cmpstr 1.0.2 → 2.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/LICENSE CHANGED
@@ -1,6 +1,6 @@
1
1
  MIT License
2
2
 
3
- Copyright (c) 2023 Paul Köhler
3
+ Copyright (c) 2025 Paul Köhler (komed3)
4
4
 
5
5
  Permission is hereby granted, free of charge, to any person obtaining a copy
6
6
  of this software and associated documentation files (the "Software"), to deal
package/README.md CHANGED
@@ -1,124 +1,483 @@
1
- # cmpstr
1
+ # CmpStr `v2.0`
2
2
 
3
- This lightweight npm package can be used to __calculate the similarity of strings__. It supports both the best known __Levenshtein distance__ and the slightly more accurate __Sørensen dice coefficient__.
3
+ CmpStr is a lightweight and powerful npm package for calculating string similarity, finding the closest matches in arrays, performing phonetic searches, and more. It supports a variety of built-in algorithms (e.g., Levenshtein, Dice-Sørensen, Damerau-Levenshtein, Soundex) and allows users to add custom algorithms and normalization filters.
4
4
 
5
- ## Install
5
+ #### Key Features
6
6
 
7
- Using Node.js install the package using shell command:
7
+ - Built-in support for multiple similarity algorithms.
8
+ - Phonetic search with language-specific configurations (e.g., Soundex).
9
+ - Batch operations and similarity matrices for large datasets.
10
+ - Customizable normalization with global flags and caching.
11
+ - Asynchronous support for non-blocking workflows.
12
+ - Extensible with custom algorithms and filters.
8
13
 
9
- ```sh
14
+ ## Installation
15
+
16
+ Install the package via npm:
17
+
18
+ ```bash
10
19
  npm install cmpstr
11
20
  ```
12
21
 
13
- ## Usage
22
+ ## Basic Usage
23
+
24
+ Importing the Package:
25
+
26
+ ```js
27
+ const { CmpStr } = require( 'cmpstr' );
28
+ ```
14
29
 
15
- Load the package into your project:
30
+ Example 1: Basic String Similarity
16
31
 
17
32
  ```js
18
- const cmpstr = require( 'cmpstr' );
33
+ const cmp = new CmpStr( 'levenshtein', 'hello' );
34
+
35
+ console.log( cmp.test( 'Hallo', { flags: 'i' } ) );
36
+ // Output: 0.8
19
37
  ```
20
38
 
21
- Sample of how to use the package in your code:
39
+ Example 2: Phonetic Search
22
40
 
23
41
  ```js
24
- let str1 = 'kitten';
25
- let str2 = 'sitting';
26
-
27
- /**
28
- * levenshteinDistance
29
- * expected: 3
30
- */
31
- let distance = cmpstr.levenshteinDistance( str1, str2 );
32
-
33
- /**
34
- * diceCoefficient
35
- * expected: 0.3636363636363636
36
- */
37
- let dice = cmpstr.diceCoefficient( str1, str2 );
38
-
39
- /**
40
- * diceClosest
41
- * expected: bestest
42
- */
43
- let closest = cmpstr.diceClosest( 'best', [
44
- 'better', 'bestest', 'well', 'good'
45
- ] );
46
-
47
- /**
48
- * levenshteinMatch
49
- * expected: [
50
- * { target: 'bestest', match: 0.5714285714285714 },
51
- * { target: 'better', match: 0.5 },
52
- * { target: 'well', match: 0.25 },
53
- * { target: 'good', match: 0 }
54
- * ]
55
- */
56
- let matches = cmpstr.levenshteinMatch( 'best', [
57
- 'better', 'bestest', 'well', 'good'
58
- ] );
42
+ const cmp = new CmpStr( 'soundex', 'Robert' );
43
+
44
+ console.log( cmp.test( 'Rubin', { options: { raw: true } } ) );
45
+ // Output: { a: 'R163', b: 'R150' }
46
+ ```
47
+
48
+ ## Methods
49
+
50
+ Creating a new instance of `CmpStr` or `CmpStrAsync` allows passing the algorithm to be used and the base string as optional arguments. Alternatively or later in the process, the `setAlgo` and `setStr` methods can be used for this purpose.
51
+
52
+ ### Basics
53
+
54
+ #### `isReady()`
55
+
56
+ Checks whether string and algorithm are set correctly. Returns `true`, if the class is ready to perform similarity checks, false otherwise.
57
+
58
+ #### `setStr( str )`
59
+
60
+ Sets the base string for comparison.
61
+
62
+ Parameters:
63
+
64
+ - `<String> str` – string to set as the base
65
+
66
+ #### `setFlags( [ flags = '' ] )`
67
+
68
+ Set default normalization flags. They will be overwritten by passing `flags` through the configuration object. See description of available flags / normalization options below in the documentation.
69
+
70
+ Parameters:
71
+
72
+ - `<String> flags` – normalization flags
73
+
74
+ #### `clearCache()`
75
+
76
+ Clears the normalization cache.
77
+
78
+ ### Algorithms
79
+
80
+ #### `listAlgo()`
81
+
82
+ List all registered similarity algorithms.
83
+
84
+ #### `isAlgo( algo )`
85
+
86
+ Checks if an algorithm is registered. Returns `true` if so, `false` otherwise.
87
+
88
+ Parameters:
89
+
90
+ - `<String> algo` – name of the algorithm
91
+
92
+ #### `setAlgo( algo )`
93
+
94
+ Sets the current algorithm to use for similarity calculations.
95
+
96
+ Allowed options for build-in althorithms are `cosine`, `damerau`, `dice`, `hamming`, `jaccard`, `jaro`, `lcs`, `levenshtein`, `needlemanWunsch`, `qGram`, `smithWaterman` and `soundex`.
97
+
98
+ Parameters:
99
+
100
+ - `<String> algo` – name of the algorithm
101
+
102
+ #### `addAlgo( algo, callback [, useIt = true ] )`
103
+
104
+ Adding a new similarity algorithm by using the `addAlgo()` method passing the name and a callback function, that must accept at least two strings and return a number. If `useIt` is `true`, the new algorithm will automatically be set as the current one.
105
+
106
+ Parameters:
107
+
108
+ - `<String> algo` – name of the algorithm
109
+ - `<Function> callback` – callback function implementing the algorithm
110
+ - `<Boolean> useIt` – whether to set this algorithm as the current one
111
+
112
+ Example:
113
+
114
+ ```js
115
+ const cmp = new CmpStr();
116
+
117
+ cmp.addAlgo( 'customAlgo', ( a, b ) => {
118
+ return a === b ? 1 : 0;
119
+ } );
120
+
121
+ console.log( cmp.compare( 'customAlgo', 'hello', 'hello' ) );
122
+ // Output: 1
59
123
  ```
60
124
 
61
- ## API
125
+ #### `rmvAlgo( algo )`
126
+
127
+ Removing a registered similarity algorithm.
128
+
129
+ Parameters:
130
+
131
+ - `<String> algo` – name of the algorithm
132
+
133
+ ### Filters
134
+
135
+ #### `listFilter()`
136
+
137
+ List all added filters.
138
+
139
+ #### `addFilter( name, callback [, priority = 10 ] )`
140
+
141
+ Adds a custom normalization filter. Needs to be passed a unique name and callback function accepting a string and returns a normalized one. Prioritizing filters by setting higher priority (default is `10`).
142
+
143
+ Parameters:
144
+
145
+ - `<String> name` – filter name
146
+ - `<Function> callback` – callback function implementing the filter
147
+ - `<Int> priority` – priority of the filter
148
+
149
+ Example:
150
+
151
+ ```js
152
+ const cmp = new CmpStr();
153
+
154
+ cmp.addFilter( 'prefix', ( str ) => `prefix_${str}` );
155
+ ```
156
+
157
+ #### `rmvFilter( name )`
158
+
159
+ Removes a custom normalization filter.
160
+
161
+ Parameters:
162
+
163
+ - `<String> name` – filter name
164
+
165
+ #### `pauseFilter( name )`
166
+
167
+ Pauses a custom normalization filter.
168
+
169
+ Parameters:
170
+
171
+ - `<String> name` – filter name
172
+
173
+ #### `resumeFilter( name )`
174
+
175
+ Resumes a custom normalization filter.
176
+
177
+ Parameters:
178
+
179
+ - `<String> name` – filter name
180
+
181
+ #### `clearFilter( name )`
182
+
183
+ Clears normalization filters (removing all of them).
184
+
185
+ ### Similarity Comparison
186
+
187
+ #### `compare( algo, a, b [, config = {} ] )`
188
+
189
+ Compares two strings using the specified algorithm. The method returns either the similarity score as a floating point number between 0 and 1 or raw output, if the algorithm supports it and the user passes `raw=true` through the config options.
190
+
191
+ Parameters:
192
+
193
+ - `<String> algo` – name of the algorithm
194
+ - `<String> a` – first string
195
+ - `<String> b` – second string
196
+ - `<Object> config` – configuration object
197
+
198
+ Example:
199
+
200
+ ```js
201
+ const cmp = new CmpStr();
202
+
203
+ console.log( cmp.compare( 'levenshtein', 'hello', 'hallo' ) );
204
+ // Output: 0.8
205
+ ```
206
+
207
+ #### `test( str [, config = {} ] )`
208
+
209
+ Tests the similarity between the base string and a given target string. Returns the same as ``compare``.
210
+
211
+ Parameters:
212
+
213
+ - `<String> str` – target string
214
+ - `<Object> config` – configuration object
215
+
216
+ Example:
217
+
218
+ ```js
219
+ const cmp = new CmpStr( 'levenshtein', 'hello' );
220
+
221
+ console.log( cmp.test( 'hallo' ) );
222
+ // Output: 0.8
223
+ ```
224
+
225
+ #### `batchTest( arr [, config = {} ] )`
226
+
227
+ Tests the similarity of multiple strings against the base string. Returns an array of objects with the target string and either the similarity score as a floating point number between 0 and 1 or raw output, if the algorithm supports it and the user passes `raw=true` through the config options.
228
+
229
+ Parameters:
230
+
231
+ - `<String[]> arr` – array of strings
232
+ - `<Object> config` – configuration object
233
+
234
+ Example:
235
+
236
+ ```js
237
+ const cmp = new CmpStr( 'levenshtein', 'hello' );
238
+
239
+ console.log( cmp.batchTest( [ 'hallo', 'hola', 'hey' ] ) );
240
+ // Output: [ { target: 'hallo', match: 0.8 }, { target: 'hola', match: 0.4 }, { target: 'hey', match: 0.4 } ]
241
+ ```
242
+
243
+ #### `match( arr [, config = {} ] )`
244
+
245
+ Finds strings in an array that exceed a similarity threshold and sorts them by highest similarity. Returns an array of objects contain target string and similarity score as a floating point number between 0 and 1.
246
+
247
+ Parameters:
248
+
249
+ - `<String[]> arr` – array of strings
250
+ - `<Object> config` – configuration object
251
+
252
+ Example:
253
+
254
+ ```js
255
+ const cmp = new CmpStr( 'levenshtein', 'hello' );
256
+
257
+ console.log( cmp.batchTest( [ 'hallo', 'hola', 'hey' ], {
258
+ threshold: 0.5
259
+ } ) );
260
+ // Output: [ { target: 'hallo', match: 0.8 } ]
261
+ ```
262
+
263
+ #### `closest( arr [, config = {} ] )`
264
+
265
+ Finds the closest matching string from an array and returns them.
266
+
267
+ Parameters:
268
+
269
+ - `<String[]> arr` – array of strings
270
+ - `<Object> config` – configuration object
271
+
272
+ Example:
273
+
274
+ ```js
275
+ const cmp = new CmpStr( 'levenshtein', 'hello' );
276
+
277
+ console.log( cmp.batchTest( [ 'hallo', 'hola', 'hey' ] ) );
278
+ // Output: 'hallo'
279
+ ```
280
+
281
+ #### `similarityMatrix( algo, arr [, config = {} ] )`
282
+
283
+ Generates a similarity matrix for an array of strings. Returns an 2D array that represents the similarity matrix by floating point numbers between 0 and 1.
284
+
285
+ Parameters:
286
+
287
+ - `<String> algo` – name of the algorithm
288
+ - `<String[]> arr` – array of strings
289
+ - `<Object> config` – configuration object
290
+
291
+ Example:
292
+
293
+ ```js
294
+ const cmp = new CmpStr();
295
+
296
+ console.log( cmp.similarityMatrix( 'levenshtein', [
297
+ 'hello', 'hallo', 'hola'
298
+ ] ) );
299
+ // Output: [ [ 1, 0.8, 0.4 ], [ 0.8, 1, 0.4 ], [ 0.4, 0.4, 1 ] ]
300
+ ```
301
+
302
+ ## Customization
303
+
304
+ ### Normalize Strings
305
+
306
+ The `CmpStr` package allows strings to be normalized before the similarity comparison. Options listed below are available for this and can either be set globally via `setFlags` or passed using the config object, which will overwrite the global flags. Flags are passed as a chained string in any order. For improved performance, normalized strings are stored in the cache, which can be freed using the `clearCache` method. Modifying custom filters automatically deletes the cache.
307
+
308
+ #### Supported Flags
309
+
310
+ - `s` – remove special chars
311
+ - `w` – collapse whitespaces
312
+ - `r` – remove repeated chars
313
+ - `k` – keep only letters
314
+ - `n` – ignore numbers
315
+ - `t` – trim whitespaces
316
+ - `i` – case insensitivity
317
+ - `d` – decompose unicode
318
+ - `u` – normalize unicode
319
+
320
+ #### `normalize( str [, flags = '' ] )`
321
+
322
+ The method for normalizing strings can also be called on its own, without comparing the similarity of two strings. This also applies all filters and reads or writes to the cache. This can be helpful if certain strings should be saved beforehand or different normalization options want to be tested.
323
+
324
+ Parameters:
325
+
326
+ - `<String> str` – string to normalize
327
+ - `<String> flags` normalization flags
328
+
329
+ Example:
330
+
331
+ ```js
332
+ const cmp = new CmpStr();
333
+
334
+ console.log( cmp.normalize( ' he123LLo ', 'nti' ) );
335
+ // Output: hello
336
+ ```
337
+
338
+ ### Configuration Object
339
+
340
+ An additional object with optional parameters can be passed to all comparison methods (e.g. `test`, `match`, `closest` etc.) and their asynchronous pendants. This object includes the ability to pass `flags` for normalization to all methods, as well as the `threshold` parameter for `match` and `matchAsync`.
341
+
342
+ It also contains `options` as an object of key-value pairs that are passed to the comparison algorithm. Which additional arguments an algorithm accepts depends on the function exported from the module itself. Further down in this documentation, the various parameters for each algorithm are listed.
343
+
344
+ Global config options:
345
+
346
+ - `<String> flags` – normalization flags
347
+ - `<Number> threshold` – similarity threshold between 0 and 1
348
+ - `<Object> options` – options passed to the algorithm
349
+
350
+ Example:
351
+
352
+ ```js
353
+ const cmp = new CmpStr( 'smithWaterman', 'alignment' );
354
+
355
+ console.log( cmp.match( [
356
+ ' align ment', 'ali gnm ent ', ' alIGNMent'
357
+ ], {
358
+ flags: 'it',
359
+ threshold: 0.8,
360
+ options: {
361
+ mismatch: -4,
362
+ gap: -2
363
+ }
364
+ } ) );
365
+ // Output: [ { target: ' alIGNMent', match: 1 }, { target: ' align ment', match: 0.8... }
366
+ ]
367
+ ```
368
+
369
+ ## Asynchronous Support
370
+
371
+ The `CmpStrAsync` class provides asynchronous versions of all comparison methods. It is ideal for large datasets or non-blocking workflows.
372
+
373
+ The asynchronous class supports the methods `compareAsync`, `testAsync`, `batchTestAsync`, `matchAsync`, `closestAsync` and `similarityMatrixAsync`. Each of these methods returns a `Promise`.
374
+
375
+ For options, arguments and returned values, see the documentation above.
376
+
377
+ Example:
378
+
379
+ ```js
380
+ const { CmpStrAsync } = require( 'cmpstr' );
381
+
382
+ const cmp = new CmpStrAsync( 'dice', 'best' );
383
+
384
+ cmp.batchTestAsync( [
385
+ 'better', 'bestest', 'the best', 'good', ...
386
+ ] ).then( console.log );
387
+ ```
388
+
389
+ ## Supported Algorithms
390
+
391
+ The following algorithms for similarity analysis are natively supported by the CmpStr package. Lazy-loading keeps memory consumption and loading time low, as only the algorithm intended to be used will be loaded as a module.
392
+
393
+ ### Similarity Algorithms
394
+
395
+ #### Levenshtein Distance – `levenshtein`
396
+
397
+ The Levenshtein distance between two strings is the minimum number of single-character edits (i.e. insertions, deletions or substitutions) required to change one word into the other.
398
+
399
+ Options:
400
+
401
+ - `<Boolean> raw` – if true the raw distance is returned
402
+
403
+ #### Damerau-Levenshtein – `damerau`
404
+
405
+ The Damerau-Levenshtein distance differs from the classical Levenshtein distance by including transpositions among its allowable operations in addition to the three classical single-character edit operations (insertions, deletions and substitutions). Useful for correcting typos.
406
+
407
+ Options:
408
+
409
+ - `<Boolean> raw` – if true the raw distance is returned
410
+
411
+ #### Jaro-Winkler – `jaro`
412
+
413
+ Jaro-Winkler is a string similarity metric that gives more weight to matching characters at the start of the strings.
414
+
415
+ Options:
416
+
417
+ - `<Boolean> raw` – if true the raw distance is returned
62
418
 
63
- The npm package ``cmpstr`` supports two different methods for determining the similarity of two strings. The __Levenshtein distance__, as the minimum number of inserting, deleting and replacing operations to convert one string into another, and the __Sørensen-Dice coefficient__ to measure the similarity of two samples.
419
+ #### Cosine Similarity `cosine`
64
420
 
65
- Learn more about both by visiting these links:
421
+ Cosine similarity is a measure how similar two vectors are. It's often used in text analysis to compare texts based on the words they contain.
66
422
 
67
- * [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance)
68
- * [Sørensen-Dice coefficient](https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient)
423
+ Options:
69
424
 
70
- ### Levenshtein distance
425
+ - `<String> delimiter` – term delimiter
71
426
 
72
- #### ``levenshteinDistance( a, b [, flags = null ] )``
427
+ #### Dice Coefficient `dice`
73
428
 
74
- Calculates the difference between two strings ``a`` and ``b`` and returns the Levenshtein distance as an integer value.
429
+ The Dice-Sørensen index equals twice the number of elements common to both sets divided by the sum of the number of elements in each set. Equivalently the index is the size of the intersection as a fraction of the average size of the two sets.
75
430
 
76
- #### ``levenshtein( a, b [, flags = null ] )``
431
+ #### Jaccard Index `jaccard`
77
432
 
78
- Returns the match percentage of two strings ``a`` and ``b``. The output value is in the range ``0..1`` as a floating point number.
433
+ The Jaccard Index measures the similarity between two sets by dividing the size of their intersection by the size of their union.
79
434
 
80
- #### ``levenshteinClosest( str, arr [, flags = null ] )``
435
+ #### Hamming Distance `hamming`
81
436
 
82
- Returns the best match of the string ``str`` against the array ``arr`` of passed strings. The function returns the most closely matched string found in the array.
437
+ The Hamming distance between two equal-length strings of symbols is the number of positions at which the corresponding symbols are different.
83
438
 
84
- #### ``levenshteinMatch( str, arr [, flags = null ] )``
439
+ #### Longest Common Subsequence `lcs`
85
440
 
86
- Calculates the similarity of all strings contained in the array ``arr`` according to Levenshtein compared to ``str`` and returns an array of all samples sorted by matching in descending order.
441
+ LCS measures the length of the longest subsequence common to both strings.
87
442
 
88
- ### Sørensen-Dice coefficient
443
+ #### Needleman-Wunsch – `needlemanWunsch`
89
444
 
90
- #### ``diceCoefficient( a, b [, flags = null ] )``
445
+ The Needleman-Wunsch algorithm performs global alignment, aligning two strings entirely, including gaps. It is commonly used in bioinformatics.
91
446
 
92
- This function evaluates the similarity of two given strings ``a`` and ``b`` as percentage value according to the Sørensen-Dice coefficient and returns the result as floating point number.
447
+ Options:
93
448
 
94
- #### ``diceClosest( str, arr [, flags = null ] )``
449
+ - `<Number> match` score for a match
450
+ - `<Number> mismatch` – penalty for a mismatch
451
+ - `<Number> gap` – penalty for a gap
95
452
 
96
- As another way to find the best match between the string ``str`` and a given array ``arr`` of samples, this function uses the Sørensen-Dice coefficient. It returns the most matching string as well.
453
+ #### Smith-Waterman `smithWaterman`
97
454
 
98
- #### ``diceMatch( str, arr [, flags = null ] )``
455
+ The Smith-Waterman algorithm performs local alignment, finding the best matching subsequence between two strings. It is commonly used in bioinformatics.
99
456
 
100
- Calculates the similarity of all strings contained in the array ``arr`` according to Sørensen-Dice coefficient compared to ``str`` and returns an array of all samples sorted by matching in descending order.
457
+ Options:
101
458
 
102
- ### Flags
459
+ - `<Number> match` – score for a match
460
+ - `<Number> mismatch` – penalty for a mismatch
461
+ - `<Number> gap` – penalty for a gap
103
462
 
104
- Each method can be passed the ``flags`` options listed below:
463
+ #### q-Gram `qGram`
105
464
 
106
- | Flag | Option |
107
- | ----- | ------------------------------ |
108
- | ``i`` | case insensitive |
109
- | ``s`` | non-whitespace characters only |
465
+ Q-gram similarity is a string-matching algorithm that compares two strings by breaking them into substrings of length Q. It's used to determine how similar the two strings are.
110
466
 
111
- ## Patch notes
467
+ Options:
112
468
 
113
- ### 1.0.2
469
+ - `<Int> q` length of substrings
114
470
 
115
- * Add normalize options ``i`` and ``s``
116
- * Minor fixes
471
+ ### Phonetic Algorithms
117
472
 
118
- ### 1.0.1
473
+ #### Soundex – `soundex`
119
474
 
120
- * Minor fixes
475
+ The Soundex algorithm generates a phonetic representation of a string based on how it sounds. It supports predefined setups for English and German and allows users to provide custom options.
121
476
 
122
- ### 1.0.0
477
+ Options:
123
478
 
124
- * Initial release
479
+ - `<String> lang` – language code for predefined setups (e.g., `en`, `de`)
480
+ - `<Boolean> raw` – if true, returns the raw sound index codes
481
+ - `<Object> mapping` – custom phonetic mapping (overrides predefined)
482
+ - `<String> exclude` – characters to exclude from the input (overrides predefined)
483
+ - `<Number> maxLength` – maximum length of the phonetic code
package/package.json CHANGED
@@ -1,25 +1,47 @@
1
- {
2
- "name": "cmpstr",
3
- "description": "lightweight npm package to calculate string similarity",
4
- "author": {
5
- "name" : "komed3 (Paul Köhler)",
6
- "email" : "webmaster@komed3.de",
7
- "url" : "https://komed3.de"
8
- },
9
- "homepage": "https://github.com/komed3/cmpstr#readme",
10
- "version": "1.0.2",
11
- "license": "MIT",
12
- "keywords": [
13
- "string",
14
- "similarity",
15
- "levenshtein-distance",
16
- "dice-coefficient"
17
- ],
18
- "repository": {
19
- "type": "git",
20
- "url": "git+https://github.com/komed3/cmpstr.git"
21
- },
22
- "bugs": {
23
- "url": "https://github.com/komed3/cmpstr/issues"
24
- }
25
- }
1
+ {
2
+ "name": "cmpstr",
3
+ "description": "lightweight npm package to calculate string similarity",
4
+ "author": {
5
+ "name" : "komed3 (Paul Köhler)",
6
+ "email" : "webmaster@komed3.de",
7
+ "url" : "https://komed3.de"
8
+ },
9
+ "homepage": "https://github.com/komed3/cmpstr#readme",
10
+ "version": "2.0.0",
11
+ "main": "src/index.js",
12
+ "license": "MIT",
13
+ "keywords": [
14
+ "string-similarity",
15
+ "string-comparison",
16
+ "similarity-algorithms",
17
+ "phonetic-search",
18
+ "soundex",
19
+ "levenshtein-distance",
20
+ "damerau-levenshtein",
21
+ "jaro-winkler",
22
+ "cosine-similarity",
23
+ "dice-coefficient",
24
+ "jaccard-index",
25
+ "hamming-distance",
26
+ "longest-common-subsequence",
27
+ "needleman-wunsch",
28
+ "smith-waterman",
29
+ "q-gram",
30
+ "similarity-matrix",
31
+ "batch-operations",
32
+ "normalization",
33
+ "asynchronous",
34
+ "custom-algorithms",
35
+ "text-processing",
36
+ "fuzzy-matching",
37
+ "string-matching",
38
+ "text-similarity"
39
+ ],
40
+ "repository": {
41
+ "type": "git",
42
+ "url": "git+https://github.com/komed3/cmpstr.git"
43
+ },
44
+ "bugs": {
45
+ "url": "https://github.com/komed3/cmpstr/issues"
46
+ }
47
+ }