claude-flow 2.0.0-alpha.72 → 2.0.0-alpha.73

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (79) hide show
  1. package/.claude/agents/MIGRATION_SUMMARY.md +215 -0
  2. package/.claude/agents/README.md +82 -0
  3. package/.claude/agents/analysis/code-review/analyze-code-quality.md +180 -0
  4. package/.claude/agents/architecture/system-design/arch-system-design.md +156 -0
  5. package/.claude/agents/base-template-generator.md +42 -0
  6. package/.claude/agents/consensus/README.md +246 -0
  7. package/.claude/agents/consensus/byzantine-coordinator.md +63 -0
  8. package/.claude/agents/consensus/crdt-synchronizer.md +997 -0
  9. package/.claude/agents/consensus/gossip-coordinator.md +63 -0
  10. package/.claude/agents/consensus/performance-benchmarker.md +851 -0
  11. package/.claude/agents/consensus/quorum-manager.md +823 -0
  12. package/.claude/agents/consensus/raft-manager.md +63 -0
  13. package/.claude/agents/consensus/security-manager.md +622 -0
  14. package/.claude/agents/core/coder.md +211 -0
  15. package/.claude/agents/core/planner.md +116 -0
  16. package/.claude/agents/core/researcher.md +136 -0
  17. package/.claude/agents/core/reviewer.md +272 -0
  18. package/.claude/agents/core/tester.md +266 -0
  19. package/.claude/agents/data/ml/data-ml-model.md +193 -0
  20. package/.claude/agents/development/backend/dev-backend-api.md +142 -0
  21. package/.claude/agents/devops/ci-cd/ops-cicd-github.md +164 -0
  22. package/.claude/agents/documentation/api-docs/docs-api-openapi.md +174 -0
  23. package/.claude/agents/github/code-review-swarm.md +538 -0
  24. package/.claude/agents/github/github-modes.md +173 -0
  25. package/.claude/agents/github/issue-tracker.md +319 -0
  26. package/.claude/agents/github/multi-repo-swarm.md +553 -0
  27. package/.claude/agents/github/pr-manager.md +191 -0
  28. package/.claude/agents/github/project-board-sync.md +509 -0
  29. package/.claude/agents/github/release-manager.md +367 -0
  30. package/.claude/agents/github/release-swarm.md +583 -0
  31. package/.claude/agents/github/repo-architect.md +398 -0
  32. package/.claude/agents/github/swarm-issue.md +573 -0
  33. package/.claude/agents/github/swarm-pr.md +428 -0
  34. package/.claude/agents/github/sync-coordinator.md +452 -0
  35. package/.claude/agents/github/workflow-automation.md +635 -0
  36. package/.claude/agents/hive-mind/collective-intelligence-coordinator.md +82 -0
  37. package/.claude/agents/hive-mind/consensus-builder.md +102 -0
  38. package/.claude/agents/hive-mind/swarm-memory-manager.md +120 -0
  39. package/.claude/agents/optimization/README.md +243 -0
  40. package/.claude/agents/optimization/benchmark-suite.md +658 -0
  41. package/.claude/agents/optimization/load-balancer.md +424 -0
  42. package/.claude/agents/optimization/performance-monitor.md +665 -0
  43. package/.claude/agents/optimization/resource-allocator.md +667 -0
  44. package/.claude/agents/optimization/topology-optimizer.md +801 -0
  45. package/.claude/agents/sparc/architecture.md +472 -0
  46. package/.claude/agents/sparc/pseudocode.md +318 -0
  47. package/.claude/agents/sparc/refinement.md +525 -0
  48. package/.claude/agents/sparc/specification.md +276 -0
  49. package/.claude/agents/specialized/mobile/spec-mobile-react-native.md +226 -0
  50. package/.claude/agents/swarm/README.md +183 -0
  51. package/.claude/agents/swarm/adaptive-coordinator.md +396 -0
  52. package/.claude/agents/swarm/hierarchical-coordinator.md +256 -0
  53. package/.claude/agents/swarm/mesh-coordinator.md +392 -0
  54. package/.claude/agents/templates/automation-smart-agent.md +205 -0
  55. package/.claude/agents/templates/coordinator-swarm-init.md +90 -0
  56. package/.claude/agents/templates/github-pr-manager.md +177 -0
  57. package/.claude/agents/templates/implementer-sparc-coder.md +259 -0
  58. package/.claude/agents/templates/memory-coordinator.md +187 -0
  59. package/.claude/agents/templates/migration-plan.md +746 -0
  60. package/.claude/agents/templates/orchestrator-task.md +139 -0
  61. package/.claude/agents/templates/performance-analyzer.md +199 -0
  62. package/.claude/agents/templates/sparc-coordinator.md +183 -0
  63. package/.claude/agents/testing/unit/tdd-london-swarm.md +244 -0
  64. package/.claude/agents/testing/validation/production-validator.md +395 -0
  65. package/.claude/settings.json +20 -0
  66. package/.claude/settings.local.json +5 -1
  67. package/bin/claude-flow +1 -1
  68. package/package.json +1 -1
  69. package/src/cli/help-text.js +2 -2
  70. package/src/cli/simple-cli.js +1 -1
  71. package/src/cli/simple-commands/init/agent-copier.js +217 -0
  72. package/src/cli/simple-commands/init/index.js +23 -0
  73. package/src/cli/simple-commands/init/templates/CLAUDE.md +293 -14
  74. package/src/cli/simple-commands/init/templates/settings.json +20 -0
  75. package/src/swarm/advanced-orchestrator.ts +1200 -0
  76. package/src/swarm/claude-code-interface.ts +1268 -0
  77. package/src/swarm/hive-mind-integration.ts +1127 -0
  78. package/src/swarm/mcp-integration-wrapper.ts +860 -0
  79. package/src/swarm/result-aggregator.ts +1046 -0
@@ -0,0 +1,801 @@
1
+ # Topology Optimizer Agent
2
+
3
+ ## Agent Profile
4
+ - **Name**: Topology Optimizer
5
+ - **Type**: Performance Optimization Agent
6
+ - **Specialization**: Dynamic swarm topology reconfiguration and network optimization
7
+ - **Performance Focus**: Communication pattern optimization and adaptive network structures
8
+
9
+ ## Core Capabilities
10
+
11
+ ### 1. Dynamic Topology Reconfiguration
12
+ ```javascript
13
+ // Advanced topology optimization system
14
+ class TopologyOptimizer {
15
+ constructor() {
16
+ this.topologies = {
17
+ hierarchical: new HierarchicalTopology(),
18
+ mesh: new MeshTopology(),
19
+ ring: new RingTopology(),
20
+ star: new StarTopology(),
21
+ hybrid: new HybridTopology(),
22
+ adaptive: new AdaptiveTopology()
23
+ };
24
+
25
+ this.optimizer = new NetworkOptimizer();
26
+ this.analyzer = new TopologyAnalyzer();
27
+ this.predictor = new TopologyPredictor();
28
+ }
29
+
30
+ // Intelligent topology selection and optimization
31
+ async optimizeTopology(swarm, workloadProfile, constraints = {}) {
32
+ // Analyze current topology performance
33
+ const currentAnalysis = await this.analyzer.analyze(swarm.topology);
34
+
35
+ // Generate topology candidates based on workload
36
+ const candidates = await this.generateCandidates(workloadProfile, constraints);
37
+
38
+ // Evaluate each candidate topology
39
+ const evaluations = await Promise.all(
40
+ candidates.map(candidate => this.evaluateTopology(candidate, workloadProfile))
41
+ );
42
+
43
+ // Select optimal topology using multi-objective optimization
44
+ const optimal = this.selectOptimalTopology(evaluations, constraints);
45
+
46
+ // Plan migration strategy if topology change is beneficial
47
+ if (optimal.improvement > constraints.minImprovement || 0.1) {
48
+ const migrationPlan = await this.planMigration(swarm.topology, optimal.topology);
49
+ return {
50
+ recommended: optimal.topology,
51
+ improvement: optimal.improvement,
52
+ migrationPlan,
53
+ estimatedDowntime: migrationPlan.estimatedDowntime,
54
+ benefits: optimal.benefits
55
+ };
56
+ }
57
+
58
+ return { recommended: null, reason: 'No significant improvement found' };
59
+ }
60
+
61
+ // Generate topology candidates
62
+ async generateCandidates(workloadProfile, constraints) {
63
+ const candidates = [];
64
+
65
+ // Base topology variations
66
+ for (const [type, topology] of Object.entries(this.topologies)) {
67
+ if (this.isCompatible(type, workloadProfile, constraints)) {
68
+ const variations = await topology.generateVariations(workloadProfile);
69
+ candidates.push(...variations);
70
+ }
71
+ }
72
+
73
+ // Hybrid topology generation
74
+ const hybrids = await this.generateHybridTopologies(workloadProfile, constraints);
75
+ candidates.push(...hybrids);
76
+
77
+ // AI-generated novel topologies
78
+ const aiGenerated = await this.generateAITopologies(workloadProfile);
79
+ candidates.push(...aiGenerated);
80
+
81
+ return candidates;
82
+ }
83
+
84
+ // Multi-objective topology evaluation
85
+ async evaluateTopology(topology, workloadProfile) {
86
+ const metrics = await this.calculateTopologyMetrics(topology, workloadProfile);
87
+
88
+ return {
89
+ topology,
90
+ metrics,
91
+ score: this.calculateOverallScore(metrics),
92
+ strengths: this.identifyStrengths(metrics),
93
+ weaknesses: this.identifyWeaknesses(metrics),
94
+ suitability: this.calculateSuitability(metrics, workloadProfile)
95
+ };
96
+ }
97
+ }
98
+ ```
99
+
100
+ ### 2. Network Latency Optimization
101
+ ```javascript
102
+ // Advanced network latency optimization
103
+ class NetworkLatencyOptimizer {
104
+ constructor() {
105
+ this.latencyAnalyzer = new LatencyAnalyzer();
106
+ this.routingOptimizer = new RoutingOptimizer();
107
+ this.bandwidthManager = new BandwidthManager();
108
+ }
109
+
110
+ // Comprehensive latency optimization
111
+ async optimizeLatency(network, communicationPatterns) {
112
+ const optimization = {
113
+ // Physical network optimization
114
+ physical: await this.optimizePhysicalNetwork(network),
115
+
116
+ // Logical routing optimization
117
+ routing: await this.optimizeRouting(network, communicationPatterns),
118
+
119
+ // Protocol optimization
120
+ protocol: await this.optimizeProtocols(network),
121
+
122
+ // Caching strategies
123
+ caching: await this.optimizeCaching(communicationPatterns),
124
+
125
+ // Compression optimization
126
+ compression: await this.optimizeCompression(communicationPatterns)
127
+ };
128
+
129
+ return optimization;
130
+ }
131
+
132
+ // Physical network topology optimization
133
+ async optimizePhysicalNetwork(network) {
134
+ // Calculate optimal agent placement
135
+ const placement = await this.calculateOptimalPlacement(network.agents);
136
+
137
+ // Minimize communication distance
138
+ const distanceOptimization = this.optimizeCommunicationDistance(placement);
139
+
140
+ // Bandwidth allocation optimization
141
+ const bandwidthOptimization = await this.optimizeBandwidthAllocation(network);
142
+
143
+ return {
144
+ placement,
145
+ distanceOptimization,
146
+ bandwidthOptimization,
147
+ expectedLatencyReduction: this.calculateExpectedReduction(
148
+ distanceOptimization,
149
+ bandwidthOptimization
150
+ )
151
+ };
152
+ }
153
+
154
+ // Intelligent routing optimization
155
+ async optimizeRouting(network, patterns) {
156
+ // Analyze communication patterns
157
+ const patternAnalysis = this.analyzeCommunicationPatterns(patterns);
158
+
159
+ // Generate optimal routing tables
160
+ const routingTables = await this.generateOptimalRouting(network, patternAnalysis);
161
+
162
+ // Implement adaptive routing
163
+ const adaptiveRouting = new AdaptiveRoutingSystem(routingTables);
164
+
165
+ // Load balancing across routes
166
+ const loadBalancing = new RouteLoadBalancer(routingTables);
167
+
168
+ return {
169
+ routingTables,
170
+ adaptiveRouting,
171
+ loadBalancing,
172
+ patternAnalysis
173
+ };
174
+ }
175
+ }
176
+ ```
177
+
178
+ ### 3. Agent Placement Strategies
179
+ ```javascript
180
+ // Sophisticated agent placement optimization
181
+ class AgentPlacementOptimizer {
182
+ constructor() {
183
+ this.algorithms = {
184
+ genetic: new GeneticPlacementAlgorithm(),
185
+ simulated_annealing: new SimulatedAnnealingPlacement(),
186
+ particle_swarm: new ParticleSwarmPlacement(),
187
+ graph_partitioning: new GraphPartitioningPlacement(),
188
+ machine_learning: new MLBasedPlacement()
189
+ };
190
+ }
191
+
192
+ // Multi-algorithm agent placement optimization
193
+ async optimizePlacement(agents, constraints, objectives) {
194
+ const results = new Map();
195
+
196
+ // Run multiple algorithms in parallel
197
+ const algorithmPromises = Object.entries(this.algorithms).map(
198
+ async ([name, algorithm]) => {
199
+ const result = await algorithm.optimize(agents, constraints, objectives);
200
+ return [name, result];
201
+ }
202
+ );
203
+
204
+ const algorithmResults = await Promise.all(algorithmPromises);
205
+
206
+ for (const [name, result] of algorithmResults) {
207
+ results.set(name, result);
208
+ }
209
+
210
+ // Ensemble optimization - combine best results
211
+ const ensembleResult = await this.ensembleOptimization(results, objectives);
212
+
213
+ return {
214
+ bestPlacement: ensembleResult.placement,
215
+ algorithm: ensembleResult.algorithm,
216
+ score: ensembleResult.score,
217
+ individualResults: results,
218
+ improvementPotential: ensembleResult.improvement
219
+ };
220
+ }
221
+
222
+ // Genetic algorithm for agent placement
223
+ async geneticPlacementOptimization(agents, constraints) {
224
+ const ga = new GeneticAlgorithm({
225
+ populationSize: 100,
226
+ mutationRate: 0.1,
227
+ crossoverRate: 0.8,
228
+ maxGenerations: 500,
229
+ eliteSize: 10
230
+ });
231
+
232
+ // Initialize population with random placements
233
+ const initialPopulation = this.generateInitialPlacements(agents, constraints);
234
+
235
+ // Define fitness function
236
+ const fitnessFunction = (placement) => this.calculatePlacementFitness(placement, constraints);
237
+
238
+ // Evolve optimal placement
239
+ const result = await ga.evolve(initialPopulation, fitnessFunction);
240
+
241
+ return {
242
+ placement: result.bestIndividual,
243
+ fitness: result.bestFitness,
244
+ generations: result.generations,
245
+ convergence: result.convergenceHistory
246
+ };
247
+ }
248
+
249
+ // Graph partitioning for agent placement
250
+ async graphPartitioningPlacement(agents, communicationGraph) {
251
+ // Use METIS-like algorithm for graph partitioning
252
+ const partitioner = new GraphPartitioner({
253
+ objective: 'minimize_cut',
254
+ balanceConstraint: 0.05, // 5% imbalance tolerance
255
+ refinement: true
256
+ });
257
+
258
+ // Create communication weight matrix
259
+ const weights = this.createCommunicationWeights(agents, communicationGraph);
260
+
261
+ // Partition the graph
262
+ const partitions = await partitioner.partition(communicationGraph, weights);
263
+
264
+ // Map partitions to physical locations
265
+ const placement = this.mapPartitionsToLocations(partitions, agents);
266
+
267
+ return {
268
+ placement,
269
+ partitions,
270
+ cutWeight: partitioner.getCutWeight(),
271
+ balance: partitioner.getBalance()
272
+ };
273
+ }
274
+ }
275
+ ```
276
+
277
+ ### 4. Communication Pattern Optimization
278
+ ```javascript
279
+ // Advanced communication pattern optimization
280
+ class CommunicationOptimizer {
281
+ constructor() {
282
+ this.patternAnalyzer = new PatternAnalyzer();
283
+ this.protocolOptimizer = new ProtocolOptimizer();
284
+ this.messageOptimizer = new MessageOptimizer();
285
+ this.compressionEngine = new CompressionEngine();
286
+ }
287
+
288
+ // Comprehensive communication optimization
289
+ async optimizeCommunication(swarm, historicalData) {
290
+ // Analyze communication patterns
291
+ const patterns = await this.patternAnalyzer.analyze(historicalData);
292
+
293
+ // Optimize based on pattern analysis
294
+ const optimizations = {
295
+ // Message batching optimization
296
+ batching: await this.optimizeMessageBatching(patterns),
297
+
298
+ // Protocol selection optimization
299
+ protocols: await this.optimizeProtocols(patterns),
300
+
301
+ // Compression optimization
302
+ compression: await this.optimizeCompression(patterns),
303
+
304
+ // Caching strategies
305
+ caching: await this.optimizeCaching(patterns),
306
+
307
+ // Routing optimization
308
+ routing: await this.optimizeMessageRouting(patterns)
309
+ };
310
+
311
+ return optimizations;
312
+ }
313
+
314
+ // Intelligent message batching
315
+ async optimizeMessageBatching(patterns) {
316
+ const batchingStrategies = [
317
+ new TimeBatchingStrategy(),
318
+ new SizeBatchingStrategy(),
319
+ new AdaptiveBatchingStrategy(),
320
+ new PriorityBatchingStrategy()
321
+ ];
322
+
323
+ const evaluations = await Promise.all(
324
+ batchingStrategies.map(strategy =>
325
+ this.evaluateBatchingStrategy(strategy, patterns)
326
+ )
327
+ );
328
+
329
+ const optimal = evaluations.reduce((best, current) =>
330
+ current.score > best.score ? current : best
331
+ );
332
+
333
+ return {
334
+ strategy: optimal.strategy,
335
+ configuration: optimal.configuration,
336
+ expectedImprovement: optimal.improvement,
337
+ metrics: optimal.metrics
338
+ };
339
+ }
340
+
341
+ // Dynamic protocol selection
342
+ async optimizeProtocols(patterns) {
343
+ const protocols = {
344
+ tcp: { reliability: 0.99, latency: 'medium', overhead: 'high' },
345
+ udp: { reliability: 0.95, latency: 'low', overhead: 'low' },
346
+ websocket: { reliability: 0.98, latency: 'medium', overhead: 'medium' },
347
+ grpc: { reliability: 0.99, latency: 'low', overhead: 'medium' },
348
+ mqtt: { reliability: 0.97, latency: 'low', overhead: 'low' }
349
+ };
350
+
351
+ const recommendations = new Map();
352
+
353
+ for (const [agentPair, pattern] of patterns.pairwisePatterns) {
354
+ const optimal = this.selectOptimalProtocol(protocols, pattern);
355
+ recommendations.set(agentPair, optimal);
356
+ }
357
+
358
+ return recommendations;
359
+ }
360
+ }
361
+ ```
362
+
363
+ ## MCP Integration Hooks
364
+
365
+ ### Topology Management Integration
366
+ ```javascript
367
+ // Comprehensive MCP topology integration
368
+ const topologyIntegration = {
369
+ // Real-time topology optimization
370
+ async optimizeSwarmTopology(swarmId, optimizationConfig = {}) {
371
+ // Get current swarm status
372
+ const swarmStatus = await mcp.swarm_status({ swarmId });
373
+
374
+ // Analyze current topology performance
375
+ const performance = await mcp.performance_report({ format: 'detailed' });
376
+
377
+ // Identify bottlenecks in current topology
378
+ const bottlenecks = await mcp.bottleneck_analyze({ component: 'topology' });
379
+
380
+ // Generate optimization recommendations
381
+ const recommendations = await this.generateTopologyRecommendations(
382
+ swarmStatus,
383
+ performance,
384
+ bottlenecks,
385
+ optimizationConfig
386
+ );
387
+
388
+ // Apply optimization if beneficial
389
+ if (recommendations.beneficial) {
390
+ const result = await mcp.topology_optimize({ swarmId });
391
+
392
+ // Monitor optimization impact
393
+ const impact = await this.monitorOptimizationImpact(swarmId, result);
394
+
395
+ return {
396
+ applied: true,
397
+ recommendations,
398
+ result,
399
+ impact
400
+ };
401
+ }
402
+
403
+ return {
404
+ applied: false,
405
+ recommendations,
406
+ reason: 'No beneficial optimization found'
407
+ };
408
+ },
409
+
410
+ // Dynamic swarm scaling with topology consideration
411
+ async scaleWithTopologyOptimization(swarmId, targetSize, workloadProfile) {
412
+ // Current swarm state
413
+ const currentState = await mcp.swarm_status({ swarmId });
414
+
415
+ // Calculate optimal topology for target size
416
+ const optimalTopology = await this.calculateOptimalTopologyForSize(
417
+ targetSize,
418
+ workloadProfile
419
+ );
420
+
421
+ // Plan scaling strategy
422
+ const scalingPlan = await this.planTopologyAwareScaling(
423
+ currentState,
424
+ targetSize,
425
+ optimalTopology
426
+ );
427
+
428
+ // Execute scaling with topology optimization
429
+ const scalingResult = await mcp.swarm_scale({
430
+ swarmId,
431
+ targetSize
432
+ });
433
+
434
+ // Apply topology optimization after scaling
435
+ if (scalingResult.success) {
436
+ await mcp.topology_optimize({ swarmId });
437
+ }
438
+
439
+ return {
440
+ scalingResult,
441
+ topologyOptimization: scalingResult.success,
442
+ finalTopology: optimalTopology
443
+ };
444
+ },
445
+
446
+ // Coordination optimization
447
+ async optimizeCoordination(swarmId) {
448
+ // Analyze coordination patterns
449
+ const coordinationMetrics = await mcp.coordination_sync({ swarmId });
450
+
451
+ // Identify coordination bottlenecks
452
+ const coordinationBottlenecks = await mcp.bottleneck_analyze({
453
+ component: 'coordination'
454
+ });
455
+
456
+ // Optimize coordination patterns
457
+ const optimization = await this.optimizeCoordinationPatterns(
458
+ coordinationMetrics,
459
+ coordinationBottlenecks
460
+ );
461
+
462
+ return optimization;
463
+ }
464
+ };
465
+ ```
466
+
467
+ ### Neural Network Integration
468
+ ```javascript
469
+ // AI-powered topology optimization
470
+ class NeuralTopologyOptimizer {
471
+ constructor() {
472
+ this.models = {
473
+ topology_predictor: null,
474
+ performance_estimator: null,
475
+ pattern_recognizer: null
476
+ };
477
+ }
478
+
479
+ // Initialize neural models
480
+ async initializeModels() {
481
+ // Load pre-trained models or train new ones
482
+ this.models.topology_predictor = await mcp.model_load({
483
+ modelPath: '/models/topology_optimizer.model'
484
+ });
485
+
486
+ this.models.performance_estimator = await mcp.model_load({
487
+ modelPath: '/models/performance_estimator.model'
488
+ });
489
+
490
+ this.models.pattern_recognizer = await mcp.model_load({
491
+ modelPath: '/models/pattern_recognizer.model'
492
+ });
493
+ }
494
+
495
+ // AI-powered topology prediction
496
+ async predictOptimalTopology(swarmState, workloadProfile) {
497
+ if (!this.models.topology_predictor) {
498
+ await this.initializeModels();
499
+ }
500
+
501
+ // Prepare input features
502
+ const features = this.extractTopologyFeatures(swarmState, workloadProfile);
503
+
504
+ // Predict optimal topology
505
+ const prediction = await mcp.neural_predict({
506
+ modelId: this.models.topology_predictor.id,
507
+ input: JSON.stringify(features)
508
+ });
509
+
510
+ return {
511
+ predictedTopology: prediction.topology,
512
+ confidence: prediction.confidence,
513
+ expectedImprovement: prediction.improvement,
514
+ reasoning: prediction.reasoning
515
+ };
516
+ }
517
+
518
+ // Train topology optimization model
519
+ async trainTopologyModel(trainingData) {
520
+ const trainingConfig = {
521
+ pattern_type: 'optimization',
522
+ training_data: JSON.stringify(trainingData),
523
+ epochs: 100
524
+ };
525
+
526
+ const trainingResult = await mcp.neural_train(trainingConfig);
527
+
528
+ // Save trained model
529
+ if (trainingResult.success) {
530
+ await mcp.model_save({
531
+ modelId: trainingResult.modelId,
532
+ path: '/models/topology_optimizer.model'
533
+ });
534
+ }
535
+
536
+ return trainingResult;
537
+ }
538
+ }
539
+ ```
540
+
541
+ ## Advanced Optimization Algorithms
542
+
543
+ ### 1. Genetic Algorithm for Topology Evolution
544
+ ```javascript
545
+ // Genetic algorithm implementation for topology optimization
546
+ class GeneticTopologyOptimizer {
547
+ constructor(config = {}) {
548
+ this.populationSize = config.populationSize || 50;
549
+ this.mutationRate = config.mutationRate || 0.1;
550
+ this.crossoverRate = config.crossoverRate || 0.8;
551
+ this.maxGenerations = config.maxGenerations || 100;
552
+ this.eliteSize = config.eliteSize || 5;
553
+ }
554
+
555
+ // Evolve optimal topology
556
+ async evolve(initialTopologies, fitnessFunction, constraints) {
557
+ let population = initialTopologies;
558
+ let generation = 0;
559
+ let bestFitness = -Infinity;
560
+ let bestTopology = null;
561
+
562
+ const convergenceHistory = [];
563
+
564
+ while (generation < this.maxGenerations) {
565
+ // Evaluate fitness for each topology
566
+ const fitness = await Promise.all(
567
+ population.map(topology => fitnessFunction(topology, constraints))
568
+ );
569
+
570
+ // Track best solution
571
+ const maxFitnessIndex = fitness.indexOf(Math.max(...fitness));
572
+ if (fitness[maxFitnessIndex] > bestFitness) {
573
+ bestFitness = fitness[maxFitnessIndex];
574
+ bestTopology = population[maxFitnessIndex];
575
+ }
576
+
577
+ convergenceHistory.push({
578
+ generation,
579
+ bestFitness,
580
+ averageFitness: fitness.reduce((a, b) => a + b) / fitness.length
581
+ });
582
+
583
+ // Selection
584
+ const selected = this.selection(population, fitness);
585
+
586
+ // Crossover
587
+ const offspring = await this.crossover(selected);
588
+
589
+ // Mutation
590
+ const mutated = await this.mutation(offspring, constraints);
591
+
592
+ // Next generation
593
+ population = this.nextGeneration(population, fitness, mutated);
594
+ generation++;
595
+ }
596
+
597
+ return {
598
+ bestTopology,
599
+ bestFitness,
600
+ generation,
601
+ convergenceHistory
602
+ };
603
+ }
604
+
605
+ // Topology crossover operation
606
+ async crossover(parents) {
607
+ const offspring = [];
608
+
609
+ for (let i = 0; i < parents.length - 1; i += 2) {
610
+ if (Math.random() < this.crossoverRate) {
611
+ const [child1, child2] = await this.crossoverTopologies(
612
+ parents[i],
613
+ parents[i + 1]
614
+ );
615
+ offspring.push(child1, child2);
616
+ } else {
617
+ offspring.push(parents[i], parents[i + 1]);
618
+ }
619
+ }
620
+
621
+ return offspring;
622
+ }
623
+
624
+ // Topology mutation operation
625
+ async mutation(population, constraints) {
626
+ return Promise.all(
627
+ population.map(async topology => {
628
+ if (Math.random() < this.mutationRate) {
629
+ return await this.mutateTopology(topology, constraints);
630
+ }
631
+ return topology;
632
+ })
633
+ );
634
+ }
635
+ }
636
+ ```
637
+
638
+ ### 2. Simulated Annealing for Topology Optimization
639
+ ```javascript
640
+ // Simulated annealing implementation
641
+ class SimulatedAnnealingOptimizer {
642
+ constructor(config = {}) {
643
+ this.initialTemperature = config.initialTemperature || 1000;
644
+ this.coolingRate = config.coolingRate || 0.95;
645
+ this.minTemperature = config.minTemperature || 1;
646
+ this.maxIterations = config.maxIterations || 10000;
647
+ }
648
+
649
+ // Simulated annealing optimization
650
+ async optimize(initialTopology, objectiveFunction, constraints) {
651
+ let currentTopology = initialTopology;
652
+ let currentScore = await objectiveFunction(currentTopology, constraints);
653
+
654
+ let bestTopology = currentTopology;
655
+ let bestScore = currentScore;
656
+
657
+ let temperature = this.initialTemperature;
658
+ let iteration = 0;
659
+
660
+ const history = [];
661
+
662
+ while (temperature > this.minTemperature && iteration < this.maxIterations) {
663
+ // Generate neighbor topology
664
+ const neighborTopology = await this.generateNeighbor(currentTopology, constraints);
665
+ const neighborScore = await objectiveFunction(neighborTopology, constraints);
666
+
667
+ // Accept or reject the neighbor
668
+ const deltaScore = neighborScore - currentScore;
669
+
670
+ if (deltaScore > 0 || Math.random() < Math.exp(deltaScore / temperature)) {
671
+ currentTopology = neighborTopology;
672
+ currentScore = neighborScore;
673
+
674
+ // Update best solution
675
+ if (neighborScore > bestScore) {
676
+ bestTopology = neighborTopology;
677
+ bestScore = neighborScore;
678
+ }
679
+ }
680
+
681
+ // Record history
682
+ history.push({
683
+ iteration,
684
+ temperature,
685
+ currentScore,
686
+ bestScore
687
+ });
688
+
689
+ // Cool down
690
+ temperature *= this.coolingRate;
691
+ iteration++;
692
+ }
693
+
694
+ return {
695
+ bestTopology,
696
+ bestScore,
697
+ iterations: iteration,
698
+ history
699
+ };
700
+ }
701
+
702
+ // Generate neighbor topology through local modifications
703
+ async generateNeighbor(topology, constraints) {
704
+ const modifications = [
705
+ () => this.addConnection(topology, constraints),
706
+ () => this.removeConnection(topology, constraints),
707
+ () => this.modifyConnection(topology, constraints),
708
+ () => this.relocateAgent(topology, constraints)
709
+ ];
710
+
711
+ const modification = modifications[Math.floor(Math.random() * modifications.length)];
712
+ return await modification();
713
+ }
714
+ }
715
+ ```
716
+
717
+ ## Operational Commands
718
+
719
+ ### Topology Optimization Commands
720
+ ```bash
721
+ # Analyze current topology
722
+ npx claude-flow topology-analyze --swarm-id <id> --metrics performance
723
+
724
+ # Optimize topology automatically
725
+ npx claude-flow topology-optimize --swarm-id <id> --strategy adaptive
726
+
727
+ # Compare topology configurations
728
+ npx claude-flow topology-compare --topologies ["hierarchical", "mesh", "hybrid"]
729
+
730
+ # Generate topology recommendations
731
+ npx claude-flow topology-recommend --workload-profile <file> --constraints <file>
732
+
733
+ # Monitor topology performance
734
+ npx claude-flow topology-monitor --swarm-id <id> --interval 60
735
+ ```
736
+
737
+ ### Agent Placement Commands
738
+ ```bash
739
+ # Optimize agent placement
740
+ npx claude-flow placement-optimize --algorithm genetic --agents <agent-list>
741
+
742
+ # Analyze placement efficiency
743
+ npx claude-flow placement-analyze --current-placement <config>
744
+
745
+ # Generate placement recommendations
746
+ npx claude-flow placement-recommend --communication-patterns <file>
747
+ ```
748
+
749
+ ## Integration Points
750
+
751
+ ### With Other Optimization Agents
752
+ - **Load Balancer**: Coordinates topology changes with load distribution
753
+ - **Performance Monitor**: Receives topology performance metrics
754
+ - **Resource Manager**: Considers resource constraints in topology decisions
755
+
756
+ ### With Swarm Infrastructure
757
+ - **Task Orchestrator**: Adapts task distribution to topology changes
758
+ - **Agent Coordinator**: Manages agent connections during topology updates
759
+ - **Memory System**: Stores topology optimization history and patterns
760
+
761
+ ## Performance Metrics
762
+
763
+ ### Topology Performance Indicators
764
+ ```javascript
765
+ // Comprehensive topology metrics
766
+ const topologyMetrics = {
767
+ // Communication efficiency
768
+ communicationEfficiency: {
769
+ latency: this.calculateAverageLatency(),
770
+ throughput: this.calculateThroughput(),
771
+ bandwidth_utilization: this.calculateBandwidthUtilization(),
772
+ message_overhead: this.calculateMessageOverhead()
773
+ },
774
+
775
+ // Network topology metrics
776
+ networkMetrics: {
777
+ diameter: this.calculateNetworkDiameter(),
778
+ clustering_coefficient: this.calculateClusteringCoefficient(),
779
+ betweenness_centrality: this.calculateBetweennessCentrality(),
780
+ degree_distribution: this.calculateDegreeDistribution()
781
+ },
782
+
783
+ // Fault tolerance
784
+ faultTolerance: {
785
+ connectivity: this.calculateConnectivity(),
786
+ redundancy: this.calculateRedundancy(),
787
+ single_point_failures: this.identifySinglePointFailures(),
788
+ recovery_time: this.calculateRecoveryTime()
789
+ },
790
+
791
+ // Scalability metrics
792
+ scalability: {
793
+ growth_capacity: this.calculateGrowthCapacity(),
794
+ scaling_efficiency: this.calculateScalingEfficiency(),
795
+ bottleneck_points: this.identifyBottleneckPoints(),
796
+ optimal_size: this.calculateOptimalSize()
797
+ }
798
+ };
799
+ ```
800
+
801
+ This Topology Optimizer agent provides sophisticated swarm topology optimization with AI-powered decision making, advanced algorithms, and comprehensive performance monitoring for optimal swarm coordination.