claude-self-reflect 7.1.10 → 7.1.11

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,278 @@
1
+ #!/usr/bin/env python3
2
+ """Batch import conversations with V3+SKILL_V2 to Qdrant for comparison testing."""
3
+
4
+ import os
5
+ import sys
6
+ import json
7
+ from pathlib import Path
8
+ from dotenv import load_dotenv
9
+ import time
10
+
11
+ load_dotenv()
12
+
13
+ # Add parent dirs to path
14
+ sys.path.insert(0, str(Path(__file__).parent.parent.parent))
15
+
16
+ try:
17
+ import anthropic
18
+ except ImportError:
19
+ print("Error: anthropic SDK not found")
20
+ sys.exit(1)
21
+
22
+ from docs.design.extract_events_v3 import extract_events_v3
23
+ from qdrant_client import QdrantClient
24
+ from qdrant_client.models import Distance, VectorParams, PointStruct
25
+
26
+ # Try importing FastEmbed
27
+ try:
28
+ from fastembed import TextEmbedding
29
+ FASTEMBED_AVAILABLE = True
30
+ except ImportError:
31
+ FASTEMBED_AVAILABLE = False
32
+ print("⚠️ FastEmbed not available, will use Voyage AI")
33
+
34
+
35
+ def get_embedding(text: str, embedding_model) -> list:
36
+ """Generate embedding for text."""
37
+ if FASTEMBED_AVAILABLE and embedding_model:
38
+ embeddings = list(embedding_model.embed([text]))
39
+ return embeddings[0].tolist()
40
+ else:
41
+ # Fallback to Voyage
42
+ import voyageai
43
+ vo = voyageai.Client(api_key=os.getenv('VOYAGE_KEY'))
44
+ result = vo.embed([text], model="voyage-3", input_type="document")
45
+ return result.embeddings[0]
46
+
47
+
48
+ def process_conversation(jsonl_path: Path, client: anthropic.Anthropic, skill_instructions: str,
49
+ qdrant_client: QdrantClient, collection_name: str, embedding_model):
50
+ """Process single conversation with V3+SKILL_V2 and import to Qdrant."""
51
+
52
+ conv_id = jsonl_path.stem
53
+ print(f"\n{'='*80}")
54
+ print(f"Processing: {conv_id}")
55
+ print(f"File: {jsonl_path.name}")
56
+ print(f"{'='*80}")
57
+
58
+ # Read messages
59
+ messages = []
60
+ with open(jsonl_path) as f:
61
+ for line in f:
62
+ if line.strip():
63
+ messages.append(json.loads(line))
64
+
65
+ print(f"Original messages: {len(messages)}")
66
+
67
+ # V3 extraction
68
+ print("\n🔄 Step 1: V3 Extraction...")
69
+ result = extract_events_v3(messages)
70
+
71
+ print(f" Search index: {result['stats']['search_index_tokens']} tokens")
72
+ print(f" Context cache: {result['stats']['context_cache_tokens']} tokens")
73
+ print(f" Total: {result['stats']['total_tokens']} tokens")
74
+ print(f" Signature: {json.dumps(result['signature'], indent=2)}")
75
+
76
+ # Generate narrative with Skill
77
+ print("\n🔄 Step 2: Generating narrative with SKILL_V2...")
78
+
79
+ prompt = f"""You are analyzing a development conversation. Use the SKILL_V2 guidelines to generate a search-optimized narrative.
80
+
81
+ ## Extracted Events
82
+
83
+ ### Search Index
84
+ {result['search_index']}
85
+
86
+ ### Context Cache
87
+ {result['context_cache']}
88
+
89
+ ### Conversation Signature
90
+ ```json
91
+ {json.dumps(result['signature'], indent=2)}
92
+ ```
93
+
94
+ Now generate the narrative following SKILL_V2 format exactly."""
95
+
96
+ response = client.messages.create(
97
+ model="claude-sonnet-4-5-20250929",
98
+ max_tokens=2048,
99
+ system=skill_instructions,
100
+ messages=[{"role": "user", "content": prompt}]
101
+ )
102
+
103
+ # Extract narrative
104
+ narrative = ""
105
+ for block in response.content:
106
+ if hasattr(block, 'text'):
107
+ narrative += block.text
108
+
109
+ # Calculate cost
110
+ input_tokens = response.usage.input_tokens
111
+ output_tokens = response.usage.output_tokens
112
+ cost = (input_tokens * 3 + output_tokens * 15) / 1_000_000
113
+
114
+ print(f" Tokens: {input_tokens} input, {output_tokens} output")
115
+ print(f" Cost: ${cost:.6f}")
116
+
117
+ # Generate embedding for the narrative
118
+ print("\n🔄 Step 3: Generating embedding...")
119
+ embedding = get_embedding(narrative, embedding_model)
120
+ print(f" Embedding dimensions: {len(embedding)}")
121
+
122
+ # Import to Qdrant
123
+ print("\n🔄 Step 4: Importing to Qdrant...")
124
+
125
+ point = PointStruct(
126
+ id=conv_id,
127
+ vector=embedding,
128
+ payload={
129
+ "conversation_id": conv_id,
130
+ "project": "claude-self-reflect",
131
+ "narrative": narrative,
132
+ "search_index": result['search_index'],
133
+ "context_cache": result['context_cache'],
134
+ "signature": result['signature'],
135
+ "timestamp": time.time(),
136
+ "extraction_stats": result['stats']
137
+ }
138
+ )
139
+
140
+ qdrant_client.upsert(
141
+ collection_name=collection_name,
142
+ points=[point]
143
+ )
144
+
145
+ print(f" ✅ Imported to collection: {collection_name}")
146
+
147
+ return {
148
+ 'conversation_id': conv_id,
149
+ 'narrative': narrative,
150
+ 'stats': result['stats'],
151
+ 'cost': cost,
152
+ 'tokens': {'input': input_tokens, 'output': output_tokens}
153
+ }
154
+
155
+
156
+ def main():
157
+ """Main batch import process."""
158
+
159
+ # Setup - use claude-self-reflect project
160
+ project_dir = Path.home() / ".claude/projects/-Users-username-projects-claude-self-reflect"
161
+ skill_v2_path = Path(__file__).parent / "conversation-analyzer" / "SKILL_V2.md"
162
+
163
+ if not project_dir.exists():
164
+ print(f"❌ Project directory not found: {project_dir}")
165
+ sys.exit(1)
166
+
167
+ if not skill_v2_path.exists():
168
+ print(f"❌ SKILL_V2.md not found: {skill_v2_path}")
169
+ sys.exit(1)
170
+
171
+ # Find all conversations
172
+ conversations = list(project_dir.glob("*.jsonl"))
173
+ print(f"\n📊 Found {len(conversations)} conversations in claude-self-reflect")
174
+
175
+ # Budget check
176
+ estimated_cost = len(conversations) * 0.016 # Conservative estimate
177
+ print(f"💰 Estimated cost: ${estimated_cost:.2f} (budget: $5.00)")
178
+
179
+ if estimated_cost > 5.0:
180
+ print(f"⚠️ Estimated cost exceeds budget!")
181
+ limit = int(5.0 / 0.016)
182
+ print(f" Limiting to first {limit} conversations")
183
+ conversations = conversations[:limit]
184
+
185
+ # Initialize clients
186
+ print("\n🔧 Initializing clients...")
187
+
188
+ # Validate API key
189
+ api_key = os.getenv("ANTHROPIC_API_KEY")
190
+ if not api_key:
191
+ raise ValueError(
192
+ "ANTHROPIC_API_KEY environment variable required. "
193
+ "Set it in your .env file or export it in your shell."
194
+ )
195
+
196
+ anthropic_client = anthropic.Anthropic(api_key=api_key)
197
+ qdrant_client = QdrantClient(url=os.getenv("QDRANT_URL", "http://localhost:6333"))
198
+
199
+ # Load Skill instructions
200
+ with open(skill_v2_path) as f:
201
+ skill_instructions = f.read()
202
+
203
+ # Initialize embedding model
204
+ embedding_model = None
205
+ vector_size = 384 # Default for FastEmbed
206
+
207
+ if FASTEMBED_AVAILABLE:
208
+ print(" Using FastEmbed (384 dimensions)")
209
+ embedding_model = TextEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
210
+ vector_size = 384
211
+ else:
212
+ print(" Using Voyage AI (1024 dimensions)")
213
+ vector_size = 1024
214
+
215
+ # Create test collection
216
+ collection_name = "v3_test_csr"
217
+ print(f"\n🔧 Creating test collection: {collection_name}")
218
+
219
+ try:
220
+ qdrant_client.delete_collection(collection_name)
221
+ print(f" Deleted existing collection")
222
+ except:
223
+ pass
224
+
225
+ qdrant_client.create_collection(
226
+ collection_name=collection_name,
227
+ vectors_config=VectorParams(size=vector_size, distance=Distance.COSINE)
228
+ )
229
+ print(f" ✅ Created collection with {vector_size} dimensions")
230
+
231
+ # Process all conversations
232
+ results = []
233
+ total_cost = 0.0
234
+
235
+ for i, conv_path in enumerate(conversations, 1):
236
+ print(f"\n\n{'='*80}")
237
+ print(f"CONVERSATION {i}/{len(conversations)}")
238
+ print(f"{'='*80}")
239
+
240
+ try:
241
+ result = process_conversation(
242
+ conv_path,
243
+ anthropic_client,
244
+ skill_instructions,
245
+ qdrant_client,
246
+ collection_name,
247
+ embedding_model
248
+ )
249
+ results.append(result)
250
+ total_cost += result['cost']
251
+
252
+ print(f"\n✅ Success!")
253
+ print(f" Running cost: ${total_cost:.4f}")
254
+
255
+ except Exception as e:
256
+ print(f"\n❌ Error processing {conv_path.name}: {e}")
257
+ import traceback
258
+ traceback.print_exc()
259
+
260
+ # Summary
261
+ print(f"\n\n{'='*80}")
262
+ print(f"BATCH IMPORT SUMMARY")
263
+ print(f"{'='*80}")
264
+ print(f"Total conversations processed: {len(results)}/{len(conversations)}")
265
+ print(f"Total cost: ${total_cost:.4f}")
266
+ print(f"Average cost per conversation: ${total_cost/len(results):.4f}")
267
+ print(f"Collection: {collection_name}")
268
+ print(f"\n🎯 Ready for comparison testing!")
269
+ print(f"\nNext steps:")
270
+ print(f"1. Search old collection: reflect_on_past(query, project='procsolve-website')")
271
+ print(f"2. Search new collection: qdrant_client.search(collection_name='{collection_name}')")
272
+ print(f"3. Compare results side-by-side")
273
+
274
+ return results
275
+
276
+
277
+ if __name__ == "__main__":
278
+ results = main()
@@ -0,0 +1,133 @@
1
+ ---
2
+ name: conversation-analyzer
3
+ description: Analyzes Claude Code conversation JSONL files to extract structured data and generate problem-solution narratives for semantic search indexing
4
+ ---
5
+
6
+ # Conversation Analyzer Skill
7
+
8
+ You are a conversation analysis expert. Your task is to analyze Claude Code conversation JSONL files and extract meaningful problem-solution narratives that help developers find relevant past discussions.
9
+
10
+ ## Input Format
11
+
12
+ You will receive conversation data as a JSONL file where each line is a JSON object representing a message with:
13
+ - `role`: "user" or "assistant"
14
+ - `content`: Message content (can be text, tool uses, or tool results)
15
+ - `type`: Message type
16
+ - Timestamp information
17
+
18
+ ## Your Analysis Process
19
+
20
+ ### Step 1: Extract Structured Data (Python)
21
+
22
+ Use the provided `extract_structured.py` script to parse the JSONL and extract:
23
+
24
+ 1. **Messages timeline**: All user-assistant exchanges with timestamps
25
+ 2. **Files touched**:
26
+ - Files read (from Read tool uses)
27
+ - Files edited (from Edit tool uses)
28
+ - Files created (from Write tool uses)
29
+ 3. **Tools used**: Count of each tool usage (Read, Edit, Write, Bash, etc.)
30
+ 4. **Errors encountered**:
31
+ - Error messages and their timestamps
32
+ - Whether they were resolved (success in subsequent messages)
33
+ 5. **Code blocks**: Presence and language of code snippets
34
+ 6. **Timeline events**: Chronological list of key actions
35
+
36
+ ### Step 2: Analyze the Narrative
37
+
38
+ Examine the structured data to understand:
39
+
40
+ 1. **What was the user trying to accomplish?**
41
+ - Initial request or problem statement
42
+ - Context and constraints mentioned
43
+
44
+ 2. **What solutions were attempted?**
45
+ - Each distinct approach tried
46
+ - Tools and files involved in each attempt
47
+ - Outcome (success, failure, partial)
48
+
49
+ 3. **What was learned?**
50
+ - Errors that revealed insights
51
+ - Successful patterns
52
+ - Dead ends to avoid
53
+
54
+ 4. **What was the final outcome?**
55
+ - Was the problem solved?
56
+ - What was the working solution?
57
+ - Any remaining issues?
58
+
59
+ ### Step 3: Generate Problem-Solution Narrative (Markdown)
60
+
61
+ Create a structured markdown document with this EXACT format:
62
+
63
+ ```markdown
64
+ ## Problem Statement
65
+ [One paragraph: What was the user trying to accomplish or fix?]
66
+
67
+ ## Context
68
+ - **Project**: [Project path if identifiable]
69
+ - **Files involved**: [List 3-5 key files]
70
+ - **Starting state**: [What was broken/missing?]
71
+
72
+ ## Timeline of Events
73
+ [Chronological list of key actions with timestamps - max 10 entries]
74
+
75
+ ## Attempted Solutions
76
+
77
+ ### Attempt 1: [Brief description]
78
+ **Approach**: [What was tried]
79
+ **Files modified**: [List files]
80
+ **Tools used**: [List tools]
81
+ **Outcome**: ✅ Success | ⚠️ Partial | ❌ Failed
82
+ **Learning**: [What was discovered]
83
+
84
+ [Include relevant code snippet if applicable]
85
+
86
+ ### Attempt 2: [If applicable]
87
+ ...
88
+
89
+ ## Final Solution
90
+ **Implementation**:
91
+ ```[language]
92
+ [Key code changes - only the essentials]
93
+ ```
94
+
95
+ **Files Modified**:
96
+ - file.py (approximate line numbers if known)
97
+ - config.yml
98
+
99
+ **Verification**:
100
+ [How was success confirmed? Tests? Manual verification?]
101
+
102
+ ## Outcome
103
+ ✅ Success | ⚠️ Partial | ❌ Unresolved
104
+
105
+ [One paragraph summary of final state]
106
+
107
+ ## Lessons Learned
108
+ 1. [Key insight 1 - actionable]
109
+ 2. [Key insight 2 - actionable]
110
+ 3. [Key insight 3 - actionable]
111
+
112
+ ## Keywords
113
+ [Comma-separated: technologies, concepts, patterns mentioned]
114
+ ```
115
+
116
+ ## Quality Guidelines
117
+
118
+ 1. **Be concise but complete**: Include enough detail to understand the solution, but don't reproduce entire conversations
119
+ 2. **Focus on the "why"**: Explain reasoning, not just actions
120
+ 3. **Highlight failures**: Document what DIDN'T work - it's valuable knowledge
121
+ 4. **Extract code carefully**: Only include code that illustrates the solution
122
+ 5. **Use clear outcome indicators**: ✅ ⚠️ ❌ make scanning easy
123
+ 6. **Write for search**: Include keywords naturally throughout the narrative
124
+
125
+ ## Output Requirements
126
+
127
+ Your final output MUST be valid markdown following the exact structure above. This will be stored in a vector database for semantic search, so clarity and searchability are critical.
128
+
129
+ If the conversation doesn't follow a problem-solution pattern (e.g., pure Q&A, exploration), adapt the format but keep the core structure of:
130
+ - What was discussed
131
+ - Key points
132
+ - Outcomes/Learnings
133
+ - Keywords
@@ -0,0 +1,218 @@
1
+ ---
2
+ name: conversation-analyzer
3
+ description: Analyzes extracted conversation events to generate search-optimized problem-solution narratives for semantic search indexing
4
+ ---
5
+
6
+ # Conversation Analyzer Skill V2 (Opus-Validated)
7
+
8
+ You are a conversation analysis expert specializing in creating **search-optimized narratives** from development sessions.
9
+
10
+ ## Input Format
11
+
12
+ You will receive **extracted events** from a conversation, not the full JSONL:
13
+
14
+ ### Search Index (500 tokens)
15
+ - User requests (the problem)
16
+ - Solution patterns (what was done)
17
+ - Active issues (unresolved errors)
18
+
19
+ ### Context Cache (1000 tokens)
20
+ - Implementation details
21
+ - Error recovery sequences
22
+ - Validation results
23
+
24
+ ### Conversation Signature (metadata)
25
+ - completion_status: success/failed/partial
26
+ - frameworks: [list]
27
+ - pattern_reusability: high/medium/low
28
+ - error_recovery: true/false
29
+
30
+ ## Your Analysis Process
31
+
32
+ ### Step 1: Understand the Session
33
+
34
+ From the extracted events, identify:
35
+
36
+ 1. **User Intent**: What were they trying to accomplish? (from User Request section)
37
+ 2. **Solution Approach**: How did they solve it? (from Solution Pattern section)
38
+ 3. **Technical Context**: What stack/frameworks? (from signature.frameworks)
39
+ 4. **Outcome**: Did it work? (from signature.completion_status)
40
+
41
+ ### Step 2: Extract Reusable Patterns
42
+
43
+ **Opus recommendation**: Focus on the reusable pattern, not specific implementation.
44
+
45
+ Examples:
46
+ - ✅ "Array item removal with cascade updates across dependent components"
47
+ - ❌ "Removed array index 2 and updated lines 45-52"
48
+
49
+ ### Step 3: Generate Search-Optimized Narrative
50
+
51
+ Create markdown following this **exact format**:
52
+
53
+ ```markdown
54
+ ## Search Summary
55
+ [1-2 sentences, keyword-rich description of what was accomplished. Include: action verb, technology stack, problem type]
56
+
57
+ ## Problem-Solution Mapping
58
+
59
+ **Request**: [Exact user request from Search Index]
60
+
61
+ **Solution Type**: [Choose one: create | edit | debug | refactor | optimize | deploy]
62
+
63
+ **Tools Used**: [List from Implementation Details]
64
+
65
+ **Files Modified**: [File names with operation type - from Solution Pattern]
66
+
67
+ ## Technical Pattern
68
+
69
+ [Describe the reusable pattern in 2-3 sentences. Focus on the approach that can be applied to similar problems.]
70
+
71
+ **Example Pattern**:
72
+ When removing items from arrays that other components depend on:
73
+ 1. Remove from data structure
74
+ 2. Update all index references in dependent code
75
+ 3. Remove or update UI components that displayed the item
76
+ 4. Validate with build to catch broken references
77
+
78
+ ## Implementation Details
79
+
80
+ **Operation**: [From Solution Pattern: e.g., "cascade_updates"]
81
+
82
+ **Scope**: [From Context Cache: e.g., "12 coordinated changes"]
83
+
84
+ **Context**: [Why this was needed - from Implementation Details]
85
+
86
+ ## Validation & Outcome
87
+
88
+ **Build Status**: [From Validation section: Success/Failed]
89
+
90
+ **Tests**: [If mentioned in Validation]
91
+
92
+ **Deployment**: [If mentioned in Validation]
93
+
94
+ **Completion**: [From signature.completion_status]
95
+
96
+ **Error Recovery**: [From signature.error_recovery + Error Recovery section]
97
+
98
+ ## Search Keywords
99
+
100
+ **Primary** (most specific, 3-5 terms):
101
+ [e.g., "Next.js team member removal", "React array cascade updates", "MultiEdit batch operations"]
102
+
103
+ **Secondary** (broader context, 5-8 terms):
104
+ [e.g., "about page modification", "component cleanup", "Next.js 15", "TypeScript React", "production build validation"]
105
+
106
+ **Frameworks/Tools**:
107
+ [From signature.frameworks: e.g., "React", "Next.js", "TypeScript"]
108
+
109
+ **Pattern Tags**:
110
+ [From Solution Pattern operation_type: e.g., "cascade_updates", "removal", "refactor"]
111
+ ```
112
+
113
+ ## Critical Guidelines for Search Optimization
114
+
115
+ ### 1. Keyword Density
116
+ - Use technical terms naturally throughout
117
+ - Include framework versions when available
118
+ - Mention file types (.tsx, .py, etc.)
119
+ - Reference specific tools by name
120
+
121
+ ### 2. Pattern Abstraction
122
+ **Opus insight**: "Preserve edit patterns as reusable templates, not just 'files modified'"
123
+
124
+ ✅ Good: "Multi-point refactoring pattern: Update data model, propagate changes through component tree, validate with type checking"
125
+
126
+ ❌ Bad: "Changed file page.tsx"
127
+
128
+ ### 3. Problem-Solution Pairs
129
+ **Opus recommendation**: "Pair each user request with its resolution"
130
+
131
+ Always show:
132
+ - What they asked for → What was done
133
+ - Error encountered → How it was fixed
134
+ - Test failed → How it passed
135
+
136
+ ### 4. Metadata Utilization
137
+ Use the conversation signature to add context:
138
+
139
+ - If `pattern_reusability: "high"` → Emphasize the pattern's broader applicability
140
+ - If `error_recovery: true` → Highlight the debugging process
141
+ - If `completion_status: "success"` → Note validation methods
142
+
143
+ ### 5. Future Search Scenarios
144
+
145
+ Write so these queries would find this conversation:
146
+
147
+ - Technology + Action: "Next.js remove component", "React array manipulation"
148
+ - Error Message: "ERR_CONNECTION_REFUSED localhost", "Vercel deploy timeout"
149
+ - Pattern Type: "cascade updates", "batch edit pattern"
150
+ - File Type: "about page modification", ".tsx component removal"
151
+
152
+ ## Example Output
153
+
154
+ Here's what a well-formatted narrative looks like:
155
+
156
+ ```markdown
157
+ ## Search Summary
158
+ Removed team member profile card from Next.js About page using MultiEdit for coordinated cascade updates across React components, with successful build validation and Vercel deployment.
159
+
160
+ ## Problem-Solution Mapping
161
+
162
+ **Request**: Remove Rama's team member card from /about page including profile data and UI components
163
+
164
+ **Solution Type**: edit
165
+
166
+ **Tools Used**: MultiEdit, Bash (build), Playwright (testing), Vercel CLI (deployment)
167
+
168
+ **Files Modified**:
169
+ - src/app/about/page.tsx (cascade_updates: 12 coordinated changes)
170
+
171
+ ## Technical Pattern
172
+
173
+ Array item removal with cascade updates: When removing an array element that multiple components reference, perform atomic batch updates to prevent intermediate broken states. Remove data entry, update all index-dependent code, remove UI components, then validate with build.
174
+
175
+ ## Implementation Details
176
+
177
+ **Operation**: cascade_updates (batch operation)
178
+
179
+ **Scope**: 12 coordinated changes in single MultiEdit
180
+
181
+ **Context**: User requested removal of specific team member ("Rama") from About page
182
+
183
+ ## Validation & Outcome
184
+
185
+ **Build Status**: Success (Next.js 15.4.6 compiled in 10.0s, 71 pages generated)
186
+
187
+ **Tests**: Playwright navigation test passed (localhost:3000/about loaded successfully)
188
+
189
+ **Deployment**: Vercel production deployment succeeded
190
+
191
+ **Completion**: success
192
+
193
+ **Error Recovery**: Resolved ERR_CONNECTION_REFUSED by starting dev server, worked around Vercel CLI --token error
194
+
195
+ ## Search Keywords
196
+
197
+ **Primary**:
198
+ Next.js team member removal, React array cascade updates, MultiEdit batch operations, about page modification, component cleanup
199
+
200
+ **Secondary**:
201
+ Next.js 15 production build, TypeScript React components, array item deletion pattern, coordinated refactoring, Playwright testing, Vercel deployment
202
+
203
+ **Frameworks/Tools**:
204
+ React, Next.js, TypeScript, MultiEdit, Playwright, Vercel
205
+
206
+ **Pattern Tags**:
207
+ cascade_updates, removal, batch-edit
208
+ ```
209
+
210
+ ## Output Requirements
211
+
212
+ 1. **Must be valid markdown** - No JSON, no code fences around the whole output
213
+ 2. **Follow exact structure** - All sections in order
214
+ 3. **Be concise** - Aim for 300-500 words total
215
+ 4. **Optimize for search** - Every sentence should help future queries match
216
+ 5. **Focus on patterns** - Make it reusable knowledge, not a log
217
+
218
+ Remember: This narrative will be embedded and searched semantically. Write for the developer searching 6 months later who has a similar problem.