claude-flow 2.5.0-alpha.139 → 2.7.0-alpha

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (171) hide show
  1. package/.claude/agents/reasoning/README.md +171 -0
  2. package/.claude/agents/reasoning/agent.md +816 -0
  3. package/.claude/agents/reasoning/example-reasoning-agent-template.md +362 -0
  4. package/.claude/agents/reasoning/goal-planner.md +73 -0
  5. package/.claude/settings.json +2 -1
  6. package/.claude/sparc-modes.json +108 -0
  7. package/README.md +45 -55
  8. package/bin/claude-flow +1 -1
  9. package/dist/src/cli/command-registry.js +70 -6
  10. package/dist/src/cli/command-registry.js.map +1 -1
  11. package/dist/src/cli/commands/hive-mind/pause.js +2 -9
  12. package/dist/src/cli/commands/hive-mind/pause.js.map +1 -1
  13. package/dist/src/cli/commands/index.js +1 -114
  14. package/dist/src/cli/commands/index.js.map +1 -1
  15. package/dist/src/cli/commands/swarm-spawn.js +5 -33
  16. package/dist/src/cli/commands/swarm-spawn.js.map +1 -1
  17. package/dist/src/cli/help-formatter.js +0 -3
  18. package/dist/src/cli/help-formatter.js.map +1 -1
  19. package/dist/src/cli/help-text.js +69 -7
  20. package/dist/src/cli/help-text.js.map +1 -1
  21. package/dist/src/cli/simple-cli.js +182 -172
  22. package/dist/src/cli/simple-cli.js.map +1 -1
  23. package/dist/src/cli/simple-commands/agent-booster.js +415 -0
  24. package/dist/src/cli/simple-commands/agent-booster.js.map +1 -0
  25. package/dist/src/cli/simple-commands/agent.js +856 -13
  26. package/dist/src/cli/simple-commands/agent.js.map +1 -1
  27. package/dist/src/cli/simple-commands/env-template.js +180 -0
  28. package/dist/src/cli/simple-commands/env-template.js.map +1 -0
  29. package/dist/src/cli/simple-commands/hooks.js +233 -0
  30. package/dist/src/cli/simple-commands/hooks.js.map +1 -1
  31. package/dist/src/cli/simple-commands/init/help.js +23 -0
  32. package/dist/src/cli/simple-commands/init/help.js.map +1 -1
  33. package/dist/src/cli/simple-commands/init/index.js +63 -0
  34. package/dist/src/cli/simple-commands/init/index.js.map +1 -1
  35. package/dist/src/cli/simple-commands/memory.js +307 -16
  36. package/dist/src/cli/simple-commands/memory.js.map +1 -1
  37. package/dist/src/cli/simple-commands/proxy.js +304 -0
  38. package/dist/src/cli/simple-commands/proxy.js.map +1 -0
  39. package/dist/src/cli/simple-commands/sparc.js +16 -19
  40. package/dist/src/cli/simple-commands/sparc.js.map +1 -1
  41. package/dist/src/cli/validation-helper.js.map +1 -1
  42. package/dist/src/execution/agent-executor.js +181 -0
  43. package/dist/src/execution/agent-executor.js.map +1 -0
  44. package/dist/src/execution/index.js +12 -0
  45. package/dist/src/execution/index.js.map +1 -0
  46. package/dist/src/execution/provider-manager.js +110 -0
  47. package/dist/src/execution/provider-manager.js.map +1 -0
  48. package/dist/src/hooks/index.js +0 -3
  49. package/dist/src/hooks/index.js.map +1 -1
  50. package/dist/src/hooks/redaction-hook.js +89 -0
  51. package/dist/src/hooks/redaction-hook.js.map +1 -0
  52. package/dist/src/mcp/claude-flow-tools.js +205 -150
  53. package/dist/src/mcp/claude-flow-tools.js.map +1 -1
  54. package/dist/src/mcp/mcp-server.js +125 -0
  55. package/dist/src/mcp/mcp-server.js.map +1 -1
  56. package/dist/src/sdk/query-control.js +293 -139
  57. package/dist/src/sdk/query-control.js.map +1 -1
  58. package/dist/src/sdk/session-forking.js +206 -129
  59. package/dist/src/sdk/session-forking.js.map +1 -1
  60. package/dist/src/utils/key-redactor.js +108 -0
  61. package/dist/src/utils/key-redactor.js.map +1 -0
  62. package/dist/src/utils/metrics-reader.js +37 -39
  63. package/dist/src/utils/metrics-reader.js.map +1 -1
  64. package/docs/AGENT-BOOSTER-INTEGRATION.md +407 -0
  65. package/docs/AGENTIC-FLOW-INTEGRATION-GUIDE.md +753 -0
  66. package/docs/AGENTIC_FLOW_EXECUTION_FIX_REPORT.md +474 -0
  67. package/docs/AGENTIC_FLOW_INTEGRATION_STATUS.md +143 -0
  68. package/docs/AGENTIC_FLOW_MVP_COMPLETE.md +367 -0
  69. package/docs/AGENTIC_FLOW_SECURITY_TEST_REPORT.md +369 -0
  70. package/docs/COMMAND-VERIFICATION-REPORT.md +441 -0
  71. package/docs/COMMIT_SUMMARY.md +247 -0
  72. package/docs/DEEP_REVIEW_COMPREHENSIVE_REPORT.md +922 -0
  73. package/docs/DOCKER-VALIDATION-REPORT.md +281 -0
  74. package/docs/ENV-SETUP-GUIDE.md +270 -0
  75. package/docs/FINAL_PRE_PUBLISH_VALIDATION.md +823 -0
  76. package/docs/FINAL_VALIDATION_REPORT.md +165 -0
  77. package/docs/HOOKS-V2-MODIFICATION.md +146 -0
  78. package/docs/INDEX.md +568 -0
  79. package/docs/INTEGRATION_COMPLETE.md +414 -0
  80. package/docs/MEMORY_REDACTION_TEST_REPORT.md +300 -0
  81. package/docs/PERFORMANCE-SYSTEMS-STATUS.md +340 -0
  82. package/docs/PRE_RELEASE_FIXES_REPORT.md +435 -0
  83. package/docs/README.md +35 -0
  84. package/docs/REASONING-AGENTS.md +482 -0
  85. package/docs/REASONINGBANK-AGENT-CREATION-GUIDE.md +813 -0
  86. package/docs/REASONINGBANK-ANALYSIS-COMPLETE.md +479 -0
  87. package/docs/REASONINGBANK-BENCHMARK-RESULTS.md +166 -0
  88. package/docs/REASONINGBANK-BENCHMARK.md +396 -0
  89. package/docs/REASONINGBANK-CLI-INTEGRATION.md +455 -0
  90. package/docs/REASONINGBANK-CORE-INTEGRATION.md +658 -0
  91. package/docs/REASONINGBANK-COST-OPTIMIZATION.md +329 -0
  92. package/docs/REASONINGBANK-DEMO.md +419 -0
  93. package/docs/REASONINGBANK-INTEGRATION-COMPLETE.md +249 -0
  94. package/docs/REASONINGBANK-VALIDATION.md +532 -0
  95. package/docs/REASONINGBANK_ARCHITECTURE.md +475 -0
  96. package/docs/REASONINGBANK_INTEGRATION_COMPLETE.md +558 -0
  97. package/docs/REASONINGBANK_INTEGRATION_PLAN.md +1188 -0
  98. package/docs/REGRESSION-ANALYSIS-REPORT.md +500 -0
  99. package/docs/RELEASE_v2.6.0-alpha.2.md +658 -0
  100. package/docs/api/API_DOCUMENTATION.md +721 -0
  101. package/docs/architecture/ARCHITECTURE.md +1690 -0
  102. package/docs/ci-cd/README.md +368 -0
  103. package/docs/development/DEPLOYMENT.md +2348 -0
  104. package/docs/development/DEVELOPMENT_WORKFLOW.md +1333 -0
  105. package/docs/development/build-analysis-report.md +252 -0
  106. package/docs/development/pair-optimization.md +156 -0
  107. package/docs/development/token-tracking-status.md +103 -0
  108. package/docs/development/training-pipeline-demo.md +163 -0
  109. package/docs/development/training-pipeline-real-only.md +196 -0
  110. package/docs/epic-sdk-integration.md +1269 -0
  111. package/docs/experimental/RIEMANN_HYPOTHESIS_PROOF.md +124 -0
  112. package/docs/experimental/computational_verification.py +436 -0
  113. package/docs/experimental/novel_approaches.md +560 -0
  114. package/docs/experimental/riemann_hypothesis_analysis.md +263 -0
  115. package/docs/experimental/riemann_proof_attempt.md +124 -0
  116. package/docs/experimental/riemann_synthesis.md +277 -0
  117. package/docs/experimental/verification_results.json +12 -0
  118. package/docs/experimental/visualization_insights.md +720 -0
  119. package/docs/guides/USER_GUIDE.md +1138 -0
  120. package/docs/guides/token-tracking-guide.md +291 -0
  121. package/docs/reference/AGENTS.md +1011 -0
  122. package/docs/reference/MCP_TOOLS.md +2188 -0
  123. package/docs/reference/SPARC.md +717 -0
  124. package/docs/reference/SWARM.md +2000 -0
  125. package/docs/sdk/CLAUDE-CODE-SDK-DEEP-ANALYSIS.md +649 -0
  126. package/docs/sdk/CLAUDE-FLOW-SDK-INTEGRATION-ANALYSIS.md +242 -0
  127. package/docs/sdk/INTEGRATION-ROADMAP.md +420 -0
  128. package/docs/sdk/MCP-TOOLS-UPDATE.md +270 -0
  129. package/docs/sdk/SDK-ADVANCED-FEATURES-INTEGRATION.md +723 -0
  130. package/docs/sdk/SDK-ALL-FEATURES-INTEGRATION-MATRIX.md +612 -0
  131. package/docs/sdk/SDK-INTEGRATION-COMPLETE.md +358 -0
  132. package/docs/sdk/SDK-INTEGRATION-PHASES-V2.5.md +750 -0
  133. package/docs/sdk/SDK-LEVERAGE-REAL-FEATURES.md +676 -0
  134. package/docs/sdk/SDK-VALIDATION-RESULTS.md +400 -0
  135. package/docs/sdk/epic-sdk-integration.md +1269 -0
  136. package/docs/setup/remote-setup.md +93 -0
  137. package/docs/validation/final-validation-summary.md +220 -0
  138. package/docs/validation/verification-integration.md +190 -0
  139. package/docs/validation/verification-validation.md +349 -0
  140. package/docs/wiki/background-commands.md +1213 -0
  141. package/docs/wiki/session-persistence.md +342 -0
  142. package/docs/wiki/stream-chain-command.md +537 -0
  143. package/package.json +4 -2
  144. package/src/cli/command-registry.js +70 -5
  145. package/src/cli/commands/hive-mind/pause.ts +2 -15
  146. package/src/cli/commands/index.ts +1 -84
  147. package/src/cli/commands/swarm-spawn.ts +3 -47
  148. package/src/cli/help-text.js +42 -7
  149. package/src/cli/simple-cli.ts +18 -8
  150. package/src/cli/simple-commands/agent-booster.js +515 -0
  151. package/src/cli/simple-commands/agent.js +1001 -12
  152. package/src/cli/simple-commands/agent.ts +137 -0
  153. package/src/cli/simple-commands/config.ts +127 -0
  154. package/src/cli/simple-commands/env-template.js +190 -0
  155. package/src/cli/simple-commands/hooks.js +310 -0
  156. package/src/cli/simple-commands/init/help.js +23 -0
  157. package/src/cli/simple-commands/init/index.js +84 -6
  158. package/src/cli/simple-commands/memory.js +363 -16
  159. package/src/cli/simple-commands/proxy.js +384 -0
  160. package/src/cli/simple-commands/sparc.js +16 -19
  161. package/src/execution/agent-executor.ts +306 -0
  162. package/src/execution/index.ts +19 -0
  163. package/src/execution/provider-manager.ts +187 -0
  164. package/src/hooks/index.ts +0 -5
  165. package/src/hooks/redaction-hook.ts +115 -0
  166. package/src/mcp/claude-flow-tools.ts +203 -120
  167. package/src/mcp/mcp-server.js +86 -0
  168. package/src/sdk/query-control.ts +377 -223
  169. package/src/sdk/session-forking.ts +312 -207
  170. package/src/utils/key-redactor.js +178 -0
  171. package/src/utils/key-redactor.ts +184 -0
@@ -0,0 +1,720 @@
1
+ # Visualization and Pattern Discovery for the Riemann Hypothesis
2
+
3
+ ## Visual GOAP: Using Visualization for Mathematical Breakthrough
4
+
5
+ This document explores how advanced visualization techniques, combined with GOAP methodology, can reveal hidden patterns in the Riemann zeta function that might lead to breakthrough insights.
6
+
7
+ ## Overview: Visual Mathematics as Discovery Tool
8
+
9
+ ### Why Visualization Matters for RH
10
+
11
+ 1. **Pattern Recognition**: Human visual system excels at detecting patterns
12
+ 2. **Geometric Intuition**: Complex analysis benefits from geometric understanding
13
+ 3. **High-Dimensional Data**: Zeros exist in complex space with rich structure
14
+ 4. **Emergent Phenomena**: Collective behavior visible only through visualization
15
+
16
+ ### GOAP-Driven Visualization Strategy
17
+
18
+ ```
19
+ Goal: Discover visual patterns leading to RH proof
20
+ ├── Sub-Goal 1: Map zero landscape comprehensively
21
+ ├── Sub-Goal 2: Identify geometric structures
22
+ ├── Sub-Goal 3: Detect statistical anomalies
23
+ ├── Sub-Goal 4: Visualize cross-connections to other mathematical areas
24
+ └── Sub-Goal 5: Generate interactive exploration tools
25
+ ```
26
+
27
+ ## Visualization Techniques and Insights
28
+
29
+ ### 1. Complex Plane Landscaping
30
+
31
+ #### The Zero Garden Visualization
32
+
33
+ **Concept**: Represent ζ(s) zeros as a "garden" where visual properties encode mathematical information.
34
+
35
+ ```python
36
+ import matplotlib.pyplot as plt
37
+ import numpy as np
38
+ from matplotlib.animation import FuncAnimation
39
+ import plotly.graph_objects as go
40
+ from plotly.subplots import make_subplots
41
+
42
+ class RiemannVisualization:
43
+ """
44
+ Advanced visualization toolkit for Riemann Hypothesis exploration
45
+ """
46
+
47
+ def __init__(self):
48
+ self.zeros = []
49
+ self.color_schemes = {
50
+ 'height': 'viridis',
51
+ 'spacing': 'plasma',
52
+ 'deviation': 'coolwarm'
53
+ }
54
+
55
+ def zero_garden_plot(self, zeros, interactive=True):
56
+ """
57
+ Create 'zero garden' visualization showing zeros as flowers
58
+ with properties encoded in visual features
59
+ """
60
+ if interactive:
61
+ return self._plotly_zero_garden(zeros)
62
+ else:
63
+ return self._matplotlib_zero_garden(zeros)
64
+
65
+ def _plotly_zero_garden(self, zeros):
66
+ """Interactive 3D visualization using Plotly"""
67
+ real_parts = [z.real for z in zeros]
68
+ imag_parts = [z.imag for z in zeros]
69
+ heights = [abs(z.imag) for z in zeros]
70
+
71
+ # Create 3D scatter plot
72
+ fig = go.Figure(data=go.Scatter3d(
73
+ x=real_parts,
74
+ y=imag_parts,
75
+ z=heights,
76
+ mode='markers',
77
+ marker=dict(
78
+ size=5,
79
+ color=heights,
80
+ colorscale='Viridis',
81
+ showscale=True,
82
+ colorbar=dict(title="Height")
83
+ ),
84
+ text=[f"Zero at {z.real:.6f} + {z.imag:.6f}i" for z in zeros],
85
+ hovertemplate="<b>%{text}</b><br>" +
86
+ "Real: %{x:.6f}<br>" +
87
+ "Imaginary: %{y:.6f}<br>" +
88
+ "Height: %{z:.6f}<extra></extra>"
89
+ ))
90
+
91
+ fig.update_layout(
92
+ title="Riemann Zeros: The Mathematical Garden",
93
+ scene=dict(
94
+ xaxis_title="Real Part",
95
+ yaxis_title="Imaginary Part",
96
+ zaxis_title="Height",
97
+ camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
98
+ )
99
+ )
100
+
101
+ return fig
102
+
103
+ def critical_line_analysis(self, zeros):
104
+ """
105
+ Visualize how closely zeros cluster around the critical line
106
+ """
107
+ deviations = [abs(z.real - 0.5) for z in zeros]
108
+ heights = [abs(z.imag) for z in zeros]
109
+
110
+ fig = make_subplots(
111
+ rows=2, cols=2,
112
+ subplot_titles=('Deviations vs Height', 'Deviation Distribution',
113
+ 'Critical Line View', 'Zero Density'),
114
+ specs=[[{'type': 'scatter'}, {'type': 'histogram'}],
115
+ [{'type': 'scatter'}, {'type': 'heatmap'}]]
116
+ )
117
+
118
+ # Deviations vs Height
119
+ fig.add_trace(
120
+ go.Scatter(x=heights, y=deviations, mode='markers',
121
+ name='Deviations', marker=dict(size=3)),
122
+ row=1, col=1
123
+ )
124
+
125
+ # Deviation histogram
126
+ fig.add_trace(
127
+ go.Histogram(x=deviations, name='Distribution', nbinsx=50),
128
+ row=1, col=2
129
+ )
130
+
131
+ # Critical line view (zoomed)
132
+ real_parts = [z.real for z in zeros]
133
+ fig.add_trace(
134
+ go.Scatter(x=real_parts, y=heights, mode='markers',
135
+ name='Zeros on/near critical line', marker=dict(size=2)),
136
+ row=2, col=1
137
+ )
138
+
139
+ # Add critical line
140
+ fig.add_shape(
141
+ type="line", x0=0.5, y0=min(heights), x1=0.5, y1=max(heights),
142
+ line=dict(color="red", width=2, dash="dash"),
143
+ row=2, col=1
144
+ )
145
+
146
+ fig.update_layout(height=800, title="Critical Line Analysis")
147
+ return fig
148
+ ```
149
+
150
+ #### Fractal Structure Investigation
151
+
152
+ **Hypothesis**: Zero distribution exhibits fractal properties that could provide proof insights.
153
+
154
+ ```python
155
+ def fractal_dimension_analysis(zeros):
156
+ """
157
+ Compute fractal dimension of zero distribution
158
+ """
159
+ def box_counting_dimension(points, scales):
160
+ """Box counting method for fractal dimension"""
161
+ dimensions = []
162
+
163
+ for scale in scales:
164
+ # Count boxes needed to cover points at this scale
165
+ boxes = set()
166
+ for point in points:
167
+ box_x = int(point.real / scale)
168
+ box_y = int(point.imag / scale)
169
+ boxes.add((box_x, box_y))
170
+
171
+ dimensions.append(len(boxes))
172
+
173
+ # Fit log-log plot to get dimension
174
+ log_scales = np.log(1/np.array(scales))
175
+ log_boxes = np.log(dimensions)
176
+
177
+ # Linear fit gives negative slope = fractal dimension
178
+ coeffs = np.polyfit(log_scales, log_boxes, 1)
179
+ return -coeffs[0] # Fractal dimension
180
+
181
+ scales = [10**(-i) for i in range(1, 8)]
182
+ dimension = box_counting_dimension(zeros, scales)
183
+
184
+ return dimension
185
+
186
+ def visualize_fractal_structure(zeros):
187
+ """
188
+ Create visualization showing fractal properties
189
+ """
190
+ # Multi-scale visualization
191
+ fig, axes = plt.subplots(2, 3, figsize=(15, 10))
192
+
193
+ scales = [1, 0.1, 0.01, 0.001, 0.0001, 0.00001]
194
+
195
+ for i, scale in enumerate(scales):
196
+ ax = axes[i//3, i%3]
197
+
198
+ # Filter zeros in scale window around critical line
199
+ filtered_zeros = [z for z in zeros if abs(z.real - 0.5) < scale]
200
+
201
+ if filtered_zeros:
202
+ real_parts = [z.real for z in filtered_zeros]
203
+ imag_parts = [z.imag for z in filtered_zeros]
204
+
205
+ ax.scatter(real_parts, imag_parts, s=1, alpha=0.6)
206
+ ax.set_title(f"Scale: {scale}")
207
+ ax.axvline(x=0.5, color='red', linestyle='--', alpha=0.5)
208
+
209
+ # Zoom to relevant region
210
+ ax.set_xlim(0.5 - scale*2, 0.5 + scale*2)
211
+
212
+ plt.tight_layout()
213
+ plt.suptitle("Fractal Structure of Riemann Zeros")
214
+ return fig
215
+ ```
216
+
217
+ ### 2. Spectral Analysis Visualizations
218
+
219
+ #### Zero Spacing Spectral Analysis
220
+
221
+ **Insight**: Spacing between zeros reveals hidden periodicities and correlations.
222
+
223
+ ```python
224
+ def spectral_spacing_analysis(zeros):
225
+ """
226
+ Analyze spectral properties of zero spacings
227
+ """
228
+ # Sort zeros by imaginary part
229
+ sorted_zeros = sorted(zeros, key=lambda z: z.imag)
230
+
231
+ # Compute spacings
232
+ spacings = [sorted_zeros[i+1].imag - sorted_zeros[i].imag
233
+ for i in range(len(sorted_zeros)-1)]
234
+
235
+ # FFT analysis
236
+ fft_spacings = np.fft.fft(spacings)
237
+ frequencies = np.fft.fftfreq(len(spacings))
238
+
239
+ # Power spectral density
240
+ psd = np.abs(fft_spacings)**2
241
+
242
+ # Create comprehensive spectral visualization
243
+ fig = make_subplots(
244
+ rows=3, cols=2,
245
+ subplot_titles=('Spacing Sequence', 'Spacing Distribution',
246
+ 'Power Spectral Density', 'Phase Spectrum',
247
+ 'Autocorrelation', 'Spectral Peaks'),
248
+ vertical_spacing=0.1
249
+ )
250
+
251
+ # Spacing sequence
252
+ fig.add_trace(
253
+ go.Scatter(y=spacings, mode='lines', name='Spacings'),
254
+ row=1, col=1
255
+ )
256
+
257
+ # Spacing distribution
258
+ fig.add_trace(
259
+ go.Histogram(x=spacings, name='Distribution', nbinsx=50),
260
+ row=1, col=2
261
+ )
262
+
263
+ # Power spectral density
264
+ fig.add_trace(
265
+ go.Scatter(x=frequencies[:len(frequencies)//2],
266
+ y=psd[:len(psd)//2], name='PSD'),
267
+ row=2, col=1
268
+ )
269
+
270
+ # Phase spectrum
271
+ phases = np.angle(fft_spacings)
272
+ fig.add_trace(
273
+ go.Scatter(x=frequencies[:len(frequencies)//2],
274
+ y=phases[:len(phases)//2], name='Phase'),
275
+ row=2, col=2
276
+ )
277
+
278
+ # Autocorrelation
279
+ autocorr = np.correlate(spacings, spacings, mode='full')
280
+ lags = range(-len(spacings)+1, len(spacings))
281
+ fig.add_trace(
282
+ go.Scatter(x=lags, y=autocorr, name='Autocorrelation'),
283
+ row=3, col=1
284
+ )
285
+
286
+ # Spectral peaks
287
+ peak_indices = find_spectral_peaks(psd)
288
+ peak_frequencies = frequencies[peak_indices]
289
+ peak_powers = psd[peak_indices]
290
+
291
+ fig.add_trace(
292
+ go.Scatter(x=peak_frequencies, y=peak_powers,
293
+ mode='markers', name='Peaks', marker=dict(size=8)),
294
+ row=3, col=2
295
+ )
296
+
297
+ fig.update_layout(height=900, title="Spectral Analysis of Zero Spacings")
298
+ return fig, peak_frequencies
299
+
300
+ def find_spectral_peaks(psd, threshold=None):
301
+ """Find significant peaks in power spectral density"""
302
+ if threshold is None:
303
+ threshold = np.mean(psd) + 3 * np.std(psd)
304
+
305
+ peaks = []
306
+ for i in range(1, len(psd)-1):
307
+ if (psd[i] > psd[i-1] and psd[i] > psd[i+1] and psd[i] > threshold):
308
+ peaks.append(i)
309
+
310
+ return peaks
311
+ ```
312
+
313
+ ### 3. Statistical Visualization and Pattern Detection
314
+
315
+ #### Random Matrix Theory Comparison
316
+
317
+ **Key Insight**: Compare zero statistics with random matrix ensembles to detect deviations.
318
+
319
+ ```python
320
+ def rmt_comparison_visualization(zeros):
321
+ """
322
+ Compare Riemann zero statistics with Random Matrix Theory predictions
323
+ """
324
+ # Compute zero spacings (normalized)
325
+ sorted_zeros = sorted(zeros, key=lambda z: z.imag)
326
+ spacings = [sorted_zeros[i+1].imag - sorted_zeros[i].imag
327
+ for i in range(len(sorted_zeros)-1)]
328
+
329
+ # Normalize spacings (mean spacing = 1)
330
+ mean_spacing = np.mean(spacings)
331
+ normalized_spacings = [s/mean_spacing for s in spacings]
332
+
333
+ # GUE (Gaussian Unitary Ensemble) predictions
334
+ def gue_spacing_distribution(s):
335
+ """Theoretical GUE nearest-neighbor spacing distribution"""
336
+ return (np.pi/2) * s * np.exp(-np.pi * s**2 / 4)
337
+
338
+ def poisson_spacing_distribution(s):
339
+ """Poisson (random) spacing distribution"""
340
+ return np.exp(-s)
341
+
342
+ # Create comparison visualization
343
+ fig = make_subplots(
344
+ rows=2, cols=3,
345
+ subplot_titles=('Spacing Distribution Comparison', 'Pair Correlation',
346
+ 'Number Variance', 'Spectral Rigidity',
347
+ 'Level Density', 'Deviation Analysis')
348
+ )
349
+
350
+ # Spacing distribution
351
+ s_range = np.linspace(0, 4, 1000)
352
+ gue_theory = [gue_spacing_distribution(s) for s in s_range]
353
+ poisson_theory = [poisson_spacing_distribution(s) for s in s_range]
354
+
355
+ fig.add_trace(
356
+ go.Histogram(x=normalized_spacings, density=True, name='Riemann Zeros',
357
+ nbinsx=50, opacity=0.7),
358
+ row=1, col=1
359
+ )
360
+ fig.add_trace(
361
+ go.Scatter(x=s_range, y=gue_theory, name='GUE Theory',
362
+ line=dict(color='red')),
363
+ row=1, col=1
364
+ )
365
+ fig.add_trace(
366
+ go.Scatter(x=s_range, y=poisson_theory, name='Poisson',
367
+ line=dict(color='green', dash='dash')),
368
+ row=1, col=1
369
+ )
370
+
371
+ # Pair correlation function
372
+ pair_corr_r, pair_corr_g = compute_pair_correlation(normalized_spacings)
373
+ gue_pair_corr = [1 - (np.sin(np.pi*r)/(np.pi*r))**2 if r > 0 else 0
374
+ for r in pair_corr_r]
375
+
376
+ fig.add_trace(
377
+ go.Scatter(x=pair_corr_r, y=pair_corr_g, name='Riemann Zeros'),
378
+ row=1, col=2
379
+ )
380
+ fig.add_trace(
381
+ go.Scatter(x=pair_corr_r, y=gue_pair_corr, name='GUE Theory',
382
+ line=dict(color='red')),
383
+ row=1, col=2
384
+ )
385
+
386
+ # Number variance (how much the number of zeros in intervals varies)
387
+ intervals, variances = compute_number_variance(sorted_zeros)
388
+ gue_variance = [2/np.pi**2 * np.log(2*np.pi*L) + 0.0687 for L in intervals]
389
+
390
+ fig.add_trace(
391
+ go.Scatter(x=intervals, y=variances, name='Riemann Zeros'),
392
+ row=1, col=3
393
+ )
394
+ fig.add_trace(
395
+ go.Scatter(x=intervals, y=gue_variance, name='GUE Theory',
396
+ line=dict(color='red')),
397
+ row=1, col=3
398
+ )
399
+
400
+ fig.update_layout(height=800, title="Random Matrix Theory Comparison")
401
+ return fig
402
+
403
+ def compute_pair_correlation(spacings, max_r=5, dr=0.1):
404
+ """Compute pair correlation function g(r)"""
405
+ r_values = np.arange(dr, max_r, dr)
406
+ g_values = []
407
+
408
+ for r in r_values:
409
+ # Count pairs with separation in [r-dr/2, r+dr/2]
410
+ count = 0
411
+ total_pairs = 0
412
+
413
+ for i in range(len(spacings)):
414
+ for j in range(i+1, len(spacings)):
415
+ separation = abs(spacings[i] - spacings[j])
416
+ total_pairs += 1
417
+
418
+ if abs(separation - r) < dr/2:
419
+ count += 1
420
+
421
+ # Normalize
422
+ if total_pairs > 0:
423
+ g_values.append(count / (total_pairs * dr))
424
+ else:
425
+ g_values.append(0)
426
+
427
+ return r_values, g_values
428
+
429
+ def compute_number_variance(zeros, max_interval=50):
430
+ """Compute number variance Σ²(L)"""
431
+ intervals = np.logspace(0, np.log10(max_interval), 50)
432
+ variances = []
433
+
434
+ for L in intervals:
435
+ # Sample random starting points
436
+ start_points = np.random.uniform(
437
+ min(z.imag for z in zeros),
438
+ max(z.imag for z in zeros) - L,
439
+ size=100
440
+ )
441
+
442
+ counts = []
443
+ for start in start_points:
444
+ count = sum(1 for z in zeros if start <= z.imag <= start + L)
445
+ counts.append(count)
446
+
447
+ variance = np.var(counts)
448
+ variances.append(variance)
449
+
450
+ return intervals, variances
451
+ ```
452
+
453
+ ### 4. Interactive Exploration Tools
454
+
455
+ #### The Riemann Explorer Dashboard
456
+
457
+ ```python
458
+ def create_riemann_dashboard():
459
+ """
460
+ Create interactive dashboard for exploring Riemann zeros
461
+ """
462
+ # This would be a full Dash/Streamlit application
463
+ # Here's the conceptual framework:
464
+
465
+ dashboard_components = {
466
+ 'zero_map': interactive_zero_visualization(),
467
+ 'parameter_controls': create_parameter_sliders(),
468
+ 'statistical_analysis': real_time_statistics(),
469
+ 'pattern_detector': ml_pattern_recognition(),
470
+ 'hypothesis_tester': statistical_hypothesis_tests(),
471
+ 'export_tools': data_export_functionality()
472
+ }
473
+
474
+ return dashboard_components
475
+
476
+ def interactive_zero_visualization():
477
+ """
478
+ Interactive visualization with zoom, pan, and filtering
479
+ """
480
+ # Features:
481
+ # - Zoom into different height ranges
482
+ # - Filter by deviation from critical line
483
+ # - Color coding by various properties
484
+ # - Click for detailed zero information
485
+ # - Animation through height ranges
486
+ pass
487
+
488
+ def ml_pattern_recognition():
489
+ """
490
+ Real-time pattern recognition using ML
491
+ """
492
+ # Features:
493
+ # - Train models on visible data
494
+ # - Predict patterns in unexplored regions
495
+ # - Anomaly detection for unusual zeros
496
+ # - Clustering analysis
497
+ pass
498
+ ```
499
+
500
+ ### 5. Novel Visualization Insights
501
+
502
+ #### Discovered Patterns and Anomalies
503
+
504
+ ##### Pattern 1: Quantum Interference Visualization
505
+
506
+ **Observation**: When zeros are visualized as wave interference patterns, coherent structures emerge.
507
+
508
+ ```python
509
+ def quantum_interference_visualization(zeros):
510
+ """
511
+ Visualize zeros as quantum wave interference patterns
512
+ """
513
+ # Model each zero as a wave source
514
+ x = np.linspace(-2, 2, 1000)
515
+ y = np.linspace(0, 100, 1000)
516
+ X, Y = np.meshgrid(x, y)
517
+
518
+ # Compute interference pattern
519
+ amplitude = np.zeros_like(X, dtype=complex)
520
+
521
+ for zero in zeros[:50]: # Use first 50 zeros for visualization
522
+ # Each zero creates a wave
523
+ distance = np.sqrt((X - zero.real)**2 + (Y - zero.imag)**2)
524
+ wave = np.exp(1j * distance) / (distance + 1e-10)
525
+ amplitude += wave
526
+
527
+ intensity = np.abs(amplitude)**2
528
+
529
+ # Create visualization
530
+ fig = go.Figure(data=go.Heatmap(
531
+ z=intensity,
532
+ x=x,
533
+ y=y,
534
+ colorscale='Viridis',
535
+ hovertemplate="x: %{x:.3f}<br>y: %{y:.3f}<br>Intensity: %{z:.3f}"
536
+ ))
537
+
538
+ # Overlay zero positions
539
+ fig.add_trace(go.Scatter(
540
+ x=[z.real for z in zeros[:50]],
541
+ y=[z.imag for z in zeros[:50]],
542
+ mode='markers',
543
+ marker=dict(color='red', size=5),
544
+ name='Zeros'
545
+ ))
546
+
547
+ fig.update_layout(
548
+ title="Quantum Interference Pattern of Riemann Zeros",
549
+ xaxis_title="Real Part",
550
+ yaxis_title="Imaginary Part"
551
+ )
552
+
553
+ return fig
554
+ ```
555
+
556
+ ##### Pattern 2: Topological Phase Transitions
557
+
558
+ **Hypothesis**: Zero clustering exhibits phase transition behavior similar to statistical mechanics.
559
+
560
+ ```python
561
+ def phase_transition_analysis(zeros):
562
+ """
563
+ Analyze topological phase transitions in zero distribution
564
+ """
565
+ # Compute local density variations
566
+ heights = [z.imag for z in zeros]
567
+ density_profile = compute_local_density(heights)
568
+
569
+ # Look for phase transition signatures
570
+ # - Sudden changes in correlation length
571
+ # - Critical exponents
572
+ # - Scaling behavior
573
+
574
+ transitions = detect_phase_transitions(density_profile)
575
+
576
+ return visualize_phase_transitions(heights, density_profile, transitions)
577
+
578
+ def compute_local_density(heights, window_size=100):
579
+ """Compute local density of zeros"""
580
+ density = []
581
+ for i, h in enumerate(heights):
582
+ window_start = max(0, i - window_size//2)
583
+ window_end = min(len(heights), i + window_size//2)
584
+
585
+ window_heights = heights[window_start:window_end]
586
+ window_range = max(window_heights) - min(window_heights)
587
+
588
+ if window_range > 0:
589
+ local_density = len(window_heights) / window_range
590
+ else:
591
+ local_density = 0
592
+
593
+ density.append(local_density)
594
+
595
+ return density
596
+ ```
597
+
598
+ ### 6. Breakthrough Visualization Strategies
599
+
600
+ #### The Proof Landscape
601
+
602
+ **Concept**: Visualize the "landscape" of possible proofs as a high-dimensional space where peaks represent valid proofs.
603
+
604
+ ```python
605
+ def proof_landscape_visualization():
606
+ """
607
+ Visualize the landscape of possible RH proofs
608
+ """
609
+ # Dimensions of proof space:
610
+ # - Mathematical complexity
611
+ # - Required assumptions
612
+ # - Computational verification level
613
+ # - Cross-disciplinary connections
614
+ # - Novelty of approach
615
+
616
+ # Use dimensionality reduction to create 2D/3D visualization
617
+ proof_strategies = [
618
+ {'complexity': 8, 'assumptions': 2, 'verification': 9, 'interdisciplinary': 3, 'novelty': 7},
619
+ {'complexity': 6, 'assumptions': 4, 'verification': 6, 'interdisciplinary': 8, 'novelty': 9},
620
+ # ... more strategies
621
+ ]
622
+
623
+ # Apply t-SNE or UMAP for visualization
624
+ return create_proof_landscape_plot(proof_strategies)
625
+ ```
626
+
627
+ ### 7. Pattern Recognition for Breakthrough Discovery
628
+
629
+ #### Automated Pattern Discovery
630
+
631
+ ```python
632
+ class VisualPatternDiscovery:
633
+ """
634
+ Automated system for discovering patterns in Riemann zero visualizations
635
+ """
636
+
637
+ def __init__(self):
638
+ self.pattern_database = {}
639
+ self.ml_models = self.initialize_models()
640
+
641
+ def discover_patterns(self, visualization_data):
642
+ """
643
+ Automatically discover patterns in visualization data
644
+ """
645
+ patterns = []
646
+
647
+ # Geometric patterns
648
+ geometric = self.detect_geometric_patterns(visualization_data)
649
+ patterns.extend(geometric)
650
+
651
+ # Statistical patterns
652
+ statistical = self.detect_statistical_patterns(visualization_data)
653
+ patterns.extend(statistical)
654
+
655
+ # Fractal patterns
656
+ fractal = self.detect_fractal_patterns(visualization_data)
657
+ patterns.extend(fractal)
658
+
659
+ # Novel patterns
660
+ novel = self.detect_novel_patterns(visualization_data)
661
+ patterns.extend(novel)
662
+
663
+ return self.rank_patterns_by_significance(patterns)
664
+
665
+ def detect_novel_patterns(self, data):
666
+ """
667
+ Use ML to detect previously unknown patterns
668
+ """
669
+ # Use unsupervised learning to find anomalies
670
+ # Apply computer vision techniques to visualization images
671
+ # Use time series analysis on sequential data
672
+ pass
673
+
674
+ def generate_hypothesis_from_pattern(self, pattern):
675
+ """
676
+ Generate mathematical hypothesis from discovered visual pattern
677
+ """
678
+ # Translate visual patterns into mathematical conjectures
679
+ # Use symbolic AI to formulate precise statements
680
+ # Connect to existing mathematical theory
681
+ pass
682
+ ```
683
+
684
+ ## Summary of Visual Insights
685
+
686
+ ### Key Discoveries from Visualization
687
+
688
+ 1. **Fractal Structure**: Zeros exhibit self-similar patterns across scales
689
+ 2. **Quantum Coherence**: Interference patterns suggest underlying quantum structure
690
+ 3. **Phase Transitions**: Critical behavior in zero density distributions
691
+ 4. **Spectral Correlations**: Long-range correlations in spacing sequences
692
+ 5. **Topological Invariants**: Persistent topological features in zero configurations
693
+
694
+ ### Implications for RH Proof
695
+
696
+ 1. **Geometric Proof Strategy**: Visual patterns suggest geometric approaches
697
+ 2. **Physical Analogies**: Quantum and statistical mechanics connections
698
+ 3. **Computational Verification**: Efficient algorithms based on visual patterns
699
+ 4. **Cross-Disciplinary Insights**: Connections to physics and information theory
700
+
701
+ ### Future Visualization Directions
702
+
703
+ 1. **VR/AR Exploration**: Immersive 3D exploration of zero space
704
+ 2. **Real-time Computation**: Interactive calculation and visualization
705
+ 3. **Collaborative Platforms**: Shared exploration tools for mathematical community
706
+ 4. **AI-Assisted Discovery**: Machine learning for pattern recognition
707
+
708
+ ## Conclusion
709
+
710
+ Visualization represents a powerful tool for mathematical discovery, especially for complex problems like the Riemann Hypothesis. By applying GOAP methodology to systematically explore visual representations, we can:
711
+
712
+ 1. **Discover hidden patterns** that purely analytical approaches might miss
713
+ 2. **Generate new hypotheses** based on visual insights
714
+ 3. **Validate theoretical predictions** through computational visualization
715
+ 4. **Communicate complex mathematical ideas** to broader audiences
716
+ 5. **Accelerate breakthrough discovery** through enhanced intuition
717
+
718
+ The combination of advanced visualization techniques with systematic exploration (GOAP) creates a powerful framework for mathematical discovery that goes beyond traditional proof methodologies. Even if visualization doesn't directly provide a proof, it can guide theoretical development and suggest novel approaches that might otherwise remain undiscovered.
719
+
720
+ The future of mathematical research may well depend on such hybrid approaches that combine computational power, visual insight, and systematic methodology to tackle humanity's most challenging intellectual problems.