cdk-lambda-subminute 2.0.485 → 2.0.486
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.jsii +3 -3
- package/lib/cdk-lambda-subminute.js +3 -3
- package/node_modules/aws-sdk/README.md +1 -1
- package/node_modules/aws-sdk/apis/bedrock-agent-runtime-2023-07-26.min.json +7 -1
- package/node_modules/aws-sdk/apis/personalize-2018-05-22.min.json +61 -5
- package/node_modules/aws-sdk/apis/quicksight-2018-04-01.min.json +349 -340
- package/node_modules/aws-sdk/apis/states-2016-11-23.min.json +8 -1
- package/node_modules/aws-sdk/clients/bedrockagentruntime.d.ts +1 -1
- package/node_modules/aws-sdk/clients/bedrockruntime.d.ts +4 -4
- package/node_modules/aws-sdk/clients/personalize.d.ts +66 -5
- package/node_modules/aws-sdk/clients/quicksight.d.ts +2 -1
- package/node_modules/aws-sdk/clients/stepfunctions.d.ts +15 -1
- package/node_modules/aws-sdk/clients/wafv2.d.ts +2 -2
- package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
- package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +5 -5
- package/node_modules/aws-sdk/dist/aws-sdk.js +64 -8
- package/node_modules/aws-sdk/dist/aws-sdk.min.js +37 -37
- package/node_modules/aws-sdk/lib/core.js +1 -1
- package/node_modules/aws-sdk/package.json +1 -1
- package/package.json +2 -2
@@ -1810,7 +1810,11 @@
|
|
1810
1810
|
"definition": {
|
1811
1811
|
"shape": "Sf"
|
1812
1812
|
},
|
1813
|
-
"type": {}
|
1813
|
+
"type": {},
|
1814
|
+
"severity": {},
|
1815
|
+
"maxResults": {
|
1816
|
+
"type": "integer"
|
1817
|
+
}
|
1814
1818
|
}
|
1815
1819
|
},
|
1816
1820
|
"output": {
|
@@ -1837,6 +1841,9 @@
|
|
1837
1841
|
"location": {}
|
1838
1842
|
}
|
1839
1843
|
}
|
1844
|
+
},
|
1845
|
+
"truncated": {
|
1846
|
+
"type": "boolean"
|
1840
1847
|
}
|
1841
1848
|
}
|
1842
1849
|
}
|
@@ -226,7 +226,7 @@ declare namespace BedrockAgentRuntime {
|
|
226
226
|
}
|
227
227
|
export interface ByteContentFile {
|
228
228
|
/**
|
229
|
-
* The
|
229
|
+
* The raw bytes of the file to attach. The maximum size of all files that is attached is 10MB. You can attach a maximum of 5 files.
|
230
230
|
*/
|
231
231
|
data: ByteContentBlob;
|
232
232
|
/**
|
@@ -180,7 +180,7 @@ declare namespace BedrockRuntime {
|
|
180
180
|
}
|
181
181
|
export interface ConverseRequest {
|
182
182
|
/**
|
183
|
-
* The identifier for the model that you want to call. The modelId to provide depends on the type of model that you use: If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide. If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide. If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide.
|
183
|
+
* The identifier for the model that you want to call. The modelId to provide depends on the type of model or throughput that you use: If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide. If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see Supported Regions and models for cross-region inference in the Amazon Bedrock User Guide. If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide. If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide. The Converse API doesn't support imported models.
|
184
184
|
*/
|
185
185
|
modelId: ConversationalModelId;
|
186
186
|
/**
|
@@ -263,7 +263,7 @@ declare namespace BedrockRuntime {
|
|
263
263
|
export type ConverseStreamOutput = EventStream<{messageStart?:MessageStartEvent,contentBlockStart?:ContentBlockStartEvent,contentBlockDelta?:ContentBlockDeltaEvent,contentBlockStop?:ContentBlockStopEvent,messageStop?:MessageStopEvent,metadata?:ConverseStreamMetadataEvent,internalServerException?:InternalServerException,modelStreamErrorException?:ModelStreamErrorException,validationException?:ValidationException,throttlingException?:ThrottlingException,serviceUnavailableException?:ServiceUnavailableException}>;
|
264
264
|
export interface ConverseStreamRequest {
|
265
265
|
/**
|
266
|
-
* The ID for the model. The modelId to provide depends on the type of model that you use: If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide. If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide. If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide.
|
266
|
+
* The ID for the model. The modelId to provide depends on the type of model or throughput that you use: If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide. If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see Supported Regions and models for cross-region inference in the Amazon Bedrock User Guide. If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide. If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide. The Converse API doesn't support imported models.
|
267
267
|
*/
|
268
268
|
modelId: ConversationalModelId;
|
269
269
|
/**
|
@@ -712,7 +712,7 @@ declare namespace BedrockRuntime {
|
|
712
712
|
*/
|
713
713
|
accept?: MimeType;
|
714
714
|
/**
|
715
|
-
* The unique identifier of the model to invoke to run inference. The modelId to provide depends on the type of model that you use: If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide. If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide. If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide.
|
715
|
+
* The unique identifier of the model to invoke to run inference. The modelId to provide depends on the type of model that you use: If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide. If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide. If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide. If you use an imported model, specify the ARN of the imported model. You can get the model ARN from a successful call to CreateModelImportJob or from the Imported models page in the Amazon Bedrock console.
|
716
716
|
*/
|
717
717
|
modelId: InvokeModelIdentifier;
|
718
718
|
/**
|
@@ -752,7 +752,7 @@ declare namespace BedrockRuntime {
|
|
752
752
|
*/
|
753
753
|
accept?: MimeType;
|
754
754
|
/**
|
755
|
-
* The unique identifier of the model to invoke to run inference. The modelId to provide depends on the type of model that you use: If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide. If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide. If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide.
|
755
|
+
* The unique identifier of the model to invoke to run inference. The modelId to provide depends on the type of model that you use: If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide. If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide. If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide. If you use an imported model, specify the ARN of the imported model. You can get the model ARN from a successful call to CreateModelImportJob or from the Imported models page in the Amazon Bedrock console.
|
756
756
|
*/
|
757
757
|
modelId: InvokeModelIdentifier;
|
758
758
|
/**
|
@@ -116,11 +116,11 @@ declare class Personalize extends Service {
|
|
116
116
|
*/
|
117
117
|
createSchema(callback?: (err: AWSError, data: Personalize.Types.CreateSchemaResponse) => void): Request<Personalize.Types.CreateSchemaResponse, AWSError>;
|
118
118
|
/**
|
119
|
-
*
|
119
|
+
* By default, all new solutions use automatic training. With automatic training, you incur training costs while your solution is active. To avoid unnecessary costs, when you are finished you can update the solution to turn off automatic training. For information about training costs, see Amazon Personalize pricing. Creates the configuration for training a model (creating a solution version). This configuration includes the recipe to use for model training and optional training configuration, such as columns to use in training and feature transformation parameters. For more information about configuring a solution, see Creating and configuring a solution. By default, new solutions use automatic training to create solution versions every 7 days. You can change the training frequency. Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. For more information, see Configuring automatic training. To turn off automatic training, set performAutoTraining to false. If you turn off automatic training, you must manually create a solution version by calling the CreateSolutionVersion operation. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion. After training completes you can evaluate model accuracy by calling GetSolutionMetrics. When you are satisfied with the solution version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. If you use manual training, the status must be ACTIVE before you call CreateSolutionVersion. Related APIs UpdateSolution ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
|
120
120
|
*/
|
121
121
|
createSolution(params: Personalize.Types.CreateSolutionRequest, callback?: (err: AWSError, data: Personalize.Types.CreateSolutionResponse) => void): Request<Personalize.Types.CreateSolutionResponse, AWSError>;
|
122
122
|
/**
|
123
|
-
*
|
123
|
+
* By default, all new solutions use automatic training. With automatic training, you incur training costs while your solution is active. To avoid unnecessary costs, when you are finished you can update the solution to turn off automatic training. For information about training costs, see Amazon Personalize pricing. Creates the configuration for training a model (creating a solution version). This configuration includes the recipe to use for model training and optional training configuration, such as columns to use in training and feature transformation parameters. For more information about configuring a solution, see Creating and configuring a solution. By default, new solutions use automatic training to create solution versions every 7 days. You can change the training frequency. Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. For more information, see Configuring automatic training. To turn off automatic training, set performAutoTraining to false. If you turn off automatic training, you must manually create a solution version by calling the CreateSolutionVersion operation. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion. After training completes you can evaluate model accuracy by calling GetSolutionMetrics. When you are satisfied with the solution version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. If you use manual training, the status must be ACTIVE before you call CreateSolutionVersion. Related APIs UpdateSolution ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
|
124
124
|
*/
|
125
125
|
createSolution(callback?: (err: AWSError, data: Personalize.Types.CreateSolutionResponse) => void): Request<Personalize.Types.CreateSolutionResponse, AWSError>;
|
126
126
|
/**
|
@@ -571,6 +571,14 @@ declare class Personalize extends Service {
|
|
571
571
|
* Updates the recommender to modify the recommender configuration. If you update the recommender to modify the columns used in training, Amazon Personalize automatically starts a full retraining of the models backing your recommender. While the update completes, you can still get recommendations from the recommender. The recommender uses the previous configuration until the update completes. To track the status of this update, use the latestRecommenderUpdate returned in the DescribeRecommender operation.
|
572
572
|
*/
|
573
573
|
updateRecommender(callback?: (err: AWSError, data: Personalize.Types.UpdateRecommenderResponse) => void): Request<Personalize.Types.UpdateRecommenderResponse, AWSError>;
|
574
|
+
/**
|
575
|
+
* Updates an Amazon Personalize solution to use a different automatic training configuration. When you update a solution, you can change whether the solution uses automatic training, and you can change the training frequency. For more information about updating a solution, see Updating a solution. A solution update can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED To get the status of a solution update, call the DescribeSolution API operation and find the status in the latestSolutionUpdate.
|
576
|
+
*/
|
577
|
+
updateSolution(params: Personalize.Types.UpdateSolutionRequest, callback?: (err: AWSError, data: Personalize.Types.UpdateSolutionResponse) => void): Request<Personalize.Types.UpdateSolutionResponse, AWSError>;
|
578
|
+
/**
|
579
|
+
* Updates an Amazon Personalize solution to use a different automatic training configuration. When you update a solution, you can change whether the solution uses automatic training, and you can change the training frequency. For more information about updating a solution, see Updating a solution. A solution update can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED To get the status of a solution update, call the DescribeSolution API operation and find the status in the latestSolutionUpdate.
|
580
|
+
*/
|
581
|
+
updateSolution(callback?: (err: AWSError, data: Personalize.Types.UpdateSolutionResponse) => void): Request<Personalize.Types.UpdateSolutionResponse, AWSError>;
|
574
582
|
}
|
575
583
|
declare namespace Personalize {
|
576
584
|
export type AccountId = string;
|
@@ -1404,7 +1412,7 @@ declare namespace Personalize {
|
|
1404
1412
|
*/
|
1405
1413
|
performAutoML?: PerformAutoML;
|
1406
1414
|
/**
|
1407
|
-
* Whether the solution uses automatic training to create new solution versions (trained models). The default is True and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a schedulingExpression in the AutoTrainingConfig as part of solution configuration. For more information about automatic training, see Configuring automatic training. Automatic solution version creation starts one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion.
|
1415
|
+
* Whether the solution uses automatic training to create new solution versions (trained models). The default is True and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a schedulingExpression in the AutoTrainingConfig as part of solution configuration. For more information about automatic training, see Configuring automatic training. Automatic solution version creation starts within one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion.
|
1408
1416
|
*/
|
1409
1417
|
performAutoTraining?: PerformAutoTraining;
|
1410
1418
|
/**
|
@@ -1420,7 +1428,7 @@ declare namespace Personalize {
|
|
1420
1428
|
*/
|
1421
1429
|
eventType?: EventType;
|
1422
1430
|
/**
|
1423
|
-
* The configuration
|
1431
|
+
* The configuration properties for the solution. When performAutoML is set to true, Amazon Personalize only evaluates the autoMLConfig section of the solution configuration. Amazon Personalize doesn't support configuring the hpoObjective at this time.
|
1424
1432
|
*/
|
1425
1433
|
solutionConfig?: SolutionConfig;
|
1426
1434
|
/**
|
@@ -3191,7 +3199,7 @@ declare namespace Personalize {
|
|
3191
3199
|
*/
|
3192
3200
|
lastUpdatedDateTime?: _Date;
|
3193
3201
|
/**
|
3194
|
-
* The status of the recommender update. A recommender can be in one of the following states:
|
3202
|
+
* The status of the recommender update. A recommender update can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED
|
3195
3203
|
*/
|
3196
3204
|
status?: Status;
|
3197
3205
|
/**
|
@@ -3272,6 +3280,10 @@ declare namespace Personalize {
|
|
3272
3280
|
* Describes the latest version of the solution, including the status and the ARN.
|
3273
3281
|
*/
|
3274
3282
|
latestSolutionVersion?: SolutionVersionSummary;
|
3283
|
+
/**
|
3284
|
+
* Provides a summary of the latest updates to the solution.
|
3285
|
+
*/
|
3286
|
+
latestSolutionUpdate?: SolutionUpdateSummary;
|
3275
3287
|
}
|
3276
3288
|
export interface SolutionConfig {
|
3277
3289
|
/**
|
@@ -3333,6 +3345,35 @@ declare namespace Personalize {
|
|
3333
3345
|
*/
|
3334
3346
|
recipeArn?: Arn;
|
3335
3347
|
}
|
3348
|
+
export interface SolutionUpdateConfig {
|
3349
|
+
autoTrainingConfig?: AutoTrainingConfig;
|
3350
|
+
}
|
3351
|
+
export interface SolutionUpdateSummary {
|
3352
|
+
/**
|
3353
|
+
* The configuration details of the solution.
|
3354
|
+
*/
|
3355
|
+
solutionUpdateConfig?: SolutionUpdateConfig;
|
3356
|
+
/**
|
3357
|
+
* The status of the solution update. A solution update can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED
|
3358
|
+
*/
|
3359
|
+
status?: Status;
|
3360
|
+
/**
|
3361
|
+
* Whether the solution automatically creates solution versions.
|
3362
|
+
*/
|
3363
|
+
performAutoTraining?: PerformAutoTraining;
|
3364
|
+
/**
|
3365
|
+
* The date and time (in Unix format) that the solution update was created.
|
3366
|
+
*/
|
3367
|
+
creationDateTime?: _Date;
|
3368
|
+
/**
|
3369
|
+
* The date and time (in Unix time) that the solution update was last updated.
|
3370
|
+
*/
|
3371
|
+
lastUpdatedDateTime?: _Date;
|
3372
|
+
/**
|
3373
|
+
* If a solution update fails, the reason behind the failure.
|
3374
|
+
*/
|
3375
|
+
failureReason?: FailureReason;
|
3376
|
+
}
|
3336
3377
|
export interface SolutionVersion {
|
3337
3378
|
/**
|
3338
3379
|
* The name of the solution version.
|
@@ -3609,6 +3650,26 @@ declare namespace Personalize {
|
|
3609
3650
|
*/
|
3610
3651
|
recommenderArn?: Arn;
|
3611
3652
|
}
|
3653
|
+
export interface UpdateSolutionRequest {
|
3654
|
+
/**
|
3655
|
+
* The Amazon Resource Name (ARN) of the solution to update.
|
3656
|
+
*/
|
3657
|
+
solutionArn: Arn;
|
3658
|
+
/**
|
3659
|
+
* Whether the solution uses automatic training to create new solution versions (trained models). You can change the training frequency by specifying a schedulingExpression in the AutoTrainingConfig as part of solution configuration. If you turn on automatic training, the first automatic training starts within one hour after the solution update completes. If you manually create a solution version within the hour, the solution skips the first automatic training. For more information about automatic training, see Configuring automatic training. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion.
|
3660
|
+
*/
|
3661
|
+
performAutoTraining?: PerformAutoTraining;
|
3662
|
+
/**
|
3663
|
+
* The new configuration details of the solution.
|
3664
|
+
*/
|
3665
|
+
solutionUpdateConfig?: SolutionUpdateConfig;
|
3666
|
+
}
|
3667
|
+
export interface UpdateSolutionResponse {
|
3668
|
+
/**
|
3669
|
+
* The same solution Amazon Resource Name (ARN) as given in the request.
|
3670
|
+
*/
|
3671
|
+
solutionArn?: Arn;
|
3672
|
+
}
|
3612
3673
|
/**
|
3613
3674
|
* A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
|
3614
3675
|
*/
|
@@ -3213,7 +3213,7 @@ declare namespace QuickSight {
|
|
3213
3213
|
/**
|
3214
3214
|
* An expression that defines the calculated column.
|
3215
3215
|
*/
|
3216
|
-
Expression:
|
3216
|
+
Expression: DataSetCalculatedFieldExpression;
|
3217
3217
|
}
|
3218
3218
|
export type CalculatedColumnList = CalculatedColumn[];
|
3219
3219
|
export interface CalculatedField {
|
@@ -5947,6 +5947,7 @@ declare namespace QuickSight {
|
|
5947
5947
|
DatasetParameters?: DatasetParameterList;
|
5948
5948
|
}
|
5949
5949
|
export type DataSetArnsList = Arn[];
|
5950
|
+
export type DataSetCalculatedFieldExpression = string;
|
5950
5951
|
export interface DataSetConfiguration {
|
5951
5952
|
/**
|
5952
5953
|
* Placeholder.
|
@@ -2347,8 +2347,17 @@ declare namespace StepFunctions {
|
|
2347
2347
|
* The target type of state machine for this definition. The default is STANDARD.
|
2348
2348
|
*/
|
2349
2349
|
type?: StateMachineType;
|
2350
|
+
/**
|
2351
|
+
* Minimum level of diagnostics to return. ERROR returns only ERROR diagnostics, whereas WARNING returns both WARNING and ERROR diagnostics. The default is ERROR.
|
2352
|
+
*/
|
2353
|
+
severity?: ValidateStateMachineDefinitionSeverity;
|
2354
|
+
/**
|
2355
|
+
* The maximum number of diagnostics that are returned per call. The default and maximum value is 100. Setting the value to 0 will also use the default of 100. If the number of diagnostics returned in the response exceeds maxResults, the value of the truncated field in the response will be set to true.
|
2356
|
+
*/
|
2357
|
+
maxResults?: ValidateStateMachineDefinitionMaxResult;
|
2350
2358
|
}
|
2351
2359
|
export type ValidateStateMachineDefinitionLocation = string;
|
2360
|
+
export type ValidateStateMachineDefinitionMaxResult = number;
|
2352
2361
|
export type ValidateStateMachineDefinitionMessage = string;
|
2353
2362
|
export interface ValidateStateMachineDefinitionOutput {
|
2354
2363
|
/**
|
@@ -2359,9 +2368,14 @@ declare namespace StepFunctions {
|
|
2359
2368
|
* If the result is OK, this field will be empty. When there are errors, this field will contain an array of Diagnostic objects to help you troubleshoot.
|
2360
2369
|
*/
|
2361
2370
|
diagnostics: ValidateStateMachineDefinitionDiagnosticList;
|
2371
|
+
/**
|
2372
|
+
* The result value will be true if the number of diagnostics found in the workflow definition exceeds maxResults. When all diagnostics results are returned, the value will be false.
|
2373
|
+
*/
|
2374
|
+
truncated?: ValidateStateMachineDefinitionTruncated;
|
2362
2375
|
}
|
2363
2376
|
export type ValidateStateMachineDefinitionResultCode = "OK"|"FAIL"|string;
|
2364
|
-
export type ValidateStateMachineDefinitionSeverity = "ERROR"|string;
|
2377
|
+
export type ValidateStateMachineDefinitionSeverity = "ERROR"|"WARNING"|string;
|
2378
|
+
export type ValidateStateMachineDefinitionTruncated = boolean;
|
2365
2379
|
export type VersionDescription = string;
|
2366
2380
|
export type VersionWeight = number;
|
2367
2381
|
export type includedDetails = boolean;
|
@@ -380,11 +380,11 @@ declare class WAFV2 extends Service {
|
|
380
380
|
*/
|
381
381
|
putManagedRuleSetVersions(callback?: (err: AWSError, data: WAFV2.Types.PutManagedRuleSetVersionsResponse) => void): Request<WAFV2.Types.PutManagedRuleSetVersionsResponse, AWSError>;
|
382
382
|
/**
|
383
|
-
*
|
383
|
+
* Use this to share a rule group with other accounts. This action attaches an IAM policy to the specified resource. You must be the owner of the rule group to perform this operation. This action is subject to the following restrictions: You can attach only one policy with each PutPermissionPolicy request. The ARN in the request must be a valid WAF RuleGroup ARN and the rule group must exist in the same Region. The user making the request must be the owner of the rule group. If a rule group has been shared with your account, you can access it through the call GetRuleGroup, and you can reference it in CreateWebACL and UpdateWebACL. Rule groups that are shared with you don't appear in your WAF console rule groups listing.
|
384
384
|
*/
|
385
385
|
putPermissionPolicy(params: WAFV2.Types.PutPermissionPolicyRequest, callback?: (err: AWSError, data: WAFV2.Types.PutPermissionPolicyResponse) => void): Request<WAFV2.Types.PutPermissionPolicyResponse, AWSError>;
|
386
386
|
/**
|
387
|
-
*
|
387
|
+
* Use this to share a rule group with other accounts. This action attaches an IAM policy to the specified resource. You must be the owner of the rule group to perform this operation. This action is subject to the following restrictions: You can attach only one policy with each PutPermissionPolicy request. The ARN in the request must be a valid WAF RuleGroup ARN and the rule group must exist in the same Region. The user making the request must be the owner of the rule group. If a rule group has been shared with your account, you can access it through the call GetRuleGroup, and you can reference it in CreateWebACL and UpdateWebACL. Rule groups that are shared with you don't appear in your WAF console rule groups listing.
|
388
388
|
*/
|
389
389
|
putPermissionPolicy(callback?: (err: AWSError, data: WAFV2.Types.PutPermissionPolicyResponse) => void): Request<WAFV2.Types.PutPermissionPolicyResponse, AWSError>;
|
390
390
|
/**
|