claude-flow 2.0.0-alpha.66 → 2.0.0-alpha.68

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (112) hide show
  1. package/.claude/cache/agent-pool.json +33 -0
  2. package/.claude/cache/memory-optimization.json +19 -0
  3. package/.claude/cache/neural-optimization.json +25 -0
  4. package/.claude/cache/optimized-hooks.json +19 -0
  5. package/.claude/cache/parallel-processing.json +26 -0
  6. package/.claude/optimized-settings.json +270 -0
  7. package/.claude/settings-backup.json +186 -0
  8. package/.claude/settings-enhanced.json +278 -0
  9. package/.claude/settings-fixed.json +186 -0
  10. package/.claude/settings.json +105 -8
  11. package/CHANGELOG.md +38 -0
  12. package/bin/claude-flow +1 -1
  13. package/dist/cli/simple-commands/hive-mind.js +1 -1
  14. package/dist/cli/simple-commands/hive-mind.js.map +1 -1
  15. package/dist/cli/simple-commands/hooks.js +6 -4
  16. package/dist/cli/simple-commands/hooks.js.map +1 -1
  17. package/dist/providers/anthropic-provider.d.ts +27 -0
  18. package/dist/providers/anthropic-provider.d.ts.map +1 -0
  19. package/dist/providers/anthropic-provider.js +247 -0
  20. package/dist/providers/anthropic-provider.js.map +1 -0
  21. package/dist/providers/base-provider.d.ts +134 -0
  22. package/dist/providers/base-provider.d.ts.map +1 -0
  23. package/dist/providers/base-provider.js +407 -0
  24. package/dist/providers/base-provider.js.map +1 -0
  25. package/dist/providers/cohere-provider.d.ts +28 -0
  26. package/dist/providers/cohere-provider.d.ts.map +1 -0
  27. package/dist/providers/cohere-provider.js +407 -0
  28. package/dist/providers/cohere-provider.js.map +1 -0
  29. package/dist/providers/google-provider.d.ts +23 -0
  30. package/dist/providers/google-provider.d.ts.map +1 -0
  31. package/dist/providers/google-provider.js +362 -0
  32. package/dist/providers/google-provider.js.map +1 -0
  33. package/dist/providers/index.d.ts +14 -0
  34. package/dist/providers/index.d.ts.map +1 -0
  35. package/dist/providers/index.js +18 -0
  36. package/dist/providers/index.js.map +1 -0
  37. package/dist/providers/ollama-provider.d.ts +23 -0
  38. package/dist/providers/ollama-provider.d.ts.map +1 -0
  39. package/dist/providers/ollama-provider.js +374 -0
  40. package/dist/providers/ollama-provider.js.map +1 -0
  41. package/dist/providers/openai-provider.d.ts +23 -0
  42. package/dist/providers/openai-provider.d.ts.map +1 -0
  43. package/dist/providers/openai-provider.js +349 -0
  44. package/dist/providers/openai-provider.js.map +1 -0
  45. package/dist/providers/provider-manager.d.ts +139 -0
  46. package/dist/providers/provider-manager.d.ts.map +1 -0
  47. package/dist/providers/provider-manager.js +513 -0
  48. package/dist/providers/provider-manager.js.map +1 -0
  49. package/dist/providers/types.d.ts +356 -0
  50. package/dist/providers/types.d.ts.map +1 -0
  51. package/dist/providers/types.js +61 -0
  52. package/dist/providers/types.js.map +1 -0
  53. package/dist/providers/utils.d.ts +37 -0
  54. package/dist/providers/utils.d.ts.map +1 -0
  55. package/dist/providers/utils.js +322 -0
  56. package/dist/providers/utils.js.map +1 -0
  57. package/dist/services/agentic-flow-hooks/hook-manager.d.ts +70 -0
  58. package/dist/services/agentic-flow-hooks/hook-manager.d.ts.map +1 -0
  59. package/dist/services/agentic-flow-hooks/hook-manager.js +512 -0
  60. package/dist/services/agentic-flow-hooks/hook-manager.js.map +1 -0
  61. package/dist/services/agentic-flow-hooks/index.d.ts +36 -0
  62. package/dist/services/agentic-flow-hooks/index.d.ts.map +1 -0
  63. package/dist/services/agentic-flow-hooks/index.js +325 -0
  64. package/dist/services/agentic-flow-hooks/index.js.map +1 -0
  65. package/dist/services/agentic-flow-hooks/llm-hooks.d.ts +33 -0
  66. package/dist/services/agentic-flow-hooks/llm-hooks.d.ts.map +1 -0
  67. package/dist/services/agentic-flow-hooks/llm-hooks.js +415 -0
  68. package/dist/services/agentic-flow-hooks/llm-hooks.js.map +1 -0
  69. package/dist/services/agentic-flow-hooks/memory-hooks.d.ts +45 -0
  70. package/dist/services/agentic-flow-hooks/memory-hooks.d.ts.map +1 -0
  71. package/dist/services/agentic-flow-hooks/memory-hooks.js +532 -0
  72. package/dist/services/agentic-flow-hooks/memory-hooks.js.map +1 -0
  73. package/dist/services/agentic-flow-hooks/neural-hooks.d.ts +39 -0
  74. package/dist/services/agentic-flow-hooks/neural-hooks.d.ts.map +1 -0
  75. package/dist/services/agentic-flow-hooks/neural-hooks.js +561 -0
  76. package/dist/services/agentic-flow-hooks/neural-hooks.js.map +1 -0
  77. package/dist/services/agentic-flow-hooks/performance-hooks.d.ts +33 -0
  78. package/dist/services/agentic-flow-hooks/performance-hooks.d.ts.map +1 -0
  79. package/dist/services/agentic-flow-hooks/performance-hooks.js +621 -0
  80. package/dist/services/agentic-flow-hooks/performance-hooks.js.map +1 -0
  81. package/dist/services/agentic-flow-hooks/types.d.ts +379 -0
  82. package/dist/services/agentic-flow-hooks/types.d.ts.map +1 -0
  83. package/dist/services/agentic-flow-hooks/types.js +8 -0
  84. package/dist/services/agentic-flow-hooks/types.js.map +1 -0
  85. package/dist/services/agentic-flow-hooks/workflow-hooks.d.ts +39 -0
  86. package/dist/services/agentic-flow-hooks/workflow-hooks.d.ts.map +1 -0
  87. package/dist/services/agentic-flow-hooks/workflow-hooks.js +742 -0
  88. package/dist/services/agentic-flow-hooks/workflow-hooks.js.map +1 -0
  89. package/package.json +1 -1
  90. package/scripts/optimize-performance.js +400 -0
  91. package/scripts/performance-monitor.js +263 -0
  92. package/src/cli/help-text.js +1 -1
  93. package/src/cli/simple-cli.js +1 -1
  94. package/src/cli/simple-commands/hive-mind.js +1 -1
  95. package/src/providers/anthropic-provider.ts +282 -0
  96. package/src/providers/base-provider.ts +560 -0
  97. package/src/providers/cohere-provider.ts +521 -0
  98. package/src/providers/google-provider.ts +477 -0
  99. package/src/providers/index.ts +21 -0
  100. package/src/providers/ollama-provider.ts +489 -0
  101. package/src/providers/openai-provider.ts +476 -0
  102. package/src/providers/provider-manager.ts +654 -0
  103. package/src/providers/types.ts +531 -0
  104. package/src/providers/utils.ts +376 -0
  105. package/src/services/agentic-flow-hooks/hook-manager.ts +701 -0
  106. package/src/services/agentic-flow-hooks/index.ts +386 -0
  107. package/src/services/agentic-flow-hooks/llm-hooks.ts +557 -0
  108. package/src/services/agentic-flow-hooks/memory-hooks.ts +710 -0
  109. package/src/services/agentic-flow-hooks/neural-hooks.ts +758 -0
  110. package/src/services/agentic-flow-hooks/performance-hooks.ts +827 -0
  111. package/src/services/agentic-flow-hooks/types.ts +503 -0
  112. package/src/services/agentic-flow-hooks/workflow-hooks.ts +1026 -0
@@ -0,0 +1,758 @@
1
+ /**
2
+ * Neural training hooks for agentic-flow
3
+ *
4
+ * Enables learning from multi-model responses with
5
+ * pattern detection and adaptive optimization.
6
+ */
7
+
8
+ import { agenticHookManager } from './hook-manager.js';
9
+ import type {
10
+ AgenticHookContext,
11
+ HookHandlerResult,
12
+ NeuralHookPayload,
13
+ Pattern,
14
+ TrainingData,
15
+ Prediction,
16
+ Adaptation,
17
+ SideEffect,
18
+ } from './types.js';
19
+
20
+ // ===== Pre-Neural Train Hook =====
21
+
22
+ export const preNeuralTrainHook = {
23
+ id: 'agentic-pre-neural-train',
24
+ type: 'pre-neural-train' as const,
25
+ priority: 100,
26
+ handler: async (
27
+ payload: NeuralHookPayload,
28
+ context: AgenticHookContext
29
+ ): Promise<HookHandlerResult> => {
30
+ const { operation, modelId, trainingData } = payload;
31
+
32
+ if (operation !== 'train' || !trainingData) {
33
+ return { continue: true };
34
+ }
35
+
36
+ const sideEffects: SideEffect[] = [];
37
+
38
+ // Validate training data
39
+ const validation = validateTrainingData(trainingData);
40
+ if (!validation.valid) {
41
+ return {
42
+ continue: false,
43
+ sideEffects: [
44
+ {
45
+ type: 'log',
46
+ action: 'write',
47
+ data: {
48
+ level: 'error',
49
+ message: 'Invalid training data',
50
+ data: validation,
51
+ },
52
+ },
53
+ ],
54
+ };
55
+ }
56
+
57
+ // Augment training data with historical patterns
58
+ const augmentedData = await augmentTrainingData(
59
+ trainingData,
60
+ modelId,
61
+ context
62
+ );
63
+
64
+ // Balance dataset if needed
65
+ const balancedData = balanceTrainingData(augmentedData);
66
+
67
+ // Apply data preprocessing
68
+ const preprocessedData = preprocessTrainingData(balancedData);
69
+
70
+ // Store training session metadata
71
+ sideEffects.push({
72
+ type: 'memory',
73
+ action: 'store',
74
+ data: {
75
+ key: `neural:training:${modelId}:${Date.now()}`,
76
+ value: {
77
+ originalSize: trainingData.inputs.length,
78
+ augmentedSize: augmentedData.inputs.length,
79
+ balancedSize: balancedData.inputs.length,
80
+ epochs: balancedData.epochs,
81
+ timestamp: Date.now(),
82
+ },
83
+ ttl: 86400, // 24 hours
84
+ },
85
+ });
86
+
87
+ return {
88
+ continue: true,
89
+ modified: true,
90
+ payload: {
91
+ ...payload,
92
+ trainingData: preprocessedData,
93
+ },
94
+ sideEffects,
95
+ };
96
+ },
97
+ };
98
+
99
+ // ===== Post-Neural Train Hook =====
100
+
101
+ export const postNeuralTrainHook = {
102
+ id: 'agentic-post-neural-train',
103
+ type: 'post-neural-train' as const,
104
+ priority: 100,
105
+ handler: async (
106
+ payload: NeuralHookPayload,
107
+ context: AgenticHookContext
108
+ ): Promise<HookHandlerResult> => {
109
+ const { modelId, accuracy, trainingData } = payload;
110
+
111
+ const sideEffects: SideEffect[] = [];
112
+
113
+ // Store training results
114
+ const trainingResult = {
115
+ modelId,
116
+ accuracy,
117
+ timestamp: Date.now(),
118
+ sessionId: context.sessionId,
119
+ dataSize: trainingData?.inputs.length || 0,
120
+ epochs: trainingData?.epochs || 0,
121
+ };
122
+
123
+ sideEffects.push({
124
+ type: 'memory',
125
+ action: 'store',
126
+ data: {
127
+ key: `neural:results:${modelId}:${Date.now()}`,
128
+ value: trainingResult,
129
+ ttl: 604800, // 7 days
130
+ },
131
+ });
132
+
133
+ // Update model performance history
134
+ await updateModelPerformance(modelId, accuracy, context);
135
+
136
+ // Check if model should be promoted
137
+ const shouldPromote = await evaluateModelPromotion(modelId, accuracy, context);
138
+ if (shouldPromote) {
139
+ sideEffects.push({
140
+ type: 'notification',
141
+ action: 'emit',
142
+ data: {
143
+ event: 'neural:model:promoted',
144
+ data: { modelId, accuracy },
145
+ },
146
+ });
147
+ }
148
+
149
+ // Extract learned patterns
150
+ const patterns = await extractLearnedPatterns(modelId, context);
151
+ if (patterns.length > 0) {
152
+ sideEffects.push({
153
+ type: 'neural',
154
+ action: 'store-patterns',
155
+ data: { patterns },
156
+ });
157
+ }
158
+
159
+ return {
160
+ continue: true,
161
+ sideEffects,
162
+ };
163
+ },
164
+ };
165
+
166
+ // ===== Neural Pattern Detected Hook =====
167
+
168
+ export const neuralPatternDetectedHook = {
169
+ id: 'agentic-neural-pattern-detected',
170
+ type: 'neural-pattern-detected' as const,
171
+ priority: 90,
172
+ handler: async (
173
+ payload: NeuralHookPayload,
174
+ context: AgenticHookContext
175
+ ): Promise<HookHandlerResult> => {
176
+ const { patterns } = payload;
177
+
178
+ if (!patterns || patterns.length === 0) {
179
+ return { continue: true };
180
+ }
181
+
182
+ const sideEffects: SideEffect[] = [];
183
+
184
+ // Analyze pattern significance
185
+ for (const pattern of patterns) {
186
+ const significance = calculatePatternSignificance(pattern);
187
+
188
+ if (significance > 0.7) {
189
+ // High significance pattern
190
+ sideEffects.push({
191
+ type: 'memory',
192
+ action: 'store',
193
+ data: {
194
+ key: `pattern:significant:${pattern.id}`,
195
+ value: {
196
+ pattern,
197
+ significance,
198
+ detectedAt: Date.now(),
199
+ context: context.metadata,
200
+ },
201
+ ttl: 0, // Permanent
202
+ },
203
+ });
204
+
205
+ // Trigger adaptation if needed
206
+ const adaptation = await generateAdaptation(pattern, context);
207
+ if (adaptation) {
208
+ sideEffects.push({
209
+ type: 'neural',
210
+ action: 'adapt',
211
+ data: { adaptation },
212
+ });
213
+ }
214
+ }
215
+
216
+ // Update pattern store
217
+ context.neural.patterns.add(pattern);
218
+ }
219
+
220
+ // Check for pattern combinations
221
+ const combinations = findPatternCombinations(patterns, context);
222
+ if (combinations.length > 0) {
223
+ sideEffects.push({
224
+ type: 'log',
225
+ action: 'write',
226
+ data: {
227
+ level: 'info',
228
+ message: 'Pattern combinations detected',
229
+ data: { combinations },
230
+ },
231
+ });
232
+ }
233
+
234
+ return {
235
+ continue: true,
236
+ sideEffects,
237
+ };
238
+ },
239
+ };
240
+
241
+ // ===== Neural Prediction Hook =====
242
+
243
+ export const neuralPredictionHook = {
244
+ id: 'agentic-neural-prediction',
245
+ type: 'neural-prediction' as const,
246
+ priority: 100,
247
+ handler: async (
248
+ payload: NeuralHookPayload,
249
+ context: AgenticHookContext
250
+ ): Promise<HookHandlerResult> => {
251
+ const { prediction, modelId } = payload;
252
+
253
+ if (!prediction) {
254
+ return { continue: true };
255
+ }
256
+
257
+ const sideEffects: SideEffect[] = [];
258
+
259
+ // Validate prediction confidence
260
+ if (prediction.confidence < 0.5) {
261
+ // Low confidence - consider alternatives
262
+ const alternatives = await generateAlternatives(
263
+ prediction.input,
264
+ modelId,
265
+ context
266
+ );
267
+
268
+ if (alternatives.length > 0) {
269
+ return {
270
+ continue: true,
271
+ modified: true,
272
+ payload: {
273
+ ...payload,
274
+ prediction: {
275
+ ...prediction,
276
+ alternatives: [...prediction.alternatives, ...alternatives],
277
+ },
278
+ },
279
+ sideEffects: [
280
+ {
281
+ type: 'metric',
282
+ action: 'increment',
283
+ data: { name: 'neural.predictions.low_confidence' },
284
+ },
285
+ ],
286
+ };
287
+ }
288
+ }
289
+
290
+ // Store prediction for future training
291
+ sideEffects.push({
292
+ type: 'memory',
293
+ action: 'store',
294
+ data: {
295
+ key: `prediction:${modelId}:${Date.now()}`,
296
+ value: {
297
+ input: prediction.input,
298
+ output: prediction.output,
299
+ confidence: prediction.confidence,
300
+ timestamp: Date.now(),
301
+ },
302
+ ttl: 86400, // 24 hours
303
+ },
304
+ });
305
+
306
+ // Track prediction metrics
307
+ sideEffects.push({
308
+ type: 'metric',
309
+ action: 'update',
310
+ data: {
311
+ name: `neural.predictions.confidence.${modelId}`,
312
+ value: prediction.confidence,
313
+ },
314
+ });
315
+
316
+ return {
317
+ continue: true,
318
+ sideEffects,
319
+ };
320
+ },
321
+ };
322
+
323
+ // ===== Neural Adaptation Hook =====
324
+
325
+ export const neuralAdaptationHook = {
326
+ id: 'agentic-neural-adaptation',
327
+ type: 'neural-adaptation' as const,
328
+ priority: 90,
329
+ handler: async (
330
+ payload: NeuralHookPayload,
331
+ context: AgenticHookContext
332
+ ): Promise<HookHandlerResult> => {
333
+ const { adaptations, modelId } = payload;
334
+
335
+ if (!adaptations || adaptations.length === 0) {
336
+ return { continue: true };
337
+ }
338
+
339
+ const sideEffects: SideEffect[] = [];
340
+
341
+ // Validate adaptations
342
+ const validAdaptations = adaptations.filter(a =>
343
+ validateAdaptation(a, modelId, context)
344
+ );
345
+
346
+ if (validAdaptations.length === 0) {
347
+ return { continue: true };
348
+ }
349
+
350
+ // Apply adaptations in order of impact
351
+ const sortedAdaptations = validAdaptations.sort((a, b) =>
352
+ Math.abs(b.impact) - Math.abs(a.impact)
353
+ );
354
+
355
+ for (const adaptation of sortedAdaptations) {
356
+ // Store adaptation history
357
+ sideEffects.push({
358
+ type: 'memory',
359
+ action: 'store',
360
+ data: {
361
+ key: `adaptation:${modelId}:${adaptation.target}:${Date.now()}`,
362
+ value: adaptation,
363
+ ttl: 604800, // 7 days
364
+ },
365
+ });
366
+
367
+ // Apply adaptation based on type
368
+ switch (adaptation.type) {
369
+ case 'parameter':
370
+ await applyParameterAdaptation(adaptation, modelId, context);
371
+ break;
372
+
373
+ case 'architecture':
374
+ await applyArchitectureAdaptation(adaptation, modelId, context);
375
+ break;
376
+
377
+ case 'strategy':
378
+ await applyStrategyAdaptation(adaptation, modelId, context);
379
+ break;
380
+ }
381
+
382
+ // Track adaptation metrics
383
+ sideEffects.push({
384
+ type: 'metric',
385
+ action: 'increment',
386
+ data: { name: `neural.adaptations.${adaptation.type}` },
387
+ });
388
+ }
389
+
390
+ // Trigger retraining if significant adaptations
391
+ const totalImpact = sortedAdaptations.reduce((sum, a) =>
392
+ sum + Math.abs(a.impact), 0
393
+ );
394
+
395
+ if (totalImpact > 0.5) {
396
+ sideEffects.push({
397
+ type: 'neural',
398
+ action: 'retrain',
399
+ data: {
400
+ modelId,
401
+ reason: 'significant_adaptations',
402
+ adaptations: sortedAdaptations.length,
403
+ },
404
+ });
405
+ }
406
+
407
+ return {
408
+ continue: true,
409
+ sideEffects,
410
+ };
411
+ },
412
+ };
413
+
414
+ // ===== Helper Functions =====
415
+
416
+ function validateTrainingData(data: TrainingData): { valid: boolean; errors?: string[] } {
417
+ const errors: string[] = [];
418
+
419
+ if (!data.inputs || data.inputs.length === 0) {
420
+ errors.push('No input data provided');
421
+ }
422
+
423
+ if (!data.outputs || data.outputs.length === 0) {
424
+ errors.push('No output data provided');
425
+ }
426
+
427
+ if (data.inputs.length !== data.outputs.length) {
428
+ errors.push('Input and output lengths do not match');
429
+ }
430
+
431
+ if (data.batchSize <= 0) {
432
+ errors.push('Invalid batch size');
433
+ }
434
+
435
+ if (data.epochs <= 0) {
436
+ errors.push('Invalid number of epochs');
437
+ }
438
+
439
+ return {
440
+ valid: errors.length === 0,
441
+ errors: errors.length > 0 ? errors : undefined,
442
+ };
443
+ }
444
+
445
+ async function augmentTrainingData(
446
+ data: TrainingData,
447
+ modelId: string,
448
+ context: AgenticHookContext
449
+ ): Promise<TrainingData> {
450
+ // Augment with historical successful patterns
451
+ const historicalPatterns = await loadHistoricalPatterns(modelId, context);
452
+
453
+ const augmented: TrainingData = {
454
+ ...data,
455
+ inputs: [...data.inputs],
456
+ outputs: [...data.outputs],
457
+ labels: data.labels ? [...data.labels] : undefined,
458
+ weights: data.weights ? [...data.weights] : undefined,
459
+ };
460
+
461
+ // Add successful patterns
462
+ for (const pattern of historicalPatterns) {
463
+ if (pattern.type === 'success' && pattern.confidence > 0.8) {
464
+ augmented.inputs.push(pattern.context.input);
465
+ augmented.outputs.push(pattern.context.output);
466
+
467
+ if (augmented.weights) {
468
+ // Give higher weight to successful patterns
469
+ augmented.weights.push(pattern.confidence);
470
+ }
471
+ }
472
+ }
473
+
474
+ return augmented;
475
+ }
476
+
477
+ function balanceTrainingData(data: TrainingData): TrainingData {
478
+ // Balance dataset to prevent bias
479
+ if (!data.labels) {
480
+ return data;
481
+ }
482
+
483
+ // Count occurrences of each label
484
+ const labelCounts = new Map<string, number>();
485
+ for (const label of data.labels) {
486
+ labelCounts.set(label, (labelCounts.get(label) || 0) + 1);
487
+ }
488
+
489
+ // Find minimum count
490
+ const minCount = Math.min(...labelCounts.values());
491
+
492
+ // Balance by undersampling
493
+ const balanced: TrainingData = {
494
+ ...data,
495
+ inputs: [],
496
+ outputs: [],
497
+ labels: [],
498
+ weights: data.weights ? [] : undefined,
499
+ };
500
+
501
+ const labelIndices = new Map<string, number[]>();
502
+ data.labels.forEach((label, i) => {
503
+ if (!labelIndices.has(label)) {
504
+ labelIndices.set(label, []);
505
+ }
506
+ labelIndices.get(label)!.push(i);
507
+ });
508
+
509
+ // Sample equally from each label
510
+ for (const [label, indices] of labelIndices.entries()) {
511
+ const sampled = indices
512
+ .sort(() => Math.random() - 0.5)
513
+ .slice(0, minCount);
514
+
515
+ for (const idx of sampled) {
516
+ balanced.inputs.push(data.inputs[idx]);
517
+ balanced.outputs.push(data.outputs[idx]);
518
+ balanced.labels!.push(label);
519
+
520
+ if (data.weights && balanced.weights) {
521
+ balanced.weights.push(data.weights[idx]);
522
+ }
523
+ }
524
+ }
525
+
526
+ return balanced;
527
+ }
528
+
529
+ function preprocessTrainingData(data: TrainingData): TrainingData {
530
+ // Apply preprocessing transformations
531
+ const processed: TrainingData = {
532
+ ...data,
533
+ inputs: data.inputs.map(input => normalizeInput(input)),
534
+ outputs: data.outputs.map(output => normalizeOutput(output)),
535
+ };
536
+
537
+ return processed;
538
+ }
539
+
540
+ function normalizeInput(input: any): any {
541
+ // Normalize input data
542
+ // Placeholder - actual implementation would depend on data type
543
+ return input;
544
+ }
545
+
546
+ function normalizeOutput(output: any): any {
547
+ // Normalize output data
548
+ // Placeholder - actual implementation would depend on data type
549
+ return output;
550
+ }
551
+
552
+ async function updateModelPerformance(
553
+ modelId: string,
554
+ accuracy: number,
555
+ context: AgenticHookContext
556
+ ): Promise<void> {
557
+ const perfKey = `model:performance:${modelId}`;
558
+ const history = await context.memory.cache.get(perfKey) || [];
559
+
560
+ history.push({
561
+ accuracy,
562
+ timestamp: Date.now(),
563
+ sessionId: context.sessionId,
564
+ });
565
+
566
+ // Keep last 100 performance records
567
+ if (history.length > 100) {
568
+ history.shift();
569
+ }
570
+
571
+ await context.memory.cache.set(perfKey, history);
572
+ }
573
+
574
+ async function evaluateModelPromotion(
575
+ modelId: string,
576
+ accuracy: number,
577
+ context: AgenticHookContext
578
+ ): Promise<boolean> {
579
+ // Check if model should be promoted to production
580
+ const perfKey = `model:performance:${modelId}`;
581
+ const history = await context.memory.cache.get(perfKey) || [];
582
+
583
+ if (history.length < 10) {
584
+ return false; // Not enough history
585
+ }
586
+
587
+ // Calculate average accuracy over last 10 runs
588
+ const recent = history.slice(-10);
589
+ const avgAccuracy = recent.reduce((sum: number, h: any) =>
590
+ sum + h.accuracy, 0
591
+ ) / recent.length;
592
+
593
+ // Promote if consistently above threshold
594
+ return avgAccuracy > 0.85 && accuracy > 0.85;
595
+ }
596
+
597
+ async function extractLearnedPatterns(
598
+ modelId: string,
599
+ context: AgenticHookContext
600
+ ): Promise<Pattern[]> {
601
+ // Extract patterns learned during training
602
+ // Placeholder implementation
603
+ return [];
604
+ }
605
+
606
+ function calculatePatternSignificance(pattern: Pattern): number {
607
+ // Calculate pattern significance score
608
+ const baseScore = pattern.confidence;
609
+ const occurrenceBonus = Math.min(pattern.occurrences / 100, 0.2);
610
+
611
+ return Math.min(baseScore + occurrenceBonus, 1.0);
612
+ }
613
+
614
+ async function generateAdaptation(
615
+ pattern: Pattern,
616
+ context: AgenticHookContext
617
+ ): Promise<Adaptation | null> {
618
+ // Generate adaptation based on pattern
619
+ if (pattern.type === 'failure' && pattern.confidence > 0.8) {
620
+ return {
621
+ type: 'parameter',
622
+ target: 'learning_rate',
623
+ oldValue: context.neural.training.learningRate,
624
+ newValue: context.neural.training.learningRate * 0.9,
625
+ reason: `High confidence failure pattern detected: ${pattern.id}`,
626
+ impact: -0.1,
627
+ };
628
+ }
629
+
630
+ if (pattern.type === 'optimization' && pattern.confidence > 0.9) {
631
+ return {
632
+ type: 'strategy',
633
+ target: 'batch_size',
634
+ oldValue: 32,
635
+ newValue: 64,
636
+ reason: `Optimization opportunity detected: ${pattern.id}`,
637
+ impact: 0.2,
638
+ };
639
+ }
640
+
641
+ return null;
642
+ }
643
+
644
+ function findPatternCombinations(
645
+ patterns: Pattern[],
646
+ context: AgenticHookContext
647
+ ): Array<{ patterns: Pattern[]; significance: number }> {
648
+ const combinations: Array<{ patterns: Pattern[]; significance: number }> = [];
649
+
650
+ // Find co-occurring patterns
651
+ for (let i = 0; i < patterns.length; i++) {
652
+ for (let j = i + 1; j < patterns.length; j++) {
653
+ const pattern1 = patterns[i];
654
+ const pattern2 = patterns[j];
655
+
656
+ // Check if patterns are related
657
+ if (areRelatedPatterns(pattern1, pattern2)) {
658
+ const significance =
659
+ (pattern1.confidence + pattern2.confidence) / 2 * 1.2;
660
+
661
+ combinations.push({
662
+ patterns: [pattern1, pattern2],
663
+ significance: Math.min(significance, 1.0),
664
+ });
665
+ }
666
+ }
667
+ }
668
+
669
+ return combinations;
670
+ }
671
+
672
+ function areRelatedPatterns(p1: Pattern, p2: Pattern): boolean {
673
+ // Check if patterns are related
674
+ // Simplified implementation
675
+ return p1.type === p2.type ||
676
+ Object.keys(p1.context).some(key => key in p2.context);
677
+ }
678
+
679
+ async function generateAlternatives(
680
+ input: any,
681
+ modelId: string,
682
+ context: AgenticHookContext
683
+ ): Promise<Array<{ output: any; confidence: number }>> {
684
+ // Generate alternative predictions
685
+ // Placeholder implementation
686
+ return [];
687
+ }
688
+
689
+ function validateAdaptation(
690
+ adaptation: Adaptation,
691
+ modelId: string,
692
+ context: AgenticHookContext
693
+ ): boolean {
694
+ // Validate adaptation is safe to apply
695
+ if (Math.abs(adaptation.impact) > 0.5) {
696
+ // Large impact adaptations need more validation
697
+ return context.neural.training.epoch > 10;
698
+ }
699
+
700
+ return true;
701
+ }
702
+
703
+ async function applyParameterAdaptation(
704
+ adaptation: Adaptation,
705
+ modelId: string,
706
+ context: AgenticHookContext
707
+ ): Promise<void> {
708
+ // Apply parameter adaptation
709
+ // Placeholder implementation
710
+ }
711
+
712
+ async function applyArchitectureAdaptation(
713
+ adaptation: Adaptation,
714
+ modelId: string,
715
+ context: AgenticHookContext
716
+ ): Promise<void> {
717
+ // Apply architecture adaptation
718
+ // Placeholder implementation
719
+ }
720
+
721
+ async function applyStrategyAdaptation(
722
+ adaptation: Adaptation,
723
+ modelId: string,
724
+ context: AgenticHookContext
725
+ ): Promise<void> {
726
+ // Apply strategy adaptation
727
+ // Placeholder implementation
728
+ }
729
+
730
+ async function loadHistoricalPatterns(
731
+ modelId: string,
732
+ context: AgenticHookContext
733
+ ): Promise<Pattern[]> {
734
+ // Load historical patterns
735
+ const patterns: Pattern[] = [];
736
+
737
+ // Get recent patterns from memory
738
+ const patternKeys = await context.memory.cache.get(`patterns:${modelId}`) || [];
739
+
740
+ for (const key of patternKeys.slice(-100)) {
741
+ const pattern = await context.memory.cache.get(key);
742
+ if (pattern) {
743
+ patterns.push(pattern);
744
+ }
745
+ }
746
+
747
+ return patterns;
748
+ }
749
+
750
+ // ===== Register Hooks =====
751
+
752
+ export function registerNeuralHooks(): void {
753
+ agenticHookManager.register(preNeuralTrainHook);
754
+ agenticHookManager.register(postNeuralTrainHook);
755
+ agenticHookManager.register(neuralPatternDetectedHook);
756
+ agenticHookManager.register(neuralPredictionHook);
757
+ agenticHookManager.register(neuralAdaptationHook);
758
+ }