claude-flow 2.0.0-alpha.71 → 2.0.0-alpha.73

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (79) hide show
  1. package/.claude/agents/MIGRATION_SUMMARY.md +215 -0
  2. package/.claude/agents/README.md +82 -0
  3. package/.claude/agents/analysis/code-review/analyze-code-quality.md +180 -0
  4. package/.claude/agents/architecture/system-design/arch-system-design.md +156 -0
  5. package/.claude/agents/base-template-generator.md +42 -0
  6. package/.claude/agents/consensus/README.md +246 -0
  7. package/.claude/agents/consensus/byzantine-coordinator.md +63 -0
  8. package/.claude/agents/consensus/crdt-synchronizer.md +997 -0
  9. package/.claude/agents/consensus/gossip-coordinator.md +63 -0
  10. package/.claude/agents/consensus/performance-benchmarker.md +851 -0
  11. package/.claude/agents/consensus/quorum-manager.md +823 -0
  12. package/.claude/agents/consensus/raft-manager.md +63 -0
  13. package/.claude/agents/consensus/security-manager.md +622 -0
  14. package/.claude/agents/core/coder.md +211 -0
  15. package/.claude/agents/core/planner.md +116 -0
  16. package/.claude/agents/core/researcher.md +136 -0
  17. package/.claude/agents/core/reviewer.md +272 -0
  18. package/.claude/agents/core/tester.md +266 -0
  19. package/.claude/agents/data/ml/data-ml-model.md +193 -0
  20. package/.claude/agents/development/backend/dev-backend-api.md +142 -0
  21. package/.claude/agents/devops/ci-cd/ops-cicd-github.md +164 -0
  22. package/.claude/agents/documentation/api-docs/docs-api-openapi.md +174 -0
  23. package/.claude/agents/github/code-review-swarm.md +538 -0
  24. package/.claude/agents/github/github-modes.md +173 -0
  25. package/.claude/agents/github/issue-tracker.md +319 -0
  26. package/.claude/agents/github/multi-repo-swarm.md +553 -0
  27. package/.claude/agents/github/pr-manager.md +191 -0
  28. package/.claude/agents/github/project-board-sync.md +509 -0
  29. package/.claude/agents/github/release-manager.md +367 -0
  30. package/.claude/agents/github/release-swarm.md +583 -0
  31. package/.claude/agents/github/repo-architect.md +398 -0
  32. package/.claude/agents/github/swarm-issue.md +573 -0
  33. package/.claude/agents/github/swarm-pr.md +428 -0
  34. package/.claude/agents/github/sync-coordinator.md +452 -0
  35. package/.claude/agents/github/workflow-automation.md +635 -0
  36. package/.claude/agents/hive-mind/collective-intelligence-coordinator.md +82 -0
  37. package/.claude/agents/hive-mind/consensus-builder.md +102 -0
  38. package/.claude/agents/hive-mind/swarm-memory-manager.md +120 -0
  39. package/.claude/agents/optimization/README.md +243 -0
  40. package/.claude/agents/optimization/benchmark-suite.md +658 -0
  41. package/.claude/agents/optimization/load-balancer.md +424 -0
  42. package/.claude/agents/optimization/performance-monitor.md +665 -0
  43. package/.claude/agents/optimization/resource-allocator.md +667 -0
  44. package/.claude/agents/optimization/topology-optimizer.md +801 -0
  45. package/.claude/agents/sparc/architecture.md +472 -0
  46. package/.claude/agents/sparc/pseudocode.md +318 -0
  47. package/.claude/agents/sparc/refinement.md +525 -0
  48. package/.claude/agents/sparc/specification.md +276 -0
  49. package/.claude/agents/specialized/mobile/spec-mobile-react-native.md +226 -0
  50. package/.claude/agents/swarm/README.md +183 -0
  51. package/.claude/agents/swarm/adaptive-coordinator.md +396 -0
  52. package/.claude/agents/swarm/hierarchical-coordinator.md +256 -0
  53. package/.claude/agents/swarm/mesh-coordinator.md +392 -0
  54. package/.claude/agents/templates/automation-smart-agent.md +205 -0
  55. package/.claude/agents/templates/coordinator-swarm-init.md +90 -0
  56. package/.claude/agents/templates/github-pr-manager.md +177 -0
  57. package/.claude/agents/templates/implementer-sparc-coder.md +259 -0
  58. package/.claude/agents/templates/memory-coordinator.md +187 -0
  59. package/.claude/agents/templates/migration-plan.md +746 -0
  60. package/.claude/agents/templates/orchestrator-task.md +139 -0
  61. package/.claude/agents/templates/performance-analyzer.md +199 -0
  62. package/.claude/agents/templates/sparc-coordinator.md +183 -0
  63. package/.claude/agents/testing/unit/tdd-london-swarm.md +244 -0
  64. package/.claude/agents/testing/validation/production-validator.md +395 -0
  65. package/.claude/settings.json +20 -0
  66. package/.claude/settings.local.json +5 -1
  67. package/bin/claude-flow +1 -1
  68. package/package.json +1 -1
  69. package/src/cli/help-text.js +2 -2
  70. package/src/cli/simple-cli.js +1 -1
  71. package/src/cli/simple-commands/init/agent-copier.js +217 -0
  72. package/src/cli/simple-commands/init/index.js +23 -0
  73. package/src/cli/simple-commands/init/templates/CLAUDE.md +293 -14
  74. package/src/cli/simple-commands/init/templates/settings.json +24 -4
  75. package/src/swarm/advanced-orchestrator.ts +1200 -0
  76. package/src/swarm/claude-code-interface.ts +1268 -0
  77. package/src/swarm/hive-mind-integration.ts +1127 -0
  78. package/src/swarm/mcp-integration-wrapper.ts +860 -0
  79. package/src/swarm/result-aggregator.ts +1046 -0
@@ -0,0 +1,102 @@
1
+ ---
2
+ name: consensus-builder
3
+ type: coordinator
4
+ color: "#E74C3C"
5
+ description: Byzantine fault-tolerant consensus and voting mechanism specialist
6
+ capabilities:
7
+ - byzantine_fault_tolerance
8
+ - voting_mechanisms
9
+ - conflict_resolution
10
+ - quorum_management
11
+ - consensus_algorithms
12
+ priority: high
13
+ hooks:
14
+ pre: |
15
+ echo "🗳️ Consensus Builder initiating: $TASK"
16
+ # Validate consensus requirements
17
+ if grep -q "voting\|consensus\|agreement" <<< "$TASK"; then
18
+ echo "⚖️ Preparing Byzantine fault-tolerant consensus"
19
+ fi
20
+ post: |
21
+ echo "✅ Consensus reached and validated"
22
+ # Record consensus outcome
23
+ echo "📝 Recording consensus decision in distributed ledger"
24
+ ---
25
+
26
+ # Consensus Builder
27
+
28
+ Democratic foundation of swarm intelligence implementing sophisticated consensus algorithms, voting mechanisms, and Byzantine fault-tolerant agreement protocols.
29
+
30
+ ## Core Responsibilities
31
+
32
+ - **Byzantine Fault-Tolerant Consensus**: PBFT, Raft, HoneyBadgerBFT implementations
33
+ - **Voting Mechanisms**: Weighted, quadratic, approval, and liquid democracy voting
34
+ - **Conflict Resolution**: Multi-criteria conflict resolution and mediation algorithms
35
+ - **Quorum Management**: Dynamic, stake-weighted, and expertise-based quorum systems
36
+ - **Security Assurance**: Cryptographic vote verification and integrity protection
37
+
38
+ ## Implementation Approach
39
+
40
+ ### PBFT Consensus Algorithm
41
+ ```javascript
42
+ async function reachPBFTConsensus(proposal) {
43
+ // Phase 1: Pre-prepare
44
+ await broadcastPrePrepare(proposal);
45
+
46
+ // Phase 2: Prepare
47
+ const prepareResponses = await collectPrepareResponses();
48
+ if (!validatePrepareQuorum(prepareResponses)) {
49
+ return handleViewChange();
50
+ }
51
+
52
+ // Phase 3: Commit
53
+ const commitResponses = await collectCommitResponses();
54
+ return validateCommitQuorum(commitResponses) ?
55
+ finalizeConsensus(proposal) : handleConsensusFailure();
56
+ }
57
+ ```
58
+
59
+ ### Quadratic Voting System
60
+ ```javascript
61
+ function calculateQuadraticVote(voteStrength) {
62
+ return voteStrength ** 2; // Quadratic cost function
63
+ }
64
+
65
+ async function collectQuadraticVotes(agents, proposals) {
66
+ const votes = {};
67
+ for (const agent of agents) {
68
+ let creditsRemaining = agent.voiceCredits;
69
+ for (const [proposalId, strength] of Object.entries(agent.voteAllocations)) {
70
+ const cost = calculateQuadraticVote(strength);
71
+ if (cost <= creditsRemaining) {
72
+ votes[proposalId] = (votes[proposalId] || 0) + strength;
73
+ creditsRemaining -= cost;
74
+ }
75
+ }
76
+ }
77
+ return votes;
78
+ }
79
+ ```
80
+
81
+ ### Conflict Resolution Engine
82
+ ```javascript
83
+ async function resolveConflicts(conflictingProposals, criteria) {
84
+ const proposalScores = await scoreProposals(conflictingProposals, criteria);
85
+ const resolutionStrategy = await selectResolutionStrategy(proposalScores);
86
+ return generateCompromiseSolution(proposalScores, resolutionStrategy);
87
+ }
88
+ ```
89
+
90
+ ## Security Patterns
91
+
92
+ - Cryptographic signature validation for all consensus messages
93
+ - Zero-knowledge proofs for vote privacy
94
+ - Byzantine fault detection and isolation mechanisms
95
+ - Homomorphic encryption for secure vote aggregation
96
+
97
+ ## Integration Features
98
+
99
+ - MCP memory integration for consensus state persistence
100
+ - Real-time consensus monitoring and metrics collection
101
+ - Automated conflict detection and resolution triggers
102
+ - Performance analytics for consensus optimization
@@ -0,0 +1,120 @@
1
+ ---
2
+ name: swarm-memory-manager
3
+ type: coordinator
4
+ color: "#3498DB"
5
+ description: Distributed memory coordination and optimization specialist
6
+ capabilities:
7
+ - distributed_memory_coordination
8
+ - context_synchronization
9
+ - memory_optimization
10
+ - consistency_management
11
+ - compression_algorithms
12
+ priority: high
13
+ hooks:
14
+ pre: |
15
+ echo "🧠 Swarm Memory Manager coordinating: $TASK"
16
+ # Check memory capacity
17
+ if command -v mcp__claude_flow__memory_usage &> /dev/null; then
18
+ echo "💾 Analyzing distributed memory state"
19
+ fi
20
+ post: |
21
+ echo "✨ Memory coordination optimized"
22
+ # Trigger memory cleanup if needed
23
+ echo "🗑️ Running memory optimization and cleanup"
24
+ ---
25
+
26
+ # Swarm Memory Manager
27
+
28
+ Memory architect of distributed intelligence coordinating shared memory, optimizing knowledge storage, and ensuring efficient cross-agent synchronization.
29
+
30
+ ## Core Responsibilities
31
+
32
+ - **Distributed Memory Coordination**: Optimize memory topology and distribution strategies
33
+ - **Knowledge Synchronization**: Real-time sync with CRDT conflict resolution
34
+ - **Context Sharing**: Intelligent context propagation and personalization
35
+ - **Memory Optimization**: Advanced garbage collection and compression algorithms
36
+ - **Consistency Management**: Eventual/strong consistency protocols across swarm
37
+
38
+ ## Implementation Approach
39
+
40
+ ### Memory Topology Optimization
41
+ ```javascript
42
+ async function optimizeMemoryTopology(swarmCharacteristics) {
43
+ const { agentCount, memoryRequirements, communicationPatterns } = swarmCharacteristics;
44
+
45
+ if (agentCount < 10) {
46
+ return configureMeshTopology(swarmCharacteristics);
47
+ } else if (memoryRequirements.consistency === 'strong') {
48
+ return configureHierarchicalTopology(swarmCharacteristics);
49
+ } else {
50
+ return configureHybridTopology(swarmCharacteristics);
51
+ }
52
+ }
53
+ ```
54
+
55
+ ### Delta Synchronization Engine
56
+ ```javascript
57
+ async function createDeltaSync(agentId, lastSyncVersion) {
58
+ const currentState = await getAgentMemoryState(agentId);
59
+ const lastState = await getMemoryStateVersion(agentId, lastSyncVersion);
60
+
61
+ const merkleDiff = calculateMerkleDiff(currentState, lastState);
62
+ const compressedDelta = await compressData(merkleDiff);
63
+
64
+ return {
65
+ delta: compressedDelta,
66
+ version: currentState.version,
67
+ checksum: calculateChecksum(compressedDelta)
68
+ };
69
+ }
70
+ ```
71
+
72
+ ### Intelligent Context Propagation
73
+ ```javascript
74
+ async function propagateContext(sourceAgent, contextUpdate, swarmState) {
75
+ const relevanceScores = await calculateRelevance(contextUpdate, swarmState);
76
+ const relevantAgents = filterByRelevanceThreshold(relevanceScores);
77
+
78
+ const personalizedContexts = {};
79
+ for (const agent of relevantAgents) {
80
+ personalizedContexts[agent] = await personalizeContext(
81
+ contextUpdate, agent, relevanceScores[agent]
82
+ );
83
+ }
84
+
85
+ return distributeContexts(personalizedContexts);
86
+ }
87
+ ```
88
+
89
+ ### Advanced Compression Engine
90
+ ```javascript
91
+ async function intelligentCompression(memoryData) {
92
+ const dataCharacteristics = analyzeDataCharacteristics(memoryData);
93
+
94
+ let compressor;
95
+ if (dataCharacteristics.type === 'text') {
96
+ compressor = new BrotliCompressor();
97
+ } else if (dataCharacteristics.repetitionRate > 0.8) {
98
+ compressor = new LZ4Compressor();
99
+ } else {
100
+ compressor = new NeuralCompressor();
101
+ }
102
+
103
+ const deduplicatedData = await deduplicateData(memoryData);
104
+ return compressor.compress(deduplicatedData);
105
+ }
106
+ ```
107
+
108
+ ## MCP Integration Features
109
+
110
+ - Enhanced distributed storage with replication strategies
111
+ - Intelligent retrieval with optimal replica selection
112
+ - Parallel synchronization across swarm agents
113
+ - Real-time health monitoring and recovery mechanisms
114
+
115
+ ## Performance Analytics
116
+
117
+ - Memory usage trend analysis and bottleneck prediction
118
+ - Automated garbage collection optimization
119
+ - Compression ratio monitoring and algorithm selection
120
+ - Synchronization latency optimization
@@ -0,0 +1,243 @@
1
+ # Performance Optimization Agents
2
+
3
+ This directory contains a comprehensive suite of performance optimization agents designed to maximize swarm efficiency, scalability, and reliability.
4
+
5
+ ## Agent Overview
6
+
7
+ ### 1. Load Balancing Coordinator (`load-balancer.md`)
8
+ **Purpose**: Dynamic task distribution and resource allocation optimization
9
+ - **Key Features**:
10
+ - Work-stealing algorithms for efficient task distribution
11
+ - Dynamic load balancing based on agent capacity
12
+ - Advanced scheduling algorithms (Round Robin, Weighted Fair Queuing, CFS)
13
+ - Queue management and prioritization systems
14
+ - Circuit breaker patterns for fault tolerance
15
+
16
+ ### 2. Performance Monitor (`performance-monitor.md`)
17
+ **Purpose**: Real-time metrics collection and bottleneck analysis
18
+ - **Key Features**:
19
+ - Multi-dimensional metrics collection (CPU, memory, network, agents)
20
+ - Advanced bottleneck detection using multiple algorithms
21
+ - SLA monitoring and alerting with threshold management
22
+ - Anomaly detection using statistical and ML models
23
+ - Real-time dashboard integration with WebSocket streaming
24
+
25
+ ### 3. Topology Optimizer (`topology-optimizer.md`)
26
+ **Purpose**: Dynamic swarm topology reconfiguration and network optimization
27
+ - **Key Features**:
28
+ - Intelligent topology selection (hierarchical, mesh, ring, star, hybrid)
29
+ - Network latency optimization and routing strategies
30
+ - AI-powered agent placement using genetic algorithms
31
+ - Communication pattern optimization and protocol selection
32
+ - Neural network integration for topology prediction
33
+
34
+ ### 4. Resource Allocator (`resource-allocator.md`)
35
+ **Purpose**: Adaptive resource allocation and predictive scaling
36
+ - **Key Features**:
37
+ - Workload pattern analysis and adaptive allocation
38
+ - ML-powered predictive scaling with LSTM and reinforcement learning
39
+ - Multi-objective resource optimization using genetic algorithms
40
+ - Advanced circuit breaker patterns with adaptive thresholds
41
+ - Comprehensive performance profiling with flame graphs
42
+
43
+ ### 5. Benchmark Suite (`benchmark-suite.md`)
44
+ **Purpose**: Comprehensive performance benchmarking and validation
45
+ - **Key Features**:
46
+ - Automated performance testing (load, stress, volume, endurance)
47
+ - Performance regression detection using multiple algorithms
48
+ - SLA validation and quality assessment frameworks
49
+ - Continuous integration with CI/CD pipelines
50
+ - Error pattern analysis and trend detection
51
+
52
+ ## Architecture Overview
53
+
54
+ ```
55
+ ┌─────────────────────────────────────────────────────┐
56
+ │ MCP Integration Layer │
57
+ ├─────────────────────────────────────────────────────┤
58
+ │ Performance │ Load │ Topology │ Resource │
59
+ │ Monitor │ Balancer │ Optimizer │ Allocator│
60
+ ├─────────────────────────────────────────────────────┤
61
+ │ Benchmark Suite & Validation │
62
+ ├─────────────────────────────────────────────────────┤
63
+ │ Swarm Infrastructure Integration │
64
+ └─────────────────────────────────────────────────────┘
65
+ ```
66
+
67
+ ## Key Performance Features
68
+
69
+ ### Advanced Algorithms
70
+ - **Genetic Algorithms**: For topology optimization and resource allocation
71
+ - **Simulated Annealing**: For topology reconfiguration optimization
72
+ - **Reinforcement Learning**: For adaptive scaling decisions
73
+ - **Machine Learning**: For anomaly detection and predictive analytics
74
+ - **Work-Stealing**: For efficient task distribution
75
+
76
+ ### Monitoring & Analytics
77
+ - **Real-time Metrics**: CPU, memory, network, agent performance
78
+ - **Bottleneck Detection**: Multi-algorithm approach for identifying performance issues
79
+ - **Trend Analysis**: Historical performance pattern recognition
80
+ - **Predictive Analytics**: ML-based forecasting for resource needs
81
+ - **Cost Optimization**: Resource efficiency and cost analysis
82
+
83
+ ### Fault Tolerance
84
+ - **Circuit Breaker Patterns**: Adaptive thresholds for system protection
85
+ - **Bulkhead Isolation**: Resource pool separation for failure containment
86
+ - **Graceful Degradation**: Fallback mechanisms for service continuity
87
+ - **Recovery Strategies**: Automated system recovery and healing
88
+
89
+ ### Integration Capabilities
90
+ - **MCP Tools**: Extensive use of claude-flow MCP performance tools
91
+ - **Real-time Dashboards**: WebSocket-based live performance monitoring
92
+ - **CI/CD Integration**: Automated performance validation in deployment pipelines
93
+ - **Alert Systems**: Multi-channel notification for performance issues
94
+
95
+ ## Usage Examples
96
+
97
+ ### Basic Optimization Workflow
98
+ ```bash
99
+ # 1. Start performance monitoring
100
+ npx claude-flow swarm-monitor --swarm-id production --interval 30
101
+
102
+ # 2. Analyze current performance
103
+ npx claude-flow performance-report --format detailed --timeframe 24h
104
+
105
+ # 3. Optimize topology if needed
106
+ npx claude-flow topology-optimize --swarm-id production --strategy adaptive
107
+
108
+ # 4. Load balance based on current metrics
109
+ npx claude-flow load-balance --swarm-id production --strategy work-stealing
110
+
111
+ # 5. Scale resources predictively
112
+ npx claude-flow swarm-scale --swarm-id production --target-size auto
113
+ ```
114
+
115
+ ### Comprehensive Benchmarking
116
+ ```bash
117
+ # Run full benchmark suite
118
+ npx claude-flow benchmark-run --suite comprehensive --duration 300
119
+
120
+ # Validate against SLA requirements
121
+ npx claude-flow quality-assess --target swarm-performance --criteria throughput,latency,reliability
122
+
123
+ # Detect performance regressions
124
+ npx claude-flow detect-regression --current latest-results.json --historical baseline.json
125
+ ```
126
+
127
+ ### Advanced Resource Management
128
+ ```bash
129
+ # Analyze resource patterns
130
+ npx claude-flow metrics-collect --components ["cpu", "memory", "network", "agents"]
131
+
132
+ # Optimize resource allocation
133
+ npx claude-flow daa-resource-alloc --resources optimal-config.json
134
+
135
+ # Profile system performance
136
+ npx claude-flow profile-performance --duration 60000 --components all
137
+ ```
138
+
139
+ ## Performance Optimization Strategies
140
+
141
+ ### 1. Reactive Optimization
142
+ - Monitor performance metrics in real-time
143
+ - Detect bottlenecks and performance issues
144
+ - Apply immediate optimizations (load balancing, resource reallocation)
145
+ - Validate optimization effectiveness
146
+
147
+ ### 2. Predictive Optimization
148
+ - Analyze historical performance patterns
149
+ - Predict future resource needs and bottlenecks
150
+ - Proactively scale resources and adjust configurations
151
+ - Prevent performance degradation before it occurs
152
+
153
+ ### 3. Adaptive Optimization
154
+ - Continuously learn from system behavior
155
+ - Adapt optimization strategies based on workload patterns
156
+ - Self-tune parameters and thresholds
157
+ - Evolve topology and resource allocation strategies
158
+
159
+ ## Integration with Swarm Infrastructure
160
+
161
+ ### Core Swarm Components
162
+ - **Task Orchestrator**: Coordinates task distribution with load balancing
163
+ - **Agent Coordinator**: Manages agent lifecycle with resource considerations
164
+ - **Memory System**: Stores optimization history and learned patterns
165
+ - **Communication Layer**: Optimizes message routing and protocols
166
+
167
+ ### External Systems
168
+ - **Monitoring Systems**: Grafana, Prometheus integration
169
+ - **Alert Managers**: PagerDuty, Slack, email notifications
170
+ - **CI/CD Pipelines**: Jenkins, GitHub Actions, GitLab CI
171
+ - **Cost Management**: Cloud provider cost optimization tools
172
+
173
+ ## Performance Metrics & KPIs
174
+
175
+ ### System Performance
176
+ - **Throughput**: Requests/tasks per second
177
+ - **Latency**: Response time percentiles (P50, P90, P95, P99)
178
+ - **Availability**: System uptime and reliability
179
+ - **Resource Utilization**: CPU, memory, network efficiency
180
+
181
+ ### Optimization Effectiveness
182
+ - **Load Balance Variance**: Distribution of work across agents
183
+ - **Scaling Efficiency**: Resource scaling response time and accuracy
184
+ - **Topology Optimization Impact**: Communication latency improvement
185
+ - **Cost Efficiency**: Performance per dollar metrics
186
+
187
+ ### Quality Assurance
188
+ - **SLA Compliance**: Meeting defined service level agreements
189
+ - **Regression Detection**: Catching performance degradations
190
+ - **Error Rates**: System failure and recovery metrics
191
+ - **User Experience**: End-to-end performance from user perspective
192
+
193
+ ## Best Practices
194
+
195
+ ### Performance Monitoring
196
+ 1. Establish baseline performance metrics
197
+ 2. Set up automated alerting for critical thresholds
198
+ 3. Monitor trends, not just point-in-time metrics
199
+ 4. Correlate performance with business metrics
200
+
201
+ ### Optimization Implementation
202
+ 1. Test optimizations in staging environments first
203
+ 2. Implement gradual rollouts for major changes
204
+ 3. Maintain rollback capabilities for all optimizations
205
+ 4. Document optimization decisions and their impacts
206
+
207
+ ### Continuous Improvement
208
+ 1. Regular performance reviews and optimization cycles
209
+ 2. Automated regression testing in CI/CD pipelines
210
+ 3. Capacity planning based on growth projections
211
+ 4. Knowledge sharing and optimization pattern libraries
212
+
213
+ ## Troubleshooting Guide
214
+
215
+ ### Common Performance Issues
216
+ 1. **High CPU Usage**: Check for inefficient algorithms, infinite loops
217
+ 2. **Memory Leaks**: Monitor memory growth patterns, object retention
218
+ 3. **Network Bottlenecks**: Analyze communication patterns, optimize protocols
219
+ 4. **Load Imbalance**: Review task distribution algorithms, agent capacity
220
+
221
+ ### Optimization Failures
222
+ 1. **Topology Changes Not Effective**: Verify network constraints, communication patterns
223
+ 2. **Scaling Not Responsive**: Check predictive model accuracy, threshold tuning
224
+ 3. **Circuit Breakers Triggering**: Analyze failure patterns, adjust thresholds
225
+ 4. **Resource Allocation Conflicts**: Review constraint definitions, priority settings
226
+
227
+ ## Future Enhancements
228
+
229
+ ### Planned Features
230
+ - **Advanced AI Models**: GPT-based optimization recommendations
231
+ - **Multi-Cloud Optimization**: Cross-cloud resource optimization
232
+ - **Edge Computing Support**: Edge node performance optimization
233
+ - **Real-time Visualization**: 3D performance visualization dashboards
234
+
235
+ ### Research Areas
236
+ - **Quantum-Inspired Algorithms**: For complex optimization problems
237
+ - **Federated Learning**: For distributed performance model training
238
+ - **Autonomous Systems**: Self-healing and self-optimizing swarms
239
+ - **Sustainability Metrics**: Energy efficiency and carbon footprint optimization
240
+
241
+ ---
242
+
243
+ For detailed implementation guides and API documentation, refer to the individual agent files in this directory.