cdk-lambda-subminute 2.0.432 → 2.0.434

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. package/.jsii +55 -3
  2. package/lib/cdk-lambda-subminute.js +3 -3
  3. package/node_modules/aws-sdk/README.md +1 -1
  4. package/node_modules/aws-sdk/apis/drs-2020-02-26.min.json +61 -57
  5. package/node_modules/aws-sdk/apis/emr-serverless-2021-07-13.min.json +23 -17
  6. package/node_modules/aws-sdk/apis/glue-2017-03-31.min.json +2 -1
  7. package/node_modules/aws-sdk/apis/guardduty-2017-11-28.min.json +8 -0
  8. package/node_modules/aws-sdk/apis/internetmonitor-2021-06-03.min.json +149 -0
  9. package/node_modules/aws-sdk/apis/internetmonitor-2021-06-03.paginators.json +6 -0
  10. package/node_modules/aws-sdk/apis/personalize-2018-05-22.min.json +32 -14
  11. package/node_modules/aws-sdk/apis/quicksight-2018-04-01.min.json +1182 -1038
  12. package/node_modules/aws-sdk/apis/rolesanywhere-2018-05-10.min.json +167 -64
  13. package/node_modules/aws-sdk/apis/workspaces-2015-04-08.min.json +262 -128
  14. package/node_modules/aws-sdk/apis/workspaces-2015-04-08.paginators.json +6 -0
  15. package/node_modules/aws-sdk/clients/drs.d.ts +18 -1
  16. package/node_modules/aws-sdk/clients/emrserverless.d.ts +14 -1
  17. package/node_modules/aws-sdk/clients/glue.d.ts +4 -0
  18. package/node_modules/aws-sdk/clients/guardduty.d.ts +9 -1
  19. package/node_modules/aws-sdk/clients/internetmonitor.d.ts +170 -13
  20. package/node_modules/aws-sdk/clients/personalize.d.ts +56 -19
  21. package/node_modules/aws-sdk/clients/quicksight.d.ts +193 -10
  22. package/node_modules/aws-sdk/clients/rolesanywhere.d.ts +81 -0
  23. package/node_modules/aws-sdk/clients/sagemaker.d.ts +6 -6
  24. package/node_modules/aws-sdk/clients/workspaces.d.ts +180 -0
  25. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
  26. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +12 -12
  27. package/node_modules/aws-sdk/dist/aws-sdk.js +35 -17
  28. package/node_modules/aws-sdk/dist/aws-sdk.min.js +29 -29
  29. package/node_modules/aws-sdk/lib/core.js +1 -1
  30. package/node_modules/aws-sdk/package.json +1 -1
  31. package/package.json +3 -3
@@ -28,11 +28,11 @@ declare class Personalize extends Service {
28
28
  */
29
29
  createBatchSegmentJob(callback?: (err: AWSError, data: Personalize.Types.CreateBatchSegmentJobResponse) => void): Request<Personalize.Types.CreateBatchSegmentJobResponse, AWSError>;
30
30
  /**
31
- * Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your cost. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. When you create an Amazon Personalize campaign, you can specify the minimum provisioned transactions per second (minProvisionedTPS) for the campaign. This is the baseline transaction throughput for the campaign provisioned by Amazon Personalize. It sets the minimum billing charge for the campaign while it is active. A transaction is a single GetRecommendations or GetPersonalizedRanking request. The default minProvisionedTPS is 1. If your TPS increases beyond the minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. When your traffic reduces, capacity returns to the minProvisionedTPS. You are charged for the the minimum provisioned TPS or, if your requests exceed the minProvisionedTPS, the actual TPS. The actual TPS is the total number of recommendation requests you make. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. For more information about campaign costs, see Amazon Personalize pricing. Status A campaign can be in one of the following states: CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED DELETE PENDING &gt; DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
31
+ * You incur campaign costs while it is active. To avoid unnecessary costs, make sure to delete the campaign when you are finished. For information about campaign costs, see Amazon Personalize pricing. Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your cost. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. When you create an Amazon Personalize campaign, you can specify the minimum provisioned transactions per second (minProvisionedTPS) for the campaign. This is the baseline transaction throughput for the campaign provisioned by Amazon Personalize. It sets the minimum billing charge for the campaign while it is active. A transaction is a single GetRecommendations or GetPersonalizedRanking request. The default minProvisionedTPS is 1. If your TPS increases beyond the minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. When your traffic reduces, capacity returns to the minProvisionedTPS. You are charged for the the minimum provisioned TPS or, if your requests exceed the minProvisionedTPS, the actual TPS. The actual TPS is the total number of recommendation requests you make. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. For more information about campaign costs, see Amazon Personalize pricing. Status A campaign can be in one of the following states: CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED DELETE PENDING &gt; DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
32
32
  */
33
33
  createCampaign(params: Personalize.Types.CreateCampaignRequest, callback?: (err: AWSError, data: Personalize.Types.CreateCampaignResponse) => void): Request<Personalize.Types.CreateCampaignResponse, AWSError>;
34
34
  /**
35
- * Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your cost. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. When you create an Amazon Personalize campaign, you can specify the minimum provisioned transactions per second (minProvisionedTPS) for the campaign. This is the baseline transaction throughput for the campaign provisioned by Amazon Personalize. It sets the minimum billing charge for the campaign while it is active. A transaction is a single GetRecommendations or GetPersonalizedRanking request. The default minProvisionedTPS is 1. If your TPS increases beyond the minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. When your traffic reduces, capacity returns to the minProvisionedTPS. You are charged for the the minimum provisioned TPS or, if your requests exceed the minProvisionedTPS, the actual TPS. The actual TPS is the total number of recommendation requests you make. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. For more information about campaign costs, see Amazon Personalize pricing. Status A campaign can be in one of the following states: CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED DELETE PENDING &gt; DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
35
+ * You incur campaign costs while it is active. To avoid unnecessary costs, make sure to delete the campaign when you are finished. For information about campaign costs, see Amazon Personalize pricing. Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your cost. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. When you create an Amazon Personalize campaign, you can specify the minimum provisioned transactions per second (minProvisionedTPS) for the campaign. This is the baseline transaction throughput for the campaign provisioned by Amazon Personalize. It sets the minimum billing charge for the campaign while it is active. A transaction is a single GetRecommendations or GetPersonalizedRanking request. The default minProvisionedTPS is 1. If your TPS increases beyond the minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. When your traffic reduces, capacity returns to the minProvisionedTPS. You are charged for the the minimum provisioned TPS or, if your requests exceed the minProvisionedTPS, the actual TPS. The actual TPS is the total number of recommendation requests you make. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. For more information about campaign costs, see Amazon Personalize pricing. Status A campaign can be in one of the following states: CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED DELETE PENDING &gt; DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
36
36
  */
37
37
  createCampaign(callback?: (err: AWSError, data: Personalize.Types.CreateCampaignResponse) => void): Request<Personalize.Types.CreateCampaignResponse, AWSError>;
38
38
  /**
@@ -108,11 +108,11 @@ declare class Personalize extends Service {
108
108
  */
109
109
  createSchema(callback?: (err: AWSError, data: Personalize.Types.CreateSchemaResponse) => void): Request<Personalize.Types.CreateSchemaResponse, AWSError>;
110
110
  /**
111
- * Creates the configuration for training a model. A trained model is known as a solution version. After the configuration is created, you train the model (create a solution version) by calling the CreateSolutionVersion operation. Every time you call CreateSolutionVersion, a new version of the solution is created. After creating a solution version, you check its accuracy by calling GetSolutionMetrics. When you are satisfied with the version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED DELETE PENDING &gt; DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. Wait until the status shows as ACTIVE before calling CreateSolutionVersion. Related APIs ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
111
+ * After you create a solution, you can’t change its configuration. By default, all new solutions use automatic training. With automatic training, you incur training costs while your solution is active. You can't stop automatic training for a solution. To avoid unnecessary costs, make sure to delete the solution when you are finished. For information about training costs, see Amazon Personalize pricing. Creates the configuration for training a model (creating a solution version). This configuration includes the recipe to use for model training and optional training configuration, such as columns to use in training and feature transformation parameters. For more information about configuring a solution, see Creating and configuring a solution. By default, new solutions use automatic training to create solution versions every 7 days. You can change the training frequency. Automatic solution version creation starts one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. For more information, see Configuring automatic training. To turn off automatic training, set performAutoTraining to false. If you turn off automatic training, you must manually create a solution version by calling the CreateSolutionVersion operation. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion. After training completes you can evaluate model accuracy by calling GetSolutionMetrics. When you are satisfied with the solution version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED DELETE PENDING &gt; DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. If you use manual training, the status must be ACTIVE before you call CreateSolutionVersion. Related APIs ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
112
112
  */
113
113
  createSolution(params: Personalize.Types.CreateSolutionRequest, callback?: (err: AWSError, data: Personalize.Types.CreateSolutionResponse) => void): Request<Personalize.Types.CreateSolutionResponse, AWSError>;
114
114
  /**
115
- * Creates the configuration for training a model. A trained model is known as a solution version. After the configuration is created, you train the model (create a solution version) by calling the CreateSolutionVersion operation. Every time you call CreateSolutionVersion, a new version of the solution is created. After creating a solution version, you check its accuracy by calling GetSolutionMetrics. When you are satisfied with the version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED DELETE PENDING &gt; DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. Wait until the status shows as ACTIVE before calling CreateSolutionVersion. Related APIs ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
115
+ * After you create a solution, you can’t change its configuration. By default, all new solutions use automatic training. With automatic training, you incur training costs while your solution is active. You can't stop automatic training for a solution. To avoid unnecessary costs, make sure to delete the solution when you are finished. For information about training costs, see Amazon Personalize pricing. Creates the configuration for training a model (creating a solution version). This configuration includes the recipe to use for model training and optional training configuration, such as columns to use in training and feature transformation parameters. For more information about configuring a solution, see Creating and configuring a solution. By default, new solutions use automatic training to create solution versions every 7 days. You can change the training frequency. Automatic solution version creation starts one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. For more information, see Configuring automatic training. To turn off automatic training, set performAutoTraining to false. If you turn off automatic training, you must manually create a solution version by calling the CreateSolutionVersion operation. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion. After training completes you can evaluate model accuracy by calling GetSolutionMetrics. When you are satisfied with the solution version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED DELETE PENDING &gt; DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. If you use manual training, the status must be ACTIVE before you call CreateSolutionVersion. Related APIs ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
116
116
  */
117
117
  createSolution(callback?: (err: AWSError, data: Personalize.Types.CreateSolutionResponse) => void): Request<Personalize.Types.CreateSolutionResponse, AWSError>;
118
118
  /**
@@ -460,11 +460,11 @@ declare class Personalize extends Service {
460
460
  */
461
461
  listSolutionVersions(callback?: (err: AWSError, data: Personalize.Types.ListSolutionVersionsResponse) => void): Request<Personalize.Types.ListSolutionVersionsResponse, AWSError>;
462
462
  /**
463
- * Returns a list of solutions that use the given dataset group. When a dataset group is not specified, all the solutions associated with the account are listed. The response provides the properties for each solution, including the Amazon Resource Name (ARN). For more information on solutions, see CreateSolution.
463
+ * Returns a list of solutions in a given dataset group. When a dataset group is not specified, all the solutions associated with the account are listed. The response provides the properties for each solution, including the Amazon Resource Name (ARN). For more information on solutions, see CreateSolution.
464
464
  */
465
465
  listSolutions(params: Personalize.Types.ListSolutionsRequest, callback?: (err: AWSError, data: Personalize.Types.ListSolutionsResponse) => void): Request<Personalize.Types.ListSolutionsResponse, AWSError>;
466
466
  /**
467
- * Returns a list of solutions that use the given dataset group. When a dataset group is not specified, all the solutions associated with the account are listed. The response provides the properties for each solution, including the Amazon Resource Name (ARN). For more information on solutions, see CreateSolution.
467
+ * Returns a list of solutions in a given dataset group. When a dataset group is not specified, all the solutions associated with the account are listed. The response provides the properties for each solution, including the Amazon Resource Name (ARN). For more information on solutions, see CreateSolution.
468
468
  */
469
469
  listSolutions(callback?: (err: AWSError, data: Personalize.Types.ListSolutionsResponse) => void): Request<Personalize.Types.ListSolutionsResponse, AWSError>;
470
470
  /**
@@ -508,19 +508,19 @@ declare class Personalize extends Service {
508
508
  */
509
509
  tagResource(callback?: (err: AWSError, data: Personalize.Types.TagResourceResponse) => void): Request<Personalize.Types.TagResourceResponse, AWSError>;
510
510
  /**
511
- * Remove tags that are attached to a resource.
511
+ * Removes the specified tags that are attached to a resource. For more information, see Removing tags from Amazon Personalize resources.
512
512
  */
513
513
  untagResource(params: Personalize.Types.UntagResourceRequest, callback?: (err: AWSError, data: Personalize.Types.UntagResourceResponse) => void): Request<Personalize.Types.UntagResourceResponse, AWSError>;
514
514
  /**
515
- * Remove tags that are attached to a resource.
515
+ * Removes the specified tags that are attached to a resource. For more information, see Removing tags from Amazon Personalize resources.
516
516
  */
517
517
  untagResource(callback?: (err: AWSError, data: Personalize.Types.UntagResourceResponse) => void): Request<Personalize.Types.UntagResourceResponse, AWSError>;
518
518
  /**
519
- * Updates a campaign to deploy a retrained solution version with an existing campaign, change your campaign's minProvisionedTPS, or modify your campaign's configuration, such as the exploration configuration. To update a campaign, the campaign status must be ACTIVE or CREATE FAILED. Check the campaign status using the DescribeCampaign operation. You can still get recommendations from a campaign while an update is in progress. The campaign will use the previous solution version and campaign configuration to generate recommendations until the latest campaign update status is Active. For more information about updating a campaign, including code samples, see Updating a campaign. For more information about campaigns, see Creating a campaign.
519
+ * Updates a campaign to deploy a retrained solution version with an existing campaign, change your campaign's minProvisionedTPS, or modify your campaign's configuration. For example, you can set enableMetadataWithRecommendations to true for an existing campaign. To update a campaign to start automatically using the latest solution version, specify the following: For the SolutionVersionArn parameter, specify the Amazon Resource Name (ARN) of your solution in SolutionArn/$LATEST format. In the campaignConfig, set syncWithLatestSolutionVersion to true. To update a campaign, the campaign status must be ACTIVE or CREATE FAILED. Check the campaign status using the DescribeCampaign operation. You can still get recommendations from a campaign while an update is in progress. The campaign will use the previous solution version and campaign configuration to generate recommendations until the latest campaign update status is Active. For more information about updating a campaign, including code samples, see Updating a campaign. For more information about campaigns, see Creating a campaign.
520
520
  */
521
521
  updateCampaign(params: Personalize.Types.UpdateCampaignRequest, callback?: (err: AWSError, data: Personalize.Types.UpdateCampaignResponse) => void): Request<Personalize.Types.UpdateCampaignResponse, AWSError>;
522
522
  /**
523
- * Updates a campaign to deploy a retrained solution version with an existing campaign, change your campaign's minProvisionedTPS, or modify your campaign's configuration, such as the exploration configuration. To update a campaign, the campaign status must be ACTIVE or CREATE FAILED. Check the campaign status using the DescribeCampaign operation. You can still get recommendations from a campaign while an update is in progress. The campaign will use the previous solution version and campaign configuration to generate recommendations until the latest campaign update status is Active. For more information about updating a campaign, including code samples, see Updating a campaign. For more information about campaigns, see Creating a campaign.
523
+ * Updates a campaign to deploy a retrained solution version with an existing campaign, change your campaign's minProvisionedTPS, or modify your campaign's configuration. For example, you can set enableMetadataWithRecommendations to true for an existing campaign. To update a campaign to start automatically using the latest solution version, specify the following: For the SolutionVersionArn parameter, specify the Amazon Resource Name (ARN) of your solution in SolutionArn/$LATEST format. In the campaignConfig, set syncWithLatestSolutionVersion to true. To update a campaign, the campaign status must be ACTIVE or CREATE FAILED. Check the campaign status using the DescribeCampaign operation. You can still get recommendations from a campaign while an update is in progress. The campaign will use the previous solution version and campaign configuration to generate recommendations until the latest campaign update status is Active. For more information about updating a campaign, including code samples, see Updating a campaign. For more information about campaigns, see Creating a campaign.
524
524
  */
525
525
  updateCampaign(callback?: (err: AWSError, data: Personalize.Types.UpdateCampaignResponse) => void): Request<Personalize.Types.UpdateCampaignResponse, AWSError>;
526
526
  /**
@@ -620,6 +620,12 @@ declare namespace Personalize {
620
620
  */
621
621
  bestRecipeArn?: Arn;
622
622
  }
623
+ export interface AutoTrainingConfig {
624
+ /**
625
+ * Specifies how often to automatically train new solution versions. Specify a rate expression in rate(value unit) format. For value, specify a number between 1 and 30. For unit, specify day or days. For example, to automatically create a new solution version every 5 days, specify rate(5 days). The default is every 7 days. For more information about auto training, see Creating and configuring a solution.
626
+ */
627
+ schedulingExpression?: SchedulingExpression;
628
+ }
623
629
  export type AvroSchema = string;
624
630
  export interface BatchInferenceJob {
625
631
  /**
@@ -835,7 +841,7 @@ declare namespace Personalize {
835
841
  */
836
842
  campaignArn?: Arn;
837
843
  /**
838
- * The Amazon Resource Name (ARN) of a specific version of the solution.
844
+ * The Amazon Resource Name (ARN) of the solution version the campaign uses.
839
845
  */
840
846
  solutionVersionArn?: Arn;
841
847
  /**
@@ -873,6 +879,10 @@ declare namespace Personalize {
873
879
  * Whether metadata with recommendations is enabled for the campaign. If enabled, you can specify the columns from your Items dataset in your request for recommendations. Amazon Personalize returns this data for each item in the recommendation response. For information about enabling metadata for a campaign, see Enabling metadata in recommendations for a campaign. If you enable metadata in recommendations, you will incur additional costs. For more information, see Amazon Personalize pricing.
874
880
  */
875
881
  enableMetadataWithRecommendations?: Boolean;
882
+ /**
883
+ * Whether the campaign automatically updates to use the latest solution version (trained model) of a solution. If you specify True, you must specify the ARN of your solution for the SolutionVersionArn parameter. It must be in SolutionArn/$LATEST format. The default is False and you must manually update the campaign to deploy the latest solution version. For more information about automatic campaign updates, see Enabling automatic campaign updates.
884
+ */
885
+ syncWithLatestSolutionVersion?: Boolean;
876
886
  }
877
887
  export interface CampaignSummary {
878
888
  /**
@@ -1058,7 +1068,7 @@ declare namespace Personalize {
1058
1068
  */
1059
1069
  name: Name;
1060
1070
  /**
1061
- * The Amazon Resource Name (ARN) of the solution version to deploy.
1071
+ * The Amazon Resource Name (ARN) of the trained model to deploy with the campaign. To specify the latest solution version of your solution, specify the ARN of your solution in SolutionArn/$LATEST format. You must use this format if you set syncWithLatestSolutionVersion to True in the CampaignConfig. To deploy a model that isn't the latest solution version of your solution, specify the ARN of the solution version. For more information about automatic campaign updates, see Enabling automatic campaign updates.
1062
1072
  */
1063
1073
  solutionVersionArn: Arn;
1064
1074
  /**
@@ -1341,6 +1351,10 @@ declare namespace Personalize {
1341
1351
  * We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see Choosing a recipe. Whether to perform automated machine learning (AutoML). The default is false. For this case, you must specify recipeArn. When set to true, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.
1342
1352
  */
1343
1353
  performAutoML?: PerformAutoML;
1354
+ /**
1355
+ * Whether the solution uses automatic training to create new solution versions (trained models). The default is True and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a schedulingExpression in the AutoTrainingConfig as part of solution configuration. For more information about automatic training, see Configuring automatic training. Automatic solution version creation starts one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion.
1356
+ */
1357
+ performAutoTraining?: PerformAutoTraining;
1344
1358
  /**
1345
1359
  * The Amazon Resource Name (ARN) of the recipe to use for model training. This is required when performAutoML is false. For information about different Amazon Personalize recipes and their ARNs, see Choosing a recipe.
1346
1360
  */
@@ -2720,7 +2734,7 @@ declare namespace Personalize {
2720
2734
  }
2721
2735
  export interface ListTagsForResourceRequest {
2722
2736
  /**
2723
- * The resource's Amazon Resource Name.
2737
+ * The resource's Amazon Resource Name (ARN).
2724
2738
  */
2725
2739
  resourceArn: Arn;
2726
2740
  }
@@ -2837,6 +2851,7 @@ declare namespace Personalize {
2837
2851
  export type ParameterName = string;
2838
2852
  export type ParameterValue = string;
2839
2853
  export type PerformAutoML = boolean;
2854
+ export type PerformAutoTraining = boolean;
2840
2855
  export type PerformHPO = boolean;
2841
2856
  export interface Recipe {
2842
2857
  /**
@@ -3039,6 +3054,7 @@ declare namespace Personalize {
3039
3054
  kmsKeyArn?: KmsKeyArn;
3040
3055
  }
3041
3056
  export type S3Location = string;
3057
+ export type SchedulingExpression = string;
3042
3058
  export type Schemas = DatasetSchemaSummary[];
3043
3059
  export interface Solution {
3044
3060
  /**
@@ -3057,6 +3073,10 @@ declare namespace Personalize {
3057
3073
  * We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see Determining your use case. When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from the list specified in the solution configuration (recipeArn must not be specified). When false (the default), Amazon Personalize uses recipeArn for training.
3058
3074
  */
3059
3075
  performAutoML?: PerformAutoML;
3076
+ /**
3077
+ * Specifies whether the solution automatically creates solution versions. The default is True and the solution automatically creates new solution versions every 7 days. For more information about auto training, see Creating and configuring a solution.
3078
+ */
3079
+ performAutoTraining?: PerformAutoTraining;
3060
3080
  /**
3061
3081
  * The ARN of the recipe used to create the solution. This is required when performAutoML is false.
3062
3082
  */
@@ -3123,6 +3143,10 @@ declare namespace Personalize {
3123
3143
  * Specifies the training data configuration to use when creating a custom solution version (trained model).
3124
3144
  */
3125
3145
  trainingDataConfig?: TrainingDataConfig;
3146
+ /**
3147
+ * Specifies the automatic training configuration to use.
3148
+ */
3149
+ autoTrainingConfig?: AutoTrainingConfig;
3126
3150
  }
3127
3151
  export interface SolutionSummary {
3128
3152
  /**
@@ -3192,7 +3216,7 @@ declare namespace Personalize {
3192
3216
  */
3193
3217
  trainingHours?: TrainingHours;
3194
3218
  /**
3195
- * The scope of training to be performed when creating the solution version. The FULL option trains the solution version based on the entirety of the input solution's training data, while the UPDATE option processes only the data that has changed in comparison to the input solution. Choose UPDATE when you want to incrementally update your solution version instead of creating an entirely new one. The UPDATE option can only be used when you already have an active solution version created from the input solution using the FULL option and the input solution was trained with the User-Personalization recipe or the HRNN-Coldstart recipe.
3219
+ * The scope of training to be performed when creating the solution version. A FULL training considers all of the data in your dataset group. An UPDATE processes only the data that has changed since the latest training. Only solution versions created with the User-Personalization recipe can use UPDATE.
3196
3220
  */
3197
3221
  trainingMode?: TrainingMode;
3198
3222
  /**
@@ -3215,6 +3239,10 @@ declare namespace Personalize {
3215
3239
  * The date and time (in Unix time) that the solution was last updated.
3216
3240
  */
3217
3241
  lastUpdatedDateTime?: _Date;
3242
+ /**
3243
+ * Whether the solution version was created automatically or manually.
3244
+ */
3245
+ trainingType?: TrainingType;
3218
3246
  }
3219
3247
  export interface SolutionVersionSummary {
3220
3248
  /**
@@ -3225,6 +3253,14 @@ declare namespace Personalize {
3225
3253
  * The status of the solution version. A solution version can be in one of the following states: CREATE PENDING &gt; CREATE IN_PROGRESS &gt; ACTIVE -or- CREATE FAILED
3226
3254
  */
3227
3255
  status?: Status;
3256
+ /**
3257
+ * The scope of training to be performed when creating the solution version. A FULL training considers all of the data in your dataset group. An UPDATE processes only the data that has changed since the latest training. Only solution versions created with the User-Personalization recipe can use UPDATE.
3258
+ */
3259
+ trainingMode?: TrainingMode;
3260
+ /**
3261
+ * Whether the solution version was created automatically or manually.
3262
+ */
3263
+ trainingType?: TrainingType;
3228
3264
  /**
3229
3265
  * The date and time (in Unix time) that this version of a solution was created.
3230
3266
  */
@@ -3289,7 +3325,7 @@ declare namespace Personalize {
3289
3325
  */
3290
3326
  resourceArn: Arn;
3291
3327
  /**
3292
- * Tags to apply to the resource. For more information see Tagging Amazon Personalize recources.
3328
+ * Tags to apply to the resource. For more information see Tagging Amazon Personalize resources.
3293
3329
  */
3294
3330
  tags: Tags;
3295
3331
  }
@@ -3306,13 +3342,14 @@ declare namespace Personalize {
3306
3342
  export type TrackingId = string;
3307
3343
  export interface TrainingDataConfig {
3308
3344
  /**
3309
- * Specifies the columns to exclude from training. Each key is a dataset type, and each value is a list of columns. Exclude columns to control what data Amazon Personalize uses to generate recommendations. For example, you might have a column that you want to use only to filter recommendations. You can exclude this column from training and Amazon Personalize considers it only when filtering.
3345
+ * Specifies the columns to exclude from training. Each key is a dataset type, and each value is a list of columns. Exclude columns to control what data Amazon Personalize uses to generate recommendations. For example, you might have a column that you want to use only to filter recommendations. You can exclude this column from training and Amazon Personalize considers it only when filtering.
3310
3346
  */
3311
3347
  excludedDatasetColumns?: ExcludedDatasetColumns;
3312
3348
  }
3313
3349
  export type TrainingHours = number;
3314
3350
  export type TrainingInputMode = string;
3315
- export type TrainingMode = "FULL"|"UPDATE"|string;
3351
+ export type TrainingMode = "FULL"|"UPDATE"|"AUTOTRAIN"|string;
3352
+ export type TrainingType = "AUTOMATIC"|"MANUAL"|string;
3316
3353
  export type TransactionsPerSecond = number;
3317
3354
  export type Tunable = boolean;
3318
3355
  export interface TunedHPOParams {
@@ -3327,7 +3364,7 @@ declare namespace Personalize {
3327
3364
  */
3328
3365
  resourceArn: Arn;
3329
3366
  /**
3330
- * Keys to remove from the resource's tags.
3367
+ * The keys of the tags to be removed.
3331
3368
  */
3332
3369
  tagKeys: TagKeys;
3333
3370
  }
@@ -3339,7 +3376,7 @@ declare namespace Personalize {
3339
3376
  */
3340
3377
  campaignArn: Arn;
3341
3378
  /**
3342
- * The ARN of a new solution version to deploy.
3379
+ * The Amazon Resource Name (ARN) of a new model to deploy. To specify the latest solution version of your solution, specify the ARN of your solution in SolutionArn/$LATEST format. You must use this format if you set syncWithLatestSolutionVersion to True in the CampaignConfig. To deploy a model that isn't the latest solution version of your solution, specify the ARN of the solution version. For more information about automatic campaign updates, see Enabling automatic campaign updates.
3343
3380
  */
3344
3381
  solutionVersionArn?: Arn;
3345
3382
  /**