direction:"ltr",textStyle:"",textFormat:9},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Single Powerful LLM",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"The developers use a single, powerful LLM for both pre-scanning and post-scanning ($0.06 per 1,000 tokens). This LLM requires processing 100 tokens per user interaction (including the user's question and the system's response). ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"High Cost: Every user interaction, even simple ones, requires processing by this expensive LLM. This translates to a cost of $0.06 per 1,000 tokens x 100 tokens/interaction = $0.006 per interaction.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Cost Breakdown",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:1},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Assuming the chatbot handles 10,000 interactions per day, the daily cost would be $0.006/interaction x 10,000 interactions = $60.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"This translates to a monthly cost of $60/day x 30 days = ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"$1800",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:".",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Well-Architected Approach",type:"text",style:"",detail:0,format:9,version:1}],direction:"ltr",textStyle:"",textFormat:9},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Specialised LLMs",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pre-scanning: A smaller LLM, optimised for intent recognition, analyses the user's question. It requires just 20 tokens for processing and costs $0.003 per 1,000 tokens.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Post-scanning: Another, even smaller LLM, retrieves product information and order details from the database and generates a concise response, requiring 50 tokens. This LLM costs $0.006 per 1,000 tokens.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:4,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Hard-coding: The chatbot is programmed with pre-defined responses for common inquiries, eliminating LLM processing for these interactions altogether. Cost is null.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:5,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pre-computing: For product categories with a limited number of options, pre-generated responses for availability can be stored. The chatbot retrieves the appropriate response based on user selection, further minimising LLM usage. Cost is also null.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Cost Breakdown",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:1},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pre-scanning LLM: $.003 per 1,000 tokens x 20 tokens/interaction = $0.00006 per interaction ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Post-scanning LLM: $.006 per 1,000 tokens x 50 tokens/interaction = $0.0003 per interaction",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Hard-coded and pre-computed responses: $0 cost",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Assuming an even split between pre-scanning and post-scanning interactions (5,000 each per day), the total daily cost becomes:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pre-scanning cost: $0.00006/interaction x 5,000 interactions = $0.3",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Post-scanning cost: $0.0003/interaction x 5,000 interactions = $1.5",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Hard-coded/pre-computed responses: $0 cost",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Combined, the daily cost is $1.8. This translates to a monthly cost of $1.8/day x 30 days = ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"$54",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:".",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"By implementing a ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"well-architected",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" design, this example demonstrates a potential ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"97% reduction",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" in monthly costs ($1800 vs $54) by using specialised LLMs, hard-coded responses, and pre-computed responses. This highlights the substantial financial benefits of a well-architected chaining model for your AI chatbot.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"A further approach to enhancing performance and minimising the total cost of ownership (TCO) for GenAI products is ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"Retrieval-Augmented Generation",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" (RAG). RAG optimises the workload for foundational models by pre-selecting relevant information. Instead of requiring the expensive generative model to process information from scratch, RAG efficiently reduces the volume of text the model needs to handle. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"This is achieved by first retrieving pertinent information from a knowledge base or corpus, and then augmenting the generative model with this pre-selected, relevant context only. By avoiding the need to process irrelevant information, RAG leads to fewer tokens being processed by the costly model, subsequently lowering inference costs while maintaining high-quality outputs.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"However, to implement RAG a number of Cloud services (compute, storage, network, etc) need to be deployed, and this will increase the overall TCO for the implementation, as explored in detail further below.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:"ltr",textStyle:"",textFormat:0},{tag:"h4",type:"heading",format:"",indent:0,version:1,children:[{mode:"normal",text:"The right model for the right application",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Various models come with diverse computational needs and functionalities. Opting for a model that aligns well with the project's objectives, without overcomplicating with unnecessary features, can notably reduce overall expenses.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"The factors that may influence the choice of a Generative AI foundational model for your application are multiple, i.e.:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Task type",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Accuracy",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Performance",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:4,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Supported number of input/output tokens",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:5,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Multi-language support",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Considering such factors is key to ensure the maximisation of business value of the generative AI application because, even within a single family of models, there is a wide range of options available, each with a significantly different cost associated with it.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Let\u2019s take the AWS offering as an example below which displays On-demand and batch pricing for Anthropic AI models on AWS Bedrock. ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"table",format:"",indent:0,version:1,children:[{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Model",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:3,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Price per 1,000 input tokens",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:1,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" Price per 1,000 output tokens",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:1,backgroundColor:null}],direction:"ltr"},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Claude Instant",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"$0.0008",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.0024",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null}],direction:null},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Claude 2.0/2.1 ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.008 ",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.024",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null}],direction:null},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Claude 3 Opus ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.015 ",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.075",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null}],direction:null},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Claude 3 Sonnet ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.003",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.015",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null}],direction:null},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Claude 3 Haiku ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.00025 ",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.00125",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null}],direction:null}],colWidths:[199,323,347],direction:null},{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:"The price difference between Claude Instant and Opus models is significant. The table below explores the reasons behind this. ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"table",format:"",indent:0,version:1,children:[{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Model",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:3,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Max Tokens",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:1}],direction:"ltr",headerState:1,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Languages",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:1}],direction:"ltr",headerState:1,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Use Cases",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:1}],direction:"ltr",headerState:1,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0}],direction:"ltr",headerState:1,backgroundColor:null}],direction:"ltr"},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Instant ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"100K",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"English and multiple other languages",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Casual dialogue, text analysis, summarisation, and document comprehension.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null}],direction:"ltr"},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Opus ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"200K",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"English, Spanish, Japanese, and multiple other languages ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Task automation, interactive coding, research review, brainstorming and hypothesis generation, advanced analysis of charts and graphs, financials and market trends, forecasting",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null}],direction:"ltr"}],colWidths:[92,110,152,552,552],direction:null},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"The pricing data highlights the importance of selecting the appropriate model for your use case. Opting for the wrong model could result in costs that are nearly 20 times higher than necessary, significantly impacting the overall implementation expenses.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Larger and more complex models like GPT-3 or PaLM require significantly more computational resources for training and inference, leading to higher costs. Selecting a smaller, more efficient model can reduce costs if the application does not require the full capabilities of a larger model. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"For instance, Anthropic Claude 3 Sonnet, with its larger context size of 12K tokens, excels at complex tasks like dialogues and creative content generation but costs $0.003 per 1K tokens on Amazon Bedrock. In contrast, the simpler Amazon Titan Text Express, suitable for summarisation and basic text generation, is nearly four times cheaper at $0.0008 per 1K tokens. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Considering this, if we want to implement a digital platform that aggregates news articles from various sources and delivers curated content to users based on their preferences and interests, the Amazon Titan Text might be the right foundational model of choice to optimise costs.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Another example: let us consider the use case of building an AI assistant for customer service. The OpenAI GPT-3 Davinci model, with its impressive language understanding and generation capabilities, might seem like a natural choice. However, at $0.06 per 1,000 input tokens and $0.06 per 1,000 output tokens, it could quickly become cost-prohibitive for high-volume interactions. On the other hand, the more specialised Anthropic Claude Instant, designed for conversational AI, offers a more cost-effective solution at $0.0008 per 1,000 input tokens and $0.0024 per 1,000 output tokens. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Given the requirement for real-time, interactive responses in customer service scenarios, the Claude Instant model could potentially deliver the necessary performance at a fraction of the cost, making it the more suitable option for this particular implementation.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{tag:"h4",type:"heading",format:"",indent:0,version:1,children:[{mode:"normal",text:"There are more costs to consider",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Frequently, when integrating generative AI services within an organisation, it is required to provide domain context to a Generative AI foundation model. This need arises in various scenarios where the model must produce outputs tailored to a specific domain or industry.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"As explained before, a Retrieval-Augmented Generation (RAG) approach can help provide domain context to a generative AI foundation model. RAG is a technique that combines a pre-trained language model (like GPT-3 or BERT) with a retrieval system (like a search engine or knowledge base). The retrieval system is used to fetch relevant documents or passages from a corpus of domain-specific data, which can then be used to augment the context provided to the language model.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"However, it is important to note that the implementation of such process will need several additional cloud services for each step, i.e.:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Data storage ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"AWS S3, Azure Storage Account or GCP bucket ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Data Cleanup ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"AWS Glue, Azure ML studio or Vertex AI",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Vector embedding ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"AWS OpenSearch with k-nn, Azure CosmosDB for PostgreSQL or Vertex AI Vector Search",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"To manage the TCO of the AI implementation there are standard optimisation patterns that can be applied to these services:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Tiered Storage ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"Leverage cost-effective storage options like lifecycle management policies in AWS S3, Azure Blob Storage Archive tier in Azure Storage Account, or Coldline storage class in GCP buckets to archive infrequently accessed data.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Serverless Data Processing ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"Explore serverless data processing services like AWS Glue ETL jobs or Azure Data Factory pipelines to clean and prepare data efficiently, minimising resource usage.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pay-per-use Vector Embedding ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"Utilise managed services with pay-per-use pricing models, like Amazon OpenSearch with Elasticsearch Service for vector embedding and k-nearest neighbours search or consider cost-effective alternatives like Faiss for GPU-based similarity search within Azure Cognitive Services.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:4,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Automated Training Pipelines ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"Consider Vertex AI Pipelines in GCP or Azure Machine Learning pipelines to automate and potentially optimise training workflows for the RAG model, potentially reducing training costs. Explore SageMaker Neo for efficient model deployment on AWS or leverage cost-effective containerisation technologies like Docker for deployment across cloud providers.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{tag:"h4",type:"heading",format:"",indent:0,version:1,children:[{mode:"normal",text:"Conclusion",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"As AI workloads continue to grow in complexity and scale, effective FinOps practices become increasingly crucial for organisations to manage their cloud costs and optimise resource utilisation. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"By adopting the right AI architectural patterns, implementing cost monitoring and optimisation strategies, organisations can strike the right balance between innovation and fiscal responsibility.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Embracing FinOps principles enables organisations to future-proof their AI investments, ensuring sustainable growth and a competitive edge in the rapidly evolving AI landscape.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr"}},relatedPosts:[],categories:[{id:2,title:"FinOps",parent:null,breadcrumbs:[{id:"677a812ddf2f2500016a05f5",doc:2,url:null,label:"FinOps"}],updatedAt:"2025-01-05T12:55:09.500Z",createdAt:"2025-01-05T12:55:09.480Z"}],meta:{title:"FinOps-enhanced GenAI | Cortex Reply | AI that works for you",image:{id:119,alt:"FinOps-enhanced GenAI: Inform, Optimise, Operate, Innovate",prefix:"media",updatedAt:"2025-04-01T09:06:10.720Z",createdAt:"2025-04-01T09:06:07.529Z",url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu.jpg",thumbnailURL:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-300x200.jpg",filename:"zZpFFeluQXVexiYXUJ6lu.jpg",mimeType:"image/jpeg",filesize:227036,width:2121,height:1414,focalX:50,focalY:50,sizes:{thumbnail:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-300x200.jpg",width:300,height:200,mimeType:"image/jpeg",filesize:6658,filename:"zZpFFeluQXVexiYXUJ6lu-300x200.jpg"},square:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-500x500.jpg",width:500,height:500,mimeType:"image/jpeg",filesize:35848,filename:"zZpFFeluQXVexiYXUJ6lu-500x500.jpg"},small:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-600x400.jpg",width:600,height:400,mimeType:"image/jpeg",filesize:27963,filename:"zZpFFeluQXVexiYXUJ6lu-600x400.jpg"},medium:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-900x600.jpg",width:900,height:600,mimeType:"image/jpeg",filesize:59628,filename:"zZpFFeluQXVexiYXUJ6lu-900x600.jpg"},large:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-1400x933.jpg",width:1400,height:933,mimeType:"image/jpeg",filesize:121948,filename:"zZpFFeluQXVexiYXUJ6lu-1400x933.jpg"},xlarge:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-1920x1280.jpg",width:1920,height:1280,mimeType:"image/jpeg",filesize:195431,filename:"zZpFFeluQXVexiYXUJ6lu-1920x1280.jpg"}}},description:"See how FinOps enhances GenAI by optimising costs, boosting efficiency, and driving innovation with informed financial and operational strategies."},publishedAt:"2025-02-18T16:04:50.489Z",authors:[{id:16,name:"Derek Ho",email:"d.ho@reply.com",jobRole:"SC2",manager:2,about:"Senior AI & Cloud Consultant",profilePicture:12,workHistory:[],certifications:[],areasOfExpertise:[],dateOfBirth:"2020-10-15T12:00:00.000Z",joinDate:"2021-08-09T12:00:00.000Z",linkedIn:"www.linkedin.com/in/derekmhho",role:"user",updatedAt:"2025-03-17T09:43:57.552Z",createdAt:"2025-01-13T10:49:09.359Z",enableAPIKey:null,apiKey:null},{id:12,name:"Ben Num",email:"b.num@reply.com",jobRole:"C2",manager:3,about:null,profilePicture:15,workHistory:[],certifications:[],areasOfExpertise:[],dateOfBirth:"2025-12-29T12:00:00.000Z",joinDate:"2023-09-11T12:00:00.000Z",linkedIn:null,role:"user",updatedAt:"2025-02-12T15:25:13.837Z",createdAt:"2025-01-10T14:07:25.875Z",enableAPIKey:null,apiKey:null}],populatedAuthors:[{id:"16",name:"Derek Ho"},{id:"12",name:"Ben Num"}],slug:"finops-enhanced-genai-inform-optimise-operate-innovate",slugLock:!0,updatedAt:"2025-04-01T10:03:00.931Z",createdAt:"2025-03-31T20:28:04.118Z"}}}};export{n as AReallyLongTitle,e as Default,o as LotsOfFormatting,i as default};
1
+ import{a as t}from"../chunk-FN5C27GW.mjs";import"../chunk-B7STYVDB.mjs";import"../chunk-WU3JMLSC.mjs";import"../chunk-BZAYEKYC.mjs";import"../chunk-KML6U7IE.mjs";import"../chunk-MCEK7XUK.mjs";import"../chunk-JHTGGDU5.mjs";import"../chunk-DVF55CWB.mjs";import"../chunk-DOJR2RDB.mjs";import"../chunk-64UGFPFV.mjs";import"../chunk-KHGZULZP.mjs";import"../chunk-K4RVBOIC.mjs";import"../chunk-63W64WWD.mjs";import"../chunk-IKTCLX2C.mjs";import"../chunk-MU4ETGDT.mjs";import"../chunk-BMN3FVZS.mjs";import"../chunk-OGZERPA4.mjs";import"../chunk-6T322YHB.mjs";import"../chunk-CX4XB5W2.mjs";import"../chunk-EECIYMTX.mjs";import"../chunk-KJIBE57R.mjs";import"../chunk-YNNW2C2U.mjs";import"../chunk-ZJ56IQPQ.mjs";import"../chunk-5ALQQYYE.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-IC57R2EU.mjs";import"../chunk-PBRC3UOA.mjs";import"../chunk-SX5U74MW.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import"../chunk-M6LJ4BNZ.mjs";import{jsx as l}from"react/jsx-runtime";var i={title:"Example Pages/Blog",component:t,tags:["autodocs"],parameters:{nextjs:{appDirectory:!0},docs:{description:{component:"Example Blog page."}}}};var e={args:{hero:{type:"postHero",post:{id:"1",title:"Sample Post Title",categories:[{id:"1",title:"Category 1"},{id:"2",title:"Category 2"}],meta:{image:{url:"stock1.jpg"}},populatedAuthors:[{id:"1",name:"Author 1",avatar:{id:"1",url:"/path/to/avatar1.jpg",alt:"Author 1 Avatar"}},{id:"2",name:"Author 2",avatar:{id:"2",url:"/path/to/avatar2.jpg",alt:"Author 2 Avatar"}}],publishedAt:"2023-10-01T12:00:00Z",content:"Sample post content..."}},blog:{edit:!0,categoryList:{title:"Categories",links:[{label:"Category 1",href:1},{label:"Category 2",href:2},{label:"Category 3",href:3}]},page:{id:2,title:"Test Post 2",content:{root:{type:"root",format:"",indent:0,version:1,children:[{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus lacinia odio vitae vestibulum vestibulum. Cras vehicula, libero a pharetra dictum, urna lectus porttitor lacus, at dapibus justo quam vel metus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Sed non velit nec arcu volutpat dignissim in a lorem.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:"Proin sagittis sem et elit fringilla, nec fringilla eros maximus. Nulla facilisi. Ut sit amet facilisis lectus. Fusce ornare metus at ante tristique, nec elementum eros fermentum. Integer volutpat magna sed justo tincidunt, sit amet aliquam arcu pellentesque. Phasellus imperdiet mi vitae ligula pharetra, a dignissim velit vehicula.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:"Suspendisse potenti. Donec malesuada arcu at velit laoreet convallis. Sed at eros vel lacus varius varius nec id metus. Praesent faucibus, orci a varius dapibus, lorem libero convallis est, et consequat libero magna sit amet risus. Maecenas tincidunt erat et felis sodales, nec malesuada sem tincidunt. Duis sed nisl euismod, ullamcorper augue at, rutrum felis.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:"Aenean ut ligula ac libero vehicula luctus. Integer ultricies nisl id mi dictum, eget tincidunt augue interdum. Sed eu malesuada erat. Nam fringilla lectus id dolor gravida lacinia. Aliquam erat volutpat. Vestibulum nec ipsum vitae elit dapibus suscipit vel at ipsum.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr"}},relatedPosts:[],categories:[{id:1,title:"Test Category 1",slug:"test-category-1",updatedAt:"2025-01-06T20:16:54.416Z",createdAt:"2025-01-06T20:16:54.416Z",_status:"published"}],meta:{title:"Test Post 1",image:null,description:null},publishedAt:"2025-01-06T20:17:25.595Z",authors:[{id:1,name:"Rob",jobRole:null,profilePicture:null,workHistory:[],certifications:[],areasOfExpertise:[],dateOfBirth:null,joinDate:null,role:"admin",sub:null,updatedAt:"2025-01-06T20:16:54.416Z",createdAt:"2025-01-06T20:16:54.416Z",enableAPIKey:null,apiKey:null,email:"rob@sdsdd.com",loginAttempts:0},{id:2,name:"Dave",jobRole:null,profilePicture:null,workHistory:[],certifications:[],areasOfExpertise:[],dateOfBirth:null,joinDate:null,role:"admin",sub:null,updatedAt:"2025-01-06T20:16:54.416Z",createdAt:"2025-01-06T20:16:54.416Z",enableAPIKey:null,apiKey:null,email:"rob@sdsdd.com",loginAttempts:0}],populatedAuthors:[{id:1,name:"Rob Ellison"}],publishedToWebsite:!1,slug:"test-post-2",slugLock:!0,updatedAt:"2025-01-06T20:17:31.465Z",createdAt:"2025-01-06T20:17:27.818Z",_status:"published"}}}},n={args:{...e.args,hero:{...e.args.hero,post:{...e.args.hero.post,title:"Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas."}}}},o={args:{...e.args,blog:{edit:!0,categoryList:{title:"Categories",links:[{label:"Category 1",href:1},{label:"Category 2",href:2},{label:"Category 3",href:3}]},page:{id:3,title:"FinOps-enhanced GenAI: Inform, Optimise, Operate, Innovate",content:{root:{type:"root",format:"",indent:0,version:1,children:[{tag:"h4",type:"heading",format:"start",indent:0,version:1,children:[{mode:"normal",text:"The Next Wave of IT Innovation: Generative AI",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"quote",format:"start",indent:0,version:1,children:[{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"\u201CGenerative AI could expand to 10-12% of total information-technology hardware, software, services, advertising, and gaming expenditures by 2032 from less than 1% today, according to our analysis. Training of AI platforms (creating a machine-learning model using large datasets) will be key, driven initially by spending on servers and storage and eventually by cloud-related infrastructure\u201D Bloomberg, 8th March 2024",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Over the past six months, we have seen an increase in boardroom discussions about AI solutions. This is a clear indication that leadership recognises AI's transformative potential to enhance business operations and deliver significant value. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"However, as exciting as these possibilities are, we must not overlook a critical factor: ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"cost",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:".",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:"ltr",textStyle:"",textFormat:0},{tag:"h4",type:"heading",format:"",indent:0,version:1,children:[{mode:"normal",text:"Drive cost awareness in generative AI with FinOps",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"From a cost perspective, generative AI tools and applications follow the same principles as every other digital product implemented in the cloud.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Organisations will use their existing FinOps processes and tools to:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Ingest and normalise cost and usage data",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Allocate and share the cost of cloud services",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Manage spend anomalies",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:4,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Define a budget for cloud spend and forecast digital product costs",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"When approaching generative AI, the main cost that a FinOps team should focus on is the one the organisation will be charged for model inference and customisation.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{mode:"normal",text:"This expense is caused by the consumption of computing resources every time an LLM is given an input (or prompt) in order to produce an output (or completion).",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Generative AI models break down text data into units called tokens for processing. The way text data is converted into tokens depends on the tokenizer used. A token can be characters, words, or phrases. Generative AI usually charges by every 1000 tokens of input (prompt) and output (response): i.e.:",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"An application developer makes the following API calls to Amazon Bedrock in the US West (Oregon) Region: a request to Anthropic\u2019s Claude model to summarise an input of 11K tokens of input text to an output of 4K tokens. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Total cost incurred = 11K tokens/1000 x $0.008 + 4K tokens/1000 x $0.024 = $0.088 + $0.096 = ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"$0.184",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:"ltr",textStyle:"",textFormat:0},{tag:"h4",type:"heading",format:"",indent:0,version:1,children:[{mode:"normal",text:"Cost-Effective GenAI: Design for Efficiency",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"The cost optimisation techniques supported by FinOps translate perfectly to the realm of generative AI. Just like any cloud-based service, GenAI tools incur ongoing expenses that require careful management. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"FinOps tenets like rightsizing resources, leveraging automation for cost control, and negotiating committed-use discounts with cloud providers can effectively be applied to GenAI. However, since inference is a major cost driver for GenAI products, we must architect solutions accurately. This ensures prompts minimise token counts while maintaining desired response accuracy, and uses the appropriate foundational model for maximum value.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"To illustrate a poorly architected solution's cost impact, consider 200 large text documents (around 10,000 tokens each) containing detailed information on a specific topic. For each document, we want to distil the information into a concise summary and generate additional content based on that summary.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Lazy option",type:"text",style:"",detail:0,format:1,version:1},{type:"linebreak",version:1},{mode:"normal",text:"We decide to utilise the Claude 3 Sonnet model from AWS Bedrock, which would perform the task and produce 1000 tokens output",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Total cost = Claude (0.003 x 10 + 0.015 x 1) = 0.045$ for a single inference x 200 = ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"9$ for 200 summaries",type:"text",style:"",detail:0,format:1,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Well-architected option",type:"text",style:"",detail:0,format:1,version:1},{type:"linebreak",version:1},{mode:"normal",text:"We decide to implement a model chaining pattern, to separate the summarisation and the content creation stages. A simple Mistral 8*7B would create a 500 output tokens per document, feeding into Claude 3 Sonnet, to produce the same 1000 tokens output",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Total cost = Mistral (0.00045 x 10 + 0.0007 x 0.5) + Claude (0.003 x 0.5 + 0.015 x 1) = 0.021$ for a single inference x 200 = ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"4.2$ for 200 summaries",type:"text",style:"",detail:0,format:1,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"By carefully designing the solution (model selection and chaining), we achieved a ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"46% cost saving",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" without compromising accuracy.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"When building a chaining model for your AI implementation, using the right LLM at each stage is key to keeping costs low. For example, if you have to implement ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"pre-scanning",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" and ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"post-scanning",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" of a user inference, each potentially requires a separate LLM. ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"A poorly architected chaining model can incur LLM charges that are ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"100 times higher",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" than necessary.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Here are a few ideas for a well-architected AI pattern:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Use smaller, task-specific models for pre-scanning (intent) and post-scanning (response generation). This leverages their strengths and avoids paying for unnecessary capabilities.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Hard-code common responses (confirmations, refusals, etc.) to eliminate LLM usage entirely.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pre-compute responses for limited user inputs (e.g. category selections) and store them for retrieval, minimising real-time LLM calls.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{type:"linebreak",version:1},{mode:"normal",text:"Let us look at another scenario: ",type:"text",style:"",detail:0,format:1,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"An e-commerce chatbot is designed to handle customer inquiries about product availability and order status. ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:1},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Poorly Architected Approach",type:"text",style:"",detail:0,format:9,version:1}],direction:"ltr",textStyle:"",textFormat:9},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Single Powerful LLM",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"The developers use a single, powerful LLM for both pre-scanning and post-scanning ($0.06 per 1,000 tokens). This LLM requires processing 100 tokens per user interaction (including the user's question and the system's response). ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"High Cost: Every user interaction, even simple ones, requires processing by this expensive LLM. This translates to a cost of $0.06 per 1,000 tokens x 100 tokens/interaction = $0.006 per interaction.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Cost Breakdown",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:1},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Assuming the chatbot handles 10,000 interactions per day, the daily cost would be $0.006/interaction x 10,000 interactions = $60.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"This translates to a monthly cost of $60/day x 30 days = ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"$1800",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:".",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Well-Architected Approach",type:"text",style:"",detail:0,format:9,version:1}],direction:"ltr",textStyle:"",textFormat:9},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Specialised LLMs",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pre-scanning: A smaller LLM, optimised for intent recognition, analyses the user's question. It requires just 20 tokens for processing and costs $0.003 per 1,000 tokens.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Post-scanning: Another, even smaller LLM, retrieves product information and order details from the database and generates a concise response, requiring 50 tokens. This LLM costs $0.006 per 1,000 tokens.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:4,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Hard-coding: The chatbot is programmed with pre-defined responses for common inquiries, eliminating LLM processing for these interactions altogether. Cost is null.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:5,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pre-computing: For product categories with a limited number of options, pre-generated responses for availability can be stored. The chatbot retrieves the appropriate response based on user selection, further minimising LLM usage. Cost is also null.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Cost Breakdown",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:1},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pre-scanning LLM: $.003 per 1,000 tokens x 20 tokens/interaction = $0.00006 per interaction ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Post-scanning LLM: $.006 per 1,000 tokens x 50 tokens/interaction = $0.0003 per interaction",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Hard-coded and pre-computed responses: $0 cost",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Assuming an even split between pre-scanning and post-scanning interactions (5,000 each per day), the total daily cost becomes:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pre-scanning cost: $0.00006/interaction x 5,000 interactions = $0.3",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Post-scanning cost: $0.0003/interaction x 5,000 interactions = $1.5",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Hard-coded/pre-computed responses: $0 cost",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Combined, the daily cost is $1.8. This translates to a monthly cost of $1.8/day x 30 days = ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"$54",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:".",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"By implementing a ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"well-architected",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" design, this example demonstrates a potential ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"97% reduction",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" in monthly costs ($1800 vs $54) by using specialised LLMs, hard-coded responses, and pre-computed responses. This highlights the substantial financial benefits of a well-architected chaining model for your AI chatbot.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"A further approach to enhancing performance and minimising the total cost of ownership (TCO) for GenAI products is ",type:"text",style:"",detail:0,format:0,version:1},{mode:"normal",text:"Retrieval-Augmented Generation",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:" (RAG). RAG optimises the workload for foundational models by pre-selecting relevant information. Instead of requiring the expensive generative model to process information from scratch, RAG efficiently reduces the volume of text the model needs to handle. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"This is achieved by first retrieving pertinent information from a knowledge base or corpus, and then augmenting the generative model with this pre-selected, relevant context only. By avoiding the need to process irrelevant information, RAG leads to fewer tokens being processed by the costly model, subsequently lowering inference costs while maintaining high-quality outputs.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"However, to implement RAG a number of Cloud services (compute, storage, network, etc) need to be deployed, and this will increase the overall TCO for the implementation, as explored in detail further below.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:"ltr",textStyle:"",textFormat:0},{tag:"h4",type:"heading",format:"",indent:0,version:1,children:[{mode:"normal",text:"The right model for the right application",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Various models come with diverse computational needs and functionalities. Opting for a model that aligns well with the project's objectives, without overcomplicating with unnecessary features, can notably reduce overall expenses.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"The factors that may influence the choice of a Generative AI foundational model for your application are multiple, i.e.:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Task type",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Accuracy",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Performance",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:4,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Supported number of input/output tokens",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:5,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Multi-language support",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Considering such factors is key to ensure the maximisation of business value of the generative AI application because, even within a single family of models, there is a wide range of options available, each with a significantly different cost associated with it.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Let\u2019s take the AWS offering as an example below which displays On-demand and batch pricing for Anthropic AI models on AWS Bedrock. ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"table",format:"",indent:0,version:1,children:[{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Model",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:3,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Price per 1,000 input tokens",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:1,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" Price per 1,000 output tokens",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:1,backgroundColor:null}],direction:"ltr"},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Claude Instant",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"$0.0008",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.0024",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null}],direction:null},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Claude 2.0/2.1 ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.008 ",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.024",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null}],direction:null},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Claude 3 Opus ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.015 ",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.075",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null}],direction:null},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Claude 3 Sonnet ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.003",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.015",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null}],direction:null},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Claude 3 Haiku ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.00025 ",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:" $0.00125",type:"text",style:"",detail:0,format:0,version:1}],direction:null,textStyle:"",textFormat:0}],direction:null,headerState:0,backgroundColor:null}],direction:null}],colWidths:[199,323,347],direction:null},{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:"The price difference between Claude Instant and Opus models is significant. The table below explores the reasons behind this. ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{type:"table",format:"",indent:0,version:1,children:[{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Model",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:3,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Max Tokens",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:1}],direction:"ltr",headerState:1,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Languages",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:1}],direction:"ltr",headerState:1,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Use Cases",type:"text",style:"",detail:0,format:1,version:1}],direction:"ltr",textStyle:"",textFormat:1}],direction:"ltr",headerState:1,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0}],direction:"ltr",headerState:1,backgroundColor:null}],direction:"ltr"},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Instant ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"100K",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"English and multiple other languages",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Casual dialogue, text analysis, summarisation, and document comprehension.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null}],direction:"ltr"},{type:"tablerow",format:"",indent:0,version:1,children:[{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Opus ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:2,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"200K",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"English, Spanish, Japanese, and multiple other languages ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"center",indent:0,version:1,children:[{mode:"normal",text:"Task automation, interactive coding, research review, brainstorming and hypothesis generation, advanced analysis of charts and graphs, financials and market trends, forecasting",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null},{type:"tablecell",format:"",indent:0,colSpan:1,rowSpan:1,version:1,children:[{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0}],direction:"ltr",headerState:0,backgroundColor:null}],direction:"ltr"}],colWidths:[92,110,152,552,552],direction:null},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"The pricing data highlights the importance of selecting the appropriate model for your use case. Opting for the wrong model could result in costs that are nearly 20 times higher than necessary, significantly impacting the overall implementation expenses.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Larger and more complex models like GPT-3 or PaLM require significantly more computational resources for training and inference, leading to higher costs. Selecting a smaller, more efficient model can reduce costs if the application does not require the full capabilities of a larger model. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"For instance, Anthropic Claude 3 Sonnet, with its larger context size of 12K tokens, excels at complex tasks like dialogues and creative content generation but costs $0.003 per 1K tokens on Amazon Bedrock. In contrast, the simpler Amazon Titan Text Express, suitable for summarisation and basic text generation, is nearly four times cheaper at $0.0008 per 1K tokens. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Considering this, if we want to implement a digital platform that aggregates news articles from various sources and delivers curated content to users based on their preferences and interests, the Amazon Titan Text might be the right foundational model of choice to optimise costs.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Another example: let us consider the use case of building an AI assistant for customer service. The OpenAI GPT-3 Davinci model, with its impressive language understanding and generation capabilities, might seem like a natural choice. However, at $0.06 per 1,000 input tokens and $0.06 per 1,000 output tokens, it could quickly become cost-prohibitive for high-volume interactions. On the other hand, the more specialised Anthropic Claude Instant, designed for conversational AI, offers a more cost-effective solution at $0.0008 per 1,000 input tokens and $0.0024 per 1,000 output tokens. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Given the requirement for real-time, interactive responses in customer service scenarios, the Claude Instant model could potentially deliver the necessary performance at a fraction of the cost, making it the more suitable option for this particular implementation.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{tag:"h4",type:"heading",format:"",indent:0,version:1,children:[{mode:"normal",text:"There are more costs to consider",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"Frequently, when integrating generative AI services within an organisation, it is required to provide domain context to a Generative AI foundation model. This need arises in various scenarios where the model must produce outputs tailored to a specific domain or industry.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"As explained before, a Retrieval-Augmented Generation (RAG) approach can help provide domain context to a generative AI foundation model. RAG is a technique that combines a pre-trained language model (like GPT-3 or BERT) with a retrieval system (like a search engine or knowledge base). The retrieval system is used to fetch relevant documents or passages from a corpus of domain-specific data, which can then be used to augment the context provided to the language model.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"However, it is important to note that the implementation of such process will need several additional cloud services for each step, i.e.:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Data storage ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"AWS S3, Azure Storage Account or GCP bucket ",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Data Cleanup ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"AWS Glue, Azure ML studio or Vertex AI",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Vector embedding ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"AWS OpenSearch with k-nn, Azure CosmosDB for PostgreSQL or Vertex AI Vector Search",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"To manage the TCO of the AI implementation there are standard optimisation patterns that can be applied to these services:",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{tag:"ul",type:"list",start:1,format:"",indent:0,version:1,children:[{type:"listitem",value:1,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Tiered Storage ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"Leverage cost-effective storage options like lifecycle management policies in AWS S3, Azure Blob Storage Archive tier in Azure Storage Account, or Coldline storage class in GCP buckets to archive infrequently accessed data.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:2,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Serverless Data Processing ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"Explore serverless data processing services like AWS Glue ETL jobs or Azure Data Factory pipelines to clean and prepare data efficiently, minimising resource usage.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:3,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Pay-per-use Vector Embedding ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"Utilise managed services with pay-per-use pricing models, like Amazon OpenSearch with Elasticsearch Service for vector embedding and k-nearest neighbours search or consider cost-effective alternatives like Faiss for GPU-based similarity search within Azure Cognitive Services.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"listitem",value:4,format:"start",indent:0,version:1,children:[{mode:"normal",text:"Automated Training Pipelines ",type:"text",style:"",detail:0,format:1,version:1},{mode:"normal",text:"Consider Vertex AI Pipelines in GCP or Azure Machine Learning pipelines to automate and potentially optimise training workflows for the RAG model, potentially reducing training costs. Explore SageMaker Neo for efficient model deployment on AWS or leverage cost-effective containerisation technologies like Docker for deployment across cloud providers.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"}],listType:"bullet",direction:"ltr"},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:null,textStyle:"",textFormat:0},{tag:"h4",type:"heading",format:"",indent:0,version:1,children:[{mode:"normal",text:"Conclusion",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr"},{type:"paragraph",format:"start",indent:0,version:1,children:[{mode:"normal",text:"As AI workloads continue to grow in complexity and scale, effective FinOps practices become increasingly crucial for organisations to manage their cloud costs and optimise resource utilisation. ",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"By adopting the right AI architectural patterns, implementing cost monitoring and optimisation strategies, organisations can strike the right balance between innovation and fiscal responsibility.",type:"text",style:"",detail:0,format:0,version:1},{type:"linebreak",version:1},{type:"linebreak",version:1},{mode:"normal",text:"Embracing FinOps principles enables organisations to future-proof their AI investments, ensuring sustainable growth and a competitive edge in the rapidly evolving AI landscape.",type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0},{type:"paragraph",format:"",indent:0,version:1,children:[],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr"}},relatedPosts:[],categories:[{id:2,title:"FinOps",parent:null,breadcrumbs:[{id:"677a812ddf2f2500016a05f5",doc:2,url:null,label:"FinOps"}],updatedAt:"2025-01-05T12:55:09.500Z",createdAt:"2025-01-05T12:55:09.480Z"}],meta:{title:"FinOps-enhanced GenAI | Cortex Reply | AI that works for you",image:{id:119,alt:"FinOps-enhanced GenAI: Inform, Optimise, Operate, Innovate",prefix:"media",updatedAt:"2025-04-01T09:06:10.720Z",createdAt:"2025-04-01T09:06:07.529Z",url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu.jpg",thumbnailURL:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-300x200.jpg",filename:"zZpFFeluQXVexiYXUJ6lu.jpg",mimeType:"image/jpeg",filesize:227036,width:2121,height:1414,focalX:50,focalY:50,sizes:{thumbnail:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-300x200.jpg",width:300,height:200,mimeType:"image/jpeg",filesize:6658,filename:"zZpFFeluQXVexiYXUJ6lu-300x200.jpg"},square:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-500x500.jpg",width:500,height:500,mimeType:"image/jpeg",filesize:35848,filename:"zZpFFeluQXVexiYXUJ6lu-500x500.jpg"},small:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-600x400.jpg",width:600,height:400,mimeType:"image/jpeg",filesize:27963,filename:"zZpFFeluQXVexiYXUJ6lu-600x400.jpg"},medium:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-900x600.jpg",width:900,height:600,mimeType:"image/jpeg",filesize:59628,filename:"zZpFFeluQXVexiYXUJ6lu-900x600.jpg"},large:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-1400x933.jpg",width:1400,height:933,mimeType:"image/jpeg",filesize:121948,filename:"zZpFFeluQXVexiYXUJ6lu-1400x933.jpg"},xlarge:{url:"/api/media/file/zZpFFeluQXVexiYXUJ6lu-1920x1280.jpg",width:1920,height:1280,mimeType:"image/jpeg",filesize:195431,filename:"zZpFFeluQXVexiYXUJ6lu-1920x1280.jpg"}}},description:"See how FinOps enhances GenAI by optimising costs, boosting efficiency, and driving innovation with informed financial and operational strategies."},publishedAt:"2025-02-18T16:04:50.489Z",authors:[{id:16,name:"Derek Ho",email:"d.ho@reply.com",jobRole:"SC2",manager:2,about:"Senior AI & Cloud Consultant",profilePicture:12,workHistory:[],certifications:[],areasOfExpertise:[],dateOfBirth:"2020-10-15T12:00:00.000Z",joinDate:"2021-08-09T12:00:00.000Z",linkedIn:"www.linkedin.com/in/derekmhho",role:"user",updatedAt:"2025-03-17T09:43:57.552Z",createdAt:"2025-01-13T10:49:09.359Z",enableAPIKey:null,apiKey:null},{id:12,name:"Ben Num",email:"b.num@reply.com",jobRole:"C2",manager:3,about:null,profilePicture:15,workHistory:[],certifications:[],areasOfExpertise:[],dateOfBirth:"2025-12-29T12:00:00.000Z",joinDate:"2023-09-11T12:00:00.000Z",linkedIn:null,role:"user",updatedAt:"2025-02-12T15:25:13.837Z",createdAt:"2025-01-10T14:07:25.875Z",enableAPIKey:null,apiKey:null}],populatedAuthors:[{id:"16",name:"Derek Ho"},{id:"12",name:"Ben Num"}],slug:"finops-enhanced-genai-inform-optimise-operate-innovate",slugLock:!0,updatedAt:"2025-04-01T10:03:00.931Z",createdAt:"2025-03-31T20:28:04.118Z"}}}};export{n as AReallyLongTitle,e as Default,o as LotsOfFormatting,i as default};
@@ -1,2 +1,2 @@
1
1
  "use client";
2
- "use strict";import{a}from"../chunk-37NBXA5G.mjs";import"../chunk-ZKU7UP6U.mjs";import"../chunk-Z6NED523.mjs";import"../chunk-EPTHSTUM.mjs";import"../chunk-53QLSQCO.mjs";import"../chunk-UMBMLD26.mjs";import"../chunk-JCH2CCQ7.mjs";import"../chunk-RVRIMD6M.mjs";import"../chunk-UF3I2XE2.mjs";import"../chunk-GXC2S7UQ.mjs";import"../chunk-RYZTCMVC.mjs";import"../chunk-6BZPTAOQ.mjs";import"../chunk-X7PHWC2I.mjs";import"../chunk-5LF662B4.mjs";import"../chunk-X3MBDMXV.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-VXGRJCCM.mjs";import"../chunk-DAJNZDN6.mjs";import"../chunk-KETV2XVN.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-ANTK5LAD.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-IQPZEEYJ.mjs";import"../chunk-H7D3PZKE.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import"../chunk-M6LJ4BNZ.mjs";export{a as default};
2
+ "use strict";import{a}from"../chunk-37NBXA5G.mjs";import"../chunk-OMVXDUX7.mjs";import"../chunk-ZY2PDUUB.mjs";import"../chunk-EPTHSTUM.mjs";import"../chunk-53QLSQCO.mjs";import"../chunk-UMBMLD26.mjs";import"../chunk-JCH2CCQ7.mjs";import"../chunk-RVRIMD6M.mjs";import"../chunk-UF3I2XE2.mjs";import"../chunk-GXC2S7UQ.mjs";import"../chunk-RYZTCMVC.mjs";import"../chunk-T5W5LMEK.mjs";import"../chunk-JLCWVIEP.mjs";import"../chunk-FSYU3D5O.mjs";import"../chunk-5ALQQYYE.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-IC57R2EU.mjs";import"../chunk-PBRC3UOA.mjs";import"../chunk-SX5U74MW.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-ANTK5LAD.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-IQPZEEYJ.mjs";import"../chunk-H7D3PZKE.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import"../chunk-M6LJ4BNZ.mjs";export{a as default};
@@ -1 +1 @@
1
- import{a as n}from"../chunk-6AFX6PFG.mjs";import{a as r}from"../chunk-37NBXA5G.mjs";import"../chunk-ZKU7UP6U.mjs";import"../chunk-Z6NED523.mjs";import"../chunk-EPTHSTUM.mjs";import"../chunk-53QLSQCO.mjs";import"../chunk-UMBMLD26.mjs";import"../chunk-JCH2CCQ7.mjs";import"../chunk-RVRIMD6M.mjs";import"../chunk-UF3I2XE2.mjs";import"../chunk-GXC2S7UQ.mjs";import"../chunk-RYZTCMVC.mjs";import"../chunk-6BZPTAOQ.mjs";import"../chunk-X7PHWC2I.mjs";import"../chunk-5LF662B4.mjs";import"../chunk-X3MBDMXV.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-VXGRJCCM.mjs";import"../chunk-DAJNZDN6.mjs";import"../chunk-KETV2XVN.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-ANTK5LAD.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-IQPZEEYJ.mjs";import"../chunk-H7D3PZKE.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import{a as l}from"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import{d as o}from"../chunk-M6LJ4BNZ.mjs";import{BookOpen as a,LifeBuoy as s,Send as u,Settings2 as c}from"lucide-react";var e=o(n());import{PhoneIcon as d,PlayCircleIcon as m,RectangleGroupIcon as p}from"@heroicons/react/20/solid";import{ChartPieIcon as h,CursorArrowRaysIcon as b}from"@heroicons/react/24/outline";import{jsx as t}from"react/jsx-runtime";var g=()=>t(l,{iconName:"github",size:"4x",type:"brands"}),f=()=>t(l,{iconName:"aws",type:"brands"}),w=()=>t(l,{iconName:"azure",type:"kit"}),k=()=>t(l,{iconName:"people-sharing",type:"kit"}),S=()=>t(l,{iconName:"cloud-network-sharing",type:"kit"}),y=()=>t(l,{iconName:"development",type:"kit"}),X={title:"Example Pages/Documentation Index",component:r,decorators:[i=>t("div",{className:"bg-sidebar",children:t(i,{})})]},A=i=>t(r,{...i}),Z={render:A,args:{header:{title:"Your Company",logo:"cortex-reply.png",menuItems:[{name:"Documentation",items:[{name:"Platforms & Services",description:"Cloud services",href:"#",icon:S},{name:"Solutions & Propositions",description:"Solutions that we have built",href:"#",icon:k},{name:"Products",description:"Products that we sell",href:"#",icon:y}]},{name:"Resources",items:[{name:"IndexPage",href:"#",icon:h},{name:"API Reference",href:"#",icon:b},{name:"Github",href:"#",icon:g}],actions:[{name:"Watch demo",href:"#",icon:m},{name:"Contact sales",href:"#",icon:d},{name:"View all products",href:"#",icon:p}]},{name:"Intranet",href:"#"}]},onToggleAppGrid:()=>{(0,e.fn)()},sidebarLeft:{title:"Playground",subTitle:"Airview",mainNav:[{label:"AWS",url:"#",icon:f,isActive:!0,links:[{label:"EC2",url:"#"},{label:"IAM",url:"#"},{label:"S3",url:"#"}]},{label:"Microsoft Azure",url:"#",icon:w,links:[{label:"Virtual Machines",url:"#"},{label:"Storage",url:"#"},{label:"Azure SQL",url:"#"}]},{label:"IndexPage",url:"#",icon:a,links:[{label:"Introduction",url:"#"},{label:"Get Started",url:"#"},{label:"Tutorials",url:"#"},{label:"Changelog",url:"#"}]},{label:"Settings",url:"#",icon:c,links:[{label:"General",url:"#"},{label:"Team",url:"#"},{label:"Billing",url:"#"},{label:"Limits",url:"#"}]}],secondaryNav:[{label:"Support",url:"#",icon:s},{label:"Feedback",url:"#",icon:u}],onSidebarMenu:(0,e.fn)()},sidebarRight:{tableOfContents:[{title:"Getting Started",url:"#",links:[{title:"Installation",url:"#",isActive:!0},{title:"Project Structure",url:"#"}]},{title:"Building Your Application",url:"#",links:[{title:"Routing",url:"#",isDraft:!0},{title:"Data Fetching",url:"#"},{title:"Rendering",url:"#"},{title:"Caching",url:"#"},{title:"Styling",url:"#"},{title:"Optimizing",url:"#"},{title:"Configuring",url:"#"},{title:"Testing",url:"#"},{title:"Authentication",url:"#"},{title:"Deploying",url:"#"},{title:"Upgrading",url:"#"},{title:"Examples",url:"#"}]},{title:"API Reference",url:"#",links:[{title:"Components",url:"#"},{title:"File Conventions",url:"#"},{title:"Functions",url:"#"},{title:"next.config.js Options",url:"#"},{title:"CLI",url:"#"},{title:"Edge Runtime",url:"#"}]},{title:"Architecture",url:"#",links:[{title:"Accessibility",url:"#"},{title:"Fast Refresh",url:"#"},{title:"Next.js Compiler",url:"#"},{title:"Supported Browsers",url:"#"},{title:"Turbopack",url:"#"}]},{title:"Community",url:"#",links:[{title:"Contribution Guide",url:"#"}]}],relatedContent:{knowledge:[{label:"AWS Risk Assessment Terraform Module",url:"/knowledge/terraform_risk_assessment_AWS/_index.md",type:"published"},{label:"AWS Airview CCF Terraform Module",url:"/knowledge/terraform_aws_airview_ccf/_index.md",type:"note"}],services:[{label:"AWS Account Vending Machine",url:"/services/aws_account_vending_machine/_index.md",type:"published"},{label:"AWS Beanstalk",url:"/services/aws_beanstalk/_index.md",type:"draft"},{label:"AWS Airwalk Network Firewall Terraform Module",url:"/services/aws_vpc/terraform-aws-airwalk-module-networkfirewall.md",type:"published"},{label:"AWS WAF and Shield",url:"/services/aws_waf_and_shield/_index.md",type:"published"}]},onAddDocument:(0,e.fn)(),onEditDocument:(0,e.fn)(),onPrintDocument:(0,e.fn)()},tiles:[{slug:"hello-world",mainImage:"https://cdn.sanity.io/images/ssqh4ksj/production/c734dd394de943820a25b4b96eace0855ab44749-2016x1344.png?w=1170&h=780&auto=format",title:"Hello World"},{slug:"hello-world",mainImage:"https://cdn.sanity.io/images/ssqh4ksj/production/c734dd394de943820a25b4b96eace0855ab44749-2016x1344.png?w=1170&h=780&auto=format",excerpt:"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi eu ipsum enim. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi eu ipsum enim.",title:"Hello World"},{slug:"hello-world",mainImage:"https://cdn.sanity.io/images/ssqh4ksj/production/c734dd394de943820a25b4b96eace0855ab44749-2016x1344.png?w=1170&h=780&auto=format",excerpt:"Hello World",title:"Hello World"},{slug:"hello-world",mainImage:"https://cdn.sanity.io/images/ssqh4ksj/production/c734dd394de943820a25b4b96eace0855ab44749-2016x1344.png?w=1170&h=780&auto=format",excerpt:"Hello World",title:"Hello World"}],github:{onPublishDraft:(0,e.fn)(),handleNewBranch:(0,e.fn)(),handlePR:(0,e.fn)(),onSave:(0,e.fn)()}}};export{Z as Default,X as default};
1
+ import{a as n}from"../chunk-6AFX6PFG.mjs";import{a as r}from"../chunk-37NBXA5G.mjs";import"../chunk-OMVXDUX7.mjs";import"../chunk-ZY2PDUUB.mjs";import"../chunk-EPTHSTUM.mjs";import"../chunk-53QLSQCO.mjs";import"../chunk-UMBMLD26.mjs";import"../chunk-JCH2CCQ7.mjs";import"../chunk-RVRIMD6M.mjs";import"../chunk-UF3I2XE2.mjs";import"../chunk-GXC2S7UQ.mjs";import"../chunk-RYZTCMVC.mjs";import"../chunk-T5W5LMEK.mjs";import"../chunk-JLCWVIEP.mjs";import"../chunk-FSYU3D5O.mjs";import"../chunk-5ALQQYYE.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-IC57R2EU.mjs";import"../chunk-PBRC3UOA.mjs";import"../chunk-SX5U74MW.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-ANTK5LAD.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-IQPZEEYJ.mjs";import"../chunk-H7D3PZKE.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import{a as l}from"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import{d as o}from"../chunk-M6LJ4BNZ.mjs";import{BookOpen as a,LifeBuoy as s,Send as u,Settings2 as c}from"lucide-react";var e=o(n());import{PhoneIcon as d,PlayCircleIcon as m,RectangleGroupIcon as p}from"@heroicons/react/20/solid";import{ChartPieIcon as h,CursorArrowRaysIcon as b}from"@heroicons/react/24/outline";import{jsx as t}from"react/jsx-runtime";var g=()=>t(l,{iconName:"github",size:"4x",type:"brands"}),f=()=>t(l,{iconName:"aws",type:"brands"}),w=()=>t(l,{iconName:"azure",type:"kit"}),k=()=>t(l,{iconName:"people-sharing",type:"kit"}),S=()=>t(l,{iconName:"cloud-network-sharing",type:"kit"}),y=()=>t(l,{iconName:"development",type:"kit"}),X={title:"Example Pages/Documentation Index",component:r,decorators:[i=>t("div",{className:"bg-sidebar",children:t(i,{})})]},A=i=>t(r,{...i}),Z={render:A,args:{header:{title:"Your Company",logo:"cortex-reply.png",menuItems:[{name:"Documentation",items:[{name:"Platforms & Services",description:"Cloud services",href:"#",icon:S},{name:"Solutions & Propositions",description:"Solutions that we have built",href:"#",icon:k},{name:"Products",description:"Products that we sell",href:"#",icon:y}]},{name:"Resources",items:[{name:"IndexPage",href:"#",icon:h},{name:"API Reference",href:"#",icon:b},{name:"Github",href:"#",icon:g}],actions:[{name:"Watch demo",href:"#",icon:m},{name:"Contact sales",href:"#",icon:d},{name:"View all products",href:"#",icon:p}]},{name:"Intranet",href:"#"}]},onToggleAppGrid:()=>{(0,e.fn)()},sidebarLeft:{title:"Playground",subTitle:"Airview",mainNav:[{label:"AWS",url:"#",icon:f,isActive:!0,links:[{label:"EC2",url:"#"},{label:"IAM",url:"#"},{label:"S3",url:"#"}]},{label:"Microsoft Azure",url:"#",icon:w,links:[{label:"Virtual Machines",url:"#"},{label:"Storage",url:"#"},{label:"Azure SQL",url:"#"}]},{label:"IndexPage",url:"#",icon:a,links:[{label:"Introduction",url:"#"},{label:"Get Started",url:"#"},{label:"Tutorials",url:"#"},{label:"Changelog",url:"#"}]},{label:"Settings",url:"#",icon:c,links:[{label:"General",url:"#"},{label:"Team",url:"#"},{label:"Billing",url:"#"},{label:"Limits",url:"#"}]}],secondaryNav:[{label:"Support",url:"#",icon:s},{label:"Feedback",url:"#",icon:u}],onSidebarMenu:(0,e.fn)()},sidebarRight:{tableOfContents:[{title:"Getting Started",url:"#",links:[{title:"Installation",url:"#",isActive:!0},{title:"Project Structure",url:"#"}]},{title:"Building Your Application",url:"#",links:[{title:"Routing",url:"#",isDraft:!0},{title:"Data Fetching",url:"#"},{title:"Rendering",url:"#"},{title:"Caching",url:"#"},{title:"Styling",url:"#"},{title:"Optimizing",url:"#"},{title:"Configuring",url:"#"},{title:"Testing",url:"#"},{title:"Authentication",url:"#"},{title:"Deploying",url:"#"},{title:"Upgrading",url:"#"},{title:"Examples",url:"#"}]},{title:"API Reference",url:"#",links:[{title:"Components",url:"#"},{title:"File Conventions",url:"#"},{title:"Functions",url:"#"},{title:"next.config.js Options",url:"#"},{title:"CLI",url:"#"},{title:"Edge Runtime",url:"#"}]},{title:"Architecture",url:"#",links:[{title:"Accessibility",url:"#"},{title:"Fast Refresh",url:"#"},{title:"Next.js Compiler",url:"#"},{title:"Supported Browsers",url:"#"},{title:"Turbopack",url:"#"}]},{title:"Community",url:"#",links:[{title:"Contribution Guide",url:"#"}]}],relatedContent:{knowledge:[{label:"AWS Risk Assessment Terraform Module",url:"/knowledge/terraform_risk_assessment_AWS/_index.md",type:"published"},{label:"AWS Airview CCF Terraform Module",url:"/knowledge/terraform_aws_airview_ccf/_index.md",type:"note"}],services:[{label:"AWS Account Vending Machine",url:"/services/aws_account_vending_machine/_index.md",type:"published"},{label:"AWS Beanstalk",url:"/services/aws_beanstalk/_index.md",type:"draft"},{label:"AWS Airwalk Network Firewall Terraform Module",url:"/services/aws_vpc/terraform-aws-airwalk-module-networkfirewall.md",type:"published"},{label:"AWS WAF and Shield",url:"/services/aws_waf_and_shield/_index.md",type:"published"}]},onAddDocument:(0,e.fn)(),onEditDocument:(0,e.fn)(),onPrintDocument:(0,e.fn)()},tiles:[{slug:"hello-world",mainImage:"https://cdn.sanity.io/images/ssqh4ksj/production/c734dd394de943820a25b4b96eace0855ab44749-2016x1344.png?w=1170&h=780&auto=format",title:"Hello World"},{slug:"hello-world",mainImage:"https://cdn.sanity.io/images/ssqh4ksj/production/c734dd394de943820a25b4b96eace0855ab44749-2016x1344.png?w=1170&h=780&auto=format",excerpt:"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi eu ipsum enim. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi eu ipsum enim.",title:"Hello World"},{slug:"hello-world",mainImage:"https://cdn.sanity.io/images/ssqh4ksj/production/c734dd394de943820a25b4b96eace0855ab44749-2016x1344.png?w=1170&h=780&auto=format",excerpt:"Hello World",title:"Hello World"},{slug:"hello-world",mainImage:"https://cdn.sanity.io/images/ssqh4ksj/production/c734dd394de943820a25b4b96eace0855ab44749-2016x1344.png?w=1170&h=780&auto=format",excerpt:"Hello World",title:"Hello World"}],github:{onPublishDraft:(0,e.fn)(),handleNewBranch:(0,e.fn)(),handlePR:(0,e.fn)(),onSave:(0,e.fn)()}}};export{Z as Default,X as default};
@@ -1,2 +1,2 @@
1
1
  "use client";
2
- "use strict";import{a}from"../chunk-ISYJGX2I.mjs";import"../chunk-4DJ6HKHR.mjs";import"../chunk-3HDDBU3J.mjs";import"../chunk-PEL6QUMS.mjs";import"../chunk-MDEYJGAN.mjs";import"../chunk-OT2LLDV2.mjs";import"../chunk-TYROOO53.mjs";import"../chunk-6XGUOJCN.mjs";import"../chunk-AEBUMA72.mjs";import"../chunk-QZJGH4W6.mjs";import"../chunk-IAEVNAKR.mjs";import"../chunk-HFT5KFCM.mjs";import"../chunk-UM3WHBE7.mjs";import"../chunk-XGEMVLT5.mjs";import"../chunk-SV7NMNDI.mjs";import"../chunk-VT6DWUPF.mjs";import"../chunk-RWWF3HBN.mjs";import"../chunk-WU3JMLSC.mjs";import"../chunk-BZAYEKYC.mjs";import"../chunk-KML6U7IE.mjs";import"../chunk-4XO4HI55.mjs";import"../chunk-ELPMUABW.mjs";import"../chunk-RVI4KPBJ.mjs";import"../chunk-UVPODMUO.mjs";import"../chunk-AUBKJ4XO.mjs";import"../chunk-3SZR5DC2.mjs";import"../chunk-GNMQAGIE.mjs";import"../chunk-3A4UGUFM.mjs";import"../chunk-L2CGDHVO.mjs";import"../chunk-CSWXKGJE.mjs";import"../chunk-KCCDR7HB.mjs";import"../chunk-Z3YAIJQT.mjs";import"../chunk-AJWSKECP.mjs";import"../chunk-CZIRJUID.mjs";import"../chunk-I6X4KLR3.mjs";import"../chunk-JTQWVSV5.mjs";import"../chunk-W7KPRGG2.mjs";import"../chunk-7PDGAGJL.mjs";import"../chunk-YMBNEJBV.mjs";import"../chunk-LTTO57ZK.mjs";import"../chunk-OIQ6GXBY.mjs";import"../chunk-G72SIYN7.mjs";import"../chunk-PFWODHNV.mjs";import"../chunk-TASJS6US.mjs";import"../chunk-ERUB6LU6.mjs";import"../chunk-FFESN4FM.mjs";import"../chunk-MEWCJ4MA.mjs";import"../chunk-A24EPYUY.mjs";import"../chunk-QKGEV7LG.mjs";import"../chunk-WHH4AVZT.mjs";import"../chunk-EDLBPAEH.mjs";import"../chunk-KNJGZBXS.mjs";import"../chunk-326JXRIS.mjs";import"../chunk-VX4NPEMC.mjs";import"../chunk-LHL2AONM.mjs";import"../chunk-CXZGSPKM.mjs";import"../chunk-Y7TUU6BG.mjs";import"../chunk-HQTSD5A3.mjs";import"../chunk-MCEK7XUK.mjs";import"../chunk-JHTGGDU5.mjs";import"../chunk-DOJR2RDB.mjs";import"../chunk-64UGFPFV.mjs";import"../chunk-KHGZULZP.mjs";import"../chunk-K4RVBOIC.mjs";import"../chunk-MU4ETGDT.mjs";import"../chunk-BMN3FVZS.mjs";import"../chunk-63W64WWD.mjs";import"../chunk-IKTCLX2C.mjs";import"../chunk-OGZERPA4.mjs";import"../chunk-6T322YHB.mjs";import"../chunk-KJIBE57R.mjs";import"../chunk-CX4XB5W2.mjs";import"../chunk-EECIYMTX.mjs";import"../chunk-YNNW2C2U.mjs";import"../chunk-QUOLG5NC.mjs";import"../chunk-ZJ56IQPQ.mjs";import"../chunk-ZKU7UP6U.mjs";import"../chunk-Z6NED523.mjs";import"../chunk-EPTHSTUM.mjs";import"../chunk-53QLSQCO.mjs";import"../chunk-UMBMLD26.mjs";import"../chunk-JCH2CCQ7.mjs";import"../chunk-RVRIMD6M.mjs";import"../chunk-UF3I2XE2.mjs";import"../chunk-GXC2S7UQ.mjs";import"../chunk-RYZTCMVC.mjs";import"../chunk-6BZPTAOQ.mjs";import"../chunk-X7PHWC2I.mjs";import"../chunk-5LF662B4.mjs";import"../chunk-X3MBDMXV.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-VXGRJCCM.mjs";import"../chunk-DAJNZDN6.mjs";import"../chunk-KETV2XVN.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-ANTK5LAD.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-IQPZEEYJ.mjs";import"../chunk-H7D3PZKE.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import"../chunk-M6LJ4BNZ.mjs";export{a as default};
2
+ "use strict";import{a}from"../chunk-NUQ6Z3WQ.mjs";import"../chunk-4DJ6HKHR.mjs";import"../chunk-KEM3XJKI.mjs";import"../chunk-WPL2QWNG.mjs";import"../chunk-65BHP4TM.mjs";import"../chunk-X4Q7WZZS.mjs";import"../chunk-IAEVNAKR.mjs";import"../chunk-HFT5KFCM.mjs";import"../chunk-U7Q6ZRR3.mjs";import"../chunk-IH37BDR2.mjs";import"../chunk-SV7NMNDI.mjs";import"../chunk-6XGUOJCN.mjs";import"../chunk-AEBUMA72.mjs";import"../chunk-GHXEOXV4.mjs";import"../chunk-DVGPU4EL.mjs";import"../chunk-UDQTFQR7.mjs";import"../chunk-B7STYVDB.mjs";import"../chunk-WU3JMLSC.mjs";import"../chunk-BZAYEKYC.mjs";import"../chunk-KML6U7IE.mjs";import"../chunk-CDJP2IDQ.mjs";import"../chunk-KGSTIGCT.mjs";import"../chunk-EVVDCPEA.mjs";import"../chunk-FYEE5UWZ.mjs";import"../chunk-AUBKJ4XO.mjs";import"../chunk-3SZR5DC2.mjs";import"../chunk-GNMQAGIE.mjs";import"../chunk-3A4UGUFM.mjs";import"../chunk-L2CGDHVO.mjs";import"../chunk-CSWXKGJE.mjs";import"../chunk-KCCDR7HB.mjs";import"../chunk-Z3YAIJQT.mjs";import"../chunk-AJWSKECP.mjs";import"../chunk-CZIRJUID.mjs";import"../chunk-I6X4KLR3.mjs";import"../chunk-JTQWVSV5.mjs";import"../chunk-W7KPRGG2.mjs";import"../chunk-7PDGAGJL.mjs";import"../chunk-YMBNEJBV.mjs";import"../chunk-LTTO57ZK.mjs";import"../chunk-IPVKFQEY.mjs";import"../chunk-ZAXQ74I3.mjs";import"../chunk-3AUTMBDB.mjs";import"../chunk-COI2LCY2.mjs";import"../chunk-VGQTRTPZ.mjs";import"../chunk-FFESN4FM.mjs";import"../chunk-URPKAQGD.mjs";import"../chunk-A24EPYUY.mjs";import"../chunk-QKGEV7LG.mjs";import"../chunk-WHH4AVZT.mjs";import"../chunk-EDLBPAEH.mjs";import"../chunk-KNJGZBXS.mjs";import"../chunk-326JXRIS.mjs";import"../chunk-CJF6GVGP.mjs";import"../chunk-LHL2AONM.mjs";import"../chunk-YPK6OLRS.mjs";import"../chunk-MUBDAI2K.mjs";import"../chunk-NP2M5K7O.mjs";import"../chunk-MCEK7XUK.mjs";import"../chunk-JHTGGDU5.mjs";import"../chunk-DVF55CWB.mjs";import"../chunk-DOJR2RDB.mjs";import"../chunk-64UGFPFV.mjs";import"../chunk-KHGZULZP.mjs";import"../chunk-K4RVBOIC.mjs";import"../chunk-63W64WWD.mjs";import"../chunk-IKTCLX2C.mjs";import"../chunk-MU4ETGDT.mjs";import"../chunk-BMN3FVZS.mjs";import"../chunk-OGZERPA4.mjs";import"../chunk-6T322YHB.mjs";import"../chunk-CX4XB5W2.mjs";import"../chunk-EECIYMTX.mjs";import"../chunk-KJIBE57R.mjs";import"../chunk-YNNW2C2U.mjs";import"../chunk-QUOLG5NC.mjs";import"../chunk-ZJ56IQPQ.mjs";import"../chunk-OMVXDUX7.mjs";import"../chunk-ZY2PDUUB.mjs";import"../chunk-EPTHSTUM.mjs";import"../chunk-53QLSQCO.mjs";import"../chunk-UMBMLD26.mjs";import"../chunk-JCH2CCQ7.mjs";import"../chunk-RVRIMD6M.mjs";import"../chunk-UF3I2XE2.mjs";import"../chunk-GXC2S7UQ.mjs";import"../chunk-RYZTCMVC.mjs";import"../chunk-T5W5LMEK.mjs";import"../chunk-JLCWVIEP.mjs";import"../chunk-FSYU3D5O.mjs";import"../chunk-5ALQQYYE.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-IC57R2EU.mjs";import"../chunk-PBRC3UOA.mjs";import"../chunk-SX5U74MW.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-ANTK5LAD.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-IQPZEEYJ.mjs";import"../chunk-H7D3PZKE.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import"../chunk-M6LJ4BNZ.mjs";export{a as default};
@@ -1 +1 @@
1
- import{a as u}from"../chunk-U3ZHU3UY.mjs";import{a as p,b as h}from"../chunk-7DICAJS4.mjs";import{a as l,b as c,c as m,d as g,e as d}from"../chunk-IZ3PDOST.mjs";import{a as r}from"../chunk-ISYJGX2I.mjs";import"../chunk-4DJ6HKHR.mjs";import"../chunk-3HDDBU3J.mjs";import"../chunk-PEL6QUMS.mjs";import"../chunk-MDEYJGAN.mjs";import"../chunk-OT2LLDV2.mjs";import"../chunk-TYROOO53.mjs";import"../chunk-6XGUOJCN.mjs";import"../chunk-AEBUMA72.mjs";import"../chunk-QZJGH4W6.mjs";import"../chunk-IAEVNAKR.mjs";import"../chunk-HFT5KFCM.mjs";import"../chunk-UM3WHBE7.mjs";import"../chunk-XGEMVLT5.mjs";import"../chunk-SV7NMNDI.mjs";import"../chunk-VT6DWUPF.mjs";import"../chunk-RWWF3HBN.mjs";import"../chunk-WU3JMLSC.mjs";import"../chunk-BZAYEKYC.mjs";import"../chunk-KML6U7IE.mjs";import"../chunk-4XO4HI55.mjs";import"../chunk-ELPMUABW.mjs";import"../chunk-RVI4KPBJ.mjs";import"../chunk-UVPODMUO.mjs";import"../chunk-AUBKJ4XO.mjs";import"../chunk-3SZR5DC2.mjs";import"../chunk-GNMQAGIE.mjs";import"../chunk-3A4UGUFM.mjs";import"../chunk-L2CGDHVO.mjs";import"../chunk-CSWXKGJE.mjs";import"../chunk-KCCDR7HB.mjs";import"../chunk-Z3YAIJQT.mjs";import"../chunk-AJWSKECP.mjs";import"../chunk-CZIRJUID.mjs";import"../chunk-I6X4KLR3.mjs";import"../chunk-JTQWVSV5.mjs";import"../chunk-W7KPRGG2.mjs";import"../chunk-7PDGAGJL.mjs";import"../chunk-YMBNEJBV.mjs";import"../chunk-LTTO57ZK.mjs";import"../chunk-OIQ6GXBY.mjs";import"../chunk-G72SIYN7.mjs";import"../chunk-PFWODHNV.mjs";import"../chunk-TASJS6US.mjs";import"../chunk-ERUB6LU6.mjs";import"../chunk-FFESN4FM.mjs";import"../chunk-MEWCJ4MA.mjs";import"../chunk-A24EPYUY.mjs";import"../chunk-QKGEV7LG.mjs";import"../chunk-WHH4AVZT.mjs";import"../chunk-EDLBPAEH.mjs";import"../chunk-KNJGZBXS.mjs";import"../chunk-326JXRIS.mjs";import"../chunk-VX4NPEMC.mjs";import"../chunk-LHL2AONM.mjs";import"../chunk-CXZGSPKM.mjs";import"../chunk-Y7TUU6BG.mjs";import"../chunk-HQTSD5A3.mjs";import"../chunk-MCEK7XUK.mjs";import"../chunk-JHTGGDU5.mjs";import"../chunk-DOJR2RDB.mjs";import"../chunk-64UGFPFV.mjs";import"../chunk-KHGZULZP.mjs";import"../chunk-K4RVBOIC.mjs";import"../chunk-MU4ETGDT.mjs";import"../chunk-BMN3FVZS.mjs";import"../chunk-63W64WWD.mjs";import"../chunk-IKTCLX2C.mjs";import"../chunk-OGZERPA4.mjs";import"../chunk-6T322YHB.mjs";import"../chunk-KJIBE57R.mjs";import"../chunk-CX4XB5W2.mjs";import"../chunk-EECIYMTX.mjs";import"../chunk-YNNW2C2U.mjs";import"../chunk-QUOLG5NC.mjs";import"../chunk-ZJ56IQPQ.mjs";import"../chunk-ZKU7UP6U.mjs";import"../chunk-Z6NED523.mjs";import"../chunk-EPTHSTUM.mjs";import"../chunk-53QLSQCO.mjs";import"../chunk-UMBMLD26.mjs";import"../chunk-JCH2CCQ7.mjs";import"../chunk-RVRIMD6M.mjs";import"../chunk-UF3I2XE2.mjs";import"../chunk-GXC2S7UQ.mjs";import"../chunk-RYZTCMVC.mjs";import"../chunk-6BZPTAOQ.mjs";import"../chunk-X7PHWC2I.mjs";import"../chunk-5LF662B4.mjs";import"../chunk-X3MBDMXV.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-VXGRJCCM.mjs";import"../chunk-DAJNZDN6.mjs";import"../chunk-KETV2XVN.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-ANTK5LAD.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-IQPZEEYJ.mjs";import"../chunk-H7D3PZKE.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import{a as o}from"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import"../chunk-M6LJ4BNZ.mjs";import{PhoneIcon as C,PlayCircleIcon as f,RectangleGroupIcon as b}from"@heroicons/react/20/solid";import{ChartPieIcon as y,CursorArrowRaysIcon as v}from"@heroicons/react/24/outline";import{FaInstagram as T,FaLinkedin as k}from"react-icons/fa6";import{jsx as e,jsxs as a}from"react/jsx-runtime";var w=()=>e(o,{iconName:"github",size:"4x",type:"brands"});var x=()=>e(o,{iconName:"people-sharing",size:"4x",type:"kit"}),I=()=>e(o,{iconName:"cloud-network-sharing",size:"4x",type:"kit"}),P=()=>e(o,{iconName:"development",size:"4x",type:"kit"}),n={blurDataURL:"/assets/props/Cortex-Handshake-BG.jpg",height:1315,url:"/assets/props/Cortex-Handshake-BG.jpg",width:1920};function S(){return a("svg",{width:30,height:41,viewBox:"0 0 30 41",fill:"currentColor",xmlns:"http://www.w3.org/2000/svg",children:[e("path",{d:"M26.25 39.5938H3.75C2.75544 39.5938 1.80161 39.1987 1.09835 38.4954C0.395088 37.7921 0 36.8383 0 35.8438V5.84375C0 4.84919 0.395088 3.89536 1.09835 3.1921C1.80161 2.48884 2.75544 2.09375 3.75 2.09375H26.25C27.2446 2.09375 28.1984 2.48884 28.9017 3.1921C29.6049 3.89536 30 4.84919 30 5.84375V35.8438C30 36.8383 29.6049 37.7921 28.9017 38.4954C28.1984 39.1987 27.2446 39.5938 26.25 39.5938ZM3.75 4.59375C3.41848 4.59375 3.10054 4.72545 2.86612 4.95987C2.6317 5.19429 2.5 5.51223 2.5 5.84375V35.8438C2.5 36.1753 2.6317 36.4932 2.86612 36.7276C3.10054 36.9621 3.41848 37.0938 3.75 37.0938H26.25C26.5815 37.0938 26.8995 36.9621 27.1339 36.7276C27.3683 36.4932 27.5 36.1753 27.5 35.8438V5.84375C27.5 5.51223 27.3683 5.19429 27.1339 4.95987C26.8995 4.72545 26.5815 4.59375 26.25 4.59375H3.75Z"}),e("path",{d:"M11.25 34.5938H8.75C8.41848 34.5938 8.10054 34.4621 7.86612 34.2276C7.6317 33.9932 7.5 33.6753 7.5 33.3438C7.5 33.0122 7.6317 32.6943 7.86612 32.4599C8.10054 32.2254 8.41848 32.0938 8.75 32.0938H11.25C11.5815 32.0938 11.8995 32.2254 12.1339 32.4599C12.3683 32.6943 12.5 33.0122 12.5 33.3438C12.5 33.6753 12.3683 33.9932 12.1339 34.2276C11.8995 34.4621 11.5815 34.5938 11.25 34.5938Z"})]})}function H(){return a("svg",{width:"40",height:"41",viewBox:"0 0 40 41",fill:"currentColor",xmlns:"http://www.w3.org/2000/svg",children:[e("path",{d:"M7.50125 22.2687V8.34375C7.50125 8.01223 7.36955 7.69429 7.13513 7.45987C6.90071 7.22545 6.58277 7.09375 6.25125 7.09375C5.91973 7.09375 5.60179 7.22545 5.36737 7.45987C5.13295 7.69429 5.00125 8.01223 5.00125 8.34375V22.2687C3.94204 22.5566 3.00698 23.185 2.34033 24.057C1.67369 24.929 1.3125 25.9961 1.3125 27.0938C1.3125 28.1914 1.67369 29.2585 2.34033 30.1305C3.00698 31.0025 3.94204 31.6309 5.00125 31.9188V33.3438C5.00125 33.6753 5.13295 33.9932 5.36737 34.2276C5.60179 34.4621 5.91973 34.5938 6.25125 34.5938C6.58277 34.5938 6.90071 34.4621 7.13513 34.2276C7.36955 33.9932 7.50125 33.6753 7.50125 33.3438V31.9188C8.56046 31.6309 9.49552 31.0025 10.1622 30.1305C10.8288 29.2585 11.19 28.1914 11.19 27.0938C11.19 25.9961 10.8288 24.929 10.1622 24.057C9.49552 23.185 8.56046 22.5566 7.50125 22.2687ZM6.25125 29.5938C5.7568 29.5938 5.27345 29.4471 4.86232 29.1724C4.4512 28.8977 4.13077 28.5073 3.94155 28.0505C3.75233 27.5936 3.70282 27.091 3.79929 26.606C3.89575 26.1211 4.13385 25.6756 4.48348 25.326C4.83311 24.9764 5.27857 24.7382 5.76353 24.6418C6.24848 24.5453 6.75114 24.5948 7.20796 24.784C7.66477 24.9733 8.05522 25.2937 8.32992 25.7048C8.60463 26.1159 8.75125 26.5993 8.75125 27.0938C8.75125 27.7568 8.48786 28.3927 8.01902 28.8615C7.55018 29.3304 6.91429 29.5938 6.25125 29.5938Z"}),e("path",{d:"M38.7513 27.0938C38.7477 25.9881 38.3777 24.9147 37.6991 24.0417C37.0206 23.1687 36.0718 22.5452 35.0013 22.2687V8.34375C35.0013 8.01223 34.8696 7.69429 34.6351 7.45987C34.4007 7.22545 34.0828 7.09375 33.7513 7.09375C33.4197 7.09375 33.1018 7.22545 32.8674 7.45987C32.6329 7.69429 32.5013 8.01223 32.5013 8.34375V22.2687C31.442 22.5566 30.507 23.185 29.8403 24.057C29.1737 24.929 28.8125 25.9961 28.8125 27.0938C28.8125 28.1914 29.1737 29.2585 29.8403 30.1305C30.507 31.0025 31.442 31.6309 32.5013 31.9188V33.3438C32.5013 33.6753 32.6329 33.9932 32.8674 34.2276C33.1018 34.4621 33.4197 34.5938 33.7513 34.5938C34.0828 34.5938 34.4007 34.4621 34.6351 34.2276C34.8696 33.9932 35.0013 33.6753 35.0013 33.3438V31.9188C36.0718 31.6423 37.0206 31.0188 37.6991 30.1458C38.3777 29.2728 38.7477 28.1994 38.7513 27.0938ZM33.7513 29.5938C33.2568 29.5938 32.7734 29.4471 32.3623 29.1724C31.9512 28.8977 31.6308 28.5073 31.4416 28.0505C31.2523 27.5936 31.2028 27.091 31.2993 26.606C31.3957 26.1211 31.6339 25.6756 31.9835 25.326C32.3331 24.9764 32.7786 24.7382 33.2635 24.6418C33.7485 24.5453 34.2511 24.5948 34.708 24.784C35.1648 24.9733 35.5552 25.2937 35.8299 25.7048C36.1046 26.1159 36.2513 26.5993 36.2513 27.0938C36.2513 27.7568 35.9879 28.3927 35.519 28.8615C35.0502 29.3304 34.4143 29.5938 33.7513 29.5938Z"}),e("path",{d:"M21.2513 9.76875V8.34375C21.2513 8.01223 21.1196 7.69429 20.8851 7.45987C20.6507 7.22545 20.3328 7.09375 20.0013 7.09375C19.6697 7.09375 19.3518 7.22545 19.1174 7.45987C18.8829 7.69429 18.7513 8.01223 18.7513 8.34375V9.76875C17.692 10.0566 16.757 10.685 16.0903 11.557C15.4237 12.429 15.0625 13.4961 15.0625 14.5938C15.0625 15.6914 15.4237 16.7585 16.0903 17.6305C16.757 18.5025 17.692 19.1309 18.7513 19.4187V33.3438C18.7513 33.6753 18.8829 33.9932 19.1174 34.2276C19.3518 34.4621 19.6697 34.5938 20.0013 34.5938C20.3328 34.5938 20.6507 34.4621 20.8851 34.2276C21.1196 33.9932 21.2513 33.6753 21.2513 33.3438V19.4187C22.3105 19.1309 23.2455 18.5025 23.9122 17.6305C24.5788 16.7585 24.94 15.6914 24.94 14.5938C24.94 13.4961 24.5788 12.429 23.9122 11.557C23.2455 10.685 22.3105 10.0566 21.2513 9.76875ZM20.0013 17.0938C19.5068 17.0938 19.0234 16.9471 18.6123 16.6724C18.2012 16.3977 17.8808 16.0073 17.6916 15.5505C17.5023 15.0936 17.4528 14.591 17.5493 14.106C17.6457 13.6211 17.8839 13.1756 18.2335 12.826C18.5831 12.4764 19.0286 12.2382 19.5135 12.1418C19.9985 12.0453 20.5011 12.0948 20.958 12.2841C21.4148 12.4733 21.8052 12.7937 22.0799 13.2048C22.3546 13.6159 22.5013 14.0993 22.5013 14.5938C22.5013 15.2568 22.2379 15.8927 21.769 16.3615C21.3002 16.8304 20.6643 17.0938 20.0013 17.0938Z"})]})}var W={title:"Example Pages/LandingPage",component:r,decorators:[t=>e("div",{className:"bg-sidebar",children:e(t,{})})]},N=t=>e(r,{...t}),s=t=>({root:{type:"root",format:"",indent:0,version:1,children:[{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:t,type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr"}}),i={render:N,args:{title:"Storage Service",section:"Storage",description:"A scalable object storage service that offers industry-leading performance, security, and availability.",children:a("div",{className:"prose max-w-none",children:[e("h2",{children:"How it works"}),e("p",{children:"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."}),e("div",{className:"aspect-video overflow-hidden rounded-lg bg-slate-100",children:e("div",{className:"flex h-full items-center justify-center",children:"Video Placeholder"})})]}),header:{title:"Lorem ipsum dolor sit amet",subtitle:"Lorum ipsum dolor sit amet, consectetur adipiscing elit.",menuItems:[{name:"Documentation",items:[{name:"Platforms & Services",description:"Cloud services",href:"#",icon:I},{name:"Solutions & Propositions",description:"Solutions that we have built",href:"#",icon:x},{name:"Products",description:"Products that we sell",href:"#",icon:P}]},{name:"Resources",items:[{name:"Documentation",href:"#",icon:y},{name:"API Reference",href:"#",icon:v},{name:"Github",href:"#",icon:w}],actions:[{name:"Watch demo",href:"#",icon:f},{name:"Contact sales",href:"#",icon:C},{name:"View all products",href:"#",icon:b}]},{name:"Intranet",href:"#"}]},service:{services:[{image:n,title:"Service Title",content:s("This is a description of the service."),link:{label:"find out more",url:"#"}},{image:n,title:"Service Title",content:s("This is a description of the service."),link:{label:"find out more",url:"#"}},{image:n,title:"Service Title",content:s("This is a description of the service."),link:{label:"find out more",url:"#"}}],image:u},about:{images:{image1:l,image2:c,image3:m,image4:g,pattern:d},sectionHeading:{subtitle:"Payload",title:"Payload",description:"Payload"},keyPoints:[{icon:e(S,{}),title:"Cloud Migrate Pro"},{icon:e(H,{}),title:"AI Forge Labs"}]},contact:{sectionHeading:{title:"Get in Touch",subtitle:"We would love to hear from you"},image:{src:"/assets/images/contact.png",alt:"Contact Us",blurDataURL:"data:image/jpeg;base64,..."},contactInfo:{sectionHeading:{title:"Contact Information",subtitle:"Reach out to us through any of the following methods"},location:"123 Main Street, Anytown, AT 12345",mail:"info@example.com",phone:"+1 (555) 123-4567"},locations:[{title:"Head Office",location:"123 Main Street, Anytown, AT 12345",mails:["headoffice@example.com"],phoneNumbers:["+1 (555) 123-4567"],embedUrl:"https://www.google.com/maps/embed?..."},{title:"Branch Office",location:"456 Elm Street, Othertown, OT 67890",mails:["branchoffice@example.com"],phoneNumbers:["+1 (555) 987-6543"],embedUrl:"https://www.google.com/maps/embed?..."}]},blog:{sectionHeading:{subtitle:"Payload",title:"Payload",description:"Payload"},blogs:[{slug:"/blog/pioneering-progress",image:{src:"/assets/images/blog/istockphoto1.jpg",alt:"Pioneering Progress, One Algorithm at a Time"},authors:[{name:"admin with a long name"},{name:"demo"}],categories:["Technology","Other"],publishedAt:"2025-01-01T17:19:41.270Z",commentCount:"05",title:"Pioneering Progress, One Algorithm at a Time",description:"Aliquam eros justo, posuere lobortis non, viverra laoreet augue mattis start fermentum ullamcorper viverra laoreet. By Admin. Technology. 28th February 2022. Leave a comment."},{slug:"/blog/innovative-solutions",image:{src:"/assets/images/blog/istockphoto2.jpg",alt:"Innovative Solutions for Modern Problems"},publishedAt:"2025-01-01T17:19:41.270Z",categories:[],commentCount:"10",title:"Innovative Solutions for Modern Problems",description:"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero. Sed cursus ante dapibus diam. By John Doe. Innovation. 15th March 2022. Leave a comment."},{slug:"/blog/future-of-tech",image:{src:"/assets/images/blog/istockphoto3.jpg",alt:"The Future of Technology"},authors:[{name:"admin"},{name:"demo"}],publishedAt:"2025-01-01T17:19:41.270Z",commentCount:"08",title:"The Future of Technology",description:"Sed nisi. Nulla quis sem at nibh elementum imperdiet. Duis sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. By Jane Doe. Future. 22nd April 2022. Leave a comment."}]},footer:{className:"",logoLight:p,logoDark:h,footerData:{about:{description:"This is a sample description for the about section.",socialLinks:[{icon:e(k,{}),href:"https://www.linkedin.com/company/cortex-reply/"},{icon:e(T,{}),href:"https://www.instagram.com/cortex.reply/"}]},columnOne:{title:"Column One",links:[{href:"/link1",label:"Link 1"},{href:"/link2",label:"Link 2"}]},columnTwo:{title:"Contact Us",location:"1234 Street Name, City, Country",mails:["contact@example.com","support@example.com"]},columnThree:{title:"Recent Insights",blogs:[{image:{src:"/assets/images/blog/blog-sm-1.jpg",alt:"We provide a range of IT solutions"},title:"We provide a range of IT solutions",date:"2025-01-02T00:00:00.000Z",slug:"./blog-details"},{image:{src:"/assets/images/blog/blog-sm-2.jpg",alt:"IT solutions enhance efficiency"},title:"IT solutions enhance efficiency",date:"2025-01-02T00:00:00.000Z",slug:"./blog-details"}]},footerBottom:{copyrightText:"copyright",links:[{label:"Privacy Policy",href:"/privacy-policy",openNewTab:!1},{label:"Contact Us",href:"/contact",openNewTab:!1}]}}}}},q={args:{...i.args,header:{title:"Page Title",subtitle:a("div",{children:[e("p",{className:"text-xl font-bold",children:"A load of text here"}),e("br",{}),e("p",{className:"text-2xl font-bold",children:"A load more text here"})]})}}},E={args:{...i.args,hero:{type:"mediumImpact",media:"stock1.jpg?height=400&width=800",children:e("h1",{className:"text-4xl font-bold",children:"Medium Impact Hero"})},heroBackgroundImage:"stock1.jpg?height=400&width=800"}},J={args:{...i.args,hero:{type:"highImpact",children:e("h1",{className:"text-4xl font-bold",children:"High Impact Hero"}),media:"stock1.jpg?height=400&width=800"},heroBackgroundImage:"stock1.jpg?height=400&width=800"}},K={args:{...i.args,hero:{type:"highImpact",children:e("h1",{className:"text-4xl font-bold",children:"Post Hero"}),media:"stock1.jpg?height=400&width=800"},media:"stock1.jpg?height=400&width=800"}};export{i as Default,J as HighImpactHero,q as HtmlSubtitle,E as MediumImpactHero,K as PostHero,W as default};
1
+ import{a as u}from"../chunk-U3ZHU3UY.mjs";import{a as p,b as h}from"../chunk-7DICAJS4.mjs";import{a as l,b as c,c as m,d as g,e as d}from"../chunk-IZ3PDOST.mjs";import{a as r}from"../chunk-NUQ6Z3WQ.mjs";import"../chunk-4DJ6HKHR.mjs";import"../chunk-KEM3XJKI.mjs";import"../chunk-WPL2QWNG.mjs";import"../chunk-65BHP4TM.mjs";import"../chunk-X4Q7WZZS.mjs";import"../chunk-IAEVNAKR.mjs";import"../chunk-HFT5KFCM.mjs";import"../chunk-U7Q6ZRR3.mjs";import"../chunk-IH37BDR2.mjs";import"../chunk-SV7NMNDI.mjs";import"../chunk-6XGUOJCN.mjs";import"../chunk-AEBUMA72.mjs";import"../chunk-GHXEOXV4.mjs";import"../chunk-DVGPU4EL.mjs";import"../chunk-UDQTFQR7.mjs";import"../chunk-B7STYVDB.mjs";import"../chunk-WU3JMLSC.mjs";import"../chunk-BZAYEKYC.mjs";import"../chunk-KML6U7IE.mjs";import"../chunk-CDJP2IDQ.mjs";import"../chunk-KGSTIGCT.mjs";import"../chunk-EVVDCPEA.mjs";import"../chunk-FYEE5UWZ.mjs";import"../chunk-AUBKJ4XO.mjs";import"../chunk-3SZR5DC2.mjs";import"../chunk-GNMQAGIE.mjs";import"../chunk-3A4UGUFM.mjs";import"../chunk-L2CGDHVO.mjs";import"../chunk-CSWXKGJE.mjs";import"../chunk-KCCDR7HB.mjs";import"../chunk-Z3YAIJQT.mjs";import"../chunk-AJWSKECP.mjs";import"../chunk-CZIRJUID.mjs";import"../chunk-I6X4KLR3.mjs";import"../chunk-JTQWVSV5.mjs";import"../chunk-W7KPRGG2.mjs";import"../chunk-7PDGAGJL.mjs";import"../chunk-YMBNEJBV.mjs";import"../chunk-LTTO57ZK.mjs";import"../chunk-IPVKFQEY.mjs";import"../chunk-ZAXQ74I3.mjs";import"../chunk-3AUTMBDB.mjs";import"../chunk-COI2LCY2.mjs";import"../chunk-VGQTRTPZ.mjs";import"../chunk-FFESN4FM.mjs";import"../chunk-URPKAQGD.mjs";import"../chunk-A24EPYUY.mjs";import"../chunk-QKGEV7LG.mjs";import"../chunk-WHH4AVZT.mjs";import"../chunk-EDLBPAEH.mjs";import"../chunk-KNJGZBXS.mjs";import"../chunk-326JXRIS.mjs";import"../chunk-CJF6GVGP.mjs";import"../chunk-LHL2AONM.mjs";import"../chunk-YPK6OLRS.mjs";import"../chunk-MUBDAI2K.mjs";import"../chunk-NP2M5K7O.mjs";import"../chunk-MCEK7XUK.mjs";import"../chunk-JHTGGDU5.mjs";import"../chunk-DVF55CWB.mjs";import"../chunk-DOJR2RDB.mjs";import"../chunk-64UGFPFV.mjs";import"../chunk-KHGZULZP.mjs";import"../chunk-K4RVBOIC.mjs";import"../chunk-63W64WWD.mjs";import"../chunk-IKTCLX2C.mjs";import"../chunk-MU4ETGDT.mjs";import"../chunk-BMN3FVZS.mjs";import"../chunk-OGZERPA4.mjs";import"../chunk-6T322YHB.mjs";import"../chunk-CX4XB5W2.mjs";import"../chunk-EECIYMTX.mjs";import"../chunk-KJIBE57R.mjs";import"../chunk-YNNW2C2U.mjs";import"../chunk-QUOLG5NC.mjs";import"../chunk-ZJ56IQPQ.mjs";import"../chunk-OMVXDUX7.mjs";import"../chunk-ZY2PDUUB.mjs";import"../chunk-EPTHSTUM.mjs";import"../chunk-53QLSQCO.mjs";import"../chunk-UMBMLD26.mjs";import"../chunk-JCH2CCQ7.mjs";import"../chunk-RVRIMD6M.mjs";import"../chunk-UF3I2XE2.mjs";import"../chunk-GXC2S7UQ.mjs";import"../chunk-RYZTCMVC.mjs";import"../chunk-T5W5LMEK.mjs";import"../chunk-JLCWVIEP.mjs";import"../chunk-FSYU3D5O.mjs";import"../chunk-5ALQQYYE.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-IC57R2EU.mjs";import"../chunk-PBRC3UOA.mjs";import"../chunk-SX5U74MW.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-ANTK5LAD.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-IQPZEEYJ.mjs";import"../chunk-H7D3PZKE.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import{a as o}from"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import"../chunk-M6LJ4BNZ.mjs";import{PhoneIcon as C,PlayCircleIcon as f,RectangleGroupIcon as b}from"@heroicons/react/20/solid";import{ChartPieIcon as y,CursorArrowRaysIcon as v}from"@heroicons/react/24/outline";import{FaInstagram as T,FaLinkedin as k}from"react-icons/fa6";import{jsx as e,jsxs as a}from"react/jsx-runtime";var w=()=>e(o,{iconName:"github",size:"4x",type:"brands"});var x=()=>e(o,{iconName:"people-sharing",size:"4x",type:"kit"}),I=()=>e(o,{iconName:"cloud-network-sharing",size:"4x",type:"kit"}),P=()=>e(o,{iconName:"development",size:"4x",type:"kit"}),n={blurDataURL:"/assets/props/Cortex-Handshake-BG.jpg",height:1315,url:"/assets/props/Cortex-Handshake-BG.jpg",width:1920};function S(){return a("svg",{width:30,height:41,viewBox:"0 0 30 41",fill:"currentColor",xmlns:"http://www.w3.org/2000/svg",children:[e("path",{d:"M26.25 39.5938H3.75C2.75544 39.5938 1.80161 39.1987 1.09835 38.4954C0.395088 37.7921 0 36.8383 0 35.8438V5.84375C0 4.84919 0.395088 3.89536 1.09835 3.1921C1.80161 2.48884 2.75544 2.09375 3.75 2.09375H26.25C27.2446 2.09375 28.1984 2.48884 28.9017 3.1921C29.6049 3.89536 30 4.84919 30 5.84375V35.8438C30 36.8383 29.6049 37.7921 28.9017 38.4954C28.1984 39.1987 27.2446 39.5938 26.25 39.5938ZM3.75 4.59375C3.41848 4.59375 3.10054 4.72545 2.86612 4.95987C2.6317 5.19429 2.5 5.51223 2.5 5.84375V35.8438C2.5 36.1753 2.6317 36.4932 2.86612 36.7276C3.10054 36.9621 3.41848 37.0938 3.75 37.0938H26.25C26.5815 37.0938 26.8995 36.9621 27.1339 36.7276C27.3683 36.4932 27.5 36.1753 27.5 35.8438V5.84375C27.5 5.51223 27.3683 5.19429 27.1339 4.95987C26.8995 4.72545 26.5815 4.59375 26.25 4.59375H3.75Z"}),e("path",{d:"M11.25 34.5938H8.75C8.41848 34.5938 8.10054 34.4621 7.86612 34.2276C7.6317 33.9932 7.5 33.6753 7.5 33.3438C7.5 33.0122 7.6317 32.6943 7.86612 32.4599C8.10054 32.2254 8.41848 32.0938 8.75 32.0938H11.25C11.5815 32.0938 11.8995 32.2254 12.1339 32.4599C12.3683 32.6943 12.5 33.0122 12.5 33.3438C12.5 33.6753 12.3683 33.9932 12.1339 34.2276C11.8995 34.4621 11.5815 34.5938 11.25 34.5938Z"})]})}function H(){return a("svg",{width:"40",height:"41",viewBox:"0 0 40 41",fill:"currentColor",xmlns:"http://www.w3.org/2000/svg",children:[e("path",{d:"M7.50125 22.2687V8.34375C7.50125 8.01223 7.36955 7.69429 7.13513 7.45987C6.90071 7.22545 6.58277 7.09375 6.25125 7.09375C5.91973 7.09375 5.60179 7.22545 5.36737 7.45987C5.13295 7.69429 5.00125 8.01223 5.00125 8.34375V22.2687C3.94204 22.5566 3.00698 23.185 2.34033 24.057C1.67369 24.929 1.3125 25.9961 1.3125 27.0938C1.3125 28.1914 1.67369 29.2585 2.34033 30.1305C3.00698 31.0025 3.94204 31.6309 5.00125 31.9188V33.3438C5.00125 33.6753 5.13295 33.9932 5.36737 34.2276C5.60179 34.4621 5.91973 34.5938 6.25125 34.5938C6.58277 34.5938 6.90071 34.4621 7.13513 34.2276C7.36955 33.9932 7.50125 33.6753 7.50125 33.3438V31.9188C8.56046 31.6309 9.49552 31.0025 10.1622 30.1305C10.8288 29.2585 11.19 28.1914 11.19 27.0938C11.19 25.9961 10.8288 24.929 10.1622 24.057C9.49552 23.185 8.56046 22.5566 7.50125 22.2687ZM6.25125 29.5938C5.7568 29.5938 5.27345 29.4471 4.86232 29.1724C4.4512 28.8977 4.13077 28.5073 3.94155 28.0505C3.75233 27.5936 3.70282 27.091 3.79929 26.606C3.89575 26.1211 4.13385 25.6756 4.48348 25.326C4.83311 24.9764 5.27857 24.7382 5.76353 24.6418C6.24848 24.5453 6.75114 24.5948 7.20796 24.784C7.66477 24.9733 8.05522 25.2937 8.32992 25.7048C8.60463 26.1159 8.75125 26.5993 8.75125 27.0938C8.75125 27.7568 8.48786 28.3927 8.01902 28.8615C7.55018 29.3304 6.91429 29.5938 6.25125 29.5938Z"}),e("path",{d:"M38.7513 27.0938C38.7477 25.9881 38.3777 24.9147 37.6991 24.0417C37.0206 23.1687 36.0718 22.5452 35.0013 22.2687V8.34375C35.0013 8.01223 34.8696 7.69429 34.6351 7.45987C34.4007 7.22545 34.0828 7.09375 33.7513 7.09375C33.4197 7.09375 33.1018 7.22545 32.8674 7.45987C32.6329 7.69429 32.5013 8.01223 32.5013 8.34375V22.2687C31.442 22.5566 30.507 23.185 29.8403 24.057C29.1737 24.929 28.8125 25.9961 28.8125 27.0938C28.8125 28.1914 29.1737 29.2585 29.8403 30.1305C30.507 31.0025 31.442 31.6309 32.5013 31.9188V33.3438C32.5013 33.6753 32.6329 33.9932 32.8674 34.2276C33.1018 34.4621 33.4197 34.5938 33.7513 34.5938C34.0828 34.5938 34.4007 34.4621 34.6351 34.2276C34.8696 33.9932 35.0013 33.6753 35.0013 33.3438V31.9188C36.0718 31.6423 37.0206 31.0188 37.6991 30.1458C38.3777 29.2728 38.7477 28.1994 38.7513 27.0938ZM33.7513 29.5938C33.2568 29.5938 32.7734 29.4471 32.3623 29.1724C31.9512 28.8977 31.6308 28.5073 31.4416 28.0505C31.2523 27.5936 31.2028 27.091 31.2993 26.606C31.3957 26.1211 31.6339 25.6756 31.9835 25.326C32.3331 24.9764 32.7786 24.7382 33.2635 24.6418C33.7485 24.5453 34.2511 24.5948 34.708 24.784C35.1648 24.9733 35.5552 25.2937 35.8299 25.7048C36.1046 26.1159 36.2513 26.5993 36.2513 27.0938C36.2513 27.7568 35.9879 28.3927 35.519 28.8615C35.0502 29.3304 34.4143 29.5938 33.7513 29.5938Z"}),e("path",{d:"M21.2513 9.76875V8.34375C21.2513 8.01223 21.1196 7.69429 20.8851 7.45987C20.6507 7.22545 20.3328 7.09375 20.0013 7.09375C19.6697 7.09375 19.3518 7.22545 19.1174 7.45987C18.8829 7.69429 18.7513 8.01223 18.7513 8.34375V9.76875C17.692 10.0566 16.757 10.685 16.0903 11.557C15.4237 12.429 15.0625 13.4961 15.0625 14.5938C15.0625 15.6914 15.4237 16.7585 16.0903 17.6305C16.757 18.5025 17.692 19.1309 18.7513 19.4187V33.3438C18.7513 33.6753 18.8829 33.9932 19.1174 34.2276C19.3518 34.4621 19.6697 34.5938 20.0013 34.5938C20.3328 34.5938 20.6507 34.4621 20.8851 34.2276C21.1196 33.9932 21.2513 33.6753 21.2513 33.3438V19.4187C22.3105 19.1309 23.2455 18.5025 23.9122 17.6305C24.5788 16.7585 24.94 15.6914 24.94 14.5938C24.94 13.4961 24.5788 12.429 23.9122 11.557C23.2455 10.685 22.3105 10.0566 21.2513 9.76875ZM20.0013 17.0938C19.5068 17.0938 19.0234 16.9471 18.6123 16.6724C18.2012 16.3977 17.8808 16.0073 17.6916 15.5505C17.5023 15.0936 17.4528 14.591 17.5493 14.106C17.6457 13.6211 17.8839 13.1756 18.2335 12.826C18.5831 12.4764 19.0286 12.2382 19.5135 12.1418C19.9985 12.0453 20.5011 12.0948 20.958 12.2841C21.4148 12.4733 21.8052 12.7937 22.0799 13.2048C22.3546 13.6159 22.5013 14.0993 22.5013 14.5938C22.5013 15.2568 22.2379 15.8927 21.769 16.3615C21.3002 16.8304 20.6643 17.0938 20.0013 17.0938Z"})]})}var W={title:"Example Pages/LandingPage",component:r,decorators:[t=>e("div",{className:"bg-sidebar",children:e(t,{})})]},N=t=>e(r,{...t}),s=t=>({root:{type:"root",format:"",indent:0,version:1,children:[{type:"paragraph",format:"",indent:0,version:1,children:[{mode:"normal",text:t,type:"text",style:"",detail:0,format:0,version:1}],direction:"ltr",textStyle:"",textFormat:0}],direction:"ltr"}}),i={render:N,args:{title:"Storage Service",section:"Storage",description:"A scalable object storage service that offers industry-leading performance, security, and availability.",children:a("div",{className:"prose max-w-none",children:[e("h2",{children:"How it works"}),e("p",{children:"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."}),e("div",{className:"aspect-video overflow-hidden rounded-lg bg-slate-100",children:e("div",{className:"flex h-full items-center justify-center",children:"Video Placeholder"})})]}),header:{title:"Lorem ipsum dolor sit amet",subtitle:"Lorum ipsum dolor sit amet, consectetur adipiscing elit.",menuItems:[{name:"Documentation",items:[{name:"Platforms & Services",description:"Cloud services",href:"#",icon:I},{name:"Solutions & Propositions",description:"Solutions that we have built",href:"#",icon:x},{name:"Products",description:"Products that we sell",href:"#",icon:P}]},{name:"Resources",items:[{name:"Documentation",href:"#",icon:y},{name:"API Reference",href:"#",icon:v},{name:"Github",href:"#",icon:w}],actions:[{name:"Watch demo",href:"#",icon:f},{name:"Contact sales",href:"#",icon:C},{name:"View all products",href:"#",icon:b}]},{name:"Intranet",href:"#"}]},service:{services:[{image:n,title:"Service Title",content:s("This is a description of the service."),link:{label:"find out more",url:"#"}},{image:n,title:"Service Title",content:s("This is a description of the service."),link:{label:"find out more",url:"#"}},{image:n,title:"Service Title",content:s("This is a description of the service."),link:{label:"find out more",url:"#"}}],image:u},about:{images:{image1:l,image2:c,image3:m,image4:g,pattern:d},sectionHeading:{subtitle:"Payload",title:"Payload",description:"Payload"},keyPoints:[{icon:e(S,{}),title:"Cloud Migrate Pro"},{icon:e(H,{}),title:"AI Forge Labs"}]},contact:{sectionHeading:{title:"Get in Touch",subtitle:"We would love to hear from you"},image:{src:"/assets/images/contact.png",alt:"Contact Us",blurDataURL:"data:image/jpeg;base64,..."},contactInfo:{sectionHeading:{title:"Contact Information",subtitle:"Reach out to us through any of the following methods"},location:"123 Main Street, Anytown, AT 12345",mail:"info@example.com",phone:"+1 (555) 123-4567"},locations:[{title:"Head Office",location:"123 Main Street, Anytown, AT 12345",mails:["headoffice@example.com"],phoneNumbers:["+1 (555) 123-4567"],embedUrl:"https://www.google.com/maps/embed?..."},{title:"Branch Office",location:"456 Elm Street, Othertown, OT 67890",mails:["branchoffice@example.com"],phoneNumbers:["+1 (555) 987-6543"],embedUrl:"https://www.google.com/maps/embed?..."}]},blog:{sectionHeading:{subtitle:"Payload",title:"Payload",description:"Payload"},blogs:[{slug:"/blog/pioneering-progress",image:{src:"/assets/images/blog/istockphoto1.jpg",alt:"Pioneering Progress, One Algorithm at a Time"},authors:[{name:"admin with a long name"},{name:"demo"}],categories:["Technology","Other"],publishedAt:"2025-01-01T17:19:41.270Z",commentCount:"05",title:"Pioneering Progress, One Algorithm at a Time",description:"Aliquam eros justo, posuere lobortis non, viverra laoreet augue mattis start fermentum ullamcorper viverra laoreet. By Admin. Technology. 28th February 2022. Leave a comment."},{slug:"/blog/innovative-solutions",image:{src:"/assets/images/blog/istockphoto2.jpg",alt:"Innovative Solutions for Modern Problems"},publishedAt:"2025-01-01T17:19:41.270Z",categories:[],commentCount:"10",title:"Innovative Solutions for Modern Problems",description:"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero. Sed cursus ante dapibus diam. By John Doe. Innovation. 15th March 2022. Leave a comment."},{slug:"/blog/future-of-tech",image:{src:"/assets/images/blog/istockphoto3.jpg",alt:"The Future of Technology"},authors:[{name:"admin"},{name:"demo"}],publishedAt:"2025-01-01T17:19:41.270Z",commentCount:"08",title:"The Future of Technology",description:"Sed nisi. Nulla quis sem at nibh elementum imperdiet. Duis sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. By Jane Doe. Future. 22nd April 2022. Leave a comment."}]},footer:{className:"",logoLight:p,logoDark:h,footerData:{about:{description:"This is a sample description for the about section.",socialLinks:[{icon:e(k,{}),href:"https://www.linkedin.com/company/cortex-reply/"},{icon:e(T,{}),href:"https://www.instagram.com/cortex.reply/"}]},columnOne:{title:"Column One",links:[{href:"/link1",label:"Link 1"},{href:"/link2",label:"Link 2"}]},columnTwo:{title:"Contact Us",location:"1234 Street Name, City, Country",mails:["contact@example.com","support@example.com"]},columnThree:{title:"Recent Insights",blogs:[{image:{src:"/assets/images/blog/blog-sm-1.jpg",alt:"We provide a range of IT solutions"},title:"We provide a range of IT solutions",date:"2025-01-02T00:00:00.000Z",slug:"./blog-details"},{image:{src:"/assets/images/blog/blog-sm-2.jpg",alt:"IT solutions enhance efficiency"},title:"IT solutions enhance efficiency",date:"2025-01-02T00:00:00.000Z",slug:"./blog-details"}]},footerBottom:{copyrightText:"copyright",links:[{label:"Privacy Policy",href:"/privacy-policy",openNewTab:!1},{label:"Contact Us",href:"/contact",openNewTab:!1}]}}}}},q={args:{...i.args,header:{title:"Page Title",subtitle:a("div",{children:[e("p",{className:"text-xl font-bold",children:"A load of text here"}),e("br",{}),e("p",{className:"text-2xl font-bold",children:"A load more text here"})]})}}},E={args:{...i.args,hero:{type:"mediumImpact",media:"stock1.jpg?height=400&width=800",children:e("h1",{className:"text-4xl font-bold",children:"Medium Impact Hero"})},heroBackgroundImage:"stock1.jpg?height=400&width=800"}},J={args:{...i.args,hero:{type:"highImpact",children:e("h1",{className:"text-4xl font-bold",children:"High Impact Hero"}),media:"stock1.jpg?height=400&width=800"},heroBackgroundImage:"stock1.jpg?height=400&width=800"}},K={args:{...i.args,hero:{type:"highImpact",children:e("h1",{className:"text-4xl font-bold",children:"Post Hero"}),media:"stock1.jpg?height=400&width=800"},media:"stock1.jpg?height=400&width=800"}};export{i as Default,J as HighImpactHero,q as HtmlSubtitle,E as MediumImpactHero,K as PostHero,W as default};
@@ -1,2 +1,2 @@
1
1
  "use client";
2
- "use strict";import{a}from"../chunk-SVYUY3VF.mjs";import"../chunk-WU3JMLSC.mjs";import"../chunk-BZAYEKYC.mjs";import"../chunk-CXZGSPKM.mjs";import"../chunk-Y7TUU6BG.mjs";import"../chunk-HQTSD5A3.mjs";import"../chunk-JHTGGDU5.mjs";import"../chunk-DOJR2RDB.mjs";import"../chunk-64UGFPFV.mjs";import"../chunk-KHGZULZP.mjs";import"../chunk-K4RVBOIC.mjs";import"../chunk-MU4ETGDT.mjs";import"../chunk-BMN3FVZS.mjs";import"../chunk-63W64WWD.mjs";import"../chunk-IKTCLX2C.mjs";import"../chunk-OGZERPA4.mjs";import"../chunk-6T322YHB.mjs";import"../chunk-KJIBE57R.mjs";import"../chunk-CX4XB5W2.mjs";import"../chunk-EECIYMTX.mjs";import"../chunk-YNNW2C2U.mjs";import"../chunk-ZJ56IQPQ.mjs";import"../chunk-X3MBDMXV.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-VXGRJCCM.mjs";import"../chunk-DAJNZDN6.mjs";import"../chunk-KETV2XVN.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import"../chunk-M6LJ4BNZ.mjs";export{a as default};
2
+ "use strict";import{a}from"../chunk-L5MDFQGH.mjs";import"../chunk-WU3JMLSC.mjs";import"../chunk-BZAYEKYC.mjs";import"../chunk-YPK6OLRS.mjs";import"../chunk-MUBDAI2K.mjs";import"../chunk-NP2M5K7O.mjs";import"../chunk-JHTGGDU5.mjs";import"../chunk-DVF55CWB.mjs";import"../chunk-DOJR2RDB.mjs";import"../chunk-64UGFPFV.mjs";import"../chunk-KHGZULZP.mjs";import"../chunk-K4RVBOIC.mjs";import"../chunk-63W64WWD.mjs";import"../chunk-IKTCLX2C.mjs";import"../chunk-MU4ETGDT.mjs";import"../chunk-BMN3FVZS.mjs";import"../chunk-OGZERPA4.mjs";import"../chunk-6T322YHB.mjs";import"../chunk-CX4XB5W2.mjs";import"../chunk-EECIYMTX.mjs";import"../chunk-KJIBE57R.mjs";import"../chunk-YNNW2C2U.mjs";import"../chunk-ZJ56IQPQ.mjs";import"../chunk-5ALQQYYE.mjs";import"../chunk-O5BAW5XQ.mjs";import"../chunk-C4DU747D.mjs";import"../chunk-DIAK5C43.mjs";import"../chunk-CTKUF2I6.mjs";import"../chunk-56RXRTGZ.mjs";import"../chunk-L3PFZ7PW.mjs";import"../chunk-WDDAVAVV.mjs";import"../chunk-VIS6GPCT.mjs";import"../chunk-E6KVX2UG.mjs";import"../chunk-LLNCOMIM.mjs";import"../chunk-6HORFOA3.mjs";import"../chunk-KUZCFJTH.mjs";import"../chunk-IC57R2EU.mjs";import"../chunk-PBRC3UOA.mjs";import"../chunk-SX5U74MW.mjs";import"../chunk-KHZPOMKL.mjs";import"../chunk-FRTYO74I.mjs";import"../chunk-7PBTM4J4.mjs";import"../chunk-4BDIVC2Q.mjs";import"../chunk-TQQVBE66.mjs";import"../chunk-BUCI7BPM.mjs";import"../chunk-WGEMXPWB.mjs";import"../chunk-PWBAD26X.mjs";import"../chunk-YNCJATT7.mjs";import"../chunk-SUO6GOJS.mjs";import"../chunk-GRCMMAFX.mjs";import"../chunk-HJK6BCTE.mjs";import"../chunk-RHFLBRXF.mjs";import"../chunk-JPZJET3B.mjs";import"../chunk-NACHOXV5.mjs";import"../chunk-BPSLUO5I.mjs";import"../chunk-FHJDQP4I.mjs";import"../chunk-BLD454AX.mjs";import"../chunk-4BHOIXJM.mjs";import"../chunk-J2IHT57D.mjs";import"../chunk-4YFMDLHL.mjs";import"../chunk-2ZB6Z7XN.mjs";import"../chunk-VFXHLJ45.mjs";import"../chunk-FVPWO556.mjs";import"../chunk-INOUDNCK.mjs";import"../chunk-ZDPQXVTF.mjs";import"../chunk-55EX54R7.mjs";import"../chunk-BONRVXMX.mjs";import"../chunk-X5KZKO2V.mjs";import"../chunk-WKFNZUIR.mjs";import"../chunk-6MWXSKBH.mjs";import"../chunk-VR6QUPNE.mjs";import"../chunk-H6POT4A7.mjs";import"../chunk-TEMKCAXW.mjs";import"../chunk-KTXQBXXJ.mjs";import"../chunk-WISCWNL2.mjs";import"../chunk-FVM5SQT2.mjs";import"../chunk-HTVHCBXQ.mjs";import"../chunk-Q3G5UAAD.mjs";import"../chunk-ZLSF5YXT.mjs";import"../chunk-FRWX5YES.mjs";import"../chunk-CV7PH2KH.mjs";import"../chunk-M6LJ4BNZ.mjs";export{a as default};