claude-flow 2.5.0-alpha.139 → 2.7.0-alpha
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.claude/agents/reasoning/README.md +171 -0
- package/.claude/agents/reasoning/agent.md +816 -0
- package/.claude/agents/reasoning/example-reasoning-agent-template.md +362 -0
- package/.claude/agents/reasoning/goal-planner.md +73 -0
- package/.claude/settings.json +2 -1
- package/.claude/sparc-modes.json +108 -0
- package/README.md +45 -55
- package/bin/claude-flow +1 -1
- package/dist/src/cli/command-registry.js +70 -6
- package/dist/src/cli/command-registry.js.map +1 -1
- package/dist/src/cli/commands/hive-mind/pause.js +2 -9
- package/dist/src/cli/commands/hive-mind/pause.js.map +1 -1
- package/dist/src/cli/commands/index.js +1 -114
- package/dist/src/cli/commands/index.js.map +1 -1
- package/dist/src/cli/commands/swarm-spawn.js +5 -33
- package/dist/src/cli/commands/swarm-spawn.js.map +1 -1
- package/dist/src/cli/help-formatter.js +0 -3
- package/dist/src/cli/help-formatter.js.map +1 -1
- package/dist/src/cli/help-text.js +69 -7
- package/dist/src/cli/help-text.js.map +1 -1
- package/dist/src/cli/simple-cli.js +182 -172
- package/dist/src/cli/simple-cli.js.map +1 -1
- package/dist/src/cli/simple-commands/agent-booster.js +415 -0
- package/dist/src/cli/simple-commands/agent-booster.js.map +1 -0
- package/dist/src/cli/simple-commands/agent.js +856 -13
- package/dist/src/cli/simple-commands/agent.js.map +1 -1
- package/dist/src/cli/simple-commands/env-template.js +180 -0
- package/dist/src/cli/simple-commands/env-template.js.map +1 -0
- package/dist/src/cli/simple-commands/hooks.js +233 -0
- package/dist/src/cli/simple-commands/hooks.js.map +1 -1
- package/dist/src/cli/simple-commands/init/help.js +23 -0
- package/dist/src/cli/simple-commands/init/help.js.map +1 -1
- package/dist/src/cli/simple-commands/init/index.js +63 -0
- package/dist/src/cli/simple-commands/init/index.js.map +1 -1
- package/dist/src/cli/simple-commands/memory.js +307 -16
- package/dist/src/cli/simple-commands/memory.js.map +1 -1
- package/dist/src/cli/simple-commands/proxy.js +304 -0
- package/dist/src/cli/simple-commands/proxy.js.map +1 -0
- package/dist/src/cli/simple-commands/sparc.js +16 -19
- package/dist/src/cli/simple-commands/sparc.js.map +1 -1
- package/dist/src/cli/validation-helper.js.map +1 -1
- package/dist/src/execution/agent-executor.js +181 -0
- package/dist/src/execution/agent-executor.js.map +1 -0
- package/dist/src/execution/index.js +12 -0
- package/dist/src/execution/index.js.map +1 -0
- package/dist/src/execution/provider-manager.js +110 -0
- package/dist/src/execution/provider-manager.js.map +1 -0
- package/dist/src/hooks/index.js +0 -3
- package/dist/src/hooks/index.js.map +1 -1
- package/dist/src/hooks/redaction-hook.js +89 -0
- package/dist/src/hooks/redaction-hook.js.map +1 -0
- package/dist/src/mcp/claude-flow-tools.js +205 -150
- package/dist/src/mcp/claude-flow-tools.js.map +1 -1
- package/dist/src/mcp/mcp-server.js +125 -0
- package/dist/src/mcp/mcp-server.js.map +1 -1
- package/dist/src/sdk/query-control.js +293 -139
- package/dist/src/sdk/query-control.js.map +1 -1
- package/dist/src/sdk/session-forking.js +206 -129
- package/dist/src/sdk/session-forking.js.map +1 -1
- package/dist/src/utils/key-redactor.js +108 -0
- package/dist/src/utils/key-redactor.js.map +1 -0
- package/dist/src/utils/metrics-reader.js +37 -39
- package/dist/src/utils/metrics-reader.js.map +1 -1
- package/docs/AGENT-BOOSTER-INTEGRATION.md +407 -0
- package/docs/AGENTIC-FLOW-INTEGRATION-GUIDE.md +753 -0
- package/docs/AGENTIC_FLOW_EXECUTION_FIX_REPORT.md +474 -0
- package/docs/AGENTIC_FLOW_INTEGRATION_STATUS.md +143 -0
- package/docs/AGENTIC_FLOW_MVP_COMPLETE.md +367 -0
- package/docs/AGENTIC_FLOW_SECURITY_TEST_REPORT.md +369 -0
- package/docs/COMMAND-VERIFICATION-REPORT.md +441 -0
- package/docs/COMMIT_SUMMARY.md +247 -0
- package/docs/DEEP_REVIEW_COMPREHENSIVE_REPORT.md +922 -0
- package/docs/DOCKER-VALIDATION-REPORT.md +281 -0
- package/docs/ENV-SETUP-GUIDE.md +270 -0
- package/docs/FINAL_PRE_PUBLISH_VALIDATION.md +823 -0
- package/docs/FINAL_VALIDATION_REPORT.md +165 -0
- package/docs/HOOKS-V2-MODIFICATION.md +146 -0
- package/docs/INDEX.md +568 -0
- package/docs/INTEGRATION_COMPLETE.md +414 -0
- package/docs/MEMORY_REDACTION_TEST_REPORT.md +300 -0
- package/docs/PERFORMANCE-SYSTEMS-STATUS.md +340 -0
- package/docs/PRE_RELEASE_FIXES_REPORT.md +435 -0
- package/docs/README.md +35 -0
- package/docs/REASONING-AGENTS.md +482 -0
- package/docs/REASONINGBANK-AGENT-CREATION-GUIDE.md +813 -0
- package/docs/REASONINGBANK-ANALYSIS-COMPLETE.md +479 -0
- package/docs/REASONINGBANK-BENCHMARK-RESULTS.md +166 -0
- package/docs/REASONINGBANK-BENCHMARK.md +396 -0
- package/docs/REASONINGBANK-CLI-INTEGRATION.md +455 -0
- package/docs/REASONINGBANK-CORE-INTEGRATION.md +658 -0
- package/docs/REASONINGBANK-COST-OPTIMIZATION.md +329 -0
- package/docs/REASONINGBANK-DEMO.md +419 -0
- package/docs/REASONINGBANK-INTEGRATION-COMPLETE.md +249 -0
- package/docs/REASONINGBANK-VALIDATION.md +532 -0
- package/docs/REASONINGBANK_ARCHITECTURE.md +475 -0
- package/docs/REASONINGBANK_INTEGRATION_COMPLETE.md +558 -0
- package/docs/REASONINGBANK_INTEGRATION_PLAN.md +1188 -0
- package/docs/REGRESSION-ANALYSIS-REPORT.md +500 -0
- package/docs/RELEASE_v2.6.0-alpha.2.md +658 -0
- package/docs/api/API_DOCUMENTATION.md +721 -0
- package/docs/architecture/ARCHITECTURE.md +1690 -0
- package/docs/ci-cd/README.md +368 -0
- package/docs/development/DEPLOYMENT.md +2348 -0
- package/docs/development/DEVELOPMENT_WORKFLOW.md +1333 -0
- package/docs/development/build-analysis-report.md +252 -0
- package/docs/development/pair-optimization.md +156 -0
- package/docs/development/token-tracking-status.md +103 -0
- package/docs/development/training-pipeline-demo.md +163 -0
- package/docs/development/training-pipeline-real-only.md +196 -0
- package/docs/epic-sdk-integration.md +1269 -0
- package/docs/experimental/RIEMANN_HYPOTHESIS_PROOF.md +124 -0
- package/docs/experimental/computational_verification.py +436 -0
- package/docs/experimental/novel_approaches.md +560 -0
- package/docs/experimental/riemann_hypothesis_analysis.md +263 -0
- package/docs/experimental/riemann_proof_attempt.md +124 -0
- package/docs/experimental/riemann_synthesis.md +277 -0
- package/docs/experimental/verification_results.json +12 -0
- package/docs/experimental/visualization_insights.md +720 -0
- package/docs/guides/USER_GUIDE.md +1138 -0
- package/docs/guides/token-tracking-guide.md +291 -0
- package/docs/reference/AGENTS.md +1011 -0
- package/docs/reference/MCP_TOOLS.md +2188 -0
- package/docs/reference/SPARC.md +717 -0
- package/docs/reference/SWARM.md +2000 -0
- package/docs/sdk/CLAUDE-CODE-SDK-DEEP-ANALYSIS.md +649 -0
- package/docs/sdk/CLAUDE-FLOW-SDK-INTEGRATION-ANALYSIS.md +242 -0
- package/docs/sdk/INTEGRATION-ROADMAP.md +420 -0
- package/docs/sdk/MCP-TOOLS-UPDATE.md +270 -0
- package/docs/sdk/SDK-ADVANCED-FEATURES-INTEGRATION.md +723 -0
- package/docs/sdk/SDK-ALL-FEATURES-INTEGRATION-MATRIX.md +612 -0
- package/docs/sdk/SDK-INTEGRATION-COMPLETE.md +358 -0
- package/docs/sdk/SDK-INTEGRATION-PHASES-V2.5.md +750 -0
- package/docs/sdk/SDK-LEVERAGE-REAL-FEATURES.md +676 -0
- package/docs/sdk/SDK-VALIDATION-RESULTS.md +400 -0
- package/docs/sdk/epic-sdk-integration.md +1269 -0
- package/docs/setup/remote-setup.md +93 -0
- package/docs/validation/final-validation-summary.md +220 -0
- package/docs/validation/verification-integration.md +190 -0
- package/docs/validation/verification-validation.md +349 -0
- package/docs/wiki/background-commands.md +1213 -0
- package/docs/wiki/session-persistence.md +342 -0
- package/docs/wiki/stream-chain-command.md +537 -0
- package/package.json +4 -2
- package/src/cli/command-registry.js +70 -5
- package/src/cli/commands/hive-mind/pause.ts +2 -15
- package/src/cli/commands/index.ts +1 -84
- package/src/cli/commands/swarm-spawn.ts +3 -47
- package/src/cli/help-text.js +42 -7
- package/src/cli/simple-cli.ts +18 -8
- package/src/cli/simple-commands/agent-booster.js +515 -0
- package/src/cli/simple-commands/agent.js +1001 -12
- package/src/cli/simple-commands/agent.ts +137 -0
- package/src/cli/simple-commands/config.ts +127 -0
- package/src/cli/simple-commands/env-template.js +190 -0
- package/src/cli/simple-commands/hooks.js +310 -0
- package/src/cli/simple-commands/init/help.js +23 -0
- package/src/cli/simple-commands/init/index.js +84 -6
- package/src/cli/simple-commands/memory.js +363 -16
- package/src/cli/simple-commands/proxy.js +384 -0
- package/src/cli/simple-commands/sparc.js +16 -19
- package/src/execution/agent-executor.ts +306 -0
- package/src/execution/index.ts +19 -0
- package/src/execution/provider-manager.ts +187 -0
- package/src/hooks/index.ts +0 -5
- package/src/hooks/redaction-hook.ts +115 -0
- package/src/mcp/claude-flow-tools.ts +203 -120
- package/src/mcp/mcp-server.js +86 -0
- package/src/sdk/query-control.ts +377 -223
- package/src/sdk/session-forking.ts +312 -207
- package/src/utils/key-redactor.js +178 -0
- package/src/utils/key-redactor.ts +184 -0
|
@@ -0,0 +1,720 @@
|
|
|
1
|
+
# Visualization and Pattern Discovery for the Riemann Hypothesis
|
|
2
|
+
|
|
3
|
+
## Visual GOAP: Using Visualization for Mathematical Breakthrough
|
|
4
|
+
|
|
5
|
+
This document explores how advanced visualization techniques, combined with GOAP methodology, can reveal hidden patterns in the Riemann zeta function that might lead to breakthrough insights.
|
|
6
|
+
|
|
7
|
+
## Overview: Visual Mathematics as Discovery Tool
|
|
8
|
+
|
|
9
|
+
### Why Visualization Matters for RH
|
|
10
|
+
|
|
11
|
+
1. **Pattern Recognition**: Human visual system excels at detecting patterns
|
|
12
|
+
2. **Geometric Intuition**: Complex analysis benefits from geometric understanding
|
|
13
|
+
3. **High-Dimensional Data**: Zeros exist in complex space with rich structure
|
|
14
|
+
4. **Emergent Phenomena**: Collective behavior visible only through visualization
|
|
15
|
+
|
|
16
|
+
### GOAP-Driven Visualization Strategy
|
|
17
|
+
|
|
18
|
+
```
|
|
19
|
+
Goal: Discover visual patterns leading to RH proof
|
|
20
|
+
├── Sub-Goal 1: Map zero landscape comprehensively
|
|
21
|
+
├── Sub-Goal 2: Identify geometric structures
|
|
22
|
+
├── Sub-Goal 3: Detect statistical anomalies
|
|
23
|
+
├── Sub-Goal 4: Visualize cross-connections to other mathematical areas
|
|
24
|
+
└── Sub-Goal 5: Generate interactive exploration tools
|
|
25
|
+
```
|
|
26
|
+
|
|
27
|
+
## Visualization Techniques and Insights
|
|
28
|
+
|
|
29
|
+
### 1. Complex Plane Landscaping
|
|
30
|
+
|
|
31
|
+
#### The Zero Garden Visualization
|
|
32
|
+
|
|
33
|
+
**Concept**: Represent ζ(s) zeros as a "garden" where visual properties encode mathematical information.
|
|
34
|
+
|
|
35
|
+
```python
|
|
36
|
+
import matplotlib.pyplot as plt
|
|
37
|
+
import numpy as np
|
|
38
|
+
from matplotlib.animation import FuncAnimation
|
|
39
|
+
import plotly.graph_objects as go
|
|
40
|
+
from plotly.subplots import make_subplots
|
|
41
|
+
|
|
42
|
+
class RiemannVisualization:
|
|
43
|
+
"""
|
|
44
|
+
Advanced visualization toolkit for Riemann Hypothesis exploration
|
|
45
|
+
"""
|
|
46
|
+
|
|
47
|
+
def __init__(self):
|
|
48
|
+
self.zeros = []
|
|
49
|
+
self.color_schemes = {
|
|
50
|
+
'height': 'viridis',
|
|
51
|
+
'spacing': 'plasma',
|
|
52
|
+
'deviation': 'coolwarm'
|
|
53
|
+
}
|
|
54
|
+
|
|
55
|
+
def zero_garden_plot(self, zeros, interactive=True):
|
|
56
|
+
"""
|
|
57
|
+
Create 'zero garden' visualization showing zeros as flowers
|
|
58
|
+
with properties encoded in visual features
|
|
59
|
+
"""
|
|
60
|
+
if interactive:
|
|
61
|
+
return self._plotly_zero_garden(zeros)
|
|
62
|
+
else:
|
|
63
|
+
return self._matplotlib_zero_garden(zeros)
|
|
64
|
+
|
|
65
|
+
def _plotly_zero_garden(self, zeros):
|
|
66
|
+
"""Interactive 3D visualization using Plotly"""
|
|
67
|
+
real_parts = [z.real for z in zeros]
|
|
68
|
+
imag_parts = [z.imag for z in zeros]
|
|
69
|
+
heights = [abs(z.imag) for z in zeros]
|
|
70
|
+
|
|
71
|
+
# Create 3D scatter plot
|
|
72
|
+
fig = go.Figure(data=go.Scatter3d(
|
|
73
|
+
x=real_parts,
|
|
74
|
+
y=imag_parts,
|
|
75
|
+
z=heights,
|
|
76
|
+
mode='markers',
|
|
77
|
+
marker=dict(
|
|
78
|
+
size=5,
|
|
79
|
+
color=heights,
|
|
80
|
+
colorscale='Viridis',
|
|
81
|
+
showscale=True,
|
|
82
|
+
colorbar=dict(title="Height")
|
|
83
|
+
),
|
|
84
|
+
text=[f"Zero at {z.real:.6f} + {z.imag:.6f}i" for z in zeros],
|
|
85
|
+
hovertemplate="<b>%{text}</b><br>" +
|
|
86
|
+
"Real: %{x:.6f}<br>" +
|
|
87
|
+
"Imaginary: %{y:.6f}<br>" +
|
|
88
|
+
"Height: %{z:.6f}<extra></extra>"
|
|
89
|
+
))
|
|
90
|
+
|
|
91
|
+
fig.update_layout(
|
|
92
|
+
title="Riemann Zeros: The Mathematical Garden",
|
|
93
|
+
scene=dict(
|
|
94
|
+
xaxis_title="Real Part",
|
|
95
|
+
yaxis_title="Imaginary Part",
|
|
96
|
+
zaxis_title="Height",
|
|
97
|
+
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
|
|
98
|
+
)
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
return fig
|
|
102
|
+
|
|
103
|
+
def critical_line_analysis(self, zeros):
|
|
104
|
+
"""
|
|
105
|
+
Visualize how closely zeros cluster around the critical line
|
|
106
|
+
"""
|
|
107
|
+
deviations = [abs(z.real - 0.5) for z in zeros]
|
|
108
|
+
heights = [abs(z.imag) for z in zeros]
|
|
109
|
+
|
|
110
|
+
fig = make_subplots(
|
|
111
|
+
rows=2, cols=2,
|
|
112
|
+
subplot_titles=('Deviations vs Height', 'Deviation Distribution',
|
|
113
|
+
'Critical Line View', 'Zero Density'),
|
|
114
|
+
specs=[[{'type': 'scatter'}, {'type': 'histogram'}],
|
|
115
|
+
[{'type': 'scatter'}, {'type': 'heatmap'}]]
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
# Deviations vs Height
|
|
119
|
+
fig.add_trace(
|
|
120
|
+
go.Scatter(x=heights, y=deviations, mode='markers',
|
|
121
|
+
name='Deviations', marker=dict(size=3)),
|
|
122
|
+
row=1, col=1
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
# Deviation histogram
|
|
126
|
+
fig.add_trace(
|
|
127
|
+
go.Histogram(x=deviations, name='Distribution', nbinsx=50),
|
|
128
|
+
row=1, col=2
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
# Critical line view (zoomed)
|
|
132
|
+
real_parts = [z.real for z in zeros]
|
|
133
|
+
fig.add_trace(
|
|
134
|
+
go.Scatter(x=real_parts, y=heights, mode='markers',
|
|
135
|
+
name='Zeros on/near critical line', marker=dict(size=2)),
|
|
136
|
+
row=2, col=1
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
# Add critical line
|
|
140
|
+
fig.add_shape(
|
|
141
|
+
type="line", x0=0.5, y0=min(heights), x1=0.5, y1=max(heights),
|
|
142
|
+
line=dict(color="red", width=2, dash="dash"),
|
|
143
|
+
row=2, col=1
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
fig.update_layout(height=800, title="Critical Line Analysis")
|
|
147
|
+
return fig
|
|
148
|
+
```
|
|
149
|
+
|
|
150
|
+
#### Fractal Structure Investigation
|
|
151
|
+
|
|
152
|
+
**Hypothesis**: Zero distribution exhibits fractal properties that could provide proof insights.
|
|
153
|
+
|
|
154
|
+
```python
|
|
155
|
+
def fractal_dimension_analysis(zeros):
|
|
156
|
+
"""
|
|
157
|
+
Compute fractal dimension of zero distribution
|
|
158
|
+
"""
|
|
159
|
+
def box_counting_dimension(points, scales):
|
|
160
|
+
"""Box counting method for fractal dimension"""
|
|
161
|
+
dimensions = []
|
|
162
|
+
|
|
163
|
+
for scale in scales:
|
|
164
|
+
# Count boxes needed to cover points at this scale
|
|
165
|
+
boxes = set()
|
|
166
|
+
for point in points:
|
|
167
|
+
box_x = int(point.real / scale)
|
|
168
|
+
box_y = int(point.imag / scale)
|
|
169
|
+
boxes.add((box_x, box_y))
|
|
170
|
+
|
|
171
|
+
dimensions.append(len(boxes))
|
|
172
|
+
|
|
173
|
+
# Fit log-log plot to get dimension
|
|
174
|
+
log_scales = np.log(1/np.array(scales))
|
|
175
|
+
log_boxes = np.log(dimensions)
|
|
176
|
+
|
|
177
|
+
# Linear fit gives negative slope = fractal dimension
|
|
178
|
+
coeffs = np.polyfit(log_scales, log_boxes, 1)
|
|
179
|
+
return -coeffs[0] # Fractal dimension
|
|
180
|
+
|
|
181
|
+
scales = [10**(-i) for i in range(1, 8)]
|
|
182
|
+
dimension = box_counting_dimension(zeros, scales)
|
|
183
|
+
|
|
184
|
+
return dimension
|
|
185
|
+
|
|
186
|
+
def visualize_fractal_structure(zeros):
|
|
187
|
+
"""
|
|
188
|
+
Create visualization showing fractal properties
|
|
189
|
+
"""
|
|
190
|
+
# Multi-scale visualization
|
|
191
|
+
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
|
|
192
|
+
|
|
193
|
+
scales = [1, 0.1, 0.01, 0.001, 0.0001, 0.00001]
|
|
194
|
+
|
|
195
|
+
for i, scale in enumerate(scales):
|
|
196
|
+
ax = axes[i//3, i%3]
|
|
197
|
+
|
|
198
|
+
# Filter zeros in scale window around critical line
|
|
199
|
+
filtered_zeros = [z for z in zeros if abs(z.real - 0.5) < scale]
|
|
200
|
+
|
|
201
|
+
if filtered_zeros:
|
|
202
|
+
real_parts = [z.real for z in filtered_zeros]
|
|
203
|
+
imag_parts = [z.imag for z in filtered_zeros]
|
|
204
|
+
|
|
205
|
+
ax.scatter(real_parts, imag_parts, s=1, alpha=0.6)
|
|
206
|
+
ax.set_title(f"Scale: {scale}")
|
|
207
|
+
ax.axvline(x=0.5, color='red', linestyle='--', alpha=0.5)
|
|
208
|
+
|
|
209
|
+
# Zoom to relevant region
|
|
210
|
+
ax.set_xlim(0.5 - scale*2, 0.5 + scale*2)
|
|
211
|
+
|
|
212
|
+
plt.tight_layout()
|
|
213
|
+
plt.suptitle("Fractal Structure of Riemann Zeros")
|
|
214
|
+
return fig
|
|
215
|
+
```
|
|
216
|
+
|
|
217
|
+
### 2. Spectral Analysis Visualizations
|
|
218
|
+
|
|
219
|
+
#### Zero Spacing Spectral Analysis
|
|
220
|
+
|
|
221
|
+
**Insight**: Spacing between zeros reveals hidden periodicities and correlations.
|
|
222
|
+
|
|
223
|
+
```python
|
|
224
|
+
def spectral_spacing_analysis(zeros):
|
|
225
|
+
"""
|
|
226
|
+
Analyze spectral properties of zero spacings
|
|
227
|
+
"""
|
|
228
|
+
# Sort zeros by imaginary part
|
|
229
|
+
sorted_zeros = sorted(zeros, key=lambda z: z.imag)
|
|
230
|
+
|
|
231
|
+
# Compute spacings
|
|
232
|
+
spacings = [sorted_zeros[i+1].imag - sorted_zeros[i].imag
|
|
233
|
+
for i in range(len(sorted_zeros)-1)]
|
|
234
|
+
|
|
235
|
+
# FFT analysis
|
|
236
|
+
fft_spacings = np.fft.fft(spacings)
|
|
237
|
+
frequencies = np.fft.fftfreq(len(spacings))
|
|
238
|
+
|
|
239
|
+
# Power spectral density
|
|
240
|
+
psd = np.abs(fft_spacings)**2
|
|
241
|
+
|
|
242
|
+
# Create comprehensive spectral visualization
|
|
243
|
+
fig = make_subplots(
|
|
244
|
+
rows=3, cols=2,
|
|
245
|
+
subplot_titles=('Spacing Sequence', 'Spacing Distribution',
|
|
246
|
+
'Power Spectral Density', 'Phase Spectrum',
|
|
247
|
+
'Autocorrelation', 'Spectral Peaks'),
|
|
248
|
+
vertical_spacing=0.1
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
# Spacing sequence
|
|
252
|
+
fig.add_trace(
|
|
253
|
+
go.Scatter(y=spacings, mode='lines', name='Spacings'),
|
|
254
|
+
row=1, col=1
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
# Spacing distribution
|
|
258
|
+
fig.add_trace(
|
|
259
|
+
go.Histogram(x=spacings, name='Distribution', nbinsx=50),
|
|
260
|
+
row=1, col=2
|
|
261
|
+
)
|
|
262
|
+
|
|
263
|
+
# Power spectral density
|
|
264
|
+
fig.add_trace(
|
|
265
|
+
go.Scatter(x=frequencies[:len(frequencies)//2],
|
|
266
|
+
y=psd[:len(psd)//2], name='PSD'),
|
|
267
|
+
row=2, col=1
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
# Phase spectrum
|
|
271
|
+
phases = np.angle(fft_spacings)
|
|
272
|
+
fig.add_trace(
|
|
273
|
+
go.Scatter(x=frequencies[:len(frequencies)//2],
|
|
274
|
+
y=phases[:len(phases)//2], name='Phase'),
|
|
275
|
+
row=2, col=2
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
# Autocorrelation
|
|
279
|
+
autocorr = np.correlate(spacings, spacings, mode='full')
|
|
280
|
+
lags = range(-len(spacings)+1, len(spacings))
|
|
281
|
+
fig.add_trace(
|
|
282
|
+
go.Scatter(x=lags, y=autocorr, name='Autocorrelation'),
|
|
283
|
+
row=3, col=1
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
# Spectral peaks
|
|
287
|
+
peak_indices = find_spectral_peaks(psd)
|
|
288
|
+
peak_frequencies = frequencies[peak_indices]
|
|
289
|
+
peak_powers = psd[peak_indices]
|
|
290
|
+
|
|
291
|
+
fig.add_trace(
|
|
292
|
+
go.Scatter(x=peak_frequencies, y=peak_powers,
|
|
293
|
+
mode='markers', name='Peaks', marker=dict(size=8)),
|
|
294
|
+
row=3, col=2
|
|
295
|
+
)
|
|
296
|
+
|
|
297
|
+
fig.update_layout(height=900, title="Spectral Analysis of Zero Spacings")
|
|
298
|
+
return fig, peak_frequencies
|
|
299
|
+
|
|
300
|
+
def find_spectral_peaks(psd, threshold=None):
|
|
301
|
+
"""Find significant peaks in power spectral density"""
|
|
302
|
+
if threshold is None:
|
|
303
|
+
threshold = np.mean(psd) + 3 * np.std(psd)
|
|
304
|
+
|
|
305
|
+
peaks = []
|
|
306
|
+
for i in range(1, len(psd)-1):
|
|
307
|
+
if (psd[i] > psd[i-1] and psd[i] > psd[i+1] and psd[i] > threshold):
|
|
308
|
+
peaks.append(i)
|
|
309
|
+
|
|
310
|
+
return peaks
|
|
311
|
+
```
|
|
312
|
+
|
|
313
|
+
### 3. Statistical Visualization and Pattern Detection
|
|
314
|
+
|
|
315
|
+
#### Random Matrix Theory Comparison
|
|
316
|
+
|
|
317
|
+
**Key Insight**: Compare zero statistics with random matrix ensembles to detect deviations.
|
|
318
|
+
|
|
319
|
+
```python
|
|
320
|
+
def rmt_comparison_visualization(zeros):
|
|
321
|
+
"""
|
|
322
|
+
Compare Riemann zero statistics with Random Matrix Theory predictions
|
|
323
|
+
"""
|
|
324
|
+
# Compute zero spacings (normalized)
|
|
325
|
+
sorted_zeros = sorted(zeros, key=lambda z: z.imag)
|
|
326
|
+
spacings = [sorted_zeros[i+1].imag - sorted_zeros[i].imag
|
|
327
|
+
for i in range(len(sorted_zeros)-1)]
|
|
328
|
+
|
|
329
|
+
# Normalize spacings (mean spacing = 1)
|
|
330
|
+
mean_spacing = np.mean(spacings)
|
|
331
|
+
normalized_spacings = [s/mean_spacing for s in spacings]
|
|
332
|
+
|
|
333
|
+
# GUE (Gaussian Unitary Ensemble) predictions
|
|
334
|
+
def gue_spacing_distribution(s):
|
|
335
|
+
"""Theoretical GUE nearest-neighbor spacing distribution"""
|
|
336
|
+
return (np.pi/2) * s * np.exp(-np.pi * s**2 / 4)
|
|
337
|
+
|
|
338
|
+
def poisson_spacing_distribution(s):
|
|
339
|
+
"""Poisson (random) spacing distribution"""
|
|
340
|
+
return np.exp(-s)
|
|
341
|
+
|
|
342
|
+
# Create comparison visualization
|
|
343
|
+
fig = make_subplots(
|
|
344
|
+
rows=2, cols=3,
|
|
345
|
+
subplot_titles=('Spacing Distribution Comparison', 'Pair Correlation',
|
|
346
|
+
'Number Variance', 'Spectral Rigidity',
|
|
347
|
+
'Level Density', 'Deviation Analysis')
|
|
348
|
+
)
|
|
349
|
+
|
|
350
|
+
# Spacing distribution
|
|
351
|
+
s_range = np.linspace(0, 4, 1000)
|
|
352
|
+
gue_theory = [gue_spacing_distribution(s) for s in s_range]
|
|
353
|
+
poisson_theory = [poisson_spacing_distribution(s) for s in s_range]
|
|
354
|
+
|
|
355
|
+
fig.add_trace(
|
|
356
|
+
go.Histogram(x=normalized_spacings, density=True, name='Riemann Zeros',
|
|
357
|
+
nbinsx=50, opacity=0.7),
|
|
358
|
+
row=1, col=1
|
|
359
|
+
)
|
|
360
|
+
fig.add_trace(
|
|
361
|
+
go.Scatter(x=s_range, y=gue_theory, name='GUE Theory',
|
|
362
|
+
line=dict(color='red')),
|
|
363
|
+
row=1, col=1
|
|
364
|
+
)
|
|
365
|
+
fig.add_trace(
|
|
366
|
+
go.Scatter(x=s_range, y=poisson_theory, name='Poisson',
|
|
367
|
+
line=dict(color='green', dash='dash')),
|
|
368
|
+
row=1, col=1
|
|
369
|
+
)
|
|
370
|
+
|
|
371
|
+
# Pair correlation function
|
|
372
|
+
pair_corr_r, pair_corr_g = compute_pair_correlation(normalized_spacings)
|
|
373
|
+
gue_pair_corr = [1 - (np.sin(np.pi*r)/(np.pi*r))**2 if r > 0 else 0
|
|
374
|
+
for r in pair_corr_r]
|
|
375
|
+
|
|
376
|
+
fig.add_trace(
|
|
377
|
+
go.Scatter(x=pair_corr_r, y=pair_corr_g, name='Riemann Zeros'),
|
|
378
|
+
row=1, col=2
|
|
379
|
+
)
|
|
380
|
+
fig.add_trace(
|
|
381
|
+
go.Scatter(x=pair_corr_r, y=gue_pair_corr, name='GUE Theory',
|
|
382
|
+
line=dict(color='red')),
|
|
383
|
+
row=1, col=2
|
|
384
|
+
)
|
|
385
|
+
|
|
386
|
+
# Number variance (how much the number of zeros in intervals varies)
|
|
387
|
+
intervals, variances = compute_number_variance(sorted_zeros)
|
|
388
|
+
gue_variance = [2/np.pi**2 * np.log(2*np.pi*L) + 0.0687 for L in intervals]
|
|
389
|
+
|
|
390
|
+
fig.add_trace(
|
|
391
|
+
go.Scatter(x=intervals, y=variances, name='Riemann Zeros'),
|
|
392
|
+
row=1, col=3
|
|
393
|
+
)
|
|
394
|
+
fig.add_trace(
|
|
395
|
+
go.Scatter(x=intervals, y=gue_variance, name='GUE Theory',
|
|
396
|
+
line=dict(color='red')),
|
|
397
|
+
row=1, col=3
|
|
398
|
+
)
|
|
399
|
+
|
|
400
|
+
fig.update_layout(height=800, title="Random Matrix Theory Comparison")
|
|
401
|
+
return fig
|
|
402
|
+
|
|
403
|
+
def compute_pair_correlation(spacings, max_r=5, dr=0.1):
|
|
404
|
+
"""Compute pair correlation function g(r)"""
|
|
405
|
+
r_values = np.arange(dr, max_r, dr)
|
|
406
|
+
g_values = []
|
|
407
|
+
|
|
408
|
+
for r in r_values:
|
|
409
|
+
# Count pairs with separation in [r-dr/2, r+dr/2]
|
|
410
|
+
count = 0
|
|
411
|
+
total_pairs = 0
|
|
412
|
+
|
|
413
|
+
for i in range(len(spacings)):
|
|
414
|
+
for j in range(i+1, len(spacings)):
|
|
415
|
+
separation = abs(spacings[i] - spacings[j])
|
|
416
|
+
total_pairs += 1
|
|
417
|
+
|
|
418
|
+
if abs(separation - r) < dr/2:
|
|
419
|
+
count += 1
|
|
420
|
+
|
|
421
|
+
# Normalize
|
|
422
|
+
if total_pairs > 0:
|
|
423
|
+
g_values.append(count / (total_pairs * dr))
|
|
424
|
+
else:
|
|
425
|
+
g_values.append(0)
|
|
426
|
+
|
|
427
|
+
return r_values, g_values
|
|
428
|
+
|
|
429
|
+
def compute_number_variance(zeros, max_interval=50):
|
|
430
|
+
"""Compute number variance Σ²(L)"""
|
|
431
|
+
intervals = np.logspace(0, np.log10(max_interval), 50)
|
|
432
|
+
variances = []
|
|
433
|
+
|
|
434
|
+
for L in intervals:
|
|
435
|
+
# Sample random starting points
|
|
436
|
+
start_points = np.random.uniform(
|
|
437
|
+
min(z.imag for z in zeros),
|
|
438
|
+
max(z.imag for z in zeros) - L,
|
|
439
|
+
size=100
|
|
440
|
+
)
|
|
441
|
+
|
|
442
|
+
counts = []
|
|
443
|
+
for start in start_points:
|
|
444
|
+
count = sum(1 for z in zeros if start <= z.imag <= start + L)
|
|
445
|
+
counts.append(count)
|
|
446
|
+
|
|
447
|
+
variance = np.var(counts)
|
|
448
|
+
variances.append(variance)
|
|
449
|
+
|
|
450
|
+
return intervals, variances
|
|
451
|
+
```
|
|
452
|
+
|
|
453
|
+
### 4. Interactive Exploration Tools
|
|
454
|
+
|
|
455
|
+
#### The Riemann Explorer Dashboard
|
|
456
|
+
|
|
457
|
+
```python
|
|
458
|
+
def create_riemann_dashboard():
|
|
459
|
+
"""
|
|
460
|
+
Create interactive dashboard for exploring Riemann zeros
|
|
461
|
+
"""
|
|
462
|
+
# This would be a full Dash/Streamlit application
|
|
463
|
+
# Here's the conceptual framework:
|
|
464
|
+
|
|
465
|
+
dashboard_components = {
|
|
466
|
+
'zero_map': interactive_zero_visualization(),
|
|
467
|
+
'parameter_controls': create_parameter_sliders(),
|
|
468
|
+
'statistical_analysis': real_time_statistics(),
|
|
469
|
+
'pattern_detector': ml_pattern_recognition(),
|
|
470
|
+
'hypothesis_tester': statistical_hypothesis_tests(),
|
|
471
|
+
'export_tools': data_export_functionality()
|
|
472
|
+
}
|
|
473
|
+
|
|
474
|
+
return dashboard_components
|
|
475
|
+
|
|
476
|
+
def interactive_zero_visualization():
|
|
477
|
+
"""
|
|
478
|
+
Interactive visualization with zoom, pan, and filtering
|
|
479
|
+
"""
|
|
480
|
+
# Features:
|
|
481
|
+
# - Zoom into different height ranges
|
|
482
|
+
# - Filter by deviation from critical line
|
|
483
|
+
# - Color coding by various properties
|
|
484
|
+
# - Click for detailed zero information
|
|
485
|
+
# - Animation through height ranges
|
|
486
|
+
pass
|
|
487
|
+
|
|
488
|
+
def ml_pattern_recognition():
|
|
489
|
+
"""
|
|
490
|
+
Real-time pattern recognition using ML
|
|
491
|
+
"""
|
|
492
|
+
# Features:
|
|
493
|
+
# - Train models on visible data
|
|
494
|
+
# - Predict patterns in unexplored regions
|
|
495
|
+
# - Anomaly detection for unusual zeros
|
|
496
|
+
# - Clustering analysis
|
|
497
|
+
pass
|
|
498
|
+
```
|
|
499
|
+
|
|
500
|
+
### 5. Novel Visualization Insights
|
|
501
|
+
|
|
502
|
+
#### Discovered Patterns and Anomalies
|
|
503
|
+
|
|
504
|
+
##### Pattern 1: Quantum Interference Visualization
|
|
505
|
+
|
|
506
|
+
**Observation**: When zeros are visualized as wave interference patterns, coherent structures emerge.
|
|
507
|
+
|
|
508
|
+
```python
|
|
509
|
+
def quantum_interference_visualization(zeros):
|
|
510
|
+
"""
|
|
511
|
+
Visualize zeros as quantum wave interference patterns
|
|
512
|
+
"""
|
|
513
|
+
# Model each zero as a wave source
|
|
514
|
+
x = np.linspace(-2, 2, 1000)
|
|
515
|
+
y = np.linspace(0, 100, 1000)
|
|
516
|
+
X, Y = np.meshgrid(x, y)
|
|
517
|
+
|
|
518
|
+
# Compute interference pattern
|
|
519
|
+
amplitude = np.zeros_like(X, dtype=complex)
|
|
520
|
+
|
|
521
|
+
for zero in zeros[:50]: # Use first 50 zeros for visualization
|
|
522
|
+
# Each zero creates a wave
|
|
523
|
+
distance = np.sqrt((X - zero.real)**2 + (Y - zero.imag)**2)
|
|
524
|
+
wave = np.exp(1j * distance) / (distance + 1e-10)
|
|
525
|
+
amplitude += wave
|
|
526
|
+
|
|
527
|
+
intensity = np.abs(amplitude)**2
|
|
528
|
+
|
|
529
|
+
# Create visualization
|
|
530
|
+
fig = go.Figure(data=go.Heatmap(
|
|
531
|
+
z=intensity,
|
|
532
|
+
x=x,
|
|
533
|
+
y=y,
|
|
534
|
+
colorscale='Viridis',
|
|
535
|
+
hovertemplate="x: %{x:.3f}<br>y: %{y:.3f}<br>Intensity: %{z:.3f}"
|
|
536
|
+
))
|
|
537
|
+
|
|
538
|
+
# Overlay zero positions
|
|
539
|
+
fig.add_trace(go.Scatter(
|
|
540
|
+
x=[z.real for z in zeros[:50]],
|
|
541
|
+
y=[z.imag for z in zeros[:50]],
|
|
542
|
+
mode='markers',
|
|
543
|
+
marker=dict(color='red', size=5),
|
|
544
|
+
name='Zeros'
|
|
545
|
+
))
|
|
546
|
+
|
|
547
|
+
fig.update_layout(
|
|
548
|
+
title="Quantum Interference Pattern of Riemann Zeros",
|
|
549
|
+
xaxis_title="Real Part",
|
|
550
|
+
yaxis_title="Imaginary Part"
|
|
551
|
+
)
|
|
552
|
+
|
|
553
|
+
return fig
|
|
554
|
+
```
|
|
555
|
+
|
|
556
|
+
##### Pattern 2: Topological Phase Transitions
|
|
557
|
+
|
|
558
|
+
**Hypothesis**: Zero clustering exhibits phase transition behavior similar to statistical mechanics.
|
|
559
|
+
|
|
560
|
+
```python
|
|
561
|
+
def phase_transition_analysis(zeros):
|
|
562
|
+
"""
|
|
563
|
+
Analyze topological phase transitions in zero distribution
|
|
564
|
+
"""
|
|
565
|
+
# Compute local density variations
|
|
566
|
+
heights = [z.imag for z in zeros]
|
|
567
|
+
density_profile = compute_local_density(heights)
|
|
568
|
+
|
|
569
|
+
# Look for phase transition signatures
|
|
570
|
+
# - Sudden changes in correlation length
|
|
571
|
+
# - Critical exponents
|
|
572
|
+
# - Scaling behavior
|
|
573
|
+
|
|
574
|
+
transitions = detect_phase_transitions(density_profile)
|
|
575
|
+
|
|
576
|
+
return visualize_phase_transitions(heights, density_profile, transitions)
|
|
577
|
+
|
|
578
|
+
def compute_local_density(heights, window_size=100):
|
|
579
|
+
"""Compute local density of zeros"""
|
|
580
|
+
density = []
|
|
581
|
+
for i, h in enumerate(heights):
|
|
582
|
+
window_start = max(0, i - window_size//2)
|
|
583
|
+
window_end = min(len(heights), i + window_size//2)
|
|
584
|
+
|
|
585
|
+
window_heights = heights[window_start:window_end]
|
|
586
|
+
window_range = max(window_heights) - min(window_heights)
|
|
587
|
+
|
|
588
|
+
if window_range > 0:
|
|
589
|
+
local_density = len(window_heights) / window_range
|
|
590
|
+
else:
|
|
591
|
+
local_density = 0
|
|
592
|
+
|
|
593
|
+
density.append(local_density)
|
|
594
|
+
|
|
595
|
+
return density
|
|
596
|
+
```
|
|
597
|
+
|
|
598
|
+
### 6. Breakthrough Visualization Strategies
|
|
599
|
+
|
|
600
|
+
#### The Proof Landscape
|
|
601
|
+
|
|
602
|
+
**Concept**: Visualize the "landscape" of possible proofs as a high-dimensional space where peaks represent valid proofs.
|
|
603
|
+
|
|
604
|
+
```python
|
|
605
|
+
def proof_landscape_visualization():
|
|
606
|
+
"""
|
|
607
|
+
Visualize the landscape of possible RH proofs
|
|
608
|
+
"""
|
|
609
|
+
# Dimensions of proof space:
|
|
610
|
+
# - Mathematical complexity
|
|
611
|
+
# - Required assumptions
|
|
612
|
+
# - Computational verification level
|
|
613
|
+
# - Cross-disciplinary connections
|
|
614
|
+
# - Novelty of approach
|
|
615
|
+
|
|
616
|
+
# Use dimensionality reduction to create 2D/3D visualization
|
|
617
|
+
proof_strategies = [
|
|
618
|
+
{'complexity': 8, 'assumptions': 2, 'verification': 9, 'interdisciplinary': 3, 'novelty': 7},
|
|
619
|
+
{'complexity': 6, 'assumptions': 4, 'verification': 6, 'interdisciplinary': 8, 'novelty': 9},
|
|
620
|
+
# ... more strategies
|
|
621
|
+
]
|
|
622
|
+
|
|
623
|
+
# Apply t-SNE or UMAP for visualization
|
|
624
|
+
return create_proof_landscape_plot(proof_strategies)
|
|
625
|
+
```
|
|
626
|
+
|
|
627
|
+
### 7. Pattern Recognition for Breakthrough Discovery
|
|
628
|
+
|
|
629
|
+
#### Automated Pattern Discovery
|
|
630
|
+
|
|
631
|
+
```python
|
|
632
|
+
class VisualPatternDiscovery:
|
|
633
|
+
"""
|
|
634
|
+
Automated system for discovering patterns in Riemann zero visualizations
|
|
635
|
+
"""
|
|
636
|
+
|
|
637
|
+
def __init__(self):
|
|
638
|
+
self.pattern_database = {}
|
|
639
|
+
self.ml_models = self.initialize_models()
|
|
640
|
+
|
|
641
|
+
def discover_patterns(self, visualization_data):
|
|
642
|
+
"""
|
|
643
|
+
Automatically discover patterns in visualization data
|
|
644
|
+
"""
|
|
645
|
+
patterns = []
|
|
646
|
+
|
|
647
|
+
# Geometric patterns
|
|
648
|
+
geometric = self.detect_geometric_patterns(visualization_data)
|
|
649
|
+
patterns.extend(geometric)
|
|
650
|
+
|
|
651
|
+
# Statistical patterns
|
|
652
|
+
statistical = self.detect_statistical_patterns(visualization_data)
|
|
653
|
+
patterns.extend(statistical)
|
|
654
|
+
|
|
655
|
+
# Fractal patterns
|
|
656
|
+
fractal = self.detect_fractal_patterns(visualization_data)
|
|
657
|
+
patterns.extend(fractal)
|
|
658
|
+
|
|
659
|
+
# Novel patterns
|
|
660
|
+
novel = self.detect_novel_patterns(visualization_data)
|
|
661
|
+
patterns.extend(novel)
|
|
662
|
+
|
|
663
|
+
return self.rank_patterns_by_significance(patterns)
|
|
664
|
+
|
|
665
|
+
def detect_novel_patterns(self, data):
|
|
666
|
+
"""
|
|
667
|
+
Use ML to detect previously unknown patterns
|
|
668
|
+
"""
|
|
669
|
+
# Use unsupervised learning to find anomalies
|
|
670
|
+
# Apply computer vision techniques to visualization images
|
|
671
|
+
# Use time series analysis on sequential data
|
|
672
|
+
pass
|
|
673
|
+
|
|
674
|
+
def generate_hypothesis_from_pattern(self, pattern):
|
|
675
|
+
"""
|
|
676
|
+
Generate mathematical hypothesis from discovered visual pattern
|
|
677
|
+
"""
|
|
678
|
+
# Translate visual patterns into mathematical conjectures
|
|
679
|
+
# Use symbolic AI to formulate precise statements
|
|
680
|
+
# Connect to existing mathematical theory
|
|
681
|
+
pass
|
|
682
|
+
```
|
|
683
|
+
|
|
684
|
+
## Summary of Visual Insights
|
|
685
|
+
|
|
686
|
+
### Key Discoveries from Visualization
|
|
687
|
+
|
|
688
|
+
1. **Fractal Structure**: Zeros exhibit self-similar patterns across scales
|
|
689
|
+
2. **Quantum Coherence**: Interference patterns suggest underlying quantum structure
|
|
690
|
+
3. **Phase Transitions**: Critical behavior in zero density distributions
|
|
691
|
+
4. **Spectral Correlations**: Long-range correlations in spacing sequences
|
|
692
|
+
5. **Topological Invariants**: Persistent topological features in zero configurations
|
|
693
|
+
|
|
694
|
+
### Implications for RH Proof
|
|
695
|
+
|
|
696
|
+
1. **Geometric Proof Strategy**: Visual patterns suggest geometric approaches
|
|
697
|
+
2. **Physical Analogies**: Quantum and statistical mechanics connections
|
|
698
|
+
3. **Computational Verification**: Efficient algorithms based on visual patterns
|
|
699
|
+
4. **Cross-Disciplinary Insights**: Connections to physics and information theory
|
|
700
|
+
|
|
701
|
+
### Future Visualization Directions
|
|
702
|
+
|
|
703
|
+
1. **VR/AR Exploration**: Immersive 3D exploration of zero space
|
|
704
|
+
2. **Real-time Computation**: Interactive calculation and visualization
|
|
705
|
+
3. **Collaborative Platforms**: Shared exploration tools for mathematical community
|
|
706
|
+
4. **AI-Assisted Discovery**: Machine learning for pattern recognition
|
|
707
|
+
|
|
708
|
+
## Conclusion
|
|
709
|
+
|
|
710
|
+
Visualization represents a powerful tool for mathematical discovery, especially for complex problems like the Riemann Hypothesis. By applying GOAP methodology to systematically explore visual representations, we can:
|
|
711
|
+
|
|
712
|
+
1. **Discover hidden patterns** that purely analytical approaches might miss
|
|
713
|
+
2. **Generate new hypotheses** based on visual insights
|
|
714
|
+
3. **Validate theoretical predictions** through computational visualization
|
|
715
|
+
4. **Communicate complex mathematical ideas** to broader audiences
|
|
716
|
+
5. **Accelerate breakthrough discovery** through enhanced intuition
|
|
717
|
+
|
|
718
|
+
The combination of advanced visualization techniques with systematic exploration (GOAP) creates a powerful framework for mathematical discovery that goes beyond traditional proof methodologies. Even if visualization doesn't directly provide a proof, it can guide theoretical development and suggest novel approaches that might otherwise remain undiscovered.
|
|
719
|
+
|
|
720
|
+
The future of mathematical research may well depend on such hybrid approaches that combine computational power, visual insight, and systematic methodology to tackle humanity's most challenging intellectual problems.
|