claude-evolve 1.3.8 → 1.3.9

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -276,9 +276,15 @@ generate_novel_ideas_direct() {
276
276
  Current CSV content:
277
277
  $(cat "$FULL_CSV_PATH")
278
278
 
279
- Algorithm files you can examine for context:
279
+ Algorithm files you MUST examine for context:
280
280
  - Base algorithm: $FULL_ALGORITHM_PATH
281
- - Evolved algorithms: $FULL_OUTPUT_DIR/evolution_id*.py (if any exist)
281
+ - Evolved algorithms: $FULL_OUTPUT_DIR/evolution_*.py (examine ALL to see what's been tried)
282
+
283
+ IMPORTANT: Before generating ideas, you should:
284
+ 1. Read the base algorithm to understand the codebase structure and possibilities
285
+ 2. Read ALL existing evolution_*.py files to see what modifications have been attempted
286
+ 3. Analyze the CSV to see which approaches worked (high scores) and which failed
287
+ 4. Avoid repeating failed approaches unless trying them with significant modifications
282
288
 
283
289
  Project Brief:
284
290
  $(cat "$FULL_BRIEF_PATH")
@@ -290,6 +296,10 @@ Requirements for new CSV rows:
290
296
  - Each description should be one clear sentence describing a specific algorithmic change
291
297
  - Descriptions should explore completely different approaches than existing ones
292
298
  - All new rows should have empty performance and status fields
299
+ - CRITICAL: You must read existing evolution files to avoid suggesting changes that:
300
+ * Have already been tried and failed
301
+ * Are impossible given the codebase structure
302
+ * Would break the algorithm interface requirements
293
303
 
294
304
  Example descriptions:
295
305
  - Use ensemble of 3 random forests with different feature subsets
@@ -316,9 +326,15 @@ generate_hill_climbing_direct() {
316
326
  Current CSV content:
317
327
  $(cat "$FULL_CSV_PATH")
318
328
 
319
- Algorithm files you can examine for context:
329
+ Algorithm files you MUST examine for context:
320
330
  - Base algorithm: $FULL_ALGORITHM_PATH
321
- - Evolved algorithms: $FULL_OUTPUT_DIR/evolution_id*.py (if any exist)
331
+ - Evolved algorithms: $FULL_OUTPUT_DIR/evolution_*.py (examine ALL to see what's been tried)
332
+
333
+ IMPORTANT: Before generating ideas, you should:
334
+ 1. Read the base algorithm to understand the codebase structure and possibilities
335
+ 2. Read ALL existing evolution_*.py files to see what modifications have been attempted
336
+ 3. Analyze the CSV to see which approaches worked (high scores) and which failed
337
+ 4. Avoid repeating failed approaches unless trying them with significant modifications
322
338
 
323
339
  Successful algorithms to build on:
324
340
  $top_performers
@@ -333,6 +349,10 @@ Requirements for new CSV rows:
333
349
  - Each description should be one clear sentence about parameter tuning
334
350
  - Focus on adjusting hyperparameters, thresholds, sizes, learning rates
335
351
  - All new rows should have empty performance and status fields
352
+ - CRITICAL: You must read the parent algorithm file to understand:
353
+ * What parameters are actually tunable in the code
354
+ * What changes made this algorithm successful vs its parent
355
+ * What parameter ranges make sense given the implementation
336
356
 
337
357
  Example descriptions:
338
358
  - Increase learning rate from 0.001 to 0.01 for faster convergence
@@ -359,9 +379,15 @@ generate_structural_mutation_direct() {
359
379
  Current CSV content:
360
380
  $(cat "$FULL_CSV_PATH")
361
381
 
362
- Algorithm files you can examine for context:
382
+ Algorithm files you MUST examine for context:
363
383
  - Base algorithm: $FULL_ALGORITHM_PATH
364
- - Evolved algorithms: $FULL_OUTPUT_DIR/evolution_id*.py (if any exist)
384
+ - Evolved algorithms: $FULL_OUTPUT_DIR/evolution_*.py (examine ALL to see what's been tried)
385
+
386
+ IMPORTANT: Before generating ideas, you should:
387
+ 1. Read the base algorithm to understand the codebase structure and possibilities
388
+ 2. Read ALL existing evolution_*.py files to see what modifications have been attempted
389
+ 3. Analyze the CSV to see which approaches worked (high scores) and which failed
390
+ 4. Avoid repeating failed approaches unless trying them with significant modifications
365
391
 
366
392
  Successful algorithms to build on:
367
393
  $top_performers
@@ -376,6 +402,10 @@ Requirements for new CSV rows:
376
402
  - Each description should be one clear sentence about architectural changes
377
403
  - Keep core insights but change implementation approach
378
404
  - All new rows should have empty performance and status fields
405
+ - CRITICAL: You must read the parent algorithm file to understand:
406
+ * What structural elements can be modified within the codebase constraints
407
+ * What architectural decisions led to this algorithm's success
408
+ * Which components are essential vs which can be replaced
379
409
 
380
410
  Example descriptions:
381
411
  - Replace linear layers with convolutional layers for spatial feature learning
@@ -402,9 +432,15 @@ generate_crossover_direct() {
402
432
  Current CSV content:
403
433
  $(cat "$FULL_CSV_PATH")
404
434
 
405
- Algorithm files you can examine for context:
435
+ Algorithm files you MUST examine for context:
406
436
  - Base algorithm: $FULL_ALGORITHM_PATH
407
- - Evolved algorithms: $FULL_OUTPUT_DIR/evolution_id*.py (if any exist)
437
+ - Evolved algorithms: $FULL_OUTPUT_DIR/evolution_*.py (examine ALL to see what's been tried)
438
+
439
+ IMPORTANT: Before generating ideas, you should:
440
+ 1. Read the base algorithm to understand the codebase structure and possibilities
441
+ 2. Read ALL existing evolution_*.py files to see what modifications have been attempted
442
+ 3. Analyze the CSV to see which approaches worked (high scores) and which failed
443
+ 4. Avoid repeating failed approaches unless trying them with significant modifications
408
444
 
409
445
  Top performers to combine:
410
446
  $top_performers
@@ -419,6 +455,10 @@ Requirements for new CSV rows:
419
455
  - Each description should be one clear sentence combining elements from different algorithms
420
456
  - Be specific about what elements to merge
421
457
  - All new rows should have empty performance and status fields
458
+ - CRITICAL: You must read the relevant algorithm files to:
459
+ * Identify the specific improvements that made each algorithm successful
460
+ * Understand which components are compatible for merging
461
+ * Ensure the combined approach is technically feasible in the codebase
422
462
 
423
463
  Example descriptions:
424
464
  - Combine ensemble voting from algorithm 3 with feature selection from algorithm 5
@@ -461,9 +501,15 @@ ideate_ai_legacy() {
461
501
  Current CSV content:
462
502
  $(cat "$FULL_CSV_PATH")
463
503
 
464
- Algorithm files you can examine for context:
504
+ Algorithm files you MUST examine for context:
465
505
  - Base algorithm: $FULL_ALGORITHM_PATH
466
- - Evolved algorithms: $FULL_OUTPUT_DIR/evolution_id*.py (if any exist)
506
+ - Evolved algorithms: $FULL_OUTPUT_DIR/evolution_*.py (examine ALL to see what's been tried)
507
+
508
+ IMPORTANT: Before generating ideas, you should:
509
+ 1. Read the base algorithm to understand the codebase structure and possibilities
510
+ 2. Read ALL existing evolution_*.py files to see what modifications have been attempted
511
+ 3. Analyze the CSV to see which approaches worked (high scores) and which failed
512
+ 4. Avoid repeating failed approaches unless trying them with significant modifications
467
513
 
468
514
  Project Brief:
469
515
  $(cat "$FULL_BRIEF_PATH")"
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "claude-evolve",
3
- "version": "1.3.8",
3
+ "version": "1.3.9",
4
4
  "bin": {
5
5
  "claude-evolve": "./bin/claude-evolve",
6
6
  "claude-evolve-main": "./bin/claude-evolve-main",