cdk-lambda-subminute 2.0.352 → 2.0.354

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -197,11 +197,11 @@ declare class Rekognition extends Service {
197
197
  */
198
198
  describeStreamProcessor(callback?: (err: AWSError, data: Rekognition.Types.DescribeStreamProcessorResponse) => void): Request<Rekognition.Types.DescribeStreamProcessorResponse, AWSError>;
199
199
  /**
200
- * This operation applies only to Amazon Rekognition Custom Labels. Detects custom labels in a supplied image by using an Amazon Rekognition Custom Labels model. You specify which version of a model version to use by using the ProjectVersionArn input parameter. You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. For each object that the model version detects on an image, the API returns a (CustomLabel) object in an array (CustomLabels). Each CustomLabel object provides the label name (Name), the level of confidence that the image contains the object (Confidence), and object location information, if it exists, for the label on the image (Geometry). To filter labels that are returned, specify a value for MinConfidence. DetectCustomLabelsLabels only returns labels with a confidence that's higher than the specified value. The value of MinConfidence maps to the assumed threshold values created during training. For more information, see Assumed threshold in the Amazon Rekognition Custom Labels Developer Guide. Amazon Rekognition Custom Labels metrics expresses an assumed threshold as a floating point value between 0-1. The range of MinConfidence normalizes the threshold value to a percentage value (0-100). Confidence responses from DetectCustomLabels are also returned as a percentage. You can use MinConfidence to change the precision and recall or your model. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide. If you don't specify a value for MinConfidence, DetectCustomLabels returns labels based on the assumed threshold of each label. This is a stateless API operation. That is, the operation does not persist any data. This operation requires permissions to perform the rekognition:DetectCustomLabels action. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide.
200
+ * This operation applies only to Amazon Rekognition Custom Labels. Detects custom labels in a supplied image by using an Amazon Rekognition Custom Labels model. You specify which version of a model version to use by using the ProjectVersionArn input parameter. You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. For each object that the model version detects on an image, the API returns a (CustomLabel) object in an array (CustomLabels). Each CustomLabel object provides the label name (Name), the level of confidence that the image contains the object (Confidence), and object location information, if it exists, for the label on the image (Geometry). Note that for the DetectCustomLabelsLabels operation, Polygons are not returned in the Geometry section of the response. To filter labels that are returned, specify a value for MinConfidence. DetectCustomLabelsLabels only returns labels with a confidence that's higher than the specified value. The value of MinConfidence maps to the assumed threshold values created during training. For more information, see Assumed threshold in the Amazon Rekognition Custom Labels Developer Guide. Amazon Rekognition Custom Labels metrics expresses an assumed threshold as a floating point value between 0-1. The range of MinConfidence normalizes the threshold value to a percentage value (0-100). Confidence responses from DetectCustomLabels are also returned as a percentage. You can use MinConfidence to change the precision and recall or your model. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide. If you don't specify a value for MinConfidence, DetectCustomLabels returns labels based on the assumed threshold of each label. This is a stateless API operation. That is, the operation does not persist any data. This operation requires permissions to perform the rekognition:DetectCustomLabels action. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide.
201
201
  */
202
202
  detectCustomLabels(params: Rekognition.Types.DetectCustomLabelsRequest, callback?: (err: AWSError, data: Rekognition.Types.DetectCustomLabelsResponse) => void): Request<Rekognition.Types.DetectCustomLabelsResponse, AWSError>;
203
203
  /**
204
- * This operation applies only to Amazon Rekognition Custom Labels. Detects custom labels in a supplied image by using an Amazon Rekognition Custom Labels model. You specify which version of a model version to use by using the ProjectVersionArn input parameter. You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. For each object that the model version detects on an image, the API returns a (CustomLabel) object in an array (CustomLabels). Each CustomLabel object provides the label name (Name), the level of confidence that the image contains the object (Confidence), and object location information, if it exists, for the label on the image (Geometry). To filter labels that are returned, specify a value for MinConfidence. DetectCustomLabelsLabels only returns labels with a confidence that's higher than the specified value. The value of MinConfidence maps to the assumed threshold values created during training. For more information, see Assumed threshold in the Amazon Rekognition Custom Labels Developer Guide. Amazon Rekognition Custom Labels metrics expresses an assumed threshold as a floating point value between 0-1. The range of MinConfidence normalizes the threshold value to a percentage value (0-100). Confidence responses from DetectCustomLabels are also returned as a percentage. You can use MinConfidence to change the precision and recall or your model. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide. If you don't specify a value for MinConfidence, DetectCustomLabels returns labels based on the assumed threshold of each label. This is a stateless API operation. That is, the operation does not persist any data. This operation requires permissions to perform the rekognition:DetectCustomLabels action. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide.
204
+ * This operation applies only to Amazon Rekognition Custom Labels. Detects custom labels in a supplied image by using an Amazon Rekognition Custom Labels model. You specify which version of a model version to use by using the ProjectVersionArn input parameter. You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. For each object that the model version detects on an image, the API returns a (CustomLabel) object in an array (CustomLabels). Each CustomLabel object provides the label name (Name), the level of confidence that the image contains the object (Confidence), and object location information, if it exists, for the label on the image (Geometry). Note that for the DetectCustomLabelsLabels operation, Polygons are not returned in the Geometry section of the response. To filter labels that are returned, specify a value for MinConfidence. DetectCustomLabelsLabels only returns labels with a confidence that's higher than the specified value. The value of MinConfidence maps to the assumed threshold values created during training. For more information, see Assumed threshold in the Amazon Rekognition Custom Labels Developer Guide. Amazon Rekognition Custom Labels metrics expresses an assumed threshold as a floating point value between 0-1. The range of MinConfidence normalizes the threshold value to a percentage value (0-100). Confidence responses from DetectCustomLabels are also returned as a percentage. You can use MinConfidence to change the precision and recall or your model. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide. If you don't specify a value for MinConfidence, DetectCustomLabels returns labels based on the assumed threshold of each label. This is a stateless API operation. That is, the operation does not persist any data. This operation requires permissions to perform the rekognition:DetectCustomLabels action. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide.
205
205
  */
206
206
  detectCustomLabels(callback?: (err: AWSError, data: Rekognition.Types.DetectCustomLabelsResponse) => void): Request<Rekognition.Types.DetectCustomLabelsResponse, AWSError>;
207
207
  /**
@@ -668,7 +668,7 @@ declare namespace Rekognition {
668
668
  }
669
669
  export interface AssociateFacesResponse {
670
670
  /**
671
- * An array of AssociatedFace objects containing FaceIDs that are successfully associated with the UserID is returned. Returned if the AssociateFaces action is successful.
671
+ * An array of AssociatedFace objects containing FaceIDs that have been successfully associated with the UserID. Returned if the AssociateFaces action is successful.
672
672
  */
673
673
  AssociatedFaces?: AssociatedFacesList;
674
674
  /**
@@ -972,6 +972,17 @@ declare namespace Rekognition {
972
972
  }
973
973
  export type ContentModerationDetections = ContentModerationDetection[];
974
974
  export type ContentModerationSortBy = "NAME"|"TIMESTAMP"|string;
975
+ export interface ContentType {
976
+ /**
977
+ * The confidence level of the label given
978
+ */
979
+ Confidence?: Percent;
980
+ /**
981
+ * The name of the label
982
+ */
983
+ Name?: String;
984
+ }
985
+ export type ContentTypes = ContentType[];
975
986
  export interface CopyProjectVersionRequest {
976
987
  /**
977
988
  * The ARN of the source project in the trusting AWS account.
@@ -1809,6 +1820,10 @@ declare namespace Rekognition {
1809
1820
  * Identifier of the custom adapter that was used during inference. If during inference the adapter was EXPIRED, then the parameter will not be returned, indicating that a base moderation detection project version was used.
1810
1821
  */
1811
1822
  ProjectVersion?: ProjectVersionId;
1823
+ /**
1824
+ * A list of predicted results for the type of content an image contains. For example, the image content might be from animation, sports, or a video game.
1825
+ */
1826
+ ContentTypes?: ContentTypes;
1812
1827
  }
1813
1828
  export interface DetectProtectiveEquipmentRequest {
1814
1829
  /**
@@ -3366,6 +3381,12 @@ declare namespace Rekognition {
3366
3381
  export interface MediaAnalysisManifestSummary {
3367
3382
  S3Object?: S3Object;
3368
3383
  }
3384
+ export interface MediaAnalysisModelVersions {
3385
+ /**
3386
+ * The Moderation base model version.
3387
+ */
3388
+ Moderation?: String;
3389
+ }
3369
3390
  export interface MediaAnalysisOperationsConfig {
3370
3391
  /**
3371
3392
  * Contains configuration options for a DetectModerationLabels job.
@@ -3384,6 +3405,10 @@ declare namespace Rekognition {
3384
3405
  }
3385
3406
  export interface MediaAnalysisResults {
3386
3407
  S3Object?: S3Object;
3408
+ /**
3409
+ * Information about the model versions for the features selected in a given job.
3410
+ */
3411
+ ModelVersions?: MediaAnalysisModelVersions;
3387
3412
  }
3388
3413
  export type MediaAnalysisS3KeyPrefix = string;
3389
3414
  export type MinCoveragePercentage = number;
@@ -3400,6 +3425,10 @@ declare namespace Rekognition {
3400
3425
  * The name for the parent label. Labels at the top level of the hierarchy have the parent label "".
3401
3426
  */
3402
3427
  ParentName?: String;
3428
+ /**
3429
+ * The level of the moderation label with regard to its taxonomy, from 1 to 3.
3430
+ */
3431
+ TaxonomyLevel?: UInteger;
3403
3432
  }
3404
3433
  export type ModerationLabels = ModerationLabel[];
3405
3434
  export interface MouthOpen {
@@ -8054,7 +8054,7 @@ declare namespace SecurityHub {
8054
8054
  */
8055
8055
  Version?: AwsLambdaLayerVersionNumber;
8056
8056
  /**
8057
- * The layer's compatible runtimes. Maximum number of five items. Valid values: nodejs10.x | nodejs12.x | java8 | java11 | python2.7 | python3.6 | python3.7 | python3.8 | dotnetcore1.0 | dotnetcore2.1 | go1.x | ruby2.5 | provided
8057
+ * The layer's compatible function runtimes. The following list includes deprecated runtimes. For more information, see Runtime deprecation policy in the Lambda Developer Guide. Array Members: Maximum number of 5 items. Valid Values: nodejs | nodejs4.3 | nodejs6.10 | nodejs8.10 | nodejs10.x | nodejs12.x | nodejs14.x | nodejs16.x | java8 | java8.al2 | java11 | python2.7 | python3.6 | python3.7 | python3.8 | python3.9 | dotnetcore1.0 | dotnetcore2.0 | dotnetcore2.1 | dotnetcore3.1 | dotnet6 | nodejs4.3-edge | go1.x | ruby2.5 | ruby2.7 | provided | provided.al2 | nodejs18.x | python3.10 | java17 | ruby3.2 | python3.11 | nodejs20.x | provided.al2023 | python3.12 | java21
8058
8058
  */
8059
8059
  CompatibleRuntimes?: NonEmptyStringList;
8060
8060
  /**
@@ -83,7 +83,7 @@ return /******/ (function(modules) { // webpackBootstrap
83
83
  /**
84
84
  * @constant
85
85
  */
86
- VERSION: '2.1536.0',
86
+ VERSION: '2.1537.0',
87
87
 
88
88
  /**
89
89
  * @api private
@@ -10061,6 +10061,9 @@ return /******/ (function(modules) { // webpackBootstrap
10061
10061
  var $TypeError = GetIntrinsic('%TypeError%');
10062
10062
  var $floor = GetIntrinsic('%Math.floor%');
10063
10063
 
10064
+ /** @typedef {(...args: unknown[]) => unknown} Func */
10065
+
10066
+ /** @type {<T extends Func = Func>(fn: T, length: number, loose?: boolean) => T} */
10064
10067
  module.exports = function setFunctionLength(fn, length) {
10065
10068
  if (typeof fn !== 'function') {
10066
10069
  throw new $TypeError('`fn` is not a function');
@@ -10085,9 +10088,9 @@ return /******/ (function(modules) { // webpackBootstrap
10085
10088
 
10086
10089
  if (functionLengthIsConfigurable || functionLengthIsWritable || !loose) {
10087
10090
  if (hasDescriptors) {
10088
- define(fn, 'length', length, true, true);
10091
+ define(/** @type {Parameters<define>[0]} */ (fn), 'length', length, true, true);
10089
10092
  } else {
10090
- define(fn, 'length', length);
10093
+ define(/** @type {Parameters<define>[0]} */ (fn), 'length', length);
10091
10094
  }
10092
10095
  }
10093
10096
  return fn;