claudish 1.7.1 → 2.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,154 @@
1
+ {
2
+ "version": "1.1.5",
3
+ "lastUpdated": "2025-11-19",
4
+ "source": "https://openrouter.ai/models?categories=programming&fmt=cards&order=top-weekly",
5
+ "models": [
6
+ {
7
+ "id": "x-ai/grok-code-fast-1",
8
+ "name": "xAI: Grok Code Fast 1",
9
+ "description": "Grok Code Fast 1 is a speedy and economical reasoning model that excels at agentic coding. With reasoning traces visible in the response, developers can steer Grok Code for high-quality work flows.",
10
+ "provider": "X-ai",
11
+ "category": "reasoning",
12
+ "priority": 1,
13
+ "pricing": {
14
+ "input": "$0.20/1M",
15
+ "output": "$1.50/1M",
16
+ "average": "$0.85/1M"
17
+ },
18
+ "context": "256K",
19
+ "maxOutputTokens": 10000,
20
+ "modality": "text->text",
21
+ "supportsTools": true,
22
+ "supportsReasoning": true,
23
+ "supportsVision": false,
24
+ "isModerated": false,
25
+ "recommended": true
26
+ },
27
+ {
28
+ "id": "google/gemini-2.5-flash",
29
+ "name": "Google: Gemini 2.5 Flash",
30
+ "description": "Gemini 2.5 Flash is Google's state-of-the-art workhorse model, specifically designed for advanced reasoning, coding, mathematics, and scientific tasks. It includes built-in \"thinking\" capabilities, enabling it to provide responses with greater accuracy and nuanced context handling. \n\nAdditionally, Gemini 2.5 Flash is configurable through the \"max tokens for reasoning\" parameter, as described in the documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning).",
31
+ "provider": "Google",
32
+ "category": "reasoning",
33
+ "priority": 2,
34
+ "pricing": {
35
+ "input": "$0.30/1M",
36
+ "output": "$2.50/1M",
37
+ "average": "$1.40/1M"
38
+ },
39
+ "context": "1048K",
40
+ "maxOutputTokens": 65535,
41
+ "modality": "text+image->text",
42
+ "supportsTools": true,
43
+ "supportsReasoning": true,
44
+ "supportsVision": true,
45
+ "isModerated": false,
46
+ "recommended": true
47
+ },
48
+ {
49
+ "id": "minimax/minimax-m2",
50
+ "name": "MiniMax: MiniMax M2",
51
+ "description": "MiniMax-M2 is a compact, high-efficiency large language model optimized for end-to-end coding and agentic workflows. With 10 billion activated parameters (230 billion total), it delivers near-frontier intelligence across general reasoning, tool use, and multi-step task execution while maintaining low latency and deployment efficiency.\n\nThe model excels in code generation, multi-file editing, compile-run-fix loops, and test-validated repair, showing strong results on SWE-Bench Verified, Multi-SWE-Bench, and Terminal-Bench. It also performs competitively in agentic evaluations such as BrowseComp and GAIA, effectively handling long-horizon planning, retrieval, and recovery from execution errors.\n\nBenchmarked by [Artificial Analysis](https://artificialanalysis.ai/models/minimax-m2), MiniMax-M2 ranks among the top open-source models for composite intelligence, spanning mathematics, science, and instruction-following. Its small activation footprint enables fast inference, high concurrency, and improved unit economics, making it well-suited for large-scale agents, developer assistants, and reasoning-driven applications that require responsiveness and cost efficiency.\n\nTo avoid degrading this model's performance, MiniMax highly recommends preserving reasoning between turns. Learn more about using reasoning_details to pass back reasoning in our [docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks).",
52
+ "provider": "Minimax",
53
+ "category": "reasoning",
54
+ "priority": 3,
55
+ "pricing": {
56
+ "input": "$0.26/1M",
57
+ "output": "$1.02/1M",
58
+ "average": "$0.64/1M"
59
+ },
60
+ "context": "204K",
61
+ "maxOutputTokens": 131072,
62
+ "modality": "text->text",
63
+ "supportsTools": true,
64
+ "supportsReasoning": true,
65
+ "supportsVision": false,
66
+ "isModerated": false,
67
+ "recommended": true
68
+ },
69
+ {
70
+ "id": "z-ai/glm-4.6",
71
+ "name": "Z.AI: GLM 4.6",
72
+ "description": "Compared with GLM-4.5, this generation brings several key improvements:\n\nLonger context window: The context window has been expanded from 128K to 200K tokens, enabling the model to handle more complex agentic tasks.\nSuperior coding performance: The model achieves higher scores on code benchmarks and demonstrates better real-world performance in applications such as Claude Code、Cline、Roo Code and Kilo Code, including improvements in generating visually polished front-end pages.\nAdvanced reasoning: GLM-4.6 shows a clear improvement in reasoning performance and supports tool use during inference, leading to stronger overall capability.\nMore capable agents: GLM-4.6 exhibits stronger performance in tool using and search-based agents, and integrates more effectively within agent frameworks.\nRefined writing: Better aligns with human preferences in style and readability, and performs more naturally in role-playing scenarios.",
73
+ "provider": "Z-ai",
74
+ "category": "reasoning",
75
+ "priority": 4,
76
+ "pricing": {
77
+ "input": "$0.40/1M",
78
+ "output": "$1.75/1M",
79
+ "average": "$1.07/1M"
80
+ },
81
+ "context": "202K",
82
+ "maxOutputTokens": 202752,
83
+ "modality": "text->text",
84
+ "supportsTools": true,
85
+ "supportsReasoning": true,
86
+ "supportsVision": false,
87
+ "isModerated": false,
88
+ "recommended": true
89
+ },
90
+ {
91
+ "id": "openai/gpt-5",
92
+ "name": "OpenAI: GPT-5",
93
+ "description": "GPT-5 is OpenAI’s most advanced model, offering major improvements in reasoning, code quality, and user experience. It is optimized for complex tasks that require step-by-step reasoning, instruction following, and accuracy in high-stakes use cases. It supports test-time routing features and advanced prompt understanding, including user-specified intent like \"think hard about this.\" Improvements include reductions in hallucination, sycophancy, and better performance in coding, writing, and health-related tasks.",
94
+ "provider": "Openai",
95
+ "category": "reasoning",
96
+ "priority": 5,
97
+ "pricing": {
98
+ "input": "$1.25/1M",
99
+ "output": "$10.00/1M",
100
+ "average": "$5.63/1M"
101
+ },
102
+ "context": "400K",
103
+ "maxOutputTokens": 128000,
104
+ "modality": "text+image->text",
105
+ "supportsTools": true,
106
+ "supportsReasoning": true,
107
+ "supportsVision": true,
108
+ "isModerated": true,
109
+ "recommended": true
110
+ },
111
+ {
112
+ "id": "qwen/qwen3-vl-235b-a22b-instruct",
113
+ "name": "Qwen: Qwen3 VL 235B A22B Instruct",
114
+ "description": "Qwen3-VL-235B-A22B Instruct is an open-weight multimodal model that unifies strong text generation with visual understanding across images and video. The Instruct model targets general vision-language use (VQA, document parsing, chart/table extraction, multilingual OCR). The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning.\n\nBeyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows—turning sketches or mockups into code and assisting with UI debugging—while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.",
115
+ "provider": "Qwen",
116
+ "category": "vision",
117
+ "priority": 6,
118
+ "pricing": {
119
+ "input": "$0.21/1M",
120
+ "output": "$1.90/1M",
121
+ "average": "$1.06/1M"
122
+ },
123
+ "context": "131K",
124
+ "maxOutputTokens": 32768,
125
+ "modality": "text+image->text",
126
+ "supportsTools": true,
127
+ "supportsReasoning": false,
128
+ "supportsVision": true,
129
+ "isModerated": false,
130
+ "recommended": true
131
+ },
132
+ {
133
+ "id": "openrouter/polaris-alpha",
134
+ "name": "Polaris Alpha",
135
+ "description": "openrouter/polaris-alpha (metadata pending - not yet available in API)",
136
+ "provider": "Openrouter",
137
+ "category": "programming",
138
+ "priority": 7,
139
+ "pricing": {
140
+ "input": "N/A",
141
+ "output": "N/A",
142
+ "average": "N/A"
143
+ },
144
+ "context": "N/A",
145
+ "maxOutputTokens": null,
146
+ "modality": "text->text",
147
+ "supportsTools": false,
148
+ "supportsReasoning": false,
149
+ "supportsVision": false,
150
+ "isModerated": false,
151
+ "recommended": true
152
+ }
153
+ ]
154
+ }
File without changes