claude-flow 2.7.33 → 2.7.34

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (79) hide show
  1. package/.claude/settings.local.json +9 -2
  2. package/.claude/skills/agentic-jujutsu/SKILL.md +1 -1
  3. package/CHANGELOG.md +75 -0
  4. package/bin/claude-flow +1 -1
  5. package/dist/src/cli/commands/mcp.js +61 -7
  6. package/dist/src/cli/commands/mcp.js.map +1 -1
  7. package/dist/src/cli/help-formatter.js +5 -0
  8. package/dist/src/cli/simple-commands/init/agent-copier.js +9 -3
  9. package/dist/src/cli/simple-commands/init/agent-copier.js.map +1 -1
  10. package/dist/src/core/version.js +1 -1
  11. package/dist/src/mcp/async/job-manager-mcp25.js +240 -0
  12. package/dist/src/mcp/async/job-manager-mcp25.js.map +1 -0
  13. package/dist/src/mcp/index.js +8 -0
  14. package/dist/src/mcp/index.js.map +1 -1
  15. package/dist/src/mcp/protocol/version-negotiation.js +182 -0
  16. package/dist/src/mcp/protocol/version-negotiation.js.map +1 -0
  17. package/dist/src/mcp/registry/mcp-registry-client-2025.js +210 -0
  18. package/dist/src/mcp/registry/mcp-registry-client-2025.js.map +1 -0
  19. package/dist/src/mcp/server-factory.js +189 -0
  20. package/dist/src/mcp/server-factory.js.map +1 -0
  21. package/dist/src/mcp/server-mcp-2025.js +283 -0
  22. package/dist/src/mcp/server-mcp-2025.js.map +1 -0
  23. package/dist/src/mcp/tool-registry-progressive.js +319 -0
  24. package/dist/src/mcp/tool-registry-progressive.js.map +1 -0
  25. package/dist/src/mcp/tools/_template.js +62 -0
  26. package/dist/src/mcp/tools/_template.js.map +1 -0
  27. package/dist/src/mcp/tools/loader.js +228 -0
  28. package/dist/src/mcp/tools/loader.js.map +1 -0
  29. package/dist/src/mcp/tools/system/search.js +224 -0
  30. package/dist/src/mcp/tools/system/search.js.map +1 -0
  31. package/dist/src/mcp/tools/system/status.js +168 -0
  32. package/dist/src/mcp/tools/system/status.js.map +1 -0
  33. package/dist/src/mcp/validation/schema-validator-2025.js +198 -0
  34. package/dist/src/mcp/validation/schema-validator-2025.js.map +1 -0
  35. package/docs/.claude-flow/metrics/performance.json +3 -3
  36. package/docs/.claude-flow/metrics/task-metrics.json +3 -3
  37. package/docs/.github-release-issue-v2.7.33.md +488 -0
  38. package/docs/AGENTDB_BRANCH_MERGE_VERIFICATION.md +436 -0
  39. package/docs/BRANCH_REVIEW_SUMMARY.md +439 -0
  40. package/docs/DEEP_CODE_REVIEW_v2.7.33.md +1159 -0
  41. package/docs/MCP_2025_FEATURE_CONFIRMATION.md +698 -0
  42. package/docs/NPM_PUBLISH_GUIDE_v2.7.33.md +628 -0
  43. package/docs/REGRESSION_TEST_REPORT_v2.7.33.md +397 -0
  44. package/docs/RELEASE_NOTES_v2.7.33.md +618 -0
  45. package/docs/RELEASE_READINESS_SUMMARY.md +377 -0
  46. package/docs/RELEASE_SUMMARY_v2.7.33.md +456 -0
  47. package/docs/agentic-flow-agentdb-mcp-integration.md +1198 -0
  48. package/docs/mcp-2025-implementation-summary.md +459 -0
  49. package/docs/mcp-spec-2025-implementation-plan.md +1330 -0
  50. package/docs/phase-1-2-implementation-summary.md +676 -0
  51. package/docs/regression-analysis-phase-1-2.md +555 -0
  52. package/package.json +5 -2
  53. package/src/cli/commands/mcp.ts +86 -9
  54. package/src/cli/simple-commands/init/agent-copier.js +10 -5
  55. package/src/mcp/async/job-manager-mcp25.ts +456 -0
  56. package/src/mcp/index.ts +60 -0
  57. package/src/mcp/protocol/version-negotiation.ts +329 -0
  58. package/src/mcp/registry/mcp-registry-client-2025.ts +334 -0
  59. package/src/mcp/server-factory.ts +426 -0
  60. package/src/mcp/server-mcp-2025.ts +507 -0
  61. package/src/mcp/tool-registry-progressive.ts +539 -0
  62. package/src/mcp/tools/_template.ts +174 -0
  63. package/src/mcp/tools/loader.ts +362 -0
  64. package/src/mcp/tools/system/search.ts +276 -0
  65. package/src/mcp/tools/system/status.ts +206 -0
  66. package/src/mcp/validation/schema-validator-2025.ts +294 -0
  67. package/docs/AGENTDB_V1.6.1_DEEP_REVIEW.md +0 -386
  68. package/docs/AGENT_FOLDER_STRUCTURE_FIX.md +0 -192
  69. package/docs/RECENT_RELEASES_SUMMARY.md +0 -375
  70. package/docs/V2.7.31_RELEASE_NOTES.md +0 -375
  71. /package/.claude/agents/analysis/{analyze-code-quality.md → code-review/analyze-code-quality.md} +0 -0
  72. /package/.claude/agents/architecture/{arch-system-design.md → system-design/arch-system-design.md} +0 -0
  73. /package/.claude/agents/data/{data-ml-model.md → ml/data-ml-model.md} +0 -0
  74. /package/.claude/agents/development/{dev-backend-api.md → backend/dev-backend-api.md} +0 -0
  75. /package/.claude/agents/devops/{ops-cicd-github.md → ci-cd/ops-cicd-github.md} +0 -0
  76. /package/.claude/agents/documentation/{docs-api-openapi.md → api-docs/docs-api-openapi.md} +0 -0
  77. /package/.claude/agents/specialized/{spec-mobile-react-native.md → mobile/spec-mobile-react-native.md} +0 -0
  78. /package/.claude/agents/testing/{tdd-london-swarm.md → unit/tdd-london-swarm.md} +0 -0
  79. /package/.claude/agents/testing/{production-validator.md → validation/production-validator.md} +0 -0
@@ -0,0 +1,1198 @@
1
+ # Agentic Flow & AgentDB MCP 2025 Integration
2
+
3
+ **Purpose**: Map MCP 2025 spec changes onto Agentic Flow and AgentDB with concrete interface updates
4
+
5
+ ---
6
+
7
+ ## Overview
8
+
9
+ The MCP 2025 spec introduces async operations, registry discovery, and code execution patterns. Here's how these map to our existing systems:
10
+
11
+ | MCP 2025 Feature | Agentic Flow Integration | AgentDB Integration |
12
+ |------------------|-------------------------|---------------------|
13
+ | **Async Operations** | Swarm task orchestration with job handles | Neural training as async jobs |
14
+ | **Registry Discovery** | Auto-publish swarm capabilities | Publish AgentDB as data backend |
15
+ | **Code Execution** | Execute agent logic in sandbox | Process vectors/embeddings locally |
16
+ | **Progressive Disclosure** | Lazy-load agent types | Lazy-load collection schemas |
17
+
18
+ ---
19
+
20
+ ## Part 1: Agentic Flow Interface Updates
21
+
22
+ ### Current Architecture
23
+
24
+ ```typescript
25
+ // Current: Agentic Flow Orchestrator
26
+ class AgenticFlowOrchestrator {
27
+ async spawnAgent(profile: AgentProfile): Promise<string>;
28
+ async assignTask(agentId: string, task: Task): Promise<void>;
29
+ async getAgentStatus(agentId: string): Promise<AgentStatus>;
30
+ }
31
+
32
+ // Current: Swarm Coordinator
33
+ class SwarmCoordinator {
34
+ async initSwarm(topology: Topology): Promise<string>;
35
+ async scaleSwarm(swarmId: string, targetSize: number): Promise<void>;
36
+ async coordinateTask(swarmId: string, task: Task): Promise<Result>;
37
+ }
38
+ ```
39
+
40
+ ### New: Async-First Interfaces
41
+
42
+ ```typescript
43
+ /**
44
+ * Updated Orchestrator with async operations
45
+ */
46
+ export class AgenticFlowOrchestrator {
47
+ private jobManager: JobManager;
48
+
49
+ /**
50
+ * Spawn agent asynchronously
51
+ * Returns job handle immediately, agent initialization happens in background
52
+ */
53
+ async spawnAgentAsync(profile: AgentProfile): Promise<JobHandle> {
54
+ return this.jobManager.submitJob(
55
+ 'agent:spawn',
56
+ profile,
57
+ async (input, onProgress) => {
58
+ onProgress(0);
59
+
60
+ // Initialize agent
61
+ const agent = await this.initializeAgent(input);
62
+ onProgress(30);
63
+
64
+ // Load capabilities
65
+ await agent.loadCapabilities();
66
+ onProgress(60);
67
+
68
+ // Connect to memory store
69
+ await agent.connectMemory();
70
+ onProgress(80);
71
+
72
+ // Register with swarm
73
+ await this.registerAgent(agent);
74
+ onProgress(100);
75
+
76
+ return {
77
+ agentId: agent.id,
78
+ sessionId: agent.sessionId,
79
+ status: 'ready',
80
+ };
81
+ }
82
+ );
83
+ }
84
+
85
+ /**
86
+ * Spawn multiple agents in parallel
87
+ * Returns single job handle for batch operation
88
+ */
89
+ async spawnAgentSwarmAsync(
90
+ profiles: AgentProfile[]
91
+ ): Promise<JobHandle> {
92
+ return this.jobManager.submitJob(
93
+ 'agent:spawn-swarm',
94
+ { profiles },
95
+ async (input, onProgress) => {
96
+ const total = input.profiles.length;
97
+ let completed = 0;
98
+
99
+ const agents = await Promise.all(
100
+ input.profiles.map(async (profile) => {
101
+ const agent = await this.initializeAgent(profile);
102
+ completed++;
103
+ onProgress((completed / total) * 100);
104
+ return agent;
105
+ })
106
+ );
107
+
108
+ return {
109
+ swarmId: generateId(),
110
+ agents: agents.map(a => ({ id: a.id, status: 'ready' })),
111
+ topology: this.detectTopology(agents),
112
+ };
113
+ }
114
+ );
115
+ }
116
+
117
+ /**
118
+ * Execute swarm task asynchronously
119
+ * Supports long-running coordination workflows
120
+ */
121
+ async executeSwarmTaskAsync(
122
+ swarmId: string,
123
+ task: Task
124
+ ): Promise<JobHandle> {
125
+ return this.jobManager.submitJob(
126
+ 'swarm:execute-task',
127
+ { swarmId, task },
128
+ async (input, onProgress) => {
129
+ const swarm = await this.getSwarm(input.swarmId);
130
+
131
+ // Decompose task
132
+ const subtasks = await this.decomposeTask(input.task);
133
+ onProgress(10);
134
+
135
+ // Assign to agents
136
+ const assignments = await this.assignSubtasks(swarm, subtasks);
137
+ onProgress(20);
138
+
139
+ // Coordinate execution
140
+ let completed = 0;
141
+ const results = await Promise.all(
142
+ assignments.map(async (assignment) => {
143
+ const result = await this.executeAssignment(assignment);
144
+ completed++;
145
+ onProgress(20 + (completed / assignments.length) * 70);
146
+ return result;
147
+ })
148
+ );
149
+
150
+ // Synthesize results
151
+ const finalResult = await this.synthesizeResults(results);
152
+ onProgress(95);
153
+
154
+ // Update memory
155
+ await this.updateSwarmMemory(swarmId, finalResult);
156
+ onProgress(100);
157
+
158
+ return finalResult;
159
+ }
160
+ );
161
+ }
162
+ }
163
+ ```
164
+
165
+ ### New: Swarm Coordinator with Job Management
166
+
167
+ ```typescript
168
+ /**
169
+ * Updated Swarm Coordinator with async support
170
+ */
171
+ export class SwarmCoordinator {
172
+ private jobManager: JobManager;
173
+ private registryClient: RegistryClient;
174
+
175
+ /**
176
+ * Initialize swarm with async topology optimization
177
+ */
178
+ async initSwarmAsync(config: SwarmConfig): Promise<JobHandle> {
179
+ return this.jobManager.submitJob(
180
+ 'swarm:init',
181
+ config,
182
+ async (input, onProgress) => {
183
+ onProgress(0);
184
+
185
+ // Analyze task complexity
186
+ const complexity = await this.analyzeComplexity(input);
187
+ onProgress(10);
188
+
189
+ // Select optimal topology
190
+ const topology = await this.selectTopology(complexity);
191
+ onProgress(30);
192
+
193
+ // Spawn agents
194
+ const agents = await this.spawnAgents(topology, input);
195
+ onProgress(60);
196
+
197
+ // Establish coordination channels
198
+ await this.setupCoordination(agents, topology);
199
+ onProgress(80);
200
+
201
+ // Initialize memory synchronization
202
+ await this.initMemorySync(agents);
203
+ onProgress(100);
204
+
205
+ return {
206
+ swarmId: generateId(),
207
+ topology: topology.type,
208
+ agentCount: agents.length,
209
+ coordinationChannels: topology.channels,
210
+ };
211
+ }
212
+ );
213
+ }
214
+
215
+ /**
216
+ * Auto-scale swarm based on workload
217
+ * Returns job handle for scaling operation
218
+ */
219
+ async autoScaleAsync(
220
+ swarmId: string,
221
+ targetLoad: number
222
+ ): Promise<JobHandle> {
223
+ return this.jobManager.submitJob(
224
+ 'swarm:autoscale',
225
+ { swarmId, targetLoad },
226
+ async (input, onProgress) => {
227
+ const swarm = await this.getSwarm(input.swarmId);
228
+ onProgress(10);
229
+
230
+ // Calculate optimal size
231
+ const optimalSize = await this.calculateOptimalSize(
232
+ swarm,
233
+ input.targetLoad
234
+ );
235
+ onProgress(30);
236
+
237
+ if (optimalSize > swarm.agents.length) {
238
+ // Scale up
239
+ const newAgents = await this.addAgents(
240
+ swarm,
241
+ optimalSize - swarm.agents.length
242
+ );
243
+ onProgress(70);
244
+
245
+ await this.integrateAgents(swarm, newAgents);
246
+ } else if (optimalSize < swarm.agents.length) {
247
+ // Scale down
248
+ const toRemove = swarm.agents.slice(optimalSize);
249
+ await this.removeAgents(swarm, toRemove);
250
+ onProgress(70);
251
+ }
252
+
253
+ onProgress(100);
254
+
255
+ return {
256
+ swarmId: input.swarmId,
257
+ previousSize: swarm.agents.length,
258
+ newSize: optimalSize,
259
+ scalingAction: optimalSize > swarm.agents.length ? 'up' : 'down',
260
+ };
261
+ }
262
+ );
263
+ }
264
+
265
+ /**
266
+ * Register swarm capabilities in MCP Registry
267
+ */
268
+ async registerInRegistry(): Promise<void> {
269
+ const metadata: ServerMetadata = {
270
+ name: 'agentic-flow-swarm',
271
+ version: this.version,
272
+ description: 'Multi-agent swarm coordination with adaptive topologies',
273
+ author: 'ruvnet',
274
+ capabilities: {
275
+ tools: true,
276
+ resources: true,
277
+ prompts: false,
278
+ async: true,
279
+ streaming: true,
280
+ },
281
+ categories: ['orchestration', 'swarm', 'coordination'],
282
+ tags: [
283
+ 'swarm',
284
+ 'multi-agent',
285
+ 'coordination',
286
+ 'adaptive-topology',
287
+ 'load-balancing',
288
+ ],
289
+ transport: ['stdio', 'http'],
290
+ security: {
291
+ authRequired: true,
292
+ authMethods: ['token', 'oauth'],
293
+ piiHandling: 'none',
294
+ },
295
+ };
296
+
297
+ await this.registryClient.publishServer(metadata);
298
+ }
299
+ }
300
+ ```
301
+
302
+ ---
303
+
304
+ ## Part 2: AgentDB Interface Updates
305
+
306
+ ### Current Architecture
307
+
308
+ ```typescript
309
+ // Current: AgentDB Client
310
+ class AgentDB {
311
+ async createCollection(name: string, schema: Schema): Promise<void>;
312
+ async insert(collection: string, vectors: Vector[]): Promise<void>;
313
+ async search(collection: string, query: Vector, k: number): Promise<Result[]>;
314
+ }
315
+ ```
316
+
317
+ ### New: Async-First AgentDB
318
+
319
+ ```typescript
320
+ /**
321
+ * Updated AgentDB with async operations and code execution pattern
322
+ */
323
+ export class AgentDB {
324
+ private jobManager: JobManager;
325
+ private registryClient: RegistryClient;
326
+
327
+ /**
328
+ * Index large document corpus asynchronously
329
+ * Processing happens in execution environment, only metadata returned
330
+ */
331
+ async indexCorpusAsync(
332
+ collection: string,
333
+ documents: AsyncIterable<Document>
334
+ ): Promise<JobHandle> {
335
+ return this.jobManager.submitJob(
336
+ 'agentdb:index-corpus',
337
+ { collection, documents },
338
+ async (input, onProgress) => {
339
+ let processed = 0;
340
+ let totalVectors = 0;
341
+
342
+ onProgress(0);
343
+
344
+ // Process documents in batches (execution environment)
345
+ for await (const batch of this.batchDocuments(input.documents, 100)) {
346
+ // Generate embeddings locally (not in model context!)
347
+ const vectors = await this.generateEmbeddings(batch);
348
+
349
+ // Insert to AgentDB
350
+ await this.insert(input.collection, vectors);
351
+
352
+ processed += batch.length;
353
+ totalVectors += vectors.length;
354
+ onProgress(Math.min(95, (processed / 10000) * 100)); // Estimate progress
355
+ }
356
+
357
+ // Build HNSW index
358
+ await this.buildIndex(input.collection);
359
+ onProgress(100);
360
+
361
+ return {
362
+ collection: input.collection,
363
+ documentsProcessed: processed,
364
+ vectorsIndexed: totalVectors,
365
+ indexType: 'hnsw',
366
+ indexingTime: Date.now(),
367
+ };
368
+ }
369
+ );
370
+ }
371
+
372
+ /**
373
+ * Train neural model asynchronously
374
+ * Training happens in execution environment with progress updates
375
+ */
376
+ async trainModelAsync(
377
+ modelName: string,
378
+ trainingData: TrainingDataset,
379
+ config: TrainingConfig
380
+ ): Promise<JobHandle> {
381
+ return this.jobManager.submitJob(
382
+ 'agentdb:train-model',
383
+ { modelName, trainingData, config },
384
+ async (input, onProgress) => {
385
+ const { epochs, batchSize } = input.config;
386
+ let currentEpoch = 0;
387
+
388
+ // Initialize model
389
+ const model = await this.initModel(input.modelName, input.config);
390
+ onProgress(5);
391
+
392
+ // Training loop (in execution environment)
393
+ for (let epoch = 0; epoch < epochs; epoch++) {
394
+ currentEpoch = epoch + 1;
395
+
396
+ // Train one epoch
397
+ const metrics = await model.trainEpoch(
398
+ input.trainingData,
399
+ batchSize
400
+ );
401
+
402
+ // Store checkpoint
403
+ await this.saveCheckpoint(model, epoch, metrics);
404
+
405
+ // Report progress
406
+ onProgress(5 + ((currentEpoch / epochs) * 90));
407
+
408
+ // Log metrics (not sent to model context)
409
+ await this.logMetrics(input.modelName, epoch, metrics);
410
+ }
411
+
412
+ // Final evaluation
413
+ const finalMetrics = await model.evaluate();
414
+ onProgress(98);
415
+
416
+ // Save final model
417
+ await this.saveModel(model, input.modelName);
418
+ onProgress(100);
419
+
420
+ return {
421
+ modelName: input.modelName,
422
+ epochs: currentEpoch,
423
+ finalLoss: finalMetrics.loss,
424
+ finalAccuracy: finalMetrics.accuracy,
425
+ modelPath: `models/${input.modelName}`,
426
+ checkpoints: epochs,
427
+ };
428
+ }
429
+ );
430
+ }
431
+
432
+ /**
433
+ * Semantic search with data processing in execution environment
434
+ * Returns only top-k results, not full vector space
435
+ */
436
+ async semanticSearchAsync(
437
+ collection: string,
438
+ query: string,
439
+ options: SearchOptions
440
+ ): Promise<JobHandle> {
441
+ return this.jobManager.submitJob(
442
+ 'agentdb:semantic-search',
443
+ { collection, query, options },
444
+ async (input, onProgress) => {
445
+ onProgress(10);
446
+
447
+ // Generate query embedding (execution environment)
448
+ const queryVector = await this.generateEmbedding(input.query);
449
+ onProgress(30);
450
+
451
+ // Search AgentDB (local processing)
452
+ const results = await this.vectorSearch(
453
+ input.collection,
454
+ queryVector,
455
+ input.options.k || 10
456
+ );
457
+ onProgress(70);
458
+
459
+ // Apply filters in execution environment
460
+ const filtered = await this.applyFilters(results, input.options.filters);
461
+ onProgress(85);
462
+
463
+ // Rerank if requested
464
+ const reranked = input.options.rerank
465
+ ? await this.rerank(filtered, input.query)
466
+ : filtered;
467
+ onProgress(95);
468
+
469
+ // Return only top results (not full dataset)
470
+ const topResults = reranked.slice(0, input.options.k || 10);
471
+ onProgress(100);
472
+
473
+ return {
474
+ query: input.query,
475
+ collection: input.collection,
476
+ results: topResults.map(r => ({
477
+ id: r.id,
478
+ score: r.score,
479
+ metadata: r.metadata,
480
+ // Content returned only if explicitly requested
481
+ content: input.options.includeContent ? r.content : undefined,
482
+ })),
483
+ totalMatches: results.length,
484
+ processingTime: Date.now(),
485
+ };
486
+ }
487
+ );
488
+ }
489
+
490
+ /**
491
+ * Register AgentDB in MCP Registry
492
+ */
493
+ async registerInRegistry(): Promise<void> {
494
+ const metadata: ServerMetadata = {
495
+ name: 'agentdb',
496
+ version: this.version,
497
+ description: 'High-performance vector database with 150x faster search and 9 RL algorithms',
498
+ author: 'ruvnet',
499
+ capabilities: {
500
+ tools: true,
501
+ resources: true,
502
+ prompts: false,
503
+ async: true,
504
+ streaming: false,
505
+ },
506
+ categories: ['database', 'vector-search', 'machine-learning'],
507
+ tags: [
508
+ 'vector-database',
509
+ 'semantic-search',
510
+ 'embeddings',
511
+ 'hnsw',
512
+ 'neural-training',
513
+ 'reinforcement-learning',
514
+ ],
515
+ transport: ['stdio', 'http'],
516
+ security: {
517
+ authRequired: true,
518
+ authMethods: ['token'],
519
+ piiHandling: 'encrypted',
520
+ },
521
+ };
522
+
523
+ await this.registryClient.publishServer(metadata);
524
+ }
525
+ }
526
+ ```
527
+
528
+ ### New: ReasoningBank with Async Operations
529
+
530
+ ```typescript
531
+ /**
532
+ * ReasoningBank with async trajectory processing
533
+ */
534
+ export class ReasoningBank {
535
+ private agentDB: AgentDB;
536
+ private jobManager: JobManager;
537
+
538
+ /**
539
+ * Process and learn from trajectory asynchronously
540
+ * Heavy distillation happens in execution environment
541
+ */
542
+ async processTrajectoryAsync(
543
+ trajectory: Trajectory
544
+ ): Promise<JobHandle> {
545
+ return this.jobManager.submitJob(
546
+ 'reasoningbank:process-trajectory',
547
+ trajectory,
548
+ async (input, onProgress) => {
549
+ onProgress(0);
550
+
551
+ // Extract action-outcome pairs
552
+ const pairs = await this.extractPairs(input);
553
+ onProgress(20);
554
+
555
+ // Generate embeddings (execution environment)
556
+ const embeddings = await this.generateTrajectoryEmbeddings(pairs);
557
+ onProgress(40);
558
+
559
+ // Store in AgentDB
560
+ await this.agentDB.insert('trajectories', embeddings);
561
+ onProgress(60);
562
+
563
+ // Identify successful patterns
564
+ const patterns = await this.identifyPatterns(pairs);
565
+ onProgress(80);
566
+
567
+ // Distill to memory
568
+ const distilled = await this.distillMemory(patterns);
569
+ await this.agentDB.insert('distilled-memory', distilled);
570
+ onProgress(100);
571
+
572
+ return {
573
+ trajectoryId: input.id,
574
+ pairsExtracted: pairs.length,
575
+ patternsIdentified: patterns.length,
576
+ memoryDistilled: distilled.length,
577
+ verdict: await this.judgeVerdict(input),
578
+ };
579
+ }
580
+ );
581
+ }
582
+
583
+ /**
584
+ * Query reasoning patterns asynchronously
585
+ * Returns only relevant patterns, not full memory
586
+ */
587
+ async queryPatternsAsync(
588
+ query: string,
589
+ context: ExecutionContext
590
+ ): Promise<JobHandle> {
591
+ return this.jobManager.submitJob(
592
+ 'reasoningbank:query-patterns',
593
+ { query, context },
594
+ async (input, onProgress) => {
595
+ onProgress(10);
596
+
597
+ // Generate query embedding
598
+ const queryVector = await this.generateEmbedding(input.query);
599
+ onProgress(30);
600
+
601
+ // Search distilled memory
602
+ const patterns = await this.agentDB.search(
603
+ 'distilled-memory',
604
+ queryVector,
605
+ 10
606
+ );
607
+ onProgress(60);
608
+
609
+ // Filter by context relevance
610
+ const relevant = await this.filterByContext(patterns, input.context);
611
+ onProgress(80);
612
+
613
+ // Rank by historical success
614
+ const ranked = await this.rankBySuccess(relevant);
615
+ onProgress(100);
616
+
617
+ return {
618
+ query: input.query,
619
+ patterns: ranked.map(p => ({
620
+ id: p.id,
621
+ description: p.metadata.description,
622
+ successRate: p.metadata.successRate,
623
+ usageCount: p.metadata.usageCount,
624
+ // Full pattern details only if explicitly requested
625
+ })),
626
+ totalMatches: patterns.length,
627
+ };
628
+ }
629
+ );
630
+ }
631
+ }
632
+ ```
633
+
634
+ ---
635
+
636
+ ## Part 3: MCP Tool Definitions
637
+
638
+ ### New Tools for Agentic Flow
639
+
640
+ ```typescript
641
+ // agentic-flow-tools.ts
642
+
643
+ export const agenticFlowTools: MCPTool[] = [
644
+ // Async agent spawning
645
+ {
646
+ name: 'agentic-flow/spawn-agent:async',
647
+ description: 'Spawn agent asynchronously with progress tracking',
648
+ inputSchema: {
649
+ type: 'object',
650
+ properties: {
651
+ profile: { type: 'object' },
652
+ _async: { type: 'object' },
653
+ },
654
+ },
655
+ handler: async (input, context) => {
656
+ return await context.orchestrator.spawnAgentAsync(input.profile);
657
+ },
658
+ },
659
+
660
+ // Async swarm initialization
661
+ {
662
+ name: 'agentic-flow/init-swarm:async',
663
+ description: 'Initialize swarm with adaptive topology selection',
664
+ inputSchema: {
665
+ type: 'object',
666
+ properties: {
667
+ config: { type: 'object' },
668
+ _async: { type: 'object' },
669
+ },
670
+ },
671
+ handler: async (input, context) => {
672
+ return await context.swarmCoordinator.initSwarmAsync(input.config);
673
+ },
674
+ },
675
+
676
+ // Async task execution
677
+ {
678
+ name: 'agentic-flow/execute-task:async',
679
+ description: 'Execute swarm task with coordination and progress tracking',
680
+ inputSchema: {
681
+ type: 'object',
682
+ properties: {
683
+ swarmId: { type: 'string' },
684
+ task: { type: 'object' },
685
+ _async: { type: 'object' },
686
+ },
687
+ },
688
+ handler: async (input, context) => {
689
+ return await context.orchestrator.executeSwarmTaskAsync(
690
+ input.swarmId,
691
+ input.task
692
+ );
693
+ },
694
+ },
695
+ ];
696
+ ```
697
+
698
+ ### New Tools for AgentDB
699
+
700
+ ```typescript
701
+ // agentdb-tools.ts
702
+
703
+ export const agentDBTools: MCPTool[] = [
704
+ // Async corpus indexing
705
+ {
706
+ name: 'agentdb/index-corpus:async',
707
+ description: 'Index large document corpus with progress tracking',
708
+ inputSchema: {
709
+ type: 'object',
710
+ properties: {
711
+ collection: { type: 'string' },
712
+ documents: { type: 'array' },
713
+ _async: { type: 'object' },
714
+ },
715
+ },
716
+ handler: async (input, context) => {
717
+ const docs = async function* () {
718
+ for (const doc of input.documents) {
719
+ yield doc;
720
+ }
721
+ };
722
+ return await context.agentDB.indexCorpusAsync(input.collection, docs());
723
+ },
724
+ },
725
+
726
+ // Async model training
727
+ {
728
+ name: 'agentdb/train-model:async',
729
+ description: 'Train neural model with reinforcement learning algorithms',
730
+ inputSchema: {
731
+ type: 'object',
732
+ properties: {
733
+ modelName: { type: 'string' },
734
+ algorithm: {
735
+ type: 'string',
736
+ enum: [
737
+ 'decision-transformer',
738
+ 'q-learning',
739
+ 'sarsa',
740
+ 'actor-critic',
741
+ 'ppo',
742
+ 'dqn',
743
+ 'a2c',
744
+ 'ddpg',
745
+ 'sac',
746
+ ],
747
+ },
748
+ trainingData: { type: 'object' },
749
+ config: { type: 'object' },
750
+ _async: { type: 'object' },
751
+ },
752
+ },
753
+ handler: async (input, context) => {
754
+ return await context.agentDB.trainModelAsync(
755
+ input.modelName,
756
+ input.trainingData,
757
+ input.config
758
+ );
759
+ },
760
+ },
761
+
762
+ // Async semantic search
763
+ {
764
+ name: 'agentdb/semantic-search:async',
765
+ description: 'Semantic search with HNSW index (150x faster)',
766
+ inputSchema: {
767
+ type: 'object',
768
+ properties: {
769
+ collection: { type: 'string' },
770
+ query: { type: 'string' },
771
+ options: {
772
+ type: 'object',
773
+ properties: {
774
+ k: { type: 'number', default: 10 },
775
+ filters: { type: 'object' },
776
+ rerank: { type: 'boolean', default: false },
777
+ includeContent: { type: 'boolean', default: false },
778
+ },
779
+ },
780
+ _async: { type: 'object' },
781
+ },
782
+ },
783
+ handler: async (input, context) => {
784
+ return await context.agentDB.semanticSearchAsync(
785
+ input.collection,
786
+ input.query,
787
+ input.options
788
+ );
789
+ },
790
+ },
791
+ ];
792
+ ```
793
+
794
+ ### New Tools for ReasoningBank
795
+
796
+ ```typescript
797
+ // reasoningbank-tools.ts
798
+
799
+ export const reasoningBankTools: MCPTool[] = [
800
+ // Async trajectory processing
801
+ {
802
+ name: 'reasoningbank/process-trajectory:async',
803
+ description: 'Process trajectory and extract learning patterns',
804
+ inputSchema: {
805
+ type: 'object',
806
+ properties: {
807
+ trajectory: { type: 'object' },
808
+ _async: { type: 'object' },
809
+ },
810
+ },
811
+ handler: async (input, context) => {
812
+ return await context.reasoningBank.processTrajectoryAsync(
813
+ input.trajectory
814
+ );
815
+ },
816
+ },
817
+
818
+ // Async pattern query
819
+ {
820
+ name: 'reasoningbank/query-patterns:async',
821
+ description: 'Query reasoning patterns from distilled memory',
822
+ inputSchema: {
823
+ type: 'object',
824
+ properties: {
825
+ query: { type: 'string' },
826
+ context: { type: 'object' },
827
+ _async: { type: 'object' },
828
+ },
829
+ },
830
+ handler: async (input, context) => {
831
+ return await context.reasoningBank.queryPatternsAsync(
832
+ input.query,
833
+ input.context
834
+ );
835
+ },
836
+ },
837
+ ];
838
+ ```
839
+
840
+ ---
841
+
842
+ ## Part 4: End-to-End Test Plan
843
+
844
+ ### Test Suite Structure
845
+
846
+ ```typescript
847
+ // tests/e2e/async-workflow.test.ts
848
+
849
+ describe('Async Workflow - End-to-End', () => {
850
+ describe('Scenario 1: Large-Scale Document Processing', () => {
851
+ it('should index 10,000 documents with 98% token reduction', async () => {
852
+ // 1. Submit indexing job
853
+ const jobHandle = await mcpClient.callTool('agentdb/index-corpus:async', {
854
+ collection: 'research-papers',
855
+ documents: largePaperDataset, // 10,000 papers
856
+ _async: { mode: 'poll' },
857
+ });
858
+
859
+ expect(jobHandle.jobHandle).toHaveProperty('jobId');
860
+
861
+ // 2. Poll for progress
862
+ let status = await mcpClient.callTool('jobs/status', {
863
+ jobId: jobHandle.jobHandle.jobId,
864
+ });
865
+
866
+ while (status.job.status === 'running') {
867
+ await sleep(1000);
868
+ status = await mcpClient.callTool('jobs/status', {
869
+ jobId: jobHandle.jobHandle.jobId,
870
+ });
871
+
872
+ console.log(`Progress: ${status.job.progress}%`);
873
+ }
874
+
875
+ // 3. Verify completion
876
+ expect(status.job.status).toBe('completed');
877
+ expect(status.job.result.documentsProcessed).toBe(10000);
878
+
879
+ // 4. Verify token reduction
880
+ const contextSize = JSON.stringify(jobHandle).length;
881
+ expect(contextSize).toBeLessThan(2000); // < 2KB in context
882
+
883
+ // Original dataset would be ~10MB in context
884
+ // Achievement: 99.98% reduction
885
+ });
886
+ });
887
+
888
+ describe('Scenario 2: Multi-Agent Swarm Coordination', () => {
889
+ it('should spawn 20 agents and coordinate complex task', async () => {
890
+ // 1. Initialize swarm asynchronously
891
+ const swarmJob = await mcpClient.callTool('agentic-flow/init-swarm:async', {
892
+ config: {
893
+ agentCount: 20,
894
+ topology: 'adaptive',
895
+ taskComplexity: 'high',
896
+ },
897
+ _async: { mode: 'poll' },
898
+ });
899
+
900
+ // 2. Poll for swarm initialization
901
+ let swarmStatus = await mcpClient.callTool('jobs/status', {
902
+ jobId: swarmJob.jobHandle.jobId,
903
+ });
904
+
905
+ while (swarmStatus.job.status === 'running') {
906
+ await sleep(2000);
907
+ swarmStatus = await mcpClient.callTool('jobs/status', {
908
+ jobId: swarmJob.jobHandle.jobId,
909
+ });
910
+ }
911
+
912
+ expect(swarmStatus.job.status).toBe('completed');
913
+ const swarmId = swarmStatus.job.result.swarmId;
914
+
915
+ // 3. Execute task on swarm
916
+ const taskJob = await mcpClient.callTool('agentic-flow/execute-task:async', {
917
+ swarmId,
918
+ task: {
919
+ type: 'research-and-implement',
920
+ description: 'Research and implement new feature',
921
+ requirements: [...complexRequirements],
922
+ },
923
+ _async: { mode: 'poll' },
924
+ });
925
+
926
+ // 4. Monitor task execution
927
+ let taskStatus = await mcpClient.callTool('jobs/status', {
928
+ jobId: taskJob.jobHandle.jobId,
929
+ });
930
+
931
+ const startTime = Date.now();
932
+ while (
933
+ taskStatus.job.status === 'running' &&
934
+ Date.now() - startTime < 600000 // 10 minute timeout
935
+ ) {
936
+ await sleep(5000);
937
+ taskStatus = await mcpClient.callTool('jobs/status', {
938
+ jobId: taskJob.jobHandle.jobId,
939
+ });
940
+
941
+ console.log(`Task progress: ${taskStatus.job.progress}%`);
942
+ }
943
+
944
+ // 5. Verify completion
945
+ expect(taskStatus.job.status).toBe('completed');
946
+ expect(taskStatus.job.result.subtasksCompleted).toBeGreaterThan(0);
947
+ });
948
+ });
949
+
950
+ describe('Scenario 3: Neural Model Training with ReasoningBank', () => {
951
+ it('should train model on trajectories and improve over time', async () => {
952
+ // 1. Process initial trajectories
953
+ const trajectories = generateTestTrajectories(1000);
954
+
955
+ const processingJobs = await Promise.all(
956
+ trajectories.map(t =>
957
+ mcpClient.callTool('reasoningbank/process-trajectory:async', {
958
+ trajectory: t,
959
+ _async: { mode: 'fire-and-forget' },
960
+ })
961
+ )
962
+ );
963
+
964
+ // 2. Start model training
965
+ const trainingJob = await mcpClient.callTool('agentdb/train-model:async', {
966
+ modelName: 'reasoning-agent-v1',
967
+ algorithm: 'decision-transformer',
968
+ trainingData: {
969
+ source: 'reasoningbank',
970
+ collection: 'trajectories',
971
+ },
972
+ config: {
973
+ epochs: 50,
974
+ batchSize: 32,
975
+ learningRate: 0.001,
976
+ },
977
+ _async: { mode: 'poll' },
978
+ });
979
+
980
+ // 3. Monitor training progress
981
+ let trainingStatus = await mcpClient.callTool('jobs/status', {
982
+ jobId: trainingJob.jobHandle.jobId,
983
+ });
984
+
985
+ while (trainingStatus.job.status === 'running') {
986
+ await sleep(10000); // Poll every 10 seconds
987
+ trainingStatus = await mcpClient.callTool('jobs/status', {
988
+ jobId: trainingJob.jobHandle.jobId,
989
+ });
990
+
991
+ if (trainingStatus.job.progress) {
992
+ console.log(`Training progress: ${trainingStatus.job.progress}%`);
993
+ }
994
+ }
995
+
996
+ // 4. Verify training completed
997
+ expect(trainingStatus.job.status).toBe('completed');
998
+ expect(trainingStatus.job.result.epochs).toBe(50);
999
+ expect(trainingStatus.job.result.finalAccuracy).toBeGreaterThan(0.8);
1000
+
1001
+ // 5. Query learned patterns
1002
+ const patternJob = await mcpClient.callTool('reasoningbank/query-patterns:async', {
1003
+ query: 'How to handle API rate limiting?',
1004
+ context: { domain: 'backend-development' },
1005
+ _async: { mode: 'wait', timeout: 30000 },
1006
+ });
1007
+
1008
+ expect(patternJob.completed).toBe(true);
1009
+ expect(patternJob.result.patterns.length).toBeGreaterThan(0);
1010
+ });
1011
+ });
1012
+
1013
+ describe('Scenario 4: Token Reduction Validation', () => {
1014
+ it('should achieve 98%+ token reduction across all operations', async () => {
1015
+ // Measure token usage for old pattern (sync, full data in context)
1016
+ const oldPattern = {
1017
+ documents: largePaperDataset, // 10MB
1018
+ agents: [...20agentProfiles], // 500KB
1019
+ trainingData: trajectories, // 2MB
1020
+ };
1021
+
1022
+ const oldTokens = estimateTokens(JSON.stringify(oldPattern));
1023
+ expect(oldTokens).toBeGreaterThan(150000);
1024
+
1025
+ // Measure token usage for new pattern (async, job handles only)
1026
+ const newPattern = {
1027
+ indexJob: { jobHandle: { jobId: 'uuid', pollUrl: '/jobs/uuid' } },
1028
+ swarmJob: { jobHandle: { jobId: 'uuid2', pollUrl: '/jobs/uuid2' } },
1029
+ trainingJob: { jobHandle: { jobId: 'uuid3', pollUrl: '/jobs/uuid3' } },
1030
+ };
1031
+
1032
+ const newTokens = estimateTokens(JSON.stringify(newPattern));
1033
+ expect(newTokens).toBeLessThan(2000);
1034
+
1035
+ // Verify reduction
1036
+ const reduction = ((oldTokens - newTokens) / oldTokens) * 100;
1037
+ expect(reduction).toBeGreaterThan(98);
1038
+
1039
+ console.log(`Token reduction: ${reduction.toFixed(2)}%`);
1040
+ console.log(`Old: ${oldTokens} tokens, New: ${newTokens} tokens`);
1041
+ });
1042
+ });
1043
+ });
1044
+ ```
1045
+
1046
+ ---
1047
+
1048
+ ## Part 5: Performance Benchmarks
1049
+
1050
+ ### Expected Performance Improvements
1051
+
1052
+ | Metric | Before (Sync) | After (Async) | Improvement |
1053
+ |--------|---------------|---------------|-------------|
1054
+ | **Token Usage** | 150,000 | 2,000 | 98.7% ↓ |
1055
+ | **Memory Footprint** | 500 MB | 50 MB | 90% ↓ |
1056
+ | **Concurrent Tasks** | 1-2 | 20+ | 10x ↑ |
1057
+ | **Response Latency** | 30-60s | 0.5-2s | 15-30x ↓ |
1058
+ | **Throughput** | 2 tasks/min | 50+ tasks/min | 25x ↑ |
1059
+
1060
+ ### Benchmark Suite
1061
+
1062
+ ```typescript
1063
+ // tests/benchmarks/async-performance.bench.ts
1064
+
1065
+ import { benchmark, describe } from 'vitest';
1066
+
1067
+ describe('Async Performance Benchmarks', () => {
1068
+ benchmark('spawn-agent:async vs spawn-agent:sync', async () => {
1069
+ // Async version
1070
+ const asyncStart = Date.now();
1071
+ const asyncJob = await orchestrator.spawnAgentAsync(profile);
1072
+ const asyncLatency = Date.now() - asyncStart;
1073
+
1074
+ // Sync version (for comparison)
1075
+ const syncStart = Date.now();
1076
+ const syncResult = await orchestrator.spawnAgent(profile);
1077
+ const syncLatency = Date.now() - syncStart;
1078
+
1079
+ console.log(`Async latency: ${asyncLatency}ms`);
1080
+ console.log(`Sync latency: ${syncLatency}ms`);
1081
+ console.log(`Speedup: ${(syncLatency / asyncLatency).toFixed(2)}x`);
1082
+ });
1083
+
1084
+ benchmark('agentdb:index-corpus token reduction', async () => {
1085
+ // Measure token usage
1086
+ const documents = generateDocuments(10000);
1087
+
1088
+ // Old pattern: Full documents in context
1089
+ const oldContextSize = new Blob([JSON.stringify(documents)]).size;
1090
+
1091
+ // New pattern: Job handle only
1092
+ const jobHandle = await agentDB.indexCorpusAsync('test', documents);
1093
+ const newContextSize = new Blob([JSON.stringify(jobHandle)]).size;
1094
+
1095
+ const reduction = ((oldContextSize - newContextSize) / oldContextSize) * 100;
1096
+
1097
+ console.log(`Old context: ${(oldContextSize / 1024).toFixed(2)} KB`);
1098
+ console.log(`New context: ${(newContextSize / 1024).toFixed(2)} KB`);
1099
+ console.log(`Reduction: ${reduction.toFixed(2)}%`);
1100
+ });
1101
+ });
1102
+ ```
1103
+
1104
+ ---
1105
+
1106
+ ## Part 6: Migration Guide
1107
+
1108
+ ### Step-by-Step Migration
1109
+
1110
+ #### Step 1: Update Dependencies
1111
+
1112
+ ```bash
1113
+ npm install
1114
+ npm install uuid @types/uuid
1115
+ npm install ioredis @types/ioredis # For distributed job queue (optional)
1116
+ ```
1117
+
1118
+ #### Step 2: Enable Async Operations
1119
+
1120
+ ```typescript
1121
+ // config.json
1122
+ {
1123
+ "async": {
1124
+ "enabled": true,
1125
+ "maxJobs": 1000,
1126
+ "jobTTL": 86400000
1127
+ }
1128
+ }
1129
+ ```
1130
+
1131
+ #### Step 3: Migrate Tool Calls
1132
+
1133
+ ```typescript
1134
+ // Before (Sync)
1135
+ const agent = await mcpClient.callTool('agents/spawn', {
1136
+ type: 'researcher',
1137
+ name: 'Research Agent',
1138
+ });
1139
+
1140
+ // After (Async)
1141
+ const jobHandle = await mcpClient.callTool('agents/spawn:async', {
1142
+ type: 'researcher',
1143
+ name: 'Research Agent',
1144
+ _async: { mode: 'poll' },
1145
+ });
1146
+
1147
+ // Poll for completion
1148
+ const status = await mcpClient.callTool('jobs/status', {
1149
+ jobId: jobHandle.jobHandle.jobId,
1150
+ });
1151
+ ```
1152
+
1153
+ #### Step 4: Update Agentic Flow Integration
1154
+
1155
+ ```typescript
1156
+ // Update orchestrator initialization
1157
+ const orchestrator = new AgenticFlowOrchestrator({
1158
+ jobManager: new JobManager(),
1159
+ registryClient: new RegistryClient(process.env.MCP_REGISTRY_API_KEY),
1160
+ });
1161
+
1162
+ // Register in MCP Registry
1163
+ await orchestrator.registerInRegistry();
1164
+ ```
1165
+
1166
+ #### Step 5: Update AgentDB Integration
1167
+
1168
+ ```typescript
1169
+ // Update AgentDB initialization
1170
+ const agentDB = new AgentDB({
1171
+ jobManager: new JobManager(),
1172
+ registryClient: new RegistryClient(process.env.MCP_REGISTRY_API_KEY),
1173
+ });
1174
+
1175
+ // Register in MCP Registry
1176
+ await agentDB.registerInRegistry();
1177
+ ```
1178
+
1179
+ ---
1180
+
1181
+ ## Summary
1182
+
1183
+ This integration plan provides:
1184
+
1185
+ 1. **Async Operations**: Job-based execution for long-running tasks
1186
+ 2. **Token Reduction**: 98.7% reduction (150k → 2k tokens)
1187
+ 3. **Registry Integration**: Auto-discovery via MCP Registry
1188
+ 4. **Code Execution**: Data processing in execution environment
1189
+ 5. **Performance**: 10-30x latency reduction, 25x throughput increase
1190
+ 6. **Testing**: Comprehensive E2E test suite
1191
+ 7. **Migration**: Step-by-step upgrade guide
1192
+
1193
+ **Timeline**:
1194
+ - **Phase 0** (This week): Implement async operations
1195
+ - **Phase 1** (Nov 14-25): RC validation and testing
1196
+ - **Phase 2** (After Nov 25): Production rollout
1197
+
1198
+ Ready to start implementation? I can begin with Phase 0A (Async Operations) for Agentic Flow.