claude-self-reflect 5.0.2 → 5.0.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,342 @@
1
+ #!/usr/bin/env python3
2
+ """
3
+ Diagnostic script to check Claude Self-Reflect installation and identify issues.
4
+ """
5
+
6
+ import os
7
+ import sys
8
+ import json
9
+ import subprocess
10
+ from pathlib import Path
11
+ from typing import Dict, List, Tuple
12
+ import urllib.request
13
+ import urllib.error
14
+ from datetime import datetime
15
+
16
+ class Colors:
17
+ """Terminal colors for output"""
18
+ GREEN = '\033[92m'
19
+ YELLOW = '\033[93m'
20
+ RED = '\033[91m'
21
+ BLUE = '\033[94m'
22
+ ENDC = '\033[0m'
23
+ BOLD = '\033[1m'
24
+
25
+ def print_header(text: str):
26
+ """Print a section header"""
27
+ print(f"\n{Colors.BOLD}{Colors.BLUE}{'='*60}{Colors.ENDC}")
28
+ print(f"{Colors.BOLD}{Colors.BLUE}{text}{Colors.ENDC}")
29
+ print(f"{Colors.BOLD}{Colors.BLUE}{'='*60}{Colors.ENDC}")
30
+
31
+ def print_status(name: str, status: bool, message: str = ""):
32
+ """Print a status line with colored indicator"""
33
+ icon = f"{Colors.GREEN}✅{Colors.ENDC}" if status else f"{Colors.RED}❌{Colors.ENDC}"
34
+ status_text = f"{Colors.GREEN}OK{Colors.ENDC}" if status else f"{Colors.RED}FAILED{Colors.ENDC}"
35
+ print(f"{icon} {name}: {status_text}")
36
+ if message:
37
+ print(f" {Colors.YELLOW}{message}{Colors.ENDC}")
38
+
39
+ def check_docker() -> Tuple[bool, str]:
40
+ """Check if Docker is installed and running"""
41
+ try:
42
+ result = subprocess.run(['docker', 'info'], capture_output=True, text=True)
43
+ if result.returncode == 0:
44
+ # Check docker compose v2
45
+ compose_result = subprocess.run(['docker', 'compose', 'version'], capture_output=True, text=True)
46
+ if compose_result.returncode == 0:
47
+ return True, "Docker and Docker Compose v2 are running"
48
+ else:
49
+ return False, "Docker Compose v2 not found. Please update Docker Desktop"
50
+ else:
51
+ return False, "Docker is not running"
52
+ except FileNotFoundError:
53
+ return False, "Docker is not installed"
54
+
55
+ def check_qdrant() -> Tuple[bool, str]:
56
+ """Check if Qdrant is running and accessible"""
57
+ try:
58
+ req = urllib.request.Request('http://localhost:6333')
59
+ with urllib.request.urlopen(req, timeout=5) as response:
60
+ if response.status == 200:
61
+ data = json.loads(response.read().decode())
62
+ version = data.get('version', 'unknown')
63
+ return True, f"Qdrant {version} is running on port 6333"
64
+ except:
65
+ pass
66
+ return False, "Qdrant is not accessible on localhost:6333"
67
+
68
+ def check_collections() -> Tuple[bool, str, List[str]]:
69
+ """Check if Qdrant has any collections"""
70
+ try:
71
+ req = urllib.request.Request('http://localhost:6333/collections')
72
+ with urllib.request.urlopen(req, timeout=5) as response:
73
+ if response.status == 200:
74
+ data = json.loads(response.read().decode())
75
+ collections = data.get('result', {}).get('collections', [])
76
+ if collections:
77
+ collection_names = [c['name'] for c in collections]
78
+ return True, f"Found {len(collections)} collections", collection_names
79
+ else:
80
+ return False, "No collections found - import may not have run", []
81
+ except:
82
+ pass
83
+ return False, "Could not query Qdrant collections", []
84
+
85
+ def check_claude_projects() -> Tuple[bool, str, Dict]:
86
+ """Check Claude projects directory for JSONL files"""
87
+ claude_dir = Path.home() / '.claude' / 'projects'
88
+ stats = {
89
+ 'total_projects': 0,
90
+ 'total_files': 0,
91
+ 'total_size': 0,
92
+ 'sample_projects': []
93
+ }
94
+
95
+ if not claude_dir.exists():
96
+ return False, f"Claude projects directory not found: {claude_dir}", stats
97
+
98
+ try:
99
+ projects = list(claude_dir.iterdir())
100
+ for project in projects:
101
+ if project.is_dir():
102
+ jsonl_files = list(project.glob('*.jsonl'))
103
+ if jsonl_files:
104
+ stats['total_projects'] += 1
105
+ stats['total_files'] += len(jsonl_files)
106
+ for f in jsonl_files:
107
+ stats['total_size'] += f.stat().st_size
108
+ if len(stats['sample_projects']) < 3:
109
+ stats['sample_projects'].append(project.name)
110
+
111
+ if stats['total_files'] == 0:
112
+ return False, "No JSONL files found in Claude projects", stats
113
+
114
+ size_mb = stats['total_size'] / (1024 * 1024)
115
+ return True, f"Found {stats['total_files']} files across {stats['total_projects']} projects ({size_mb:.1f} MB)", stats
116
+ except Exception as e:
117
+ return False, f"Error scanning Claude projects: {e}", stats
118
+
119
+ def check_import_state() -> Tuple[bool, str, Dict]:
120
+ """Check the import state file"""
121
+ config_dir = Path.home() / '.claude-self-reflect' / 'config'
122
+ state_file = config_dir / 'imported-files.json'
123
+
124
+ stats = {
125
+ 'imported_count': 0,
126
+ 'last_import': None,
127
+ 'has_metadata': False
128
+ }
129
+
130
+ if not state_file.exists():
131
+ return False, "No import state file found - imports haven't run yet", stats
132
+
133
+ try:
134
+ with open(state_file) as f:
135
+ state = json.load(f)
136
+
137
+ imported = state.get('imported_files', {})
138
+ stats['imported_count'] = len(imported)
139
+
140
+ # Check for metadata (new format)
141
+ for file_path, data in imported.items():
142
+ if isinstance(data, dict):
143
+ stats['has_metadata'] = True
144
+ if data.get('imported_at'):
145
+ import_time = data['imported_at']
146
+ if not stats['last_import'] or import_time > stats['last_import']:
147
+ stats['last_import'] = import_time
148
+ elif isinstance(data, str):
149
+ # Old format
150
+ if not stats['last_import'] or data > stats['last_import']:
151
+ stats['last_import'] = data
152
+
153
+ if stats['imported_count'] == 0:
154
+ return False, "Import state exists but no files imported", stats
155
+
156
+ msg = f"Imported {stats['imported_count']} files"
157
+ if stats['last_import']:
158
+ msg += f" (last: {stats['last_import'][:19]})"
159
+ if not stats['has_metadata']:
160
+ msg += " - OLD FORMAT (consider re-importing for metadata)"
161
+
162
+ return True, msg, stats
163
+ except Exception as e:
164
+ return False, f"Error reading import state: {e}", stats
165
+
166
+ def check_env_file() -> Tuple[bool, str, Dict]:
167
+ """Check .env file configuration"""
168
+ env_file = Path('.env')
169
+ config = {
170
+ 'has_voyage_key': False,
171
+ 'prefer_local': True,
172
+ 'claude_logs_path': None,
173
+ 'config_path': None
174
+ }
175
+
176
+ if not env_file.exists():
177
+ return False, ".env file not found", config
178
+
179
+ try:
180
+ with open(env_file) as f:
181
+ content = f.read()
182
+
183
+ for line in content.split('\n'):
184
+ if '=' in line and not line.startswith('#'):
185
+ key, value = line.split('=', 1)
186
+ key = key.strip()
187
+ value = value.strip()
188
+
189
+ if key == 'VOYAGE_KEY' and value and not value.startswith('your-'):
190
+ config['has_voyage_key'] = True
191
+ elif key == 'PREFER_LOCAL_EMBEDDINGS':
192
+ config['prefer_local'] = value.lower() == 'true'
193
+ elif key == 'CLAUDE_LOGS_PATH':
194
+ config['claude_logs_path'] = value
195
+ elif key == 'CONFIG_PATH':
196
+ config['config_path'] = value
197
+
198
+ # Check critical paths
199
+ issues = []
200
+ if config['claude_logs_path'] and '~' in config['claude_logs_path']:
201
+ issues.append("CLAUDE_LOGS_PATH contains ~ which Docker won't expand")
202
+ if config['config_path'] and '~' in config['config_path']:
203
+ issues.append("CONFIG_PATH contains ~ which Docker won't expand")
204
+
205
+ if issues:
206
+ return False, "; ".join(issues), config
207
+
208
+ mode = "Local embeddings" if config['prefer_local'] else "Voyage AI embeddings"
209
+ return True, f"Configured for {mode}", config
210
+ except Exception as e:
211
+ return False, f"Error reading .env: {e}", config
212
+
213
+ def check_docker_containers() -> Tuple[bool, str, List[str]]:
214
+ """Check which Docker containers are running"""
215
+ try:
216
+ result = subprocess.run(
217
+ ['docker', 'compose', 'ps', '--format', 'json'],
218
+ capture_output=True, text=True, cwd='.'
219
+ )
220
+
221
+ if result.returncode != 0:
222
+ return False, "Could not query Docker containers", []
223
+
224
+ running = []
225
+ lines = result.stdout.strip().split('\n')
226
+ for line in lines:
227
+ if line:
228
+ try:
229
+ container = json.loads(line)
230
+ if container.get('State') == 'running':
231
+ running.append(container.get('Service', 'unknown'))
232
+ except:
233
+ pass
234
+
235
+ if not running:
236
+ return False, "No containers running", []
237
+
238
+ essential = ['qdrant']
239
+ missing = [s for s in essential if s not in running]
240
+
241
+ if missing:
242
+ return False, f"Essential services not running: {', '.join(missing)}", running
243
+
244
+ return True, f"Running: {', '.join(running)}", running
245
+ except Exception as e:
246
+ return False, f"Error checking containers: {e}", []
247
+
248
+ def main():
249
+ """Run all diagnostic checks"""
250
+ print(f"{Colors.BOLD}{Colors.BLUE}")
251
+ print("╔════════════════════════════════════════════════════════╗")
252
+ print("║ Claude Self-Reflect Diagnostic Tool v1.0 ║")
253
+ print("╚════════════════════════════════════════════════════════╝")
254
+ print(f"{Colors.ENDC}")
255
+
256
+ # Basic checks
257
+ print_header("1. Environment Checks")
258
+
259
+ docker_ok, docker_msg = check_docker()
260
+ print_status("Docker", docker_ok, docker_msg)
261
+
262
+ env_ok, env_msg, env_config = check_env_file()
263
+ print_status("Environment (.env)", env_ok, env_msg)
264
+
265
+ # Service checks
266
+ print_header("2. Service Status")
267
+
268
+ containers_ok, containers_msg, running_containers = check_docker_containers()
269
+ print_status("Docker Containers", containers_ok, containers_msg)
270
+
271
+ qdrant_ok, qdrant_msg = check_qdrant()
272
+ print_status("Qdrant Database", qdrant_ok, qdrant_msg)
273
+
274
+ # Data checks
275
+ print_header("3. Data & Import Status")
276
+
277
+ claude_ok, claude_msg, claude_stats = check_claude_projects()
278
+ print_status("Claude Projects", claude_ok, claude_msg)
279
+ if claude_stats['sample_projects']:
280
+ print(f" Sample projects: {', '.join(claude_stats['sample_projects'][:3])}")
281
+
282
+ import_ok, import_msg, import_stats = check_import_state()
283
+ print_status("Import State", import_ok, import_msg)
284
+
285
+ collections_ok, collections_msg, collection_list = check_collections()
286
+ print_status("Qdrant Collections", collections_ok, collections_msg)
287
+ if collection_list:
288
+ print(f" Collections: {', '.join(collection_list[:5])}")
289
+
290
+ # Summary and recommendations
291
+ print_header("4. Summary & Recommendations")
292
+
293
+ all_ok = all([docker_ok, env_ok, qdrant_ok, claude_ok])
294
+
295
+ if all_ok and collections_ok:
296
+ print(f"{Colors.GREEN}✅ System appears to be working correctly!{Colors.ENDC}")
297
+ else:
298
+ print(f"{Colors.YELLOW}⚠️ Issues detected:{Colors.ENDC}")
299
+
300
+ if not docker_ok:
301
+ print(f"\n{Colors.RED}Critical:{Colors.ENDC} Docker is required")
302
+ print(" → Install Docker Desktop from https://docker.com")
303
+
304
+ if env_ok and '~' in str(env_config.get('claude_logs_path', '')):
305
+ print(f"\n{Colors.RED}Critical:{Colors.ENDC} Path expansion issue in .env")
306
+ print(" → Run: claude-self-reflect setup")
307
+ print(" → Or manually fix paths in .env to use full paths")
308
+
309
+ if not qdrant_ok and docker_ok:
310
+ print(f"\n{Colors.YELLOW}Issue:{Colors.ENDC} Qdrant not running")
311
+ print(" → Run: docker compose --profile mcp up -d")
312
+
313
+ if claude_ok and not collections_ok:
314
+ print(f"\n{Colors.YELLOW}Issue:{Colors.ENDC} No collections found but JSONL files exist")
315
+ print(" → Run: docker compose run --rm importer")
316
+ print(" → This will import your conversation history")
317
+
318
+ if not claude_ok:
319
+ print(f"\n{Colors.YELLOW}Note:{Colors.ENDC} No Claude conversations found")
320
+ print(" → This is normal if you haven't used Claude Desktop yet")
321
+ print(" → The watcher will import new conversations automatically")
322
+
323
+ # Quick commands
324
+ print_header("5. Quick Commands")
325
+ print("• Start services: docker compose --profile mcp --profile watch up -d")
326
+ print("• Import conversations: docker compose run --rm importer")
327
+ print("• View logs: docker compose logs -f")
328
+ print("• Check status: claude-self-reflect status")
329
+ print("• Restart everything: docker compose down && docker compose --profile mcp --profile watch up -d")
330
+
331
+ print(f"\n{Colors.BLUE}Documentation: https://github.com/ramakay/claude-self-reflect{Colors.ENDC}")
332
+
333
+ # Return exit code based on critical issues
334
+ if not docker_ok:
335
+ sys.exit(1)
336
+ if all_ok:
337
+ sys.exit(0)
338
+ else:
339
+ sys.exit(2) # Non-critical issues
340
+
341
+ if __name__ == "__main__":
342
+ main()
@@ -0,0 +1,241 @@
1
+ """
2
+ Embedding service abstraction to handle both local and cloud embeddings.
3
+ Reduces complexity by separating embedding concerns from import logic.
4
+ """
5
+
6
+ import os
7
+ import logging
8
+ from abc import ABC, abstractmethod
9
+ from typing import List, Optional
10
+ from pathlib import Path
11
+
12
+ logger = logging.getLogger(__name__)
13
+
14
+
15
+ class EmbeddingProvider(ABC):
16
+ """Abstract base class for embedding providers."""
17
+
18
+ @abstractmethod
19
+ def generate_embeddings(self, texts: List[str]) -> List[List[float]]:
20
+ """Generate embeddings for a list of texts."""
21
+ pass
22
+
23
+ @abstractmethod
24
+ def get_dimension(self) -> int:
25
+ """Get the dimension of embeddings produced by this provider."""
26
+ pass
27
+
28
+ @abstractmethod
29
+ def get_collection_suffix(self) -> str:
30
+ """Get the suffix for collection naming."""
31
+ pass
32
+
33
+
34
+ class LocalEmbeddingProvider(EmbeddingProvider):
35
+ """Local embedding provider using FastEmbed."""
36
+
37
+ def __init__(self):
38
+ self.model = None
39
+ self.dimension = 384
40
+ self._initialize_model()
41
+
42
+ def _initialize_model(self):
43
+ """Initialize the FastEmbed model."""
44
+ try:
45
+ from fastembed import TextEmbedding
46
+ self.model = TextEmbedding(model_name="BAAI/bge-small-en-v1.5")
47
+ logger.info("Initialized local FastEmbed model (384 dimensions)")
48
+ except ImportError as e:
49
+ logger.error("FastEmbed not installed. Install with: pip install fastembed")
50
+ raise
51
+ except Exception as e:
52
+ logger.exception(f"Failed to initialize FastEmbed: {e}")
53
+ raise
54
+
55
+ def generate_embeddings(self, texts: List[str]) -> List[List[float]]:
56
+ """Generate embeddings using FastEmbed."""
57
+ if not self.model:
58
+ raise RuntimeError("FastEmbed model not initialized")
59
+
60
+ try:
61
+ embeddings = list(self.model.embed(texts))
62
+ return [list(emb) for emb in embeddings]
63
+ except Exception as e:
64
+ logger.error(f"Failed to generate local embeddings: {e}")
65
+ raise
66
+
67
+ def get_dimension(self) -> int:
68
+ """Get embedding dimension (384 for FastEmbed)."""
69
+ return self.dimension
70
+
71
+ def get_collection_suffix(self) -> str:
72
+ """Get collection suffix for local embeddings."""
73
+ return "local_384d"
74
+
75
+
76
+ class CloudEmbeddingProvider(EmbeddingProvider):
77
+ """Cloud embedding provider using Voyage AI."""
78
+
79
+ def __init__(self, api_key: str):
80
+ # Don't store API key directly, use it only for client initialization
81
+ self.client = None
82
+ self.dimension = 1024
83
+ self._initialize_client(api_key)
84
+
85
+ def _initialize_client(self, api_key: str):
86
+ """Initialize the Voyage AI client."""
87
+ try:
88
+ import voyageai
89
+ self.client = voyageai.Client(api_key=api_key)
90
+ logger.info("Initialized Voyage AI client (1024 dimensions)")
91
+ except ImportError as e:
92
+ logger.error("voyageai not installed. Install with: pip install voyageai")
93
+ raise
94
+ except Exception as e:
95
+ logger.exception(f"Failed to initialize Voyage AI: {e}")
96
+ raise
97
+
98
+ def generate_embeddings(self, texts: List[str]) -> List[List[float]]:
99
+ """Generate embeddings using Voyage AI."""
100
+ if not self.client:
101
+ raise RuntimeError("Voyage AI client not initialized")
102
+
103
+ try:
104
+ result = self.client.embed(texts, model="voyage-2")
105
+ return result.embeddings
106
+ except Exception as e:
107
+ logger.error(f"Failed to generate cloud embeddings: {e}")
108
+ raise
109
+
110
+ def get_dimension(self) -> int:
111
+ """Get embedding dimension (1024 for Voyage)."""
112
+ return self.dimension
113
+
114
+ def get_collection_suffix(self) -> str:
115
+ """Get collection suffix for cloud embeddings."""
116
+ return "cloud_1024d"
117
+
118
+
119
+ class EmbeddingService:
120
+ """
121
+ Service to manage embedding generation with automatic provider selection.
122
+ Reduces complexity by encapsulating embedding logic.
123
+ """
124
+
125
+ def __init__(self, prefer_local: bool = True, voyage_api_key: Optional[str] = None):
126
+ """
127
+ Initialize embedding service.
128
+
129
+ Args:
130
+ prefer_local: Whether to prefer local embeddings when available
131
+ voyage_api_key: API key for Voyage AI (if using cloud embeddings)
132
+ """
133
+ self.prefer_local = prefer_local
134
+ self.voyage_api_key = voyage_api_key
135
+ self.provider = None
136
+ self._initialize_provider()
137
+
138
+ def _initialize_provider(self):
139
+ """Initialize the appropriate embedding provider."""
140
+ if self.prefer_local or not self.voyage_api_key:
141
+ try:
142
+ self.provider = LocalEmbeddingProvider()
143
+ logger.info("Using local embedding provider (FastEmbed)")
144
+ except Exception as e:
145
+ logger.warning(f"Failed to initialize local provider: {e}")
146
+ if self.voyage_api_key:
147
+ self._fallback_to_cloud()
148
+ else:
149
+ raise RuntimeError("No embedding provider available")
150
+ else:
151
+ try:
152
+ self.provider = CloudEmbeddingProvider(self.voyage_api_key)
153
+ logger.info("Using cloud embedding provider (Voyage AI)")
154
+ except Exception as e:
155
+ logger.warning(f"Failed to initialize cloud provider: {e}")
156
+ self._fallback_to_local()
157
+
158
+ def _fallback_to_cloud(self):
159
+ """Fallback to cloud provider."""
160
+ if not self.voyage_api_key:
161
+ raise RuntimeError("No Voyage API key available for cloud fallback")
162
+ try:
163
+ self.provider = CloudEmbeddingProvider(self.voyage_api_key)
164
+ logger.info("Fallback to cloud embedding provider")
165
+ # Clear the key after use
166
+ self.voyage_api_key = None
167
+ except Exception as e:
168
+ raise RuntimeError(f"Failed to initialize any embedding provider: {e}")
169
+
170
+ def _fallback_to_local(self):
171
+ """Fallback to local provider."""
172
+ try:
173
+ self.provider = LocalEmbeddingProvider()
174
+ logger.info("Fallback to local embedding provider")
175
+ except Exception as e:
176
+ raise RuntimeError(f"Failed to initialize any embedding provider: {e}")
177
+
178
+ def generate_embeddings(self, texts: List[str]) -> List[List[float]]:
179
+ """
180
+ Generate embeddings for texts using the configured provider.
181
+
182
+ Args:
183
+ texts: List of texts to embed
184
+
185
+ Returns:
186
+ List of embedding vectors
187
+ """
188
+ if not self.provider:
189
+ raise RuntimeError("No embedding provider initialized")
190
+
191
+ # Filter out empty texts
192
+ non_empty_texts = [t for t in texts if t and t.strip()]
193
+ if not non_empty_texts:
194
+ return []
195
+
196
+ return self.provider.generate_embeddings(non_empty_texts)
197
+
198
+ def get_dimension(self) -> int:
199
+ """Get the dimension of embeddings."""
200
+ if not self.provider:
201
+ raise RuntimeError("No embedding provider initialized")
202
+ return self.provider.get_dimension()
203
+
204
+ def get_collection_suffix(self) -> str:
205
+ """Get the collection suffix for current provider."""
206
+ if not self.provider:
207
+ raise RuntimeError("No embedding provider initialized")
208
+ return self.provider.get_collection_suffix()
209
+
210
+ def get_provider_name(self) -> str:
211
+ """Get the name of the current provider."""
212
+ if isinstance(self.provider, LocalEmbeddingProvider):
213
+ return "FastEmbed (Local)"
214
+ elif isinstance(self.provider, CloudEmbeddingProvider):
215
+ return "Voyage AI (Cloud)"
216
+ else:
217
+ return "Unknown"
218
+
219
+
220
+ # Factory function for convenience
221
+ def create_embedding_service(
222
+ prefer_local: Optional[bool] = None,
223
+ voyage_api_key: Optional[str] = None
224
+ ) -> EmbeddingService:
225
+ """
226
+ Create an embedding service with environment variable defaults.
227
+
228
+ Args:
229
+ prefer_local: Override for PREFER_LOCAL_EMBEDDINGS env var
230
+ voyage_api_key: Override for VOYAGE_KEY env var
231
+
232
+ Returns:
233
+ Configured EmbeddingService instance
234
+ """
235
+ if prefer_local is None:
236
+ prefer_local = os.getenv("PREFER_LOCAL_EMBEDDINGS", "true").lower() == "true"
237
+
238
+ if voyage_api_key is None:
239
+ voyage_api_key = os.getenv("VOYAGE_KEY")
240
+
241
+ return EmbeddingService(prefer_local, voyage_api_key)