claude-autopm 2.8.1 → 2.8.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (273) hide show
  1. package/README.md +116 -8
  2. package/bin/autopm.js +2 -0
  3. package/bin/commands/plugin.js +395 -0
  4. package/bin/commands/team.js +184 -10
  5. package/install/install.js +223 -4
  6. package/lib/plugins/PluginManager.js +1328 -0
  7. package/lib/plugins/PluginManager.old.js +400 -0
  8. package/package.json +4 -1
  9. package/scripts/publish-plugins.sh +166 -0
  10. package/autopm/.claude/agents/cloud/README.md +0 -55
  11. package/autopm/.claude/agents/cloud/aws-cloud-architect.md +0 -521
  12. package/autopm/.claude/agents/cloud/azure-cloud-architect.md +0 -436
  13. package/autopm/.claude/agents/cloud/gcp-cloud-architect.md +0 -385
  14. package/autopm/.claude/agents/cloud/gcp-cloud-functions-engineer.md +0 -306
  15. package/autopm/.claude/agents/cloud/gemini-api-expert.md +0 -880
  16. package/autopm/.claude/agents/cloud/kubernetes-orchestrator.md +0 -566
  17. package/autopm/.claude/agents/cloud/openai-python-expert.md +0 -1087
  18. package/autopm/.claude/agents/cloud/terraform-infrastructure-expert.md +0 -454
  19. package/autopm/.claude/agents/core/agent-manager.md +0 -296
  20. package/autopm/.claude/agents/core/code-analyzer.md +0 -131
  21. package/autopm/.claude/agents/core/file-analyzer.md +0 -162
  22. package/autopm/.claude/agents/core/test-runner.md +0 -200
  23. package/autopm/.claude/agents/data/airflow-orchestration-expert.md +0 -52
  24. package/autopm/.claude/agents/data/kedro-pipeline-expert.md +0 -50
  25. package/autopm/.claude/agents/data/langgraph-workflow-expert.md +0 -520
  26. package/autopm/.claude/agents/databases/README.md +0 -50
  27. package/autopm/.claude/agents/databases/bigquery-expert.md +0 -392
  28. package/autopm/.claude/agents/databases/cosmosdb-expert.md +0 -368
  29. package/autopm/.claude/agents/databases/mongodb-expert.md +0 -398
  30. package/autopm/.claude/agents/databases/postgresql-expert.md +0 -321
  31. package/autopm/.claude/agents/databases/redis-expert.md +0 -52
  32. package/autopm/.claude/agents/devops/README.md +0 -52
  33. package/autopm/.claude/agents/devops/azure-devops-specialist.md +0 -308
  34. package/autopm/.claude/agents/devops/docker-containerization-expert.md +0 -298
  35. package/autopm/.claude/agents/devops/github-operations-specialist.md +0 -335
  36. package/autopm/.claude/agents/devops/mcp-context-manager.md +0 -319
  37. package/autopm/.claude/agents/devops/observability-engineer.md +0 -574
  38. package/autopm/.claude/agents/devops/ssh-operations-expert.md +0 -1093
  39. package/autopm/.claude/agents/devops/traefik-proxy-expert.md +0 -444
  40. package/autopm/.claude/agents/frameworks/README.md +0 -64
  41. package/autopm/.claude/agents/frameworks/e2e-test-engineer.md +0 -360
  42. package/autopm/.claude/agents/frameworks/nats-messaging-expert.md +0 -254
  43. package/autopm/.claude/agents/frameworks/react-frontend-engineer.md +0 -217
  44. package/autopm/.claude/agents/frameworks/react-ui-expert.md +0 -226
  45. package/autopm/.claude/agents/frameworks/tailwindcss-expert.md +0 -770
  46. package/autopm/.claude/agents/frameworks/ux-design-expert.md +0 -244
  47. package/autopm/.claude/agents/integration/message-queue-engineer.md +0 -794
  48. package/autopm/.claude/agents/languages/README.md +0 -50
  49. package/autopm/.claude/agents/languages/bash-scripting-expert.md +0 -541
  50. package/autopm/.claude/agents/languages/javascript-frontend-engineer.md +0 -197
  51. package/autopm/.claude/agents/languages/nodejs-backend-engineer.md +0 -226
  52. package/autopm/.claude/agents/languages/python-backend-engineer.md +0 -214
  53. package/autopm/.claude/agents/languages/python-backend-expert.md +0 -289
  54. package/autopm/.claude/agents/testing/frontend-testing-engineer.md +0 -395
  55. package/autopm/.claude/commands/ai/langgraph-workflow.md +0 -65
  56. package/autopm/.claude/commands/ai/openai-chat.md +0 -65
  57. package/autopm/.claude/commands/azure/COMMANDS.md +0 -107
  58. package/autopm/.claude/commands/azure/COMMAND_MAPPING.md +0 -252
  59. package/autopm/.claude/commands/azure/INTEGRATION_FIX.md +0 -103
  60. package/autopm/.claude/commands/azure/README.md +0 -246
  61. package/autopm/.claude/commands/azure/active-work.md +0 -198
  62. package/autopm/.claude/commands/azure/aliases.md +0 -143
  63. package/autopm/.claude/commands/azure/blocked-items.md +0 -287
  64. package/autopm/.claude/commands/azure/clean.md +0 -93
  65. package/autopm/.claude/commands/azure/docs-query.md +0 -48
  66. package/autopm/.claude/commands/azure/feature-decompose.md +0 -380
  67. package/autopm/.claude/commands/azure/feature-list.md +0 -61
  68. package/autopm/.claude/commands/azure/feature-new.md +0 -115
  69. package/autopm/.claude/commands/azure/feature-show.md +0 -205
  70. package/autopm/.claude/commands/azure/feature-start.md +0 -130
  71. package/autopm/.claude/commands/azure/fix-integration-example.md +0 -93
  72. package/autopm/.claude/commands/azure/help.md +0 -150
  73. package/autopm/.claude/commands/azure/import-us.md +0 -269
  74. package/autopm/.claude/commands/azure/init.md +0 -211
  75. package/autopm/.claude/commands/azure/next-task.md +0 -262
  76. package/autopm/.claude/commands/azure/search.md +0 -160
  77. package/autopm/.claude/commands/azure/sprint-status.md +0 -235
  78. package/autopm/.claude/commands/azure/standup.md +0 -260
  79. package/autopm/.claude/commands/azure/sync-all.md +0 -99
  80. package/autopm/.claude/commands/azure/task-analyze.md +0 -186
  81. package/autopm/.claude/commands/azure/task-close.md +0 -329
  82. package/autopm/.claude/commands/azure/task-edit.md +0 -145
  83. package/autopm/.claude/commands/azure/task-list.md +0 -263
  84. package/autopm/.claude/commands/azure/task-new.md +0 -84
  85. package/autopm/.claude/commands/azure/task-reopen.md +0 -79
  86. package/autopm/.claude/commands/azure/task-show.md +0 -126
  87. package/autopm/.claude/commands/azure/task-start.md +0 -301
  88. package/autopm/.claude/commands/azure/task-status.md +0 -65
  89. package/autopm/.claude/commands/azure/task-sync.md +0 -67
  90. package/autopm/.claude/commands/azure/us-edit.md +0 -164
  91. package/autopm/.claude/commands/azure/us-list.md +0 -202
  92. package/autopm/.claude/commands/azure/us-new.md +0 -265
  93. package/autopm/.claude/commands/azure/us-parse.md +0 -253
  94. package/autopm/.claude/commands/azure/us-show.md +0 -188
  95. package/autopm/.claude/commands/azure/us-status.md +0 -320
  96. package/autopm/.claude/commands/azure/validate.md +0 -86
  97. package/autopm/.claude/commands/azure/work-item-sync.md +0 -47
  98. package/autopm/.claude/commands/cloud/infra-deploy.md +0 -38
  99. package/autopm/.claude/commands/github/workflow-create.md +0 -42
  100. package/autopm/.claude/commands/infrastructure/ssh-security.md +0 -65
  101. package/autopm/.claude/commands/infrastructure/traefik-setup.md +0 -65
  102. package/autopm/.claude/commands/kubernetes/deploy.md +0 -37
  103. package/autopm/.claude/commands/playwright/test-scaffold.md +0 -38
  104. package/autopm/.claude/commands/pm/blocked.md +0 -28
  105. package/autopm/.claude/commands/pm/clean.md +0 -119
  106. package/autopm/.claude/commands/pm/context-create.md +0 -136
  107. package/autopm/.claude/commands/pm/context-prime.md +0 -170
  108. package/autopm/.claude/commands/pm/context-update.md +0 -292
  109. package/autopm/.claude/commands/pm/context.md +0 -28
  110. package/autopm/.claude/commands/pm/epic-close.md +0 -86
  111. package/autopm/.claude/commands/pm/epic-decompose.md +0 -370
  112. package/autopm/.claude/commands/pm/epic-edit.md +0 -83
  113. package/autopm/.claude/commands/pm/epic-list.md +0 -30
  114. package/autopm/.claude/commands/pm/epic-merge.md +0 -222
  115. package/autopm/.claude/commands/pm/epic-oneshot.md +0 -119
  116. package/autopm/.claude/commands/pm/epic-refresh.md +0 -119
  117. package/autopm/.claude/commands/pm/epic-show.md +0 -28
  118. package/autopm/.claude/commands/pm/epic-split.md +0 -120
  119. package/autopm/.claude/commands/pm/epic-start.md +0 -195
  120. package/autopm/.claude/commands/pm/epic-status.md +0 -28
  121. package/autopm/.claude/commands/pm/epic-sync-modular.md +0 -338
  122. package/autopm/.claude/commands/pm/epic-sync-original.md +0 -473
  123. package/autopm/.claude/commands/pm/epic-sync.md +0 -486
  124. package/autopm/.claude/commands/pm/help.md +0 -28
  125. package/autopm/.claude/commands/pm/import.md +0 -115
  126. package/autopm/.claude/commands/pm/in-progress.md +0 -28
  127. package/autopm/.claude/commands/pm/init.md +0 -28
  128. package/autopm/.claude/commands/pm/issue-analyze.md +0 -202
  129. package/autopm/.claude/commands/pm/issue-close.md +0 -119
  130. package/autopm/.claude/commands/pm/issue-edit.md +0 -93
  131. package/autopm/.claude/commands/pm/issue-reopen.md +0 -87
  132. package/autopm/.claude/commands/pm/issue-show.md +0 -41
  133. package/autopm/.claude/commands/pm/issue-start.md +0 -234
  134. package/autopm/.claude/commands/pm/issue-status.md +0 -95
  135. package/autopm/.claude/commands/pm/issue-sync.md +0 -411
  136. package/autopm/.claude/commands/pm/next.md +0 -28
  137. package/autopm/.claude/commands/pm/prd-edit.md +0 -82
  138. package/autopm/.claude/commands/pm/prd-list.md +0 -28
  139. package/autopm/.claude/commands/pm/prd-new.md +0 -55
  140. package/autopm/.claude/commands/pm/prd-parse.md +0 -42
  141. package/autopm/.claude/commands/pm/prd-status.md +0 -28
  142. package/autopm/.claude/commands/pm/search.md +0 -28
  143. package/autopm/.claude/commands/pm/standup.md +0 -28
  144. package/autopm/.claude/commands/pm/status.md +0 -28
  145. package/autopm/.claude/commands/pm/sync.md +0 -99
  146. package/autopm/.claude/commands/pm/test-reference-update.md +0 -151
  147. package/autopm/.claude/commands/pm/validate.md +0 -28
  148. package/autopm/.claude/commands/pm/what-next.md +0 -28
  149. package/autopm/.claude/commands/python/api-scaffold.md +0 -50
  150. package/autopm/.claude/commands/python/docs-query.md +0 -48
  151. package/autopm/.claude/commands/react/app-scaffold.md +0 -50
  152. package/autopm/.claude/commands/testing/prime.md +0 -314
  153. package/autopm/.claude/commands/testing/run.md +0 -125
  154. package/autopm/.claude/commands/ui/bootstrap-scaffold.md +0 -65
  155. package/autopm/.claude/commands/ui/tailwind-system.md +0 -64
  156. package/autopm/.claude/rules/ai-integration-patterns.md +0 -219
  157. package/autopm/.claude/rules/ci-cd-kubernetes-strategy.md +0 -25
  158. package/autopm/.claude/rules/database-management-strategy.md +0 -17
  159. package/autopm/.claude/rules/database-pipeline.md +0 -94
  160. package/autopm/.claude/rules/devops-troubleshooting-playbook.md +0 -450
  161. package/autopm/.claude/rules/docker-first-development.md +0 -404
  162. package/autopm/.claude/rules/infrastructure-pipeline.md +0 -128
  163. package/autopm/.claude/rules/performance-guidelines.md +0 -403
  164. package/autopm/.claude/rules/ui-development-standards.md +0 -281
  165. package/autopm/.claude/rules/ui-framework-rules.md +0 -151
  166. package/autopm/.claude/rules/ux-design-rules.md +0 -209
  167. package/autopm/.claude/rules/visual-testing.md +0 -223
  168. package/autopm/.claude/scripts/azure/README.md +0 -192
  169. package/autopm/.claude/scripts/azure/active-work.js +0 -524
  170. package/autopm/.claude/scripts/azure/active-work.sh +0 -20
  171. package/autopm/.claude/scripts/azure/blocked.js +0 -520
  172. package/autopm/.claude/scripts/azure/blocked.sh +0 -20
  173. package/autopm/.claude/scripts/azure/daily.js +0 -533
  174. package/autopm/.claude/scripts/azure/daily.sh +0 -20
  175. package/autopm/.claude/scripts/azure/dashboard.js +0 -970
  176. package/autopm/.claude/scripts/azure/dashboard.sh +0 -20
  177. package/autopm/.claude/scripts/azure/feature-list.js +0 -254
  178. package/autopm/.claude/scripts/azure/feature-list.sh +0 -20
  179. package/autopm/.claude/scripts/azure/feature-show.js +0 -7
  180. package/autopm/.claude/scripts/azure/feature-show.sh +0 -20
  181. package/autopm/.claude/scripts/azure/feature-status.js +0 -604
  182. package/autopm/.claude/scripts/azure/feature-status.sh +0 -20
  183. package/autopm/.claude/scripts/azure/help.js +0 -342
  184. package/autopm/.claude/scripts/azure/help.sh +0 -20
  185. package/autopm/.claude/scripts/azure/next-task.js +0 -508
  186. package/autopm/.claude/scripts/azure/next-task.sh +0 -20
  187. package/autopm/.claude/scripts/azure/search.js +0 -469
  188. package/autopm/.claude/scripts/azure/search.sh +0 -20
  189. package/autopm/.claude/scripts/azure/setup.js +0 -745
  190. package/autopm/.claude/scripts/azure/setup.sh +0 -20
  191. package/autopm/.claude/scripts/azure/sprint-report.js +0 -1012
  192. package/autopm/.claude/scripts/azure/sprint-report.sh +0 -20
  193. package/autopm/.claude/scripts/azure/sync.js +0 -563
  194. package/autopm/.claude/scripts/azure/sync.sh +0 -20
  195. package/autopm/.claude/scripts/azure/us-list.js +0 -210
  196. package/autopm/.claude/scripts/azure/us-list.sh +0 -20
  197. package/autopm/.claude/scripts/azure/us-status.js +0 -238
  198. package/autopm/.claude/scripts/azure/us-status.sh +0 -20
  199. package/autopm/.claude/scripts/azure/validate.js +0 -626
  200. package/autopm/.claude/scripts/azure/validate.sh +0 -20
  201. package/autopm/.claude/scripts/azure/wrapper-template.sh +0 -20
  202. package/autopm/.claude/scripts/github/dependency-tracker.js +0 -554
  203. package/autopm/.claude/scripts/github/dependency-validator.js +0 -545
  204. package/autopm/.claude/scripts/github/dependency-visualizer.js +0 -477
  205. package/autopm/.claude/scripts/pm/analytics.js +0 -425
  206. package/autopm/.claude/scripts/pm/blocked.js +0 -164
  207. package/autopm/.claude/scripts/pm/blocked.sh +0 -78
  208. package/autopm/.claude/scripts/pm/clean.js +0 -464
  209. package/autopm/.claude/scripts/pm/context-create.js +0 -216
  210. package/autopm/.claude/scripts/pm/context-prime.js +0 -335
  211. package/autopm/.claude/scripts/pm/context-update.js +0 -344
  212. package/autopm/.claude/scripts/pm/context.js +0 -338
  213. package/autopm/.claude/scripts/pm/epic-close.js +0 -347
  214. package/autopm/.claude/scripts/pm/epic-edit.js +0 -382
  215. package/autopm/.claude/scripts/pm/epic-list.js +0 -273
  216. package/autopm/.claude/scripts/pm/epic-list.sh +0 -109
  217. package/autopm/.claude/scripts/pm/epic-show.js +0 -291
  218. package/autopm/.claude/scripts/pm/epic-show.sh +0 -105
  219. package/autopm/.claude/scripts/pm/epic-split.js +0 -522
  220. package/autopm/.claude/scripts/pm/epic-start/epic-start.js +0 -183
  221. package/autopm/.claude/scripts/pm/epic-start/epic-start.sh +0 -94
  222. package/autopm/.claude/scripts/pm/epic-status.js +0 -291
  223. package/autopm/.claude/scripts/pm/epic-status.sh +0 -104
  224. package/autopm/.claude/scripts/pm/epic-sync/README.md +0 -208
  225. package/autopm/.claude/scripts/pm/epic-sync/create-epic-issue.sh +0 -77
  226. package/autopm/.claude/scripts/pm/epic-sync/create-task-issues.sh +0 -86
  227. package/autopm/.claude/scripts/pm/epic-sync/update-epic-file.sh +0 -79
  228. package/autopm/.claude/scripts/pm/epic-sync/update-references.sh +0 -89
  229. package/autopm/.claude/scripts/pm/epic-sync.sh +0 -137
  230. package/autopm/.claude/scripts/pm/help.js +0 -92
  231. package/autopm/.claude/scripts/pm/help.sh +0 -90
  232. package/autopm/.claude/scripts/pm/in-progress.js +0 -178
  233. package/autopm/.claude/scripts/pm/in-progress.sh +0 -93
  234. package/autopm/.claude/scripts/pm/init.js +0 -321
  235. package/autopm/.claude/scripts/pm/init.sh +0 -178
  236. package/autopm/.claude/scripts/pm/issue-close.js +0 -232
  237. package/autopm/.claude/scripts/pm/issue-edit.js +0 -310
  238. package/autopm/.claude/scripts/pm/issue-show.js +0 -272
  239. package/autopm/.claude/scripts/pm/issue-start.js +0 -181
  240. package/autopm/.claude/scripts/pm/issue-sync/format-comment.sh +0 -468
  241. package/autopm/.claude/scripts/pm/issue-sync/gather-updates.sh +0 -460
  242. package/autopm/.claude/scripts/pm/issue-sync/post-comment.sh +0 -330
  243. package/autopm/.claude/scripts/pm/issue-sync/preflight-validation.sh +0 -348
  244. package/autopm/.claude/scripts/pm/issue-sync/update-frontmatter.sh +0 -387
  245. package/autopm/.claude/scripts/pm/lib/README.md +0 -85
  246. package/autopm/.claude/scripts/pm/lib/epic-discovery.js +0 -119
  247. package/autopm/.claude/scripts/pm/lib/logger.js +0 -78
  248. package/autopm/.claude/scripts/pm/next.js +0 -189
  249. package/autopm/.claude/scripts/pm/next.sh +0 -72
  250. package/autopm/.claude/scripts/pm/optimize.js +0 -407
  251. package/autopm/.claude/scripts/pm/pr-create.js +0 -337
  252. package/autopm/.claude/scripts/pm/pr-list.js +0 -257
  253. package/autopm/.claude/scripts/pm/prd-list.js +0 -242
  254. package/autopm/.claude/scripts/pm/prd-list.sh +0 -103
  255. package/autopm/.claude/scripts/pm/prd-new.js +0 -684
  256. package/autopm/.claude/scripts/pm/prd-parse.js +0 -547
  257. package/autopm/.claude/scripts/pm/prd-status.js +0 -152
  258. package/autopm/.claude/scripts/pm/prd-status.sh +0 -63
  259. package/autopm/.claude/scripts/pm/release.js +0 -460
  260. package/autopm/.claude/scripts/pm/search.js +0 -192
  261. package/autopm/.claude/scripts/pm/search.sh +0 -89
  262. package/autopm/.claude/scripts/pm/standup.js +0 -362
  263. package/autopm/.claude/scripts/pm/standup.sh +0 -95
  264. package/autopm/.claude/scripts/pm/status.js +0 -148
  265. package/autopm/.claude/scripts/pm/status.sh +0 -59
  266. package/autopm/.claude/scripts/pm/sync-batch.js +0 -337
  267. package/autopm/.claude/scripts/pm/sync.js +0 -343
  268. package/autopm/.claude/scripts/pm/template-list.js +0 -141
  269. package/autopm/.claude/scripts/pm/template-new.js +0 -366
  270. package/autopm/.claude/scripts/pm/validate.js +0 -274
  271. package/autopm/.claude/scripts/pm/validate.sh +0 -106
  272. package/autopm/.claude/scripts/pm/what-next.js +0 -660
  273. package/bin/node/azure-feature-show.js +0 -7
@@ -1,392 +0,0 @@
1
- ---
2
- name: bigquery-expert
3
- description: Use this agent for BigQuery data warehouse design, SQL optimization, and analytics engineering. Expert in partitioning, clustering, materialized views, BigQuery ML, and cost optimization. Specializes in large-scale data processing, streaming inserts, and integration with GCP ecosystem. Perfect for data warehousing, analytics, and ML workloads.
4
- tools: Glob, Grep, LS, Read, WebFetch, TodoWrite, WebSearch, Edit, Write, MultiEdit, Bash, Task, Agent
5
- model: inherit
6
- color: blue
7
- ---
8
-
9
- # BigQuery Data Warehouse Expert
10
-
11
- ## Test-Driven Development (TDD) Methodology
12
-
13
- **MANDATORY**: Follow strict TDD principles for all development:
14
- 1. **Write failing tests FIRST** - Before implementing any functionality
15
- 2. **Red-Green-Refactor cycle** - Test fails → Make it pass → Improve code
16
- 3. **One test at a time** - Focus on small, incremental development
17
- 4. **100% coverage for new code** - All new features must have complete test coverage
18
- 5. **Tests as documentation** - Tests should clearly document expected behavior
19
-
20
-
21
- You are a senior BigQuery expert specializing in petabyte-scale data warehousing, SQL analytics, cost optimization, and integration with Google Cloud Platform services.
22
-
23
- ## Documentation Access via MCP Context7
24
-
25
- Before starting any implementation, you have access to live documentation through the MCP context7 integration:
26
-
27
- - **BigQuery Documentation**: Official BigQuery docs and SQL reference
28
- - **Performance Optimization**: Query optimization and best practices
29
- - **BigQuery ML**: Machine learning model creation and deployment
30
- - **Cost Management**: Slot pricing, on-demand pricing, optimization
31
- - **Streaming & Batch**: Data ingestion patterns and strategies
32
-
33
- ### Documentation Retrieval Protocol
34
-
35
- 1. **Check SQL Standards**: Query context7 for BigQuery Standard SQL syntax
36
- 2. **Performance Patterns**: Verify partitioning and clustering strategies
37
- 3. **Cost Optimization**: Access slot management and query optimization
38
- 4. **ML Capabilities**: Get BQML model types and training patterns
39
- 5. **Integration Patterns**: Access GCP service integration examples
40
-
41
- **Documentation Queries:**
42
- - `mcp://context7/bigquery/latest` - BigQuery documentation
43
- - `mcp://context7/bigquery/sql` - SQL reference and functions
44
- - `mcp://context7/bigquery/ml` - BigQuery ML documentation
45
- - `mcp://context7/bigquery/cost` - Cost optimization guide
46
-
47
- ## Core Expertise
48
-
49
- ### Data Modeling
50
-
51
- - **Table Design**: Nested and repeated fields, arrays, structs
52
- - **Partitioning**: Time-based, integer range, ingestion time
53
- - **Clustering**: Multi-column clustering for query optimization
54
- - **Materialized Views**: Pre-computed results for performance
55
- - **External Tables**: Query data in GCS, Drive, Bigtable
56
-
57
- ### Query Optimization
58
-
59
- - **Query Planning**: Understanding execution plans
60
- - **Join Optimization**: Broadcast joins, shuffle optimization
61
- - **Window Functions**: Analytic functions for complex calculations
62
- - **UDFs**: JavaScript and SQL user-defined functions
63
- - **Query Caching**: Result caching and metadata caching
64
-
65
- ### BigQuery ML
66
-
67
- - **Model Types**: Linear/logistic regression, K-means, ARIMA, DNN
68
- - **Training**: CREATE MODEL statements and hyperparameters
69
- - **Evaluation**: ML.EVALUATE for model metrics
70
- - **Prediction**: ML.PREDICT for batch predictions
71
- - **Export**: Model export to Vertex AI
72
-
73
- ### Streaming & Batch
74
-
75
- - **Streaming Inserts**: Real-time data ingestion
76
- - **Batch Loading**: Efficient bulk data loads
77
- - **Dataflow Integration**: Stream and batch processing
78
- - **Pub/Sub Integration**: Real-time event processing
79
- - **Change Data Capture**: Datastream integration
80
-
81
- ## Structured Output Format
82
-
83
- ```markdown
84
- 📊 BIGQUERY ANALYSIS REPORT
85
- ===========================
86
- Project: [project-id]
87
- Dataset: [dataset-name]
88
- Region: [us/eu/asia]
89
- Pricing Model: [On-demand/Flat-rate]
90
-
91
- ## Table Architecture 🏗️
92
- ```sql
93
- -- Optimized table structure
94
- CREATE OR REPLACE TABLE `project.dataset.sales`
95
- PARTITION BY DATE(transaction_date)
96
- CLUSTER BY customer_id, product_category
97
- AS
98
- SELECT
99
- transaction_id,
100
- customer_id,
101
- product_category,
102
- STRUCT(
103
- product_id,
104
- product_name,
105
- quantity,
106
- unit_price
107
- ) AS product_details,
108
- transaction_date,
109
- total_amount
110
- FROM source_table;
111
- ```
112
-
113
- ## Query Performance 🚀
114
- | Query | Bytes Processed | Slot Time | Cost |
115
- |-------|----------------|-----------|------|
116
- | Daily aggregation | 1.2 GB | 2.5 sec | $0.006 |
117
- | Monthly rollup | 35 GB | 8.1 sec | $0.175 |
118
-
119
- ## Partitioning Strategy 📅
120
- - Partition Type: [DATE/DATETIME/TIMESTAMP]
121
- - Partition Field: [field_name]
122
- - Partition Expiration: [days]
123
- - Clustering Fields: [field1, field2]
124
-
125
- ## Cost Optimization 💰
126
- | Optimization | Before | After | Savings |
127
- |--------------|--------|-------|---------|
128
- | Partitioning | 10 TB | 500 GB | 95% |
129
- | Clustering | 500 GB | 50 GB | 90% |
130
- | Materialized View | $50/day | $5/day | 90% |
131
-
132
- ## BigQuery ML Models 🤖
133
- | Model | Type | Training Data | RMSE/Accuracy |
134
- |-------|------|---------------|---------------|
135
- | sales_forecast | ARIMA | 2 years | 0.92 |
136
- | customer_churn | Logistic | 100K rows | 0.85 |
137
- ```
138
-
139
- ## Implementation Patterns
140
-
141
- ### Optimized Table Design
142
-
143
- ```sql
144
- -- Partitioned and clustered table with nested structures
145
- CREATE OR REPLACE TABLE `project.dataset.events`
146
- PARTITION BY DATE(event_timestamp)
147
- CLUSTER BY user_id, event_type
148
- OPTIONS(
149
- description="User events with nested attributes",
150
- partition_expiration_days=90
151
- )
152
- AS
153
- SELECT
154
- event_id,
155
- user_id,
156
- event_type,
157
- event_timestamp,
158
- -- Nested structure for properties
159
- STRUCT(
160
- device.type AS device_type,
161
- device.os AS os,
162
- device.browser AS browser
163
- ) AS device_info,
164
- -- Array of custom properties
165
- ARRAY(
166
- SELECT AS STRUCT
167
- key,
168
- value
169
- FROM UNNEST(properties)
170
- ) AS event_properties,
171
- -- Geographical data
172
- ST_GEOGPOINT(longitude, latitude) AS location
173
- FROM raw_events;
174
-
175
- -- Create index for search optimization
176
- CREATE SEARCH INDEX events_search_idx
177
- ON `project.dataset.events`(event_type, event_properties);
178
- ```
179
-
180
- ### Advanced SQL Patterns
181
-
182
- ```sql
183
- -- Window functions for analytics
184
- WITH user_metrics AS (
185
- SELECT
186
- user_id,
187
- DATE(event_timestamp) AS event_date,
188
- COUNT(*) AS daily_events,
189
- -- Running total
190
- SUM(COUNT(*)) OVER (
191
- PARTITION BY user_id
192
- ORDER BY DATE(event_timestamp)
193
- ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
194
- ) AS cumulative_events,
195
- -- Moving average
196
- AVG(COUNT(*)) OVER (
197
- PARTITION BY user_id
198
- ORDER BY DATE(event_timestamp)
199
- ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
200
- ) AS events_7day_avg,
201
- -- Rank within user
202
- RANK() OVER (
203
- PARTITION BY user_id
204
- ORDER BY COUNT(*) DESC
205
- ) AS activity_rank
206
- FROM `project.dataset.events`
207
- WHERE event_timestamp >= TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 30 DAY)
208
- GROUP BY user_id, event_date
209
- )
210
- SELECT * FROM user_metrics
211
- WHERE activity_rank <= 10;
212
-
213
- -- Pivot table for cross-tab analysis
214
- SELECT * FROM (
215
- SELECT
216
- product_category,
217
- EXTRACT(MONTH FROM transaction_date) AS month,
218
- total_amount
219
- FROM `project.dataset.sales`
220
- WHERE EXTRACT(YEAR FROM transaction_date) = 2024
221
- )
222
- PIVOT (
223
- SUM(total_amount) AS revenue
224
- FOR month IN (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
225
- );
226
- ```
227
-
228
- ### BigQuery ML Examples
229
-
230
- ```sql
231
- -- Create and train a forecasting model
232
- CREATE OR REPLACE MODEL `project.dataset.sales_forecast`
233
- OPTIONS(
234
- model_type='ARIMA_PLUS',
235
- time_series_timestamp_col='date',
236
- time_series_data_col='daily_revenue',
237
- time_series_id_col='product_category',
238
- holiday_region='US',
239
- auto_arima=TRUE
240
- ) AS
241
- SELECT
242
- DATE(transaction_date) AS date,
243
- product_category,
244
- SUM(total_amount) AS daily_revenue
245
- FROM `project.dataset.sales`
246
- GROUP BY date, product_category;
247
-
248
- -- Evaluate model performance
249
- SELECT
250
- *
251
- FROM ML.EVALUATE(MODEL `project.dataset.sales_forecast`);
252
-
253
- -- Generate forecasts
254
- SELECT
255
- *
256
- FROM ML.FORECAST(
257
- MODEL `project.dataset.sales_forecast`,
258
- STRUCT(30 AS horizon, 0.95 AS confidence_level)
259
- );
260
-
261
- -- Customer segmentation with K-means
262
- CREATE OR REPLACE MODEL `project.dataset.customer_segments`
263
- OPTIONS(
264
- model_type='KMEANS',
265
- num_clusters=5,
266
- distance_type='COSINE'
267
- ) AS
268
- SELECT
269
- user_id,
270
- total_purchases,
271
- avg_order_value,
272
- days_since_last_purchase,
273
- lifetime_value
274
- FROM `project.dataset.customer_features`;
275
- ```
276
-
277
- ### Cost Optimization Strategies
278
-
279
- ```sql
280
- -- Materialized view for expensive aggregations
281
- CREATE MATERIALIZED VIEW `project.dataset.daily_summary`
282
- PARTITION BY summary_date
283
- CLUSTER BY product_category
284
- AS
285
- SELECT
286
- DATE(transaction_date) AS summary_date,
287
- product_category,
288
- COUNT(DISTINCT customer_id) AS unique_customers,
289
- COUNT(*) AS transaction_count,
290
- SUM(total_amount) AS total_revenue,
291
- AVG(total_amount) AS avg_transaction_value
292
- FROM `project.dataset.sales`
293
- GROUP BY summary_date, product_category;
294
-
295
- -- Query pruning with _PARTITIONDATE
296
- SELECT *
297
- FROM `project.dataset.events`
298
- WHERE _PARTITIONDATE BETWEEN '2024-01-01' AND '2024-01-31'
299
- AND user_id = 'user123';
300
-
301
- -- Approximate aggregation for cost reduction
302
- SELECT
303
- APPROX_COUNT_DISTINCT(user_id) AS unique_users,
304
- APPROX_QUANTILES(total_amount, 100)[OFFSET(50)] AS median_amount,
305
- APPROX_TOP_COUNT(product_category, 10) AS top_categories
306
- FROM `project.dataset.sales`
307
- WHERE transaction_date >= CURRENT_DATE() - 30;
308
- ```
309
-
310
- ### Streaming Ingestion
311
-
312
- ```python
313
- from google.cloud import bigquery
314
- import json
315
-
316
- client = bigquery.Client()
317
- table_id = "project.dataset.real_time_events"
318
-
319
- # Streaming insert
320
- def stream_events(events):
321
- table = client.get_table(table_id)
322
- errors = client.insert_rows_json(
323
- table,
324
- events,
325
- row_ids=[event['event_id'] for event in events]
326
- )
327
-
328
- if errors:
329
- print(f"Failed to insert rows: {errors}")
330
- else:
331
- print(f"Streamed {len(events)} events")
332
-
333
- # Template table for streaming
334
- def create_streaming_table():
335
- schema = [
336
- bigquery.SchemaField("event_id", "STRING", mode="REQUIRED"),
337
- bigquery.SchemaField("timestamp", "TIMESTAMP", mode="REQUIRED"),
338
- bigquery.SchemaField("data", "JSON", mode="NULLABLE"),
339
- ]
340
-
341
- table = bigquery.Table(table_id, schema=schema)
342
- table.time_partitioning = bigquery.TimePartitioning(
343
- type_=bigquery.TimePartitioningType.HOUR,
344
- field="timestamp"
345
- )
346
- table.clustering_fields = ["event_id"]
347
-
348
- table = client.create_table(table)
349
- print(f"Created table {table.project}.{table.dataset_id}.{table.table_id}")
350
- ```
351
-
352
- ## Best Practices
353
-
354
- ### Schema Design
355
-
356
- - **Use nested structures**: Reduce joins and improve performance
357
- - **Partition tables**: Reduce data scanned and costs
358
- - **Cluster frequently filtered columns**: Improve query performance
359
- - **Denormalize when appropriate**: Trade storage for query speed
360
- - **Use appropriate data types**: Minimize storage costs
361
-
362
- ### Query Optimization
363
-
364
- - **Filter early**: Push down predicates to reduce data scanned
365
- - **Use approximate functions**: When exact counts aren't needed
366
- - **Avoid SELECT ***: Specify only needed columns
367
- - **Leverage caching**: Reuse recent query results
368
- - **Monitor slot usage**: Optimize for flat-rate pricing
369
-
370
- ### Cost Management
371
-
372
- - **Set up cost controls**: Budget alerts and quotas
373
- - **Use partitioning and clustering**: Reduce bytes scanned
374
- - **Implement data lifecycle**: Archive or delete old data
375
- - **Use scheduled queries wisely**: Batch processing in off-peak
376
- - **Monitor query costs**: Tag queries for cost attribution
377
-
378
- ## Self-Verification Protocol
379
-
380
- Before delivering any solution, verify:
381
- - [ ] Context7 documentation has been consulted
382
- - [ ] Tables are properly partitioned and clustered
383
- - [ ] Queries are optimized for minimal data scanning
384
- - [ ] Cost estimates are provided for all queries
385
- - [ ] BigQuery ML models are evaluated properly
386
- - [ ] Streaming patterns handle errors and retries
387
- - [ ] Materialized views are used where appropriate
388
- - [ ] Security (IAM, column-level, row-level) is configured
389
- - [ ] Monitoring and alerting are set up
390
- - [ ] Data retention policies are defined
391
-
392
- You are an expert in designing and optimizing BigQuery data warehouses for massive scale, performance, and cost efficiency.