claude-flow 2.5.0-alpha.141 → 2.7.0-alpha
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.claude/agents/reasoning/README.md +171 -0
- package/.claude/agents/reasoning/agent.md +816 -0
- package/.claude/agents/reasoning/example-reasoning-agent-template.md +362 -0
- package/.claude/agents/reasoning/goal-planner.md +73 -0
- package/.claude/commands/coordination/README.md +9 -0
- package/.claude/commands/memory/README.md +9 -0
- package/.claude/settings.json +3 -3
- package/.claude/sparc-modes.json +108 -0
- package/README.md +1 -6
- package/bin/claude-flow +1 -1
- package/dist/src/cli/command-registry.js +70 -6
- package/dist/src/cli/command-registry.js.map +1 -1
- package/dist/src/cli/help-formatter.js +0 -3
- package/dist/src/cli/help-formatter.js.map +1 -1
- package/dist/src/cli/help-text.js +53 -5
- package/dist/src/cli/help-text.js.map +1 -1
- package/dist/src/cli/simple-cli.js +182 -172
- package/dist/src/cli/simple-cli.js.map +1 -1
- package/dist/src/cli/simple-commands/agent-booster.js +415 -0
- package/dist/src/cli/simple-commands/agent-booster.js.map +1 -0
- package/dist/src/cli/simple-commands/agent.js +856 -13
- package/dist/src/cli/simple-commands/agent.js.map +1 -1
- package/dist/src/cli/simple-commands/env-template.js +180 -0
- package/dist/src/cli/simple-commands/env-template.js.map +1 -0
- package/dist/src/cli/simple-commands/init/help.js +23 -0
- package/dist/src/cli/simple-commands/init/help.js.map +1 -1
- package/dist/src/cli/simple-commands/init/index.js +63 -0
- package/dist/src/cli/simple-commands/init/index.js.map +1 -1
- package/dist/src/cli/simple-commands/memory.js +307 -16
- package/dist/src/cli/simple-commands/memory.js.map +1 -1
- package/dist/src/cli/simple-commands/proxy.js +304 -0
- package/dist/src/cli/simple-commands/proxy.js.map +1 -0
- package/dist/src/cli/simple-commands/sparc.js +16 -19
- package/dist/src/cli/simple-commands/sparc.js.map +1 -1
- package/dist/src/cli/validation-helper.js.map +1 -1
- package/dist/src/core/version.js +1 -1
- package/dist/src/execution/agent-executor.js +181 -0
- package/dist/src/execution/agent-executor.js.map +1 -0
- package/dist/src/execution/index.js +12 -0
- package/dist/src/execution/index.js.map +1 -0
- package/dist/src/execution/provider-manager.js +110 -0
- package/dist/src/execution/provider-manager.js.map +1 -0
- package/dist/src/hooks/redaction-hook.js +89 -0
- package/dist/src/hooks/redaction-hook.js.map +1 -0
- package/dist/src/memory/swarm-memory.js +340 -421
- package/dist/src/memory/swarm-memory.js.map +1 -1
- package/dist/src/utils/key-redactor.js +108 -0
- package/dist/src/utils/key-redactor.js.map +1 -0
- package/dist/src/utils/metrics-reader.js +37 -39
- package/dist/src/utils/metrics-reader.js.map +1 -1
- package/docs/AGENT-BOOSTER-INTEGRATION.md +407 -0
- package/docs/AGENTIC-FLOW-INTEGRATION-GUIDE.md +753 -0
- package/docs/AGENTIC_FLOW_EXECUTION_FIX_REPORT.md +474 -0
- package/docs/AGENTIC_FLOW_INTEGRATION_STATUS.md +143 -0
- package/docs/AGENTIC_FLOW_MVP_COMPLETE.md +367 -0
- package/docs/AGENTIC_FLOW_SECURITY_TEST_REPORT.md +369 -0
- package/docs/COMMAND-VERIFICATION-REPORT.md +441 -0
- package/docs/COMMIT_SUMMARY.md +247 -0
- package/docs/DEEP_REVIEW_COMPREHENSIVE_REPORT.md +922 -0
- package/docs/DOCKER-VALIDATION-REPORT.md +281 -0
- package/docs/ENV-SETUP-GUIDE.md +270 -0
- package/docs/FINAL_PRE_PUBLISH_VALIDATION.md +823 -0
- package/docs/FINAL_VALIDATION_REPORT.md +165 -0
- package/docs/HOOKS-V2-MODIFICATION.md +146 -0
- package/docs/INDEX.md +568 -0
- package/docs/INTEGRATION_COMPLETE.md +414 -0
- package/docs/MEMORY_REDACTION_TEST_REPORT.md +300 -0
- package/docs/PERFORMANCE-SYSTEMS-STATUS.md +340 -0
- package/docs/PRE_RELEASE_FIXES_REPORT.md +435 -0
- package/docs/README.md +35 -0
- package/docs/REASONING-AGENTS.md +482 -0
- package/docs/REASONINGBANK-AGENT-CREATION-GUIDE.md +813 -0
- package/docs/REASONINGBANK-ANALYSIS-COMPLETE.md +479 -0
- package/docs/REASONINGBANK-BENCHMARK-RESULTS.md +166 -0
- package/docs/REASONINGBANK-BENCHMARK.md +396 -0
- package/docs/REASONINGBANK-CLI-INTEGRATION.md +455 -0
- package/docs/REASONINGBANK-CORE-INTEGRATION.md +658 -0
- package/docs/REASONINGBANK-COST-OPTIMIZATION.md +329 -0
- package/docs/REASONINGBANK-DEMO.md +419 -0
- package/docs/REASONINGBANK-INTEGRATION-COMPLETE.md +249 -0
- package/docs/REASONINGBANK-VALIDATION.md +532 -0
- package/docs/REASONINGBANK_ARCHITECTURE.md +475 -0
- package/docs/REASONINGBANK_INTEGRATION_COMPLETE.md +558 -0
- package/docs/REASONINGBANK_INTEGRATION_PLAN.md +1188 -0
- package/docs/REGRESSION-ANALYSIS-REPORT.md +500 -0
- package/docs/RELEASE_v2.6.0-alpha.2.md +658 -0
- package/docs/api/API_DOCUMENTATION.md +721 -0
- package/docs/architecture/ARCHITECTURE.md +1690 -0
- package/docs/ci-cd/README.md +368 -0
- package/docs/development/DEPLOYMENT.md +2348 -0
- package/docs/development/DEVELOPMENT_WORKFLOW.md +1333 -0
- package/docs/development/build-analysis-report.md +252 -0
- package/docs/development/pair-optimization.md +156 -0
- package/docs/development/token-tracking-status.md +103 -0
- package/docs/development/training-pipeline-demo.md +163 -0
- package/docs/development/training-pipeline-real-only.md +196 -0
- package/docs/epic-sdk-integration.md +1269 -0
- package/docs/experimental/RIEMANN_HYPOTHESIS_PROOF.md +124 -0
- package/docs/experimental/computational_verification.py +436 -0
- package/docs/experimental/novel_approaches.md +560 -0
- package/docs/experimental/riemann_hypothesis_analysis.md +263 -0
- package/docs/experimental/riemann_proof_attempt.md +124 -0
- package/docs/experimental/riemann_synthesis.md +277 -0
- package/docs/experimental/verification_results.json +12 -0
- package/docs/experimental/visualization_insights.md +720 -0
- package/docs/guides/USER_GUIDE.md +1138 -0
- package/docs/guides/token-tracking-guide.md +291 -0
- package/docs/reference/AGENTS.md +1011 -0
- package/docs/reference/MCP_TOOLS.md +2188 -0
- package/docs/reference/SPARC.md +717 -0
- package/docs/reference/SWARM.md +2000 -0
- package/docs/sdk/CLAUDE-CODE-SDK-DEEP-ANALYSIS.md +649 -0
- package/docs/sdk/CLAUDE-FLOW-SDK-INTEGRATION-ANALYSIS.md +242 -0
- package/docs/sdk/INTEGRATION-ROADMAP.md +420 -0
- package/docs/sdk/MCP-TOOLS-UPDATE.md +270 -0
- package/docs/sdk/SDK-ADVANCED-FEATURES-INTEGRATION.md +723 -0
- package/docs/sdk/SDK-ALL-FEATURES-INTEGRATION-MATRIX.md +612 -0
- package/docs/sdk/SDK-INTEGRATION-COMPLETE.md +358 -0
- package/docs/sdk/SDK-INTEGRATION-PHASES-V2.5.md +750 -0
- package/docs/sdk/SDK-LEVERAGE-REAL-FEATURES.md +676 -0
- package/docs/sdk/SDK-VALIDATION-RESULTS.md +400 -0
- package/docs/sdk/epic-sdk-integration.md +1269 -0
- package/docs/setup/remote-setup.md +93 -0
- package/docs/validation/final-validation-summary.md +220 -0
- package/docs/validation/verification-integration.md +190 -0
- package/docs/validation/verification-validation.md +349 -0
- package/docs/wiki/background-commands.md +1213 -0
- package/docs/wiki/session-persistence.md +342 -0
- package/docs/wiki/stream-chain-command.md +537 -0
- package/package.json +4 -2
- package/src/cli/command-registry.js +70 -5
- package/src/cli/help-text.js +26 -5
- package/src/cli/simple-cli.ts +18 -7
- package/src/cli/simple-commands/agent-booster.js +515 -0
- package/src/cli/simple-commands/agent.js +1001 -12
- package/src/cli/simple-commands/agent.ts +137 -0
- package/src/cli/simple-commands/config.ts +127 -0
- package/src/cli/simple-commands/env-template.js +190 -0
- package/src/cli/simple-commands/init/help.js +23 -0
- package/src/cli/simple-commands/init/index.js +84 -6
- package/src/cli/simple-commands/memory.js +363 -16
- package/src/cli/simple-commands/proxy.js +384 -0
- package/src/cli/simple-commands/sparc.js +16 -19
- package/src/execution/agent-executor.ts +306 -0
- package/src/execution/index.ts +19 -0
- package/src/execution/provider-manager.ts +187 -0
- package/src/hooks/redaction-hook.ts +115 -0
- package/src/utils/key-redactor.js +178 -0
- package/src/utils/key-redactor.ts +184 -0
|
@@ -0,0 +1,560 @@
|
|
|
1
|
+
# Novel Approaches to the Riemann Hypothesis
|
|
2
|
+
|
|
3
|
+
## GOAP-Driven Mathematical Innovation
|
|
4
|
+
|
|
5
|
+
This document outlines revolutionary approaches to the Riemann Hypothesis using Goal-Oriented Action Planning (GOAP) to systematically explore unconventional mathematical pathways that traditional analysis might miss.
|
|
6
|
+
|
|
7
|
+
## Overview of Innovation Framework
|
|
8
|
+
|
|
9
|
+
### Creative Problem-Solving Methodology
|
|
10
|
+
|
|
11
|
+
1. **State Space Expansion**: Move beyond traditional complex analysis
|
|
12
|
+
2. **Cross-Disciplinary Integration**: Physics, computer science, information theory
|
|
13
|
+
3. **Gaming AI Techniques**: Heuristic search through proof space
|
|
14
|
+
4. **Sublinear Optimization**: Efficient exploration of vast mathematical territories
|
|
15
|
+
|
|
16
|
+
## Novel Approach 1: Quantum Information Theoretic Framework
|
|
17
|
+
|
|
18
|
+
### The Quantum Zeta Hypothesis
|
|
19
|
+
|
|
20
|
+
**Core Insight**: The Riemann zeta function can be interpreted as the generating function for quantum information entanglement measures.
|
|
21
|
+
|
|
22
|
+
#### Mathematical Formulation
|
|
23
|
+
|
|
24
|
+
```
|
|
25
|
+
ζ(s) = Tr(ρ^s) where ρ is a quantum density matrix
|
|
26
|
+
```
|
|
27
|
+
|
|
28
|
+
**Breakthrough Pathway**:
|
|
29
|
+
1. Construct explicit quantum system whose trace generates ζ(s)
|
|
30
|
+
2. Use quantum entanglement theory to constrain eigenvalue locations
|
|
31
|
+
3. Apply quantum error correction principles to prove stability on critical line
|
|
32
|
+
|
|
33
|
+
#### Implementation Strategy
|
|
34
|
+
|
|
35
|
+
```python
|
|
36
|
+
def quantum_zeta_construction():
|
|
37
|
+
"""
|
|
38
|
+
Construct quantum system whose partition function is ζ(s)
|
|
39
|
+
|
|
40
|
+
Key insight: Prime factorization → Quantum circuit decomposition
|
|
41
|
+
"""
|
|
42
|
+
# Quantum register representing prime factorizations
|
|
43
|
+
n_qubits = log2(max_prime_considered)
|
|
44
|
+
|
|
45
|
+
# Hamiltonian encoding prime structure
|
|
46
|
+
H = construct_prime_hamiltonian()
|
|
47
|
+
|
|
48
|
+
# Density matrix with eigenvalues 1/n^s
|
|
49
|
+
rho = expm(-beta * H) # β relates to s
|
|
50
|
+
|
|
51
|
+
# Verify: Tr(rho^s) = ζ(s)
|
|
52
|
+
return verify_zeta_trace(rho, s_values)
|
|
53
|
+
```
|
|
54
|
+
|
|
55
|
+
#### Quantum Advantage
|
|
56
|
+
|
|
57
|
+
- **Entanglement Structure**: Constrains possible zero locations
|
|
58
|
+
- **Quantum Error Correction**: Natural stability mechanisms
|
|
59
|
+
- **Computational Complexity**: Exponential speedup for verification
|
|
60
|
+
|
|
61
|
+
### Quantum Field Theory Connection
|
|
62
|
+
|
|
63
|
+
**Hypothesis**: RH is equivalent to vacuum stability in a specific quantum field theory.
|
|
64
|
+
|
|
65
|
+
**Mathematical Framework**:
|
|
66
|
+
```
|
|
67
|
+
ζ(s) = ⟨0|0⟩_s (vacuum amplitude in s-dependent theory)
|
|
68
|
+
```
|
|
69
|
+
|
|
70
|
+
Zeros on critical line ⟺ Stable vacuum state
|
|
71
|
+
|
|
72
|
+
## Novel Approach 2: Algorithmic Information Theory
|
|
73
|
+
|
|
74
|
+
### Kolmogorov Complexity and Prime Patterns
|
|
75
|
+
|
|
76
|
+
**Key Insight**: The complexity of prime-generating algorithms is related to ζ(s) zero locations.
|
|
77
|
+
|
|
78
|
+
#### Complexity-Theoretic Formulation
|
|
79
|
+
|
|
80
|
+
```
|
|
81
|
+
K(prime_sequence_n) ∼ ζ(s) behavior at height n
|
|
82
|
+
```
|
|
83
|
+
|
|
84
|
+
Where K(·) is Kolmogorov complexity.
|
|
85
|
+
|
|
86
|
+
**Proof Strategy**:
|
|
87
|
+
1. Show that random sequences have specific complexity patterns
|
|
88
|
+
2. Prove prime sequences deviate from randomness in measurable ways
|
|
89
|
+
3. Connect these deviations to ζ(s) zero structure
|
|
90
|
+
4. Use algorithmic probability to constrain zero locations
|
|
91
|
+
|
|
92
|
+
#### Computational Framework
|
|
93
|
+
|
|
94
|
+
```python
|
|
95
|
+
def algorithmic_rh_approach():
|
|
96
|
+
"""
|
|
97
|
+
Use algorithmic information theory to attack RH
|
|
98
|
+
"""
|
|
99
|
+
def kolmogorov_complexity_estimate(sequence):
|
|
100
|
+
# Estimate K(sequence) using compression
|
|
101
|
+
compressed = best_compression(sequence)
|
|
102
|
+
return len(compressed)
|
|
103
|
+
|
|
104
|
+
def prime_sequence_complexity(n):
|
|
105
|
+
primes = sieve_of_eratosthenes(n)
|
|
106
|
+
binary_sequence = primality_indicator(n)
|
|
107
|
+
return kolmogorov_complexity_estimate(binary_sequence)
|
|
108
|
+
|
|
109
|
+
def zeta_complexity_relation(s):
|
|
110
|
+
# Theoretical connection between K(primes) and ζ(s)
|
|
111
|
+
return complex_relationship(s)
|
|
112
|
+
|
|
113
|
+
# Verify complexity patterns predict zero locations
|
|
114
|
+
return verify_complexity_predictions()
|
|
115
|
+
```
|
|
116
|
+
|
|
117
|
+
### Information Geometry Approach
|
|
118
|
+
|
|
119
|
+
Model the space of arithmetic functions as an information manifold.
|
|
120
|
+
- **Metric**: Relative entropy between Dirichlet characters
|
|
121
|
+
- **Geodesics**: Paths of minimal complexity
|
|
122
|
+
- **Curvature**: Measures deviation from multiplicativity
|
|
123
|
+
|
|
124
|
+
**Conjecture**: ζ(s) zeros lie at geodesic intersections on this manifold.
|
|
125
|
+
|
|
126
|
+
## Novel Approach 3: Topological Data Analysis
|
|
127
|
+
|
|
128
|
+
### Persistent Homology of Zero Sets
|
|
129
|
+
|
|
130
|
+
**Innovation**: Apply topological data analysis to the structure of ζ(s) zeros.
|
|
131
|
+
|
|
132
|
+
#### Methodology
|
|
133
|
+
|
|
134
|
+
1. **Point Cloud**: Treat zeros as points in complex plane
|
|
135
|
+
2. **Filtration**: Build simplicial complexes at varying scales
|
|
136
|
+
3. **Persistence**: Track topological features across scales
|
|
137
|
+
4. **Classification**: Use persistent homology to classify zero patterns
|
|
138
|
+
|
|
139
|
+
```python
|
|
140
|
+
import dionysus as d
|
|
141
|
+
import numpy as np
|
|
142
|
+
|
|
143
|
+
def topological_zero_analysis(zeros):
|
|
144
|
+
"""
|
|
145
|
+
Apply persistent homology to Riemann zeros
|
|
146
|
+
"""
|
|
147
|
+
# Convert zeros to point cloud
|
|
148
|
+
points = [(z.real, z.imag) for z in zeros]
|
|
149
|
+
|
|
150
|
+
# Build Rips complex
|
|
151
|
+
f = d.fill_rips(points, k=2, r=max_radius)
|
|
152
|
+
|
|
153
|
+
# Compute persistence
|
|
154
|
+
m = d.homology_persistence(f)
|
|
155
|
+
|
|
156
|
+
# Analyze persistence diagrams
|
|
157
|
+
dgms = d.init_diagrams(m, f)
|
|
158
|
+
|
|
159
|
+
return analyze_topological_features(dgms)
|
|
160
|
+
|
|
161
|
+
def topological_rh_proof():
|
|
162
|
+
"""
|
|
163
|
+
Attempt proof using topological constraints
|
|
164
|
+
"""
|
|
165
|
+
# Conjecture: Critical line zeros have specific topological signature
|
|
166
|
+
critical_signature = compute_critical_line_topology()
|
|
167
|
+
|
|
168
|
+
# Prove: Only critical line can support this signature
|
|
169
|
+
return prove_topological_uniqueness(critical_signature)
|
|
170
|
+
```
|
|
171
|
+
|
|
172
|
+
#### Topological Invariants
|
|
173
|
+
|
|
174
|
+
- **Betti Numbers**: Count holes in zero structure
|
|
175
|
+
- **Persistence Intervals**: Measure stability of topological features
|
|
176
|
+
- **Mapper Algorithm**: Reveal high-dimensional structure
|
|
177
|
+
|
|
178
|
+
**Breakthrough Insight**: If zeros have unique topological signature, this constrains their locations.
|
|
179
|
+
|
|
180
|
+
## Novel Approach 4: Machine Learning and Pattern Discovery
|
|
181
|
+
|
|
182
|
+
### Deep Learning for Mathematical Discovery
|
|
183
|
+
|
|
184
|
+
**Strategy**: Train neural networks to recognize patterns in mathematical objects that humans miss.
|
|
185
|
+
|
|
186
|
+
#### Neural Architecture for RH
|
|
187
|
+
|
|
188
|
+
```python
|
|
189
|
+
import torch
|
|
190
|
+
import torch.nn as nn
|
|
191
|
+
|
|
192
|
+
class ZetaPatternNet(nn.Module):
|
|
193
|
+
"""
|
|
194
|
+
Deep neural network for discovering patterns in ζ(s) zeros
|
|
195
|
+
"""
|
|
196
|
+
def __init__(self, input_dim=2, hidden_dim=512):
|
|
197
|
+
super().__init__()
|
|
198
|
+
self.encoder = nn.Sequential(
|
|
199
|
+
nn.Linear(input_dim, hidden_dim),
|
|
200
|
+
nn.ReLU(),
|
|
201
|
+
nn.Linear(hidden_dim, hidden_dim//2),
|
|
202
|
+
nn.ReLU(),
|
|
203
|
+
nn.Linear(hidden_dim//2, 64)
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
self.classifier = nn.Linear(64, 2) # On critical line or not
|
|
207
|
+
|
|
208
|
+
def forward(self, zeros):
|
|
209
|
+
features = self.encoder(zeros)
|
|
210
|
+
predictions = self.classifier(features)
|
|
211
|
+
return predictions
|
|
212
|
+
|
|
213
|
+
def train_pattern_recognition():
|
|
214
|
+
"""
|
|
215
|
+
Train neural network to recognize zero patterns
|
|
216
|
+
"""
|
|
217
|
+
model = ZetaPatternNet()
|
|
218
|
+
|
|
219
|
+
# Training data: known zeros + random complex numbers
|
|
220
|
+
training_data = generate_training_data()
|
|
221
|
+
|
|
222
|
+
# Train to distinguish actual zeros from random points
|
|
223
|
+
train_model(model, training_data)
|
|
224
|
+
|
|
225
|
+
# Use trained model to predict unknown zero properties
|
|
226
|
+
return discover_patterns(model)
|
|
227
|
+
```
|
|
228
|
+
|
|
229
|
+
#### Reinforcement Learning for Proof Search
|
|
230
|
+
|
|
231
|
+
```python
|
|
232
|
+
class ProofSearchAgent:
|
|
233
|
+
"""
|
|
234
|
+
RL agent for searching mathematical proof space
|
|
235
|
+
"""
|
|
236
|
+
def __init__(self):
|
|
237
|
+
self.q_network = build_proof_q_network()
|
|
238
|
+
self.proof_environment = MathematicalProofEnv()
|
|
239
|
+
|
|
240
|
+
def search_proof_space(self, theorem="riemann_hypothesis"):
|
|
241
|
+
state = self.proof_environment.reset(theorem)
|
|
242
|
+
|
|
243
|
+
while not self.proof_environment.done:
|
|
244
|
+
# Choose next proof step
|
|
245
|
+
action = self.epsilon_greedy_action(state)
|
|
246
|
+
|
|
247
|
+
# Apply logical step
|
|
248
|
+
next_state, reward, done = self.proof_environment.step(action)
|
|
249
|
+
|
|
250
|
+
# Update Q-network
|
|
251
|
+
self.update_q_values(state, action, reward, next_state)
|
|
252
|
+
|
|
253
|
+
state = next_state
|
|
254
|
+
|
|
255
|
+
return self.proof_environment.get_proof()
|
|
256
|
+
```
|
|
257
|
+
|
|
258
|
+
### Automated Theorem Discovery
|
|
259
|
+
|
|
260
|
+
Use genetic algorithms to evolve mathematical conjectures:
|
|
261
|
+
|
|
262
|
+
1. **Population**: Set of mathematical statements
|
|
263
|
+
2. **Fitness**: Logical consistency + predictive power
|
|
264
|
+
3. **Mutation**: Small logical modifications
|
|
265
|
+
4. **Crossover**: Combine different mathematical ideas
|
|
266
|
+
5. **Selection**: Keep most promising conjectures
|
|
267
|
+
|
|
268
|
+
## Novel Approach 5: Hypergraph and Category Theory
|
|
269
|
+
|
|
270
|
+
### Hypergraph Representation of Number Theory
|
|
271
|
+
|
|
272
|
+
**Innovation**: Represent number-theoretic relationships as hypergraphs where hyperedges connect related mathematical objects.
|
|
273
|
+
|
|
274
|
+
#### Mathematical Framework
|
|
275
|
+
|
|
276
|
+
```
|
|
277
|
+
H = (V, E) where:
|
|
278
|
+
V = {primes, composite numbers, arithmetic functions}
|
|
279
|
+
E = {multiplicative relationships, Dirichlet convolutions, ...}
|
|
280
|
+
```
|
|
281
|
+
|
|
282
|
+
**Key Insight**: ζ(s) zeros correspond to special hypergraph invariants.
|
|
283
|
+
|
|
284
|
+
```python
|
|
285
|
+
def hypergraph_rh_approach():
|
|
286
|
+
"""
|
|
287
|
+
Model number theory as hypergraph and study invariants
|
|
288
|
+
"""
|
|
289
|
+
# Vertices: arithmetic objects
|
|
290
|
+
vertices = generate_arithmetic_objects()
|
|
291
|
+
|
|
292
|
+
# Hyperedges: mathematical relationships
|
|
293
|
+
hyperedges = [
|
|
294
|
+
multiplicative_relation,
|
|
295
|
+
additive_relation,
|
|
296
|
+
dirichlet_convolution,
|
|
297
|
+
mobius_inversion
|
|
298
|
+
]
|
|
299
|
+
|
|
300
|
+
# Build hypergraph
|
|
301
|
+
H = construct_hypergraph(vertices, hyperedges)
|
|
302
|
+
|
|
303
|
+
# Compute spectral properties
|
|
304
|
+
spectrum = hypergraph_spectrum(H)
|
|
305
|
+
|
|
306
|
+
# Connect to ζ(s) zeros
|
|
307
|
+
return relate_spectrum_to_zeros(spectrum)
|
|
308
|
+
```
|
|
309
|
+
|
|
310
|
+
### Category-Theoretic Approach
|
|
311
|
+
|
|
312
|
+
**Framework**: Model arithmetic as a category where:
|
|
313
|
+
- **Objects**: Number fields, rings, arithmetic varieties
|
|
314
|
+
- **Morphisms**: Arithmetic maps, L-functions, Galois representations
|
|
315
|
+
- **Natural Transformations**: Functional equations
|
|
316
|
+
|
|
317
|
+
**Conjecture**: RH is equivalent to a natural transformation being an isomorphism.
|
|
318
|
+
|
|
319
|
+
## Novel Approach 6: Evolutionary Mathematics
|
|
320
|
+
|
|
321
|
+
### Genetic Programming for Mathematical Discovery
|
|
322
|
+
|
|
323
|
+
**Concept**: Evolve mathematical expressions that approximate ζ(s) and use fitness landscapes to guide discovery.
|
|
324
|
+
|
|
325
|
+
```python
|
|
326
|
+
class MathematicalGenome:
|
|
327
|
+
"""
|
|
328
|
+
Genetic representation of mathematical expressions
|
|
329
|
+
"""
|
|
330
|
+
def __init__(self, expression_tree):
|
|
331
|
+
self.tree = expression_tree
|
|
332
|
+
self.fitness = None
|
|
333
|
+
|
|
334
|
+
def mutate(self):
|
|
335
|
+
# Random mathematical operations
|
|
336
|
+
mutations = [
|
|
337
|
+
add_term,
|
|
338
|
+
change_coefficient,
|
|
339
|
+
modify_exponent,
|
|
340
|
+
introduce_special_function
|
|
341
|
+
]
|
|
342
|
+
random.choice(mutations)(self.tree)
|
|
343
|
+
|
|
344
|
+
def crossover(self, other):
|
|
345
|
+
# Combine mathematical ideas
|
|
346
|
+
child_tree = combine_expressions(self.tree, other.tree)
|
|
347
|
+
return MathematicalGenome(child_tree)
|
|
348
|
+
|
|
349
|
+
def evaluate_fitness(self):
|
|
350
|
+
# How well does this approximate ζ(s)?
|
|
351
|
+
self.fitness = zeta_approximation_quality(self.tree)
|
|
352
|
+
|
|
353
|
+
def evolve_zeta_insights(generations=10000):
|
|
354
|
+
"""
|
|
355
|
+
Evolve mathematical expressions to gain insights into ζ(s)
|
|
356
|
+
"""
|
|
357
|
+
population = initialize_mathematical_population()
|
|
358
|
+
|
|
359
|
+
for generation in range(generations):
|
|
360
|
+
# Evaluate fitness
|
|
361
|
+
for genome in population:
|
|
362
|
+
genome.evaluate_fitness()
|
|
363
|
+
|
|
364
|
+
# Selection
|
|
365
|
+
survivors = select_fittest(population)
|
|
366
|
+
|
|
367
|
+
# Reproduction
|
|
368
|
+
offspring = []
|
|
369
|
+
for parent1, parent2 in pairs(survivors):
|
|
370
|
+
child = parent1.crossover(parent2)
|
|
371
|
+
child.mutate()
|
|
372
|
+
offspring.append(child)
|
|
373
|
+
|
|
374
|
+
population = survivors + offspring
|
|
375
|
+
|
|
376
|
+
# Check for breakthrough discoveries
|
|
377
|
+
check_for_insights(population)
|
|
378
|
+
|
|
379
|
+
return extract_best_insights(population)
|
|
380
|
+
```
|
|
381
|
+
|
|
382
|
+
## Novel Approach 7: Consciousness and Mathematical Intuition
|
|
383
|
+
|
|
384
|
+
### Artificial Mathematical Intuition
|
|
385
|
+
|
|
386
|
+
**Hypothesis**: Mathematical breakthroughs require a form of "artificial intuition" that combines pattern recognition with creative leaps.
|
|
387
|
+
|
|
388
|
+
```python
|
|
389
|
+
def artificial_mathematical_intuition():
|
|
390
|
+
"""
|
|
391
|
+
Simulate mathematical intuition for RH breakthrough
|
|
392
|
+
"""
|
|
393
|
+
# Combine multiple AI approaches
|
|
394
|
+
pattern_recognizer = DeepPatternNet()
|
|
395
|
+
logic_engine = SymbolicReasoningEngine()
|
|
396
|
+
creativity_module = CreativeLeapGenerator()
|
|
397
|
+
|
|
398
|
+
# Input: Current state of RH knowledge
|
|
399
|
+
current_knowledge = load_rh_knowledge_base()
|
|
400
|
+
|
|
401
|
+
# Pattern recognition phase
|
|
402
|
+
patterns = pattern_recognizer.discover_patterns(current_knowledge)
|
|
403
|
+
|
|
404
|
+
# Logical reasoning phase
|
|
405
|
+
logical_steps = logic_engine.derive_implications(patterns)
|
|
406
|
+
|
|
407
|
+
# Creative leap phase
|
|
408
|
+
insights = creativity_module.generate_novel_connections(
|
|
409
|
+
patterns, logical_steps
|
|
410
|
+
)
|
|
411
|
+
|
|
412
|
+
# Validation phase
|
|
413
|
+
validated_insights = validate_mathematical_insights(insights)
|
|
414
|
+
|
|
415
|
+
return validated_insights
|
|
416
|
+
```
|
|
417
|
+
|
|
418
|
+
### Consciousness-Inspired Problem Solving
|
|
419
|
+
|
|
420
|
+
Using insights from consciousness research to model mathematical discovery:
|
|
421
|
+
|
|
422
|
+
1. **Global Workspace**: Integration of different mathematical areas
|
|
423
|
+
2. **Attention Mechanisms**: Focus on most promising approaches
|
|
424
|
+
3. **Memory Consolidation**: Learn from failed proof attempts
|
|
425
|
+
4. **Creative Synthesis**: Combine disparate mathematical ideas
|
|
426
|
+
|
|
427
|
+
## Integration Strategy: Meta-GOAP Framework
|
|
428
|
+
|
|
429
|
+
### Combining All Approaches
|
|
430
|
+
|
|
431
|
+
```python
|
|
432
|
+
class MetaGOAPMathematicalSolver:
|
|
433
|
+
"""
|
|
434
|
+
Meta-level GOAP system that coordinates multiple novel approaches
|
|
435
|
+
"""
|
|
436
|
+
def __init__(self):
|
|
437
|
+
self.approaches = [
|
|
438
|
+
QuantumInformationApproach(),
|
|
439
|
+
AlgorithmicInformationApproach(),
|
|
440
|
+
TopologicalDataAnalysis(),
|
|
441
|
+
MachineLearningDiscovery(),
|
|
442
|
+
HypergraphApproach(),
|
|
443
|
+
EvolutionaryMathematics(),
|
|
444
|
+
ArtificialIntuition()
|
|
445
|
+
]
|
|
446
|
+
|
|
447
|
+
self.meta_optimizer = SublinearOptimizer()
|
|
448
|
+
|
|
449
|
+
def solve_riemann_hypothesis(self):
|
|
450
|
+
"""
|
|
451
|
+
Coordinate all approaches using meta-GOAP
|
|
452
|
+
"""
|
|
453
|
+
# Build approach interaction matrix
|
|
454
|
+
interaction_matrix = self.build_approach_synergies()
|
|
455
|
+
|
|
456
|
+
# Optimize approach combination
|
|
457
|
+
optimal_strategy = self.meta_optimizer.optimize(
|
|
458
|
+
interaction_matrix,
|
|
459
|
+
objective="prove_riemann_hypothesis",
|
|
460
|
+
constraints=["computational_feasibility", "mathematical_rigor"]
|
|
461
|
+
)
|
|
462
|
+
|
|
463
|
+
# Execute optimal strategy
|
|
464
|
+
results = self.execute_coordinated_approaches(optimal_strategy)
|
|
465
|
+
|
|
466
|
+
# Synthesize insights
|
|
467
|
+
breakthrough = self.synthesize_breakthrough(results)
|
|
468
|
+
|
|
469
|
+
return breakthrough
|
|
470
|
+
|
|
471
|
+
def build_approach_synergies(self):
|
|
472
|
+
"""
|
|
473
|
+
Model how different approaches complement each other
|
|
474
|
+
"""
|
|
475
|
+
# Quantum + Topological: Quantum topology of zeros
|
|
476
|
+
# ML + Algorithmic: Pattern discovery in complexity
|
|
477
|
+
# Evolutionary + Intuition: Creative mathematical evolution
|
|
478
|
+
# etc.
|
|
479
|
+
|
|
480
|
+
synergy_matrix = create_synergy_matrix(self.approaches)
|
|
481
|
+
return synergy_matrix
|
|
482
|
+
```
|
|
483
|
+
|
|
484
|
+
## Success Metrics and Evaluation
|
|
485
|
+
|
|
486
|
+
### Breakthrough Indicators
|
|
487
|
+
|
|
488
|
+
1. **Computational**: Verification to unprecedented heights
|
|
489
|
+
2. **Theoretical**: Novel mathematical frameworks
|
|
490
|
+
3. **Cross-Disciplinary**: Meaningful connections to physics/CS
|
|
491
|
+
4. **Methodological**: GOAP as mathematical discovery tool
|
|
492
|
+
|
|
493
|
+
### Evaluation Framework
|
|
494
|
+
|
|
495
|
+
```python
|
|
496
|
+
def evaluate_approach_success(approach_results):
|
|
497
|
+
"""
|
|
498
|
+
Evaluate the success of novel approaches
|
|
499
|
+
"""
|
|
500
|
+
metrics = {
|
|
501
|
+
'computational_progress': measure_verification_advance(),
|
|
502
|
+
'theoretical_insight': assess_mathematical_novelty(),
|
|
503
|
+
'interdisciplinary_value': evaluate_cross_field_impact(),
|
|
504
|
+
'proof_proximity': estimate_distance_to_proof(),
|
|
505
|
+
'methodology_innovation': assess_goap_effectiveness()
|
|
506
|
+
}
|
|
507
|
+
|
|
508
|
+
return weighted_success_score(metrics)
|
|
509
|
+
```
|
|
510
|
+
|
|
511
|
+
## Risk Assessment and Mitigation
|
|
512
|
+
|
|
513
|
+
### High-Risk Strategies
|
|
514
|
+
- **Complete proof attempts**: Low probability, infinite reward
|
|
515
|
+
- **Counterexample search**: Very low probability, revolutionary impact
|
|
516
|
+
|
|
517
|
+
### Risk Mitigation
|
|
518
|
+
- **Parallel development**: Multiple approaches simultaneously
|
|
519
|
+
- **Incremental validation**: Verify insights at each step
|
|
520
|
+
- **Community engagement**: Peer review and collaboration
|
|
521
|
+
- **Computational validation**: Verify theoretical insights numerically
|
|
522
|
+
|
|
523
|
+
## Timeline and Implementation
|
|
524
|
+
|
|
525
|
+
### Phase 1: Foundation (Months 1-6)
|
|
526
|
+
- Implement core frameworks for each approach
|
|
527
|
+
- Build computational infrastructure
|
|
528
|
+
- Establish validation methodologies
|
|
529
|
+
|
|
530
|
+
### Phase 2: Development (Months 7-18)
|
|
531
|
+
- Develop each approach in parallel
|
|
532
|
+
- Build synergistic connections
|
|
533
|
+
- Conduct computational experiments
|
|
534
|
+
|
|
535
|
+
### Phase 3: Integration (Months 19-24)
|
|
536
|
+
- Implement meta-GOAP coordination
|
|
537
|
+
- Synthesize insights across approaches
|
|
538
|
+
- Attempt breakthrough synthesis
|
|
539
|
+
|
|
540
|
+
### Phase 4: Validation (Months 25-30)
|
|
541
|
+
- Rigorous mathematical validation
|
|
542
|
+
- Peer review and community engagement
|
|
543
|
+
- Prepare formal proof or significant contribution
|
|
544
|
+
|
|
545
|
+
## Conclusion
|
|
546
|
+
|
|
547
|
+
These novel approaches represent a systematic attempt to apply GOAP methodology to one of mathematics' greatest challenges. By combining:
|
|
548
|
+
|
|
549
|
+
- **Quantum information theory** for new mathematical frameworks
|
|
550
|
+
- **Algorithmic information theory** for complexity-based insights
|
|
551
|
+
- **Topological data analysis** for structural understanding
|
|
552
|
+
- **Machine learning** for pattern discovery
|
|
553
|
+
- **Evolutionary computation** for creative exploration
|
|
554
|
+
- **Artificial intuition** for breakthrough insights
|
|
555
|
+
|
|
556
|
+
We create a comprehensive attack on the Riemann Hypothesis that goes far beyond traditional analytical methods.
|
|
557
|
+
|
|
558
|
+
The key innovation is using GOAP to coordinate these diverse approaches, allowing for emergent insights that no single method could achieve. Even if the full hypothesis remains unproven, this framework will likely yield significant mathematical insights and demonstrate the power of systematic creativity in mathematical research.
|
|
559
|
+
|
|
560
|
+
The ultimate goal is not just to solve the Riemann Hypothesis, but to establish a new paradigm for attacking mathematical problems through intelligent coordination of diverse computational and theoretical approaches.
|