claude-evolve 1.3.8 → 1.3.10
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/bin/claude-evolve-ideate +81 -14
- package/package.json +1 -1
package/bin/claude-evolve-ideate
CHANGED
|
@@ -194,10 +194,31 @@ get_top_performers() {
|
|
|
194
194
|
return
|
|
195
195
|
fi
|
|
196
196
|
|
|
197
|
-
#
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
197
|
+
# Use Python to properly parse CSV with quoted fields
|
|
198
|
+
"$PYTHON_CMD" -c "
|
|
199
|
+
import csv
|
|
200
|
+
import sys
|
|
201
|
+
|
|
202
|
+
with open('$FULL_CSV_PATH', 'r') as f:
|
|
203
|
+
reader = csv.reader(f)
|
|
204
|
+
next(reader) # Skip header
|
|
205
|
+
|
|
206
|
+
completed = []
|
|
207
|
+
for row in reader:
|
|
208
|
+
if len(row) >= 5 and row[3] and row[4] == 'complete':
|
|
209
|
+
try:
|
|
210
|
+
score = float(row[3])
|
|
211
|
+
completed.append((row[0], row[2], score))
|
|
212
|
+
except ValueError:
|
|
213
|
+
pass
|
|
214
|
+
|
|
215
|
+
# Sort by score descending
|
|
216
|
+
completed.sort(key=lambda x: x[2], reverse=True)
|
|
217
|
+
|
|
218
|
+
# Output top N
|
|
219
|
+
for i, (id, desc, score) in enumerate(completed[:$num_requested]):
|
|
220
|
+
print(f'{id},{desc},{score}')
|
|
221
|
+
"
|
|
201
222
|
}
|
|
202
223
|
|
|
203
224
|
# Manual entry mode
|
|
@@ -276,9 +297,15 @@ generate_novel_ideas_direct() {
|
|
|
276
297
|
Current CSV content:
|
|
277
298
|
$(cat "$FULL_CSV_PATH")
|
|
278
299
|
|
|
279
|
-
Algorithm files you
|
|
300
|
+
Algorithm files you MUST examine for context:
|
|
280
301
|
- Base algorithm: $FULL_ALGORITHM_PATH
|
|
281
|
-
- Evolved algorithms: $FULL_OUTPUT_DIR/
|
|
302
|
+
- Evolved algorithms: $FULL_OUTPUT_DIR/evolution_*.py (examine ALL to see what's been tried)
|
|
303
|
+
|
|
304
|
+
IMPORTANT: Before generating ideas, you should:
|
|
305
|
+
1. Read the base algorithm to understand the codebase structure and possibilities
|
|
306
|
+
2. Read ALL existing evolution_*.py files to see what modifications have been attempted
|
|
307
|
+
3. Analyze the CSV to see which approaches worked (high scores) and which failed
|
|
308
|
+
4. Avoid repeating failed approaches unless trying them with significant modifications
|
|
282
309
|
|
|
283
310
|
Project Brief:
|
|
284
311
|
$(cat "$FULL_BRIEF_PATH")
|
|
@@ -290,6 +317,10 @@ Requirements for new CSV rows:
|
|
|
290
317
|
- Each description should be one clear sentence describing a specific algorithmic change
|
|
291
318
|
- Descriptions should explore completely different approaches than existing ones
|
|
292
319
|
- All new rows should have empty performance and status fields
|
|
320
|
+
- CRITICAL: You must read existing evolution files to avoid suggesting changes that:
|
|
321
|
+
* Have already been tried and failed
|
|
322
|
+
* Are impossible given the codebase structure
|
|
323
|
+
* Would break the algorithm interface requirements
|
|
293
324
|
|
|
294
325
|
Example descriptions:
|
|
295
326
|
- Use ensemble of 3 random forests with different feature subsets
|
|
@@ -316,9 +347,15 @@ generate_hill_climbing_direct() {
|
|
|
316
347
|
Current CSV content:
|
|
317
348
|
$(cat "$FULL_CSV_PATH")
|
|
318
349
|
|
|
319
|
-
Algorithm files you
|
|
350
|
+
Algorithm files you MUST examine for context:
|
|
320
351
|
- Base algorithm: $FULL_ALGORITHM_PATH
|
|
321
|
-
- Evolved algorithms: $FULL_OUTPUT_DIR/
|
|
352
|
+
- Evolved algorithms: $FULL_OUTPUT_DIR/evolution_*.py (examine ALL to see what's been tried)
|
|
353
|
+
|
|
354
|
+
IMPORTANT: Before generating ideas, you should:
|
|
355
|
+
1. Read the base algorithm to understand the codebase structure and possibilities
|
|
356
|
+
2. Read ALL existing evolution_*.py files to see what modifications have been attempted
|
|
357
|
+
3. Analyze the CSV to see which approaches worked (high scores) and which failed
|
|
358
|
+
4. Avoid repeating failed approaches unless trying them with significant modifications
|
|
322
359
|
|
|
323
360
|
Successful algorithms to build on:
|
|
324
361
|
$top_performers
|
|
@@ -333,6 +370,10 @@ Requirements for new CSV rows:
|
|
|
333
370
|
- Each description should be one clear sentence about parameter tuning
|
|
334
371
|
- Focus on adjusting hyperparameters, thresholds, sizes, learning rates
|
|
335
372
|
- All new rows should have empty performance and status fields
|
|
373
|
+
- CRITICAL: You must read the parent algorithm file to understand:
|
|
374
|
+
* What parameters are actually tunable in the code
|
|
375
|
+
* What changes made this algorithm successful vs its parent
|
|
376
|
+
* What parameter ranges make sense given the implementation
|
|
336
377
|
|
|
337
378
|
Example descriptions:
|
|
338
379
|
- Increase learning rate from 0.001 to 0.01 for faster convergence
|
|
@@ -359,9 +400,15 @@ generate_structural_mutation_direct() {
|
|
|
359
400
|
Current CSV content:
|
|
360
401
|
$(cat "$FULL_CSV_PATH")
|
|
361
402
|
|
|
362
|
-
Algorithm files you
|
|
403
|
+
Algorithm files you MUST examine for context:
|
|
363
404
|
- Base algorithm: $FULL_ALGORITHM_PATH
|
|
364
|
-
- Evolved algorithms: $FULL_OUTPUT_DIR/
|
|
405
|
+
- Evolved algorithms: $FULL_OUTPUT_DIR/evolution_*.py (examine ALL to see what's been tried)
|
|
406
|
+
|
|
407
|
+
IMPORTANT: Before generating ideas, you should:
|
|
408
|
+
1. Read the base algorithm to understand the codebase structure and possibilities
|
|
409
|
+
2. Read ALL existing evolution_*.py files to see what modifications have been attempted
|
|
410
|
+
3. Analyze the CSV to see which approaches worked (high scores) and which failed
|
|
411
|
+
4. Avoid repeating failed approaches unless trying them with significant modifications
|
|
365
412
|
|
|
366
413
|
Successful algorithms to build on:
|
|
367
414
|
$top_performers
|
|
@@ -376,6 +423,10 @@ Requirements for new CSV rows:
|
|
|
376
423
|
- Each description should be one clear sentence about architectural changes
|
|
377
424
|
- Keep core insights but change implementation approach
|
|
378
425
|
- All new rows should have empty performance and status fields
|
|
426
|
+
- CRITICAL: You must read the parent algorithm file to understand:
|
|
427
|
+
* What structural elements can be modified within the codebase constraints
|
|
428
|
+
* What architectural decisions led to this algorithm's success
|
|
429
|
+
* Which components are essential vs which can be replaced
|
|
379
430
|
|
|
380
431
|
Example descriptions:
|
|
381
432
|
- Replace linear layers with convolutional layers for spatial feature learning
|
|
@@ -402,9 +453,15 @@ generate_crossover_direct() {
|
|
|
402
453
|
Current CSV content:
|
|
403
454
|
$(cat "$FULL_CSV_PATH")
|
|
404
455
|
|
|
405
|
-
Algorithm files you
|
|
456
|
+
Algorithm files you MUST examine for context:
|
|
406
457
|
- Base algorithm: $FULL_ALGORITHM_PATH
|
|
407
|
-
- Evolved algorithms: $FULL_OUTPUT_DIR/
|
|
458
|
+
- Evolved algorithms: $FULL_OUTPUT_DIR/evolution_*.py (examine ALL to see what's been tried)
|
|
459
|
+
|
|
460
|
+
IMPORTANT: Before generating ideas, you should:
|
|
461
|
+
1. Read the base algorithm to understand the codebase structure and possibilities
|
|
462
|
+
2. Read ALL existing evolution_*.py files to see what modifications have been attempted
|
|
463
|
+
3. Analyze the CSV to see which approaches worked (high scores) and which failed
|
|
464
|
+
4. Avoid repeating failed approaches unless trying them with significant modifications
|
|
408
465
|
|
|
409
466
|
Top performers to combine:
|
|
410
467
|
$top_performers
|
|
@@ -419,6 +476,10 @@ Requirements for new CSV rows:
|
|
|
419
476
|
- Each description should be one clear sentence combining elements from different algorithms
|
|
420
477
|
- Be specific about what elements to merge
|
|
421
478
|
- All new rows should have empty performance and status fields
|
|
479
|
+
- CRITICAL: You must read the relevant algorithm files to:
|
|
480
|
+
* Identify the specific improvements that made each algorithm successful
|
|
481
|
+
* Understand which components are compatible for merging
|
|
482
|
+
* Ensure the combined approach is technically feasible in the codebase
|
|
422
483
|
|
|
423
484
|
Example descriptions:
|
|
424
485
|
- Combine ensemble voting from algorithm 3 with feature selection from algorithm 5
|
|
@@ -461,9 +522,15 @@ ideate_ai_legacy() {
|
|
|
461
522
|
Current CSV content:
|
|
462
523
|
$(cat "$FULL_CSV_PATH")
|
|
463
524
|
|
|
464
|
-
Algorithm files you
|
|
525
|
+
Algorithm files you MUST examine for context:
|
|
465
526
|
- Base algorithm: $FULL_ALGORITHM_PATH
|
|
466
|
-
- Evolved algorithms: $FULL_OUTPUT_DIR/
|
|
527
|
+
- Evolved algorithms: $FULL_OUTPUT_DIR/evolution_*.py (examine ALL to see what's been tried)
|
|
528
|
+
|
|
529
|
+
IMPORTANT: Before generating ideas, you should:
|
|
530
|
+
1. Read the base algorithm to understand the codebase structure and possibilities
|
|
531
|
+
2. Read ALL existing evolution_*.py files to see what modifications have been attempted
|
|
532
|
+
3. Analyze the CSV to see which approaches worked (high scores) and which failed
|
|
533
|
+
4. Avoid repeating failed approaches unless trying them with significant modifications
|
|
467
534
|
|
|
468
535
|
Project Brief:
|
|
469
536
|
$(cat "$FULL_BRIEF_PATH")"
|