cdk-lambda-subminute 2.0.432 → 2.0.434
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.jsii +55 -3
- package/lib/cdk-lambda-subminute.js +3 -3
- package/node_modules/aws-sdk/README.md +1 -1
- package/node_modules/aws-sdk/apis/drs-2020-02-26.min.json +61 -57
- package/node_modules/aws-sdk/apis/emr-serverless-2021-07-13.min.json +23 -17
- package/node_modules/aws-sdk/apis/glue-2017-03-31.min.json +2 -1
- package/node_modules/aws-sdk/apis/guardduty-2017-11-28.min.json +8 -0
- package/node_modules/aws-sdk/apis/internetmonitor-2021-06-03.min.json +149 -0
- package/node_modules/aws-sdk/apis/internetmonitor-2021-06-03.paginators.json +6 -0
- package/node_modules/aws-sdk/apis/personalize-2018-05-22.min.json +32 -14
- package/node_modules/aws-sdk/apis/quicksight-2018-04-01.min.json +1182 -1038
- package/node_modules/aws-sdk/apis/rolesanywhere-2018-05-10.min.json +167 -64
- package/node_modules/aws-sdk/apis/workspaces-2015-04-08.min.json +262 -128
- package/node_modules/aws-sdk/apis/workspaces-2015-04-08.paginators.json +6 -0
- package/node_modules/aws-sdk/clients/drs.d.ts +18 -1
- package/node_modules/aws-sdk/clients/emrserverless.d.ts +14 -1
- package/node_modules/aws-sdk/clients/glue.d.ts +4 -0
- package/node_modules/aws-sdk/clients/guardduty.d.ts +9 -1
- package/node_modules/aws-sdk/clients/internetmonitor.d.ts +170 -13
- package/node_modules/aws-sdk/clients/personalize.d.ts +56 -19
- package/node_modules/aws-sdk/clients/quicksight.d.ts +193 -10
- package/node_modules/aws-sdk/clients/rolesanywhere.d.ts +81 -0
- package/node_modules/aws-sdk/clients/sagemaker.d.ts +6 -6
- package/node_modules/aws-sdk/clients/workspaces.d.ts +180 -0
- package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
- package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +12 -12
- package/node_modules/aws-sdk/dist/aws-sdk.js +35 -17
- package/node_modules/aws-sdk/dist/aws-sdk.min.js +29 -29
- package/node_modules/aws-sdk/lib/core.js +1 -1
- package/node_modules/aws-sdk/package.json +1 -1
- package/package.json +3 -3
@@ -28,11 +28,11 @@ declare class Personalize extends Service {
|
|
28
28
|
*/
|
29
29
|
createBatchSegmentJob(callback?: (err: AWSError, data: Personalize.Types.CreateBatchSegmentJobResponse) => void): Request<Personalize.Types.CreateBatchSegmentJobResponse, AWSError>;
|
30
30
|
/**
|
31
|
-
* Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your cost. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. When you create an Amazon Personalize campaign, you can specify the minimum provisioned transactions per second (minProvisionedTPS) for the campaign. This is the baseline transaction throughput for the campaign provisioned by Amazon Personalize. It sets the minimum billing charge for the campaign while it is active. A transaction is a single GetRecommendations or GetPersonalizedRanking request. The default minProvisionedTPS is 1. If your TPS increases beyond the minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. When your traffic reduces, capacity returns to the minProvisionedTPS. You are charged for the the minimum provisioned TPS or, if your requests exceed the minProvisionedTPS, the actual TPS. The actual TPS is the total number of recommendation requests you make. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. For more information about campaign costs, see Amazon Personalize pricing. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
31
|
+
* You incur campaign costs while it is active. To avoid unnecessary costs, make sure to delete the campaign when you are finished. For information about campaign costs, see Amazon Personalize pricing. Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your cost. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. When you create an Amazon Personalize campaign, you can specify the minimum provisioned transactions per second (minProvisionedTPS) for the campaign. This is the baseline transaction throughput for the campaign provisioned by Amazon Personalize. It sets the minimum billing charge for the campaign while it is active. A transaction is a single GetRecommendations or GetPersonalizedRanking request. The default minProvisionedTPS is 1. If your TPS increases beyond the minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. When your traffic reduces, capacity returns to the minProvisionedTPS. You are charged for the the minimum provisioned TPS or, if your requests exceed the minProvisionedTPS, the actual TPS. The actual TPS is the total number of recommendation requests you make. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. For more information about campaign costs, see Amazon Personalize pricing. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
32
32
|
*/
|
33
33
|
createCampaign(params: Personalize.Types.CreateCampaignRequest, callback?: (err: AWSError, data: Personalize.Types.CreateCampaignResponse) => void): Request<Personalize.Types.CreateCampaignResponse, AWSError>;
|
34
34
|
/**
|
35
|
-
* Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your cost. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. When you create an Amazon Personalize campaign, you can specify the minimum provisioned transactions per second (minProvisionedTPS) for the campaign. This is the baseline transaction throughput for the campaign provisioned by Amazon Personalize. It sets the minimum billing charge for the campaign while it is active. A transaction is a single GetRecommendations or GetPersonalizedRanking request. The default minProvisionedTPS is 1. If your TPS increases beyond the minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. When your traffic reduces, capacity returns to the minProvisionedTPS. You are charged for the the minimum provisioned TPS or, if your requests exceed the minProvisionedTPS, the actual TPS. The actual TPS is the total number of recommendation requests you make. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. For more information about campaign costs, see Amazon Personalize pricing. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
35
|
+
* You incur campaign costs while it is active. To avoid unnecessary costs, make sure to delete the campaign when you are finished. For information about campaign costs, see Amazon Personalize pricing. Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your cost. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. When you create an Amazon Personalize campaign, you can specify the minimum provisioned transactions per second (minProvisionedTPS) for the campaign. This is the baseline transaction throughput for the campaign provisioned by Amazon Personalize. It sets the minimum billing charge for the campaign while it is active. A transaction is a single GetRecommendations or GetPersonalizedRanking request. The default minProvisionedTPS is 1. If your TPS increases beyond the minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. When your traffic reduces, capacity returns to the minProvisionedTPS. You are charged for the the minimum provisioned TPS or, if your requests exceed the minProvisionedTPS, the actual TPS. The actual TPS is the total number of recommendation requests you make. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. For more information about campaign costs, see Amazon Personalize pricing. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
36
36
|
*/
|
37
37
|
createCampaign(callback?: (err: AWSError, data: Personalize.Types.CreateCampaignResponse) => void): Request<Personalize.Types.CreateCampaignResponse, AWSError>;
|
38
38
|
/**
|
@@ -108,11 +108,11 @@ declare class Personalize extends Service {
|
|
108
108
|
*/
|
109
109
|
createSchema(callback?: (err: AWSError, data: Personalize.Types.CreateSchemaResponse) => void): Request<Personalize.Types.CreateSchemaResponse, AWSError>;
|
110
110
|
/**
|
111
|
-
*
|
111
|
+
* After you create a solution, you can’t change its configuration. By default, all new solutions use automatic training. With automatic training, you incur training costs while your solution is active. You can't stop automatic training for a solution. To avoid unnecessary costs, make sure to delete the solution when you are finished. For information about training costs, see Amazon Personalize pricing. Creates the configuration for training a model (creating a solution version). This configuration includes the recipe to use for model training and optional training configuration, such as columns to use in training and feature transformation parameters. For more information about configuring a solution, see Creating and configuring a solution. By default, new solutions use automatic training to create solution versions every 7 days. You can change the training frequency. Automatic solution version creation starts one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. For more information, see Configuring automatic training. To turn off automatic training, set performAutoTraining to false. If you turn off automatic training, you must manually create a solution version by calling the CreateSolutionVersion operation. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion. After training completes you can evaluate model accuracy by calling GetSolutionMetrics. When you are satisfied with the solution version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. If you use manual training, the status must be ACTIVE before you call CreateSolutionVersion. Related APIs ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
|
112
112
|
*/
|
113
113
|
createSolution(params: Personalize.Types.CreateSolutionRequest, callback?: (err: AWSError, data: Personalize.Types.CreateSolutionResponse) => void): Request<Personalize.Types.CreateSolutionResponse, AWSError>;
|
114
114
|
/**
|
115
|
-
*
|
115
|
+
* After you create a solution, you can’t change its configuration. By default, all new solutions use automatic training. With automatic training, you incur training costs while your solution is active. You can't stop automatic training for a solution. To avoid unnecessary costs, make sure to delete the solution when you are finished. For information about training costs, see Amazon Personalize pricing. Creates the configuration for training a model (creating a solution version). This configuration includes the recipe to use for model training and optional training configuration, such as columns to use in training and feature transformation parameters. For more information about configuring a solution, see Creating and configuring a solution. By default, new solutions use automatic training to create solution versions every 7 days. You can change the training frequency. Automatic solution version creation starts one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. For more information, see Configuring automatic training. To turn off automatic training, set performAutoTraining to false. If you turn off automatic training, you must manually create a solution version by calling the CreateSolutionVersion operation. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion. After training completes you can evaluate model accuracy by calling GetSolutionMetrics. When you are satisfied with the solution version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. If you use manual training, the status must be ACTIVE before you call CreateSolutionVersion. Related APIs ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
|
116
116
|
*/
|
117
117
|
createSolution(callback?: (err: AWSError, data: Personalize.Types.CreateSolutionResponse) => void): Request<Personalize.Types.CreateSolutionResponse, AWSError>;
|
118
118
|
/**
|
@@ -460,11 +460,11 @@ declare class Personalize extends Service {
|
|
460
460
|
*/
|
461
461
|
listSolutionVersions(callback?: (err: AWSError, data: Personalize.Types.ListSolutionVersionsResponse) => void): Request<Personalize.Types.ListSolutionVersionsResponse, AWSError>;
|
462
462
|
/**
|
463
|
-
* Returns a list of solutions
|
463
|
+
* Returns a list of solutions in a given dataset group. When a dataset group is not specified, all the solutions associated with the account are listed. The response provides the properties for each solution, including the Amazon Resource Name (ARN). For more information on solutions, see CreateSolution.
|
464
464
|
*/
|
465
465
|
listSolutions(params: Personalize.Types.ListSolutionsRequest, callback?: (err: AWSError, data: Personalize.Types.ListSolutionsResponse) => void): Request<Personalize.Types.ListSolutionsResponse, AWSError>;
|
466
466
|
/**
|
467
|
-
* Returns a list of solutions
|
467
|
+
* Returns a list of solutions in a given dataset group. When a dataset group is not specified, all the solutions associated with the account are listed. The response provides the properties for each solution, including the Amazon Resource Name (ARN). For more information on solutions, see CreateSolution.
|
468
468
|
*/
|
469
469
|
listSolutions(callback?: (err: AWSError, data: Personalize.Types.ListSolutionsResponse) => void): Request<Personalize.Types.ListSolutionsResponse, AWSError>;
|
470
470
|
/**
|
@@ -508,19 +508,19 @@ declare class Personalize extends Service {
|
|
508
508
|
*/
|
509
509
|
tagResource(callback?: (err: AWSError, data: Personalize.Types.TagResourceResponse) => void): Request<Personalize.Types.TagResourceResponse, AWSError>;
|
510
510
|
/**
|
511
|
-
*
|
511
|
+
* Removes the specified tags that are attached to a resource. For more information, see Removing tags from Amazon Personalize resources.
|
512
512
|
*/
|
513
513
|
untagResource(params: Personalize.Types.UntagResourceRequest, callback?: (err: AWSError, data: Personalize.Types.UntagResourceResponse) => void): Request<Personalize.Types.UntagResourceResponse, AWSError>;
|
514
514
|
/**
|
515
|
-
*
|
515
|
+
* Removes the specified tags that are attached to a resource. For more information, see Removing tags from Amazon Personalize resources.
|
516
516
|
*/
|
517
517
|
untagResource(callback?: (err: AWSError, data: Personalize.Types.UntagResourceResponse) => void): Request<Personalize.Types.UntagResourceResponse, AWSError>;
|
518
518
|
/**
|
519
|
-
* Updates a campaign to deploy a retrained solution version with an existing campaign, change your campaign's minProvisionedTPS, or modify your campaign's configuration,
|
519
|
+
* Updates a campaign to deploy a retrained solution version with an existing campaign, change your campaign's minProvisionedTPS, or modify your campaign's configuration. For example, you can set enableMetadataWithRecommendations to true for an existing campaign. To update a campaign to start automatically using the latest solution version, specify the following: For the SolutionVersionArn parameter, specify the Amazon Resource Name (ARN) of your solution in SolutionArn/$LATEST format. In the campaignConfig, set syncWithLatestSolutionVersion to true. To update a campaign, the campaign status must be ACTIVE or CREATE FAILED. Check the campaign status using the DescribeCampaign operation. You can still get recommendations from a campaign while an update is in progress. The campaign will use the previous solution version and campaign configuration to generate recommendations until the latest campaign update status is Active. For more information about updating a campaign, including code samples, see Updating a campaign. For more information about campaigns, see Creating a campaign.
|
520
520
|
*/
|
521
521
|
updateCampaign(params: Personalize.Types.UpdateCampaignRequest, callback?: (err: AWSError, data: Personalize.Types.UpdateCampaignResponse) => void): Request<Personalize.Types.UpdateCampaignResponse, AWSError>;
|
522
522
|
/**
|
523
|
-
* Updates a campaign to deploy a retrained solution version with an existing campaign, change your campaign's minProvisionedTPS, or modify your campaign's configuration,
|
523
|
+
* Updates a campaign to deploy a retrained solution version with an existing campaign, change your campaign's minProvisionedTPS, or modify your campaign's configuration. For example, you can set enableMetadataWithRecommendations to true for an existing campaign. To update a campaign to start automatically using the latest solution version, specify the following: For the SolutionVersionArn parameter, specify the Amazon Resource Name (ARN) of your solution in SolutionArn/$LATEST format. In the campaignConfig, set syncWithLatestSolutionVersion to true. To update a campaign, the campaign status must be ACTIVE or CREATE FAILED. Check the campaign status using the DescribeCampaign operation. You can still get recommendations from a campaign while an update is in progress. The campaign will use the previous solution version and campaign configuration to generate recommendations until the latest campaign update status is Active. For more information about updating a campaign, including code samples, see Updating a campaign. For more information about campaigns, see Creating a campaign.
|
524
524
|
*/
|
525
525
|
updateCampaign(callback?: (err: AWSError, data: Personalize.Types.UpdateCampaignResponse) => void): Request<Personalize.Types.UpdateCampaignResponse, AWSError>;
|
526
526
|
/**
|
@@ -620,6 +620,12 @@ declare namespace Personalize {
|
|
620
620
|
*/
|
621
621
|
bestRecipeArn?: Arn;
|
622
622
|
}
|
623
|
+
export interface AutoTrainingConfig {
|
624
|
+
/**
|
625
|
+
* Specifies how often to automatically train new solution versions. Specify a rate expression in rate(value unit) format. For value, specify a number between 1 and 30. For unit, specify day or days. For example, to automatically create a new solution version every 5 days, specify rate(5 days). The default is every 7 days. For more information about auto training, see Creating and configuring a solution.
|
626
|
+
*/
|
627
|
+
schedulingExpression?: SchedulingExpression;
|
628
|
+
}
|
623
629
|
export type AvroSchema = string;
|
624
630
|
export interface BatchInferenceJob {
|
625
631
|
/**
|
@@ -835,7 +841,7 @@ declare namespace Personalize {
|
|
835
841
|
*/
|
836
842
|
campaignArn?: Arn;
|
837
843
|
/**
|
838
|
-
* The Amazon Resource Name (ARN) of
|
844
|
+
* The Amazon Resource Name (ARN) of the solution version the campaign uses.
|
839
845
|
*/
|
840
846
|
solutionVersionArn?: Arn;
|
841
847
|
/**
|
@@ -873,6 +879,10 @@ declare namespace Personalize {
|
|
873
879
|
* Whether metadata with recommendations is enabled for the campaign. If enabled, you can specify the columns from your Items dataset in your request for recommendations. Amazon Personalize returns this data for each item in the recommendation response. For information about enabling metadata for a campaign, see Enabling metadata in recommendations for a campaign. If you enable metadata in recommendations, you will incur additional costs. For more information, see Amazon Personalize pricing.
|
874
880
|
*/
|
875
881
|
enableMetadataWithRecommendations?: Boolean;
|
882
|
+
/**
|
883
|
+
* Whether the campaign automatically updates to use the latest solution version (trained model) of a solution. If you specify True, you must specify the ARN of your solution for the SolutionVersionArn parameter. It must be in SolutionArn/$LATEST format. The default is False and you must manually update the campaign to deploy the latest solution version. For more information about automatic campaign updates, see Enabling automatic campaign updates.
|
884
|
+
*/
|
885
|
+
syncWithLatestSolutionVersion?: Boolean;
|
876
886
|
}
|
877
887
|
export interface CampaignSummary {
|
878
888
|
/**
|
@@ -1058,7 +1068,7 @@ declare namespace Personalize {
|
|
1058
1068
|
*/
|
1059
1069
|
name: Name;
|
1060
1070
|
/**
|
1061
|
-
* The Amazon Resource Name (ARN) of the solution version to deploy.
|
1071
|
+
* The Amazon Resource Name (ARN) of the trained model to deploy with the campaign. To specify the latest solution version of your solution, specify the ARN of your solution in SolutionArn/$LATEST format. You must use this format if you set syncWithLatestSolutionVersion to True in the CampaignConfig. To deploy a model that isn't the latest solution version of your solution, specify the ARN of the solution version. For more information about automatic campaign updates, see Enabling automatic campaign updates.
|
1062
1072
|
*/
|
1063
1073
|
solutionVersionArn: Arn;
|
1064
1074
|
/**
|
@@ -1341,6 +1351,10 @@ declare namespace Personalize {
|
|
1341
1351
|
* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see Choosing a recipe. Whether to perform automated machine learning (AutoML). The default is false. For this case, you must specify recipeArn. When set to true, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.
|
1342
1352
|
*/
|
1343
1353
|
performAutoML?: PerformAutoML;
|
1354
|
+
/**
|
1355
|
+
* Whether the solution uses automatic training to create new solution versions (trained models). The default is True and the solution automatically creates new solution versions every 7 days. You can change the training frequency by specifying a schedulingExpression in the AutoTrainingConfig as part of solution configuration. For more information about automatic training, see Configuring automatic training. Automatic solution version creation starts one hour after the solution is ACTIVE. If you manually create a solution version within the hour, the solution skips the first automatic training. After training starts, you can get the solution version's Amazon Resource Name (ARN) with the ListSolutionVersions API operation. To get its status, use the DescribeSolutionVersion.
|
1356
|
+
*/
|
1357
|
+
performAutoTraining?: PerformAutoTraining;
|
1344
1358
|
/**
|
1345
1359
|
* The Amazon Resource Name (ARN) of the recipe to use for model training. This is required when performAutoML is false. For information about different Amazon Personalize recipes and their ARNs, see Choosing a recipe.
|
1346
1360
|
*/
|
@@ -2720,7 +2734,7 @@ declare namespace Personalize {
|
|
2720
2734
|
}
|
2721
2735
|
export interface ListTagsForResourceRequest {
|
2722
2736
|
/**
|
2723
|
-
* The resource's Amazon Resource Name.
|
2737
|
+
* The resource's Amazon Resource Name (ARN).
|
2724
2738
|
*/
|
2725
2739
|
resourceArn: Arn;
|
2726
2740
|
}
|
@@ -2837,6 +2851,7 @@ declare namespace Personalize {
|
|
2837
2851
|
export type ParameterName = string;
|
2838
2852
|
export type ParameterValue = string;
|
2839
2853
|
export type PerformAutoML = boolean;
|
2854
|
+
export type PerformAutoTraining = boolean;
|
2840
2855
|
export type PerformHPO = boolean;
|
2841
2856
|
export interface Recipe {
|
2842
2857
|
/**
|
@@ -3039,6 +3054,7 @@ declare namespace Personalize {
|
|
3039
3054
|
kmsKeyArn?: KmsKeyArn;
|
3040
3055
|
}
|
3041
3056
|
export type S3Location = string;
|
3057
|
+
export type SchedulingExpression = string;
|
3042
3058
|
export type Schemas = DatasetSchemaSummary[];
|
3043
3059
|
export interface Solution {
|
3044
3060
|
/**
|
@@ -3057,6 +3073,10 @@ declare namespace Personalize {
|
|
3057
3073
|
* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see Determining your use case. When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from the list specified in the solution configuration (recipeArn must not be specified). When false (the default), Amazon Personalize uses recipeArn for training.
|
3058
3074
|
*/
|
3059
3075
|
performAutoML?: PerformAutoML;
|
3076
|
+
/**
|
3077
|
+
* Specifies whether the solution automatically creates solution versions. The default is True and the solution automatically creates new solution versions every 7 days. For more information about auto training, see Creating and configuring a solution.
|
3078
|
+
*/
|
3079
|
+
performAutoTraining?: PerformAutoTraining;
|
3060
3080
|
/**
|
3061
3081
|
* The ARN of the recipe used to create the solution. This is required when performAutoML is false.
|
3062
3082
|
*/
|
@@ -3123,6 +3143,10 @@ declare namespace Personalize {
|
|
3123
3143
|
* Specifies the training data configuration to use when creating a custom solution version (trained model).
|
3124
3144
|
*/
|
3125
3145
|
trainingDataConfig?: TrainingDataConfig;
|
3146
|
+
/**
|
3147
|
+
* Specifies the automatic training configuration to use.
|
3148
|
+
*/
|
3149
|
+
autoTrainingConfig?: AutoTrainingConfig;
|
3126
3150
|
}
|
3127
3151
|
export interface SolutionSummary {
|
3128
3152
|
/**
|
@@ -3192,7 +3216,7 @@ declare namespace Personalize {
|
|
3192
3216
|
*/
|
3193
3217
|
trainingHours?: TrainingHours;
|
3194
3218
|
/**
|
3195
|
-
* The scope of training to be performed when creating the solution version.
|
3219
|
+
* The scope of training to be performed when creating the solution version. A FULL training considers all of the data in your dataset group. An UPDATE processes only the data that has changed since the latest training. Only solution versions created with the User-Personalization recipe can use UPDATE.
|
3196
3220
|
*/
|
3197
3221
|
trainingMode?: TrainingMode;
|
3198
3222
|
/**
|
@@ -3215,6 +3239,10 @@ declare namespace Personalize {
|
|
3215
3239
|
* The date and time (in Unix time) that the solution was last updated.
|
3216
3240
|
*/
|
3217
3241
|
lastUpdatedDateTime?: _Date;
|
3242
|
+
/**
|
3243
|
+
* Whether the solution version was created automatically or manually.
|
3244
|
+
*/
|
3245
|
+
trainingType?: TrainingType;
|
3218
3246
|
}
|
3219
3247
|
export interface SolutionVersionSummary {
|
3220
3248
|
/**
|
@@ -3225,6 +3253,14 @@ declare namespace Personalize {
|
|
3225
3253
|
* The status of the solution version. A solution version can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED
|
3226
3254
|
*/
|
3227
3255
|
status?: Status;
|
3256
|
+
/**
|
3257
|
+
* The scope of training to be performed when creating the solution version. A FULL training considers all of the data in your dataset group. An UPDATE processes only the data that has changed since the latest training. Only solution versions created with the User-Personalization recipe can use UPDATE.
|
3258
|
+
*/
|
3259
|
+
trainingMode?: TrainingMode;
|
3260
|
+
/**
|
3261
|
+
* Whether the solution version was created automatically or manually.
|
3262
|
+
*/
|
3263
|
+
trainingType?: TrainingType;
|
3228
3264
|
/**
|
3229
3265
|
* The date and time (in Unix time) that this version of a solution was created.
|
3230
3266
|
*/
|
@@ -3289,7 +3325,7 @@ declare namespace Personalize {
|
|
3289
3325
|
*/
|
3290
3326
|
resourceArn: Arn;
|
3291
3327
|
/**
|
3292
|
-
* Tags to apply to the resource. For more information see Tagging Amazon Personalize
|
3328
|
+
* Tags to apply to the resource. For more information see Tagging Amazon Personalize resources.
|
3293
3329
|
*/
|
3294
3330
|
tags: Tags;
|
3295
3331
|
}
|
@@ -3306,13 +3342,14 @@ declare namespace Personalize {
|
|
3306
3342
|
export type TrackingId = string;
|
3307
3343
|
export interface TrainingDataConfig {
|
3308
3344
|
/**
|
3309
|
-
* Specifies the columns to exclude from training. Each key is a dataset type, and each value is a list of columns. Exclude columns to control what data Amazon Personalize uses to generate recommendations.
|
3345
|
+
* Specifies the columns to exclude from training. Each key is a dataset type, and each value is a list of columns. Exclude columns to control what data Amazon Personalize uses to generate recommendations. For example, you might have a column that you want to use only to filter recommendations. You can exclude this column from training and Amazon Personalize considers it only when filtering.
|
3310
3346
|
*/
|
3311
3347
|
excludedDatasetColumns?: ExcludedDatasetColumns;
|
3312
3348
|
}
|
3313
3349
|
export type TrainingHours = number;
|
3314
3350
|
export type TrainingInputMode = string;
|
3315
|
-
export type TrainingMode = "FULL"|"UPDATE"|string;
|
3351
|
+
export type TrainingMode = "FULL"|"UPDATE"|"AUTOTRAIN"|string;
|
3352
|
+
export type TrainingType = "AUTOMATIC"|"MANUAL"|string;
|
3316
3353
|
export type TransactionsPerSecond = number;
|
3317
3354
|
export type Tunable = boolean;
|
3318
3355
|
export interface TunedHPOParams {
|
@@ -3327,7 +3364,7 @@ declare namespace Personalize {
|
|
3327
3364
|
*/
|
3328
3365
|
resourceArn: Arn;
|
3329
3366
|
/**
|
3330
|
-
*
|
3367
|
+
* The keys of the tags to be removed.
|
3331
3368
|
*/
|
3332
3369
|
tagKeys: TagKeys;
|
3333
3370
|
}
|
@@ -3339,7 +3376,7 @@ declare namespace Personalize {
|
|
3339
3376
|
*/
|
3340
3377
|
campaignArn: Arn;
|
3341
3378
|
/**
|
3342
|
-
* The ARN of a new solution version to deploy.
|
3379
|
+
* The Amazon Resource Name (ARN) of a new model to deploy. To specify the latest solution version of your solution, specify the ARN of your solution in SolutionArn/$LATEST format. You must use this format if you set syncWithLatestSolutionVersion to True in the CampaignConfig. To deploy a model that isn't the latest solution version of your solution, specify the ARN of the solution version. For more information about automatic campaign updates, see Enabling automatic campaign updates.
|
3343
3380
|
*/
|
3344
3381
|
solutionVersionArn?: Arn;
|
3345
3382
|
/**
|