claudish 2.2.1 → 2.5.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/package.json CHANGED
@@ -1,31 +1,15 @@
1
1
  {
2
2
  "name": "claudish",
3
- "version": "2.2.1",
3
+ "version": "2.5.0",
4
4
  "description": "CLI tool to run Claude Code with any OpenRouter model (Grok, GPT-5, MiniMax, etc.) via local Anthropic API-compatible proxy",
5
5
  "type": "module",
6
6
  "main": "./dist/index.js",
7
7
  "bin": {
8
8
  "claudish": "dist/index.js"
9
9
  },
10
- "scripts": {
11
- "dev": "bun run src/index.ts",
12
- "dev:grok": "bun run src/index.ts --interactive --model x-ai/grok-code-fast-1",
13
- "dev:grok:debug": "bun run src/index.ts --interactive --debug --log-level info --model x-ai/grok-code-fast-1",
14
- "dev:info": "bun run src/index.ts --interactive --monitor",
15
- "extract-models": "bun run scripts/extract-models.ts",
16
- "build": "bun run extract-models && bun build src/index.ts --outdir dist --target node && chmod +x dist/index.js",
17
- "link": "npm link",
18
- "unlink": "npm unlink -g claudish",
19
- "install-global": "bun run build && npm link",
20
- "kill-all": "pkill -f 'bun.*claudish' || pkill -f 'claude.*claudish-settings' || echo 'No claudish processes found'",
21
- "test": "bun test ./tests/comprehensive-model-test.ts",
22
- "typecheck": "tsc --noEmit",
23
- "lint": "biome check .",
24
- "format": "biome format --write .",
25
- "postinstall": "node scripts/postinstall.cjs"
26
- },
27
10
  "dependencies": {
28
11
  "@hono/node-server": "^1.19.6",
12
+ "dotenv": "^17.2.3",
29
13
  "hono": "^4.10.6"
30
14
  },
31
15
  "devDependencies": {
@@ -54,5 +38,22 @@
54
38
  "ai"
55
39
  ],
56
40
  "author": "Jack Rudenko <i@madappgang.com>",
57
- "license": "MIT"
58
- }
41
+ "license": "MIT",
42
+ "scripts": {
43
+ "dev": "bun run src/index.ts",
44
+ "dev:grok": "bun run src/index.ts --interactive --model x-ai/grok-code-fast-1",
45
+ "dev:grok:debug": "bun run src/index.ts --interactive --debug --log-level info --model x-ai/grok-code-fast-1",
46
+ "dev:info": "bun run src/index.ts --interactive --monitor",
47
+ "extract-models": "bun run scripts/extract-models.ts",
48
+ "build": "bun run extract-models && bun build src/index.ts --outdir dist --target node && chmod +x dist/index.js",
49
+ "link": "npm link",
50
+ "unlink": "npm unlink -g claudish",
51
+ "install-global": "bun run build && npm link",
52
+ "kill-all": "pkill -f 'bun.*claudish' || pkill -f 'claude.*claudish-settings' || echo 'No claudish processes found'",
53
+ "test": "bun test ./tests/comprehensive-model-test.ts",
54
+ "typecheck": "tsc --noEmit",
55
+ "lint": "biome check .",
56
+ "format": "biome format --write .",
57
+ "postinstall": "node scripts/postinstall.cjs"
58
+ }
59
+ }
@@ -1,26 +1,26 @@
1
1
  {
2
2
  "version": "2.1.0",
3
- "lastUpdated": "2025-11-20",
3
+ "lastUpdated": "2025-11-24",
4
4
  "source": "https://openrouter.ai/models?categories=programming&fmt=cards&order=top-weekly",
5
5
  "models": [
6
6
  {
7
- "id": "x-ai/grok-code-fast-1",
8
- "name": "xAI: Grok Code Fast 1",
9
- "description": "Grok Code Fast 1 is a speedy and economical reasoning model that excels at agentic coding. With reasoning traces visible in the response, developers can steer Grok Code for high-quality work flows.",
10
- "provider": "X-ai",
11
- "category": "reasoning",
7
+ "id": "google/gemini-3-pro-preview",
8
+ "name": "Google: Gemini 3 Pro Preview",
9
+ "description": "Gemini 3 Pro is Google’s flagship frontier model for high-precision multimodal reasoning, combining strong performance across text, image, video, audio, and code with a 1M-token context window. Reasoning Details must be preserved when using multi-turn tool calling, see our docs here: https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks. It delivers state-of-the-art benchmark results in general reasoning, STEM problem solving, factual QA, and multimodal understanding, including leading scores on LMArena, GPQA Diamond, MathArena Apex, MMMU-Pro, and Video-MMMU. Interactions emphasize depth and interpretability: the model is designed to infer intent with minimal prompting and produce direct, insight-focused responses.\n\nBuilt for advanced development and agentic workflows, Gemini 3 Pro provides robust tool-calling, long-horizon planning stability, and strong zero-shot generation for complex UI, visualization, and coding tasks. It excels at agentic coding (SWE-Bench Verified, Terminal-Bench 2.0), multimodal analysis, and structured long-form tasks such as research synthesis, planning, and interactive learning experiences. Suitable applications include autonomous agents, coding assistants, multimodal analytics, scientific reasoning, and high-context information processing.",
10
+ "provider": "Google",
11
+ "category": "vision",
12
12
  "priority": 1,
13
13
  "pricing": {
14
- "input": "$0.20/1M",
15
- "output": "$1.50/1M",
16
- "average": "$0.85/1M"
14
+ "input": "$2.00/1M",
15
+ "output": "$12.00/1M",
16
+ "average": "$7.00/1M"
17
17
  },
18
- "context": "256K",
19
- "maxOutputTokens": 10000,
20
- "modality": "text->text",
18
+ "context": "1048K",
19
+ "maxOutputTokens": 65536,
20
+ "modality": "text+image->text",
21
21
  "supportsTools": true,
22
22
  "supportsReasoning": true,
23
- "supportsVision": false,
23
+ "supportsVision": true,
24
24
  "isModerated": false,
25
25
  "recommended": true
26
26
  },
@@ -46,19 +46,19 @@
46
46
  "recommended": true
47
47
  },
48
48
  {
49
- "id": "moonshotai/kimi-k2-thinking",
50
- "name": "MoonshotAI: Kimi K2 Thinking",
51
- "description": "Kimi K2 Thinking is Moonshot AI’s most advanced open reasoning model to date, extending the K2 series into agentic, long-horizon reasoning. Built on the trillion-parameter Mixture-of-Experts (MoE) architecture introduced in Kimi K2, it activates 32 billion parameters per forward pass and supports 256 k-token context windows. The model is optimized for persistent step-by-step thought, dynamic tool invocation, and complex reasoning workflows that span hundreds of turns. It interleaves step-by-step reasoning with tool use, enabling autonomous research, coding, and writing that can persist for hundreds of sequential actions without drift.\n\nIt sets new open-source benchmarks on HLE, BrowseComp, SWE-Multilingual, and LiveCodeBench, while maintaining stable multi-agent behavior through 200–300 tool calls. Built on a large-scale MoE architecture with MuonClip optimization, it combines strong reasoning depth with high inference efficiency for demanding agentic and analytical tasks.",
52
- "provider": "Moonshotai",
49
+ "id": "x-ai/grok-code-fast-1",
50
+ "name": "xAI: Grok Code Fast 1",
51
+ "description": "Grok Code Fast 1 is a speedy and economical reasoning model that excels at agentic coding. With reasoning traces visible in the response, developers can steer Grok Code for high-quality work flows.",
52
+ "provider": "X-ai",
53
53
  "category": "reasoning",
54
54
  "priority": 3,
55
55
  "pricing": {
56
- "input": "$0.50/1M",
57
- "output": "$2.50/1M",
58
- "average": "$1.50/1M"
56
+ "input": "$0.20/1M",
57
+ "output": "$1.50/1M",
58
+ "average": "$0.85/1M"
59
59
  },
60
- "context": "262K",
61
- "maxOutputTokens": 262144,
60
+ "context": "256K",
61
+ "maxOutputTokens": 10000,
62
62
  "modality": "text->text",
63
63
  "supportsTools": true,
64
64
  "supportsReasoning": true,
@@ -66,38 +66,17 @@
66
66
  "isModerated": false,
67
67
  "recommended": true
68
68
  },
69
- {
70
- "id": "google/gemini-2.5-flash",
71
- "name": "Google: Gemini 2.5 Flash",
72
- "description": "Gemini 2.5 Flash is Google's state-of-the-art workhorse model, specifically designed for advanced reasoning, coding, mathematics, and scientific tasks. It includes built-in \"thinking\" capabilities, enabling it to provide responses with greater accuracy and nuanced context handling. \n\nAdditionally, Gemini 2.5 Flash is configurable through the \"max tokens for reasoning\" parameter, as described in the documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning).",
73
- "provider": "Google",
74
- "category": "reasoning",
75
- "priority": 4,
76
- "pricing": {
77
- "input": "$0.30/1M",
78
- "output": "$2.50/1M",
79
- "average": "$1.40/1M"
80
- },
81
- "context": "1048K",
82
- "maxOutputTokens": 65535,
83
- "modality": "text+image->text",
84
- "supportsTools": true,
85
- "supportsReasoning": true,
86
- "supportsVision": true,
87
- "isModerated": false,
88
- "recommended": true
89
- },
90
69
  {
91
70
  "id": "minimax/minimax-m2",
92
71
  "name": "MiniMax: MiniMax M2",
93
72
  "description": "MiniMax-M2 is a compact, high-efficiency large language model optimized for end-to-end coding and agentic workflows. With 10 billion activated parameters (230 billion total), it delivers near-frontier intelligence across general reasoning, tool use, and multi-step task execution while maintaining low latency and deployment efficiency.\n\nThe model excels in code generation, multi-file editing, compile-run-fix loops, and test-validated repair, showing strong results on SWE-Bench Verified, Multi-SWE-Bench, and Terminal-Bench. It also performs competitively in agentic evaluations such as BrowseComp and GAIA, effectively handling long-horizon planning, retrieval, and recovery from execution errors.\n\nBenchmarked by [Artificial Analysis](https://artificialanalysis.ai/models/minimax-m2), MiniMax-M2 ranks among the top open-source models for composite intelligence, spanning mathematics, science, and instruction-following. Its small activation footprint enables fast inference, high concurrency, and improved unit economics, making it well-suited for large-scale agents, developer assistants, and reasoning-driven applications that require responsiveness and cost efficiency.\n\nTo avoid degrading this model's performance, MiniMax highly recommends preserving reasoning between turns. Learn more about using reasoning_details to pass back reasoning in our [docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks).",
94
73
  "provider": "Minimax",
95
74
  "category": "reasoning",
96
- "priority": 5,
75
+ "priority": 4,
97
76
  "pricing": {
98
- "input": "$0.26/1M",
99
- "output": "$1.02/1M",
100
- "average": "$0.64/1M"
77
+ "input": "$0.24/1M",
78
+ "output": "$0.96/1M",
79
+ "average": "$0.60/1M"
101
80
  },
102
81
  "context": "204K",
103
82
  "maxOutputTokens": 131072,
@@ -114,7 +93,7 @@
114
93
  "description": "Compared with GLM-4.5, this generation brings several key improvements:\n\nLonger context window: The context window has been expanded from 128K to 200K tokens, enabling the model to handle more complex agentic tasks.\nSuperior coding performance: The model achieves higher scores on code benchmarks and demonstrates better real-world performance in applications such as Claude Code、Cline、Roo Code and Kilo Code, including improvements in generating visually polished front-end pages.\nAdvanced reasoning: GLM-4.6 shows a clear improvement in reasoning performance and supports tool use during inference, leading to stronger overall capability.\nMore capable agents: GLM-4.6 exhibits stronger performance in tool using and search-based agents, and integrates more effectively within agent frameworks.\nRefined writing: Better aligns with human preferences in style and readability, and performs more naturally in role-playing scenarios.",
115
94
  "provider": "Z-ai",
116
95
  "category": "reasoning",
117
- "priority": 6,
96
+ "priority": 5,
118
97
  "pricing": {
119
98
  "input": "$0.40/1M",
120
99
  "output": "$1.75/1M",
@@ -129,55 +108,13 @@
129
108
  "isModerated": false,
130
109
  "recommended": true
131
110
  },
132
- {
133
- "id": "openai/gpt-5",
134
- "name": "OpenAI: GPT-5",
135
- "description": "GPT-5 is OpenAI’s most advanced model, offering major improvements in reasoning, code quality, and user experience. It is optimized for complex tasks that require step-by-step reasoning, instruction following, and accuracy in high-stakes use cases. It supports test-time routing features and advanced prompt understanding, including user-specified intent like \"think hard about this.\" Improvements include reductions in hallucination, sycophancy, and better performance in coding, writing, and health-related tasks.",
136
- "provider": "Openai",
137
- "category": "reasoning",
138
- "priority": 7,
139
- "pricing": {
140
- "input": "$1.25/1M",
141
- "output": "$10.00/1M",
142
- "average": "$5.63/1M"
143
- },
144
- "context": "400K",
145
- "maxOutputTokens": 128000,
146
- "modality": "text+image->text",
147
- "supportsTools": true,
148
- "supportsReasoning": true,
149
- "supportsVision": true,
150
- "isModerated": true,
151
- "recommended": true
152
- },
153
- {
154
- "id": "google/gemini-3-pro-preview",
155
- "name": "Google: Gemini 3 Pro Preview",
156
- "description": "Gemini 3 Pro is Google’s flagship frontier model for high-precision multimodal reasoning, combining strong performance across text, image, video, audio, and code with a 1M-token context window. Reasoning Details must be preserved when using multi-turn tool calling, see our docs here: https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks. It delivers state-of-the-art benchmark results in general reasoning, STEM problem solving, factual QA, and multimodal understanding, including leading scores on LMArena, GPQA Diamond, MathArena Apex, MMMU-Pro, and Video-MMMU. Interactions emphasize depth and interpretability: the model is designed to infer intent with minimal prompting and produce direct, insight-focused responses.\n\nBuilt for advanced development and agentic workflows, Gemini 3 Pro provides robust tool-calling, long-horizon planning stability, and strong zero-shot generation for complex UI, visualization, and coding tasks. It excels at agentic coding (SWE-Bench Verified, Terminal-Bench 2.0), multimodal analysis, and structured long-form tasks such as research synthesis, planning, and interactive learning experiences. Suitable applications include autonomous agents, coding assistants, multimodal analytics, scientific reasoning, and high-context information processing.",
157
- "provider": "Google",
158
- "category": "vision",
159
- "priority": 8,
160
- "pricing": {
161
- "input": "$2.00/1M",
162
- "output": "$12.00/1M",
163
- "average": "$7.00/1M"
164
- },
165
- "context": "1048K",
166
- "maxOutputTokens": 65536,
167
- "modality": "text+image->text",
168
- "supportsTools": true,
169
- "supportsReasoning": true,
170
- "supportsVision": true,
171
- "isModerated": false,
172
- "recommended": true
173
- },
174
111
  {
175
112
  "id": "qwen/qwen3-vl-235b-a22b-instruct",
176
113
  "name": "Qwen: Qwen3 VL 235B A22B Instruct",
177
114
  "description": "Qwen3-VL-235B-A22B Instruct is an open-weight multimodal model that unifies strong text generation with visual understanding across images and video. The Instruct model targets general vision-language use (VQA, document parsing, chart/table extraction, multilingual OCR). The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning.\n\nBeyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows—turning sketches or mockups into code and assisting with UI debugging—while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.",
178
115
  "provider": "Qwen",
179
116
  "category": "vision",
180
- "priority": 9,
117
+ "priority": 6,
181
118
  "pricing": {
182
119
  "input": "$0.21/1M",
183
120
  "output": "$1.90/1M",
@@ -191,27 +128,6 @@
191
128
  "supportsVision": true,
192
129
  "isModerated": false,
193
130
  "recommended": true
194
- },
195
- {
196
- "id": "openrouter/polaris-alpha",
197
- "name": "Polaris Alpha",
198
- "description": "openrouter/polaris-alpha (metadata pending - not yet available in API)",
199
- "provider": "Openrouter",
200
- "category": "programming",
201
- "priority": 10,
202
- "pricing": {
203
- "input": "N/A",
204
- "output": "N/A",
205
- "average": "N/A"
206
- },
207
- "context": "N/A",
208
- "maxOutputTokens": null,
209
- "modality": "text->text",
210
- "supportsTools": false,
211
- "supportsReasoning": false,
212
- "supportsVision": false,
213
- "isModerated": false,
214
- "recommended": true
215
131
  }
216
132
  ]
217
133
  }
@@ -120,6 +120,16 @@ export const ENV = {
120
120
  CLAUDISH_ACTIVE_MODEL_NAME: "CLAUDISH_ACTIVE_MODEL_NAME", // Set by claudish to show active model in status line
121
121
  ANTHROPIC_MODEL: "ANTHROPIC_MODEL", // Claude Code standard env var for model selection
122
122
  ANTHROPIC_SMALL_FAST_MODEL: "ANTHROPIC_SMALL_FAST_MODEL", // Claude Code standard env var for fast model
123
+ // Claudish model mapping overrides (highest priority)
124
+ CLAUDISH_MODEL_OPUS: "CLAUDISH_MODEL_OPUS",
125
+ CLAUDISH_MODEL_SONNET: "CLAUDISH_MODEL_SONNET",
126
+ CLAUDISH_MODEL_HAIKU: "CLAUDISH_MODEL_HAIKU",
127
+ CLAUDISH_MODEL_SUBAGENT: "CLAUDISH_MODEL_SUBAGENT",
128
+ // Claude Code standard model configuration (fallback if CLAUDISH_* not set)
129
+ ANTHROPIC_DEFAULT_OPUS_MODEL: "ANTHROPIC_DEFAULT_OPUS_MODEL",
130
+ ANTHROPIC_DEFAULT_SONNET_MODEL: "ANTHROPIC_DEFAULT_SONNET_MODEL",
131
+ ANTHROPIC_DEFAULT_HAIKU_MODEL: "ANTHROPIC_DEFAULT_HAIKU_MODEL",
132
+ CLAUDE_CODE_SUBAGENT_MODEL: "CLAUDE_CODE_SUBAGENT_MODEL",
123
133
  } as const;
124
134
 
125
135
  // OpenRouter API Configuration
File without changes
@@ -5,7 +5,7 @@ description: CRITICAL - Guide for using Claudish CLI ONLY through sub-agents to
5
5
 
6
6
  # Claudish Usage Skill
7
7
 
8
- **Version:** 1.0.0
8
+ **Version:** 1.1.0
9
9
  **Purpose:** Guide AI agents on how to use Claudish CLI to run Claude Code with OpenRouter models
10
10
  **Status:** Production Ready
11
11
 
@@ -214,14 +214,22 @@ claudish --version
214
214
  ### Step 2: Get Available Models
215
215
 
216
216
  ```bash
217
- # List all available models (auto-updates if cache >2 days old)
218
- claudish --list-models
217
+ # List ALL OpenRouter models grouped by provider
218
+ claudish --models
219
+
220
+ # Fuzzy search models by name, ID, or description
221
+ claudish --models gemini
222
+ claudish --models "grok code"
223
+
224
+ # Show top recommended programming models (curated list)
225
+ claudish --top-models
219
226
 
220
227
  # JSON output for parsing
221
- claudish --list-models --json
228
+ claudish --models --json
229
+ claudish --top-models --json
222
230
 
223
231
  # Force update from OpenRouter API
224
- claudish --list-models --force-update
232
+ claudish --models --force-update
225
233
  ```
226
234
 
227
235
  ### Step 3: Run Claudish
@@ -275,11 +283,18 @@ git diff | claudish --stdin --model openai/gpt-5-codex "Review these changes"
275
283
 
276
284
  **Get Latest Models:**
277
285
  ```bash
278
- # Auto-updates every 2 days
279
- claudish --list-models
286
+ # List all models (auto-updates every 2 days)
287
+ claudish --models
288
+
289
+ # Search for specific models
290
+ claudish --models grok
291
+ claudish --models "gemini flash"
292
+
293
+ # Show curated top models
294
+ claudish --top-models
280
295
 
281
296
  # Force immediate update
282
- claudish --list-models --force-update
297
+ claudish --models --force-update
283
298
  ```
284
299
 
285
300
  ## NEW: Direct Agent Selection (v2.1.0)
@@ -503,8 +518,8 @@ Use Claudish CLI to implement this feature with Grok model:
503
518
  ${featureDescription}
504
519
 
505
520
  INSTRUCTIONS:
506
- 1. First, get list of available models:
507
- claudish --list-models
521
+ 1. Search for available models:
522
+ claudish --models grok
508
523
 
509
524
  2. Run implementation with Grok:
510
525
  claudish --model x-ai/grok-code-fast-1 "${featureDescription}"
@@ -682,7 +697,8 @@ done
682
697
  |------|-------------|---------|
683
698
  | `--model <model>` | OpenRouter model to use | `--model x-ai/grok-code-fast-1` |
684
699
  | `--stdin` | Read prompt from stdin | `git diff \| claudish --stdin --model grok` |
685
- | `--list-models` | List available models | `claudish --list-models` |
700
+ | `--models` | List all models or search | `claudish --models` or `claudish --models gemini` |
701
+ | `--top-models` | Show top recommended models | `claudish --top-models` |
686
702
  | `--json` | JSON output (implies --quiet) | `claudish --json "task"` |
687
703
  | `--help-ai` | Print AI agent usage guide | `claudish --help-ai` |
688
704
 
@@ -781,7 +797,7 @@ Model 'invalid/model' not found
781
797
  **Fix:**
782
798
  ```bash
783
799
  # List available models
784
- claudish --list-models
800
+ claudish --models
785
801
 
786
802
  # Use valid model ID
787
803
  claudish --model x-ai/grok-code-fast-1 "task"
@@ -869,10 +885,13 @@ await Task({
869
885
  **How:**
870
886
  ```bash
871
887
  # Auto-updates every 2 days
872
- claudish --list-models
888
+ claudish --models
889
+
890
+ # Search for specific models
891
+ claudish --models deepseek
873
892
 
874
893
  # Force update now
875
- claudish --list-models --force-update
894
+ claudish --models --force-update
876
895
  ```
877
896
 
878
897
  ### 6. ✅ Use --stdin for Large Prompts
@@ -982,13 +1001,13 @@ const MODELS = ["x-ai/grok-code-fast-1", "openai/gpt-5"];
982
1001
  **Right:**
983
1002
  ```typescript
984
1003
  // Query dynamically
985
- const { stdout } = await Bash("claudish --list-models --json");
1004
+ const { stdout } = await Bash("claudish --models --json");
986
1005
  const models = JSON.parse(stdout).models.map(m => m.id);
987
1006
  ```
988
1007
 
989
1008
  ### ✅ Do Accept Custom Models From Users
990
1009
 
991
- **Problem:** User provides a custom model ID that's not in --list-models
1010
+ **Problem:** User provides a custom model ID that's not in --top-models
992
1011
 
993
1012
  **Wrong (rejecting custom models):**
994
1013
  ```typescript
@@ -1002,7 +1021,7 @@ if (!availableModels.includes(userModel)) {
1002
1021
 
1003
1022
  **Right (accept any valid model ID):**
1004
1023
  ```typescript
1005
- // Claudish accepts ANY valid OpenRouter model ID, even if not in --list-models
1024
+ // Claudish accepts ANY valid OpenRouter model ID, even if not in --top-models
1006
1025
  const userModel = "custom/provider/model-123";
1007
1026
 
1008
1027
  // Validate it's a non-empty string with provider format
@@ -1056,7 +1075,7 @@ const model = prefs.preferredModel || defaultModel;
1056
1075
  ```typescript
1057
1076
  // In a multi-step workflow, ask once
1058
1077
  if (!process.env.CLAUDISH_MODEL) {
1059
- const { stdout } = await Bash("claudish --list-models --json");
1078
+ const { stdout } = await Bash("claudish --models --json");
1060
1079
  const models = JSON.parse(stdout).models;
1061
1080
 
1062
1081
  const response = await AskUserQuestion({
@@ -1086,7 +1105,7 @@ await Bash(`claudish --model ${model} "task 2"`);
1086
1105
  1. ✅ **Accept any model ID** user provides (unless obviously malformed)
1087
1106
  2. ✅ **Don't filter** based on your "shortlist" - let Claudish handle validation
1088
1107
  3. ✅ **Offer to set CLAUDISH_MODEL** environment variable for session persistence
1089
- 4. ✅ **Explain** that --list-models shows curated recommendations, not all possibilities
1108
+ 4. ✅ **Explain** that --top-models shows curated recommendations, --models shows all
1090
1109
  5. ✅ **Validate format** (should contain "/") but not restrict to known models
1091
1110
  6. ❌ **Never reject** a user's custom model with "not in my shortlist"
1092
1111
 
@@ -1163,7 +1182,7 @@ async function reviewCodeWithMultipleModels(files: string[]) {
1163
1182
  */
1164
1183
  async function implementWithModel(featureDescription: string) {
1165
1184
  // Step 1: Get available models
1166
- const { stdout } = await Bash("claudish --list-models --json");
1185
+ const { stdout } = await Bash("claudish --models --json");
1167
1186
  const models = JSON.parse(stdout).models;
1168
1187
 
1169
1188
  // Step 2: Let user select model
@@ -1226,7 +1245,7 @@ Include:
1226
1245
  **Symptoms:** Unexpected API costs
1227
1246
 
1228
1247
  **Solutions:**
1229
- 1. Use budget-friendly models (check pricing with `--list-models`)
1248
+ 1. Use budget-friendly models (check pricing with `--models` or `--top-models`)
1230
1249
  2. Enable cost tracking: `--cost-tracker`
1231
1250
  3. Use --json to monitor costs: `claudish --json "task" | jq '.total_cost_usd'`
1232
1251
 
@@ -1244,7 +1263,7 @@ Include:
1244
1263
  **Symptoms:** "Model not found" error
1245
1264
 
1246
1265
  **Solutions:**
1247
- 1. Update model cache: `claudish --list-models --force-update`
1266
+ 1. Update model cache: `claudish --models --force-update`
1248
1267
  2. Check OpenRouter website for model availability
1249
1268
  3. Use alternative model from same category
1250
1269
 
@@ -1275,5 +1294,5 @@ claudish --help-ai # AI agent usage guide
1275
1294
  ---
1276
1295
 
1277
1296
  **Maintained by:** MadAppGang
1278
- **Last Updated:** November 19, 2025
1279
- **Skill Version:** 1.0.0
1297
+ **Last Updated:** November 25, 2025
1298
+ **Skill Version:** 1.1.0