cdk-lambda-subminute 2.0.326 → 2.0.327

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -556,6 +556,14 @@ declare class SageMaker extends Service {
556
556
  * Deletes the specified Git repository from your account.
557
557
  */
558
558
  deleteCodeRepository(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
559
+ /**
560
+ * Deletes the specified compilation job. This action deletes only the compilation job resource in Amazon SageMaker. It doesn't delete other resources that are related to that job, such as the model artifacts that the job creates, the compilation logs in CloudWatch, the compiled model, or the IAM role. You can delete a compilation job only if its current status is COMPLETED, FAILED, or STOPPED. If the job status is STARTING or INPROGRESS, stop the job, and then delete it after its status becomes STOPPED.
561
+ */
562
+ deleteCompilationJob(params: SageMaker.Types.DeleteCompilationJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
563
+ /**
564
+ * Deletes the specified compilation job. This action deletes only the compilation job resource in Amazon SageMaker. It doesn't delete other resources that are related to that job, such as the model artifacts that the job creates, the compilation logs in CloudWatch, the compiled model, or the IAM role. You can delete a compilation job only if its current status is COMPLETED, FAILED, or STOPPED. If the job status is STARTING or INPROGRESS, stop the job, and then delete it after its status becomes STOPPED.
565
+ */
566
+ deleteCompilationJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
559
567
  /**
560
568
  * Deletes an context.
561
569
  */
@@ -2662,7 +2670,7 @@ declare namespace SageMaker {
2662
2670
  /**
2663
2671
  * The URI of the source.
2664
2672
  */
2665
- SourceUri: String2048;
2673
+ SourceUri: SourceUri;
2666
2674
  /**
2667
2675
  * The type of the source.
2668
2676
  */
@@ -2936,6 +2944,10 @@ declare namespace SageMaker {
2936
2944
  * The user profile name.
2937
2945
  */
2938
2946
  UserProfileName?: UserProfileName;
2947
+ /**
2948
+ * The name of the space.
2949
+ */
2950
+ SpaceName?: SpaceName;
2939
2951
  /**
2940
2952
  * The type of app.
2941
2953
  */
@@ -2952,10 +2964,6 @@ declare namespace SageMaker {
2952
2964
  * The creation time.
2953
2965
  */
2954
2966
  CreationTime?: CreationTime;
2955
- /**
2956
- * The name of the space.
2957
- */
2958
- SpaceName?: SpaceName;
2959
2967
  ResourceSpec?: ResourceSpec;
2960
2968
  }
2961
2969
  export type AppImageConfigArn = string;
@@ -3010,16 +3018,18 @@ declare namespace SageMaker {
3010
3018
  ContainerArguments?: ContainerArguments;
3011
3019
  }
3012
3020
  export type AppStatus = "Deleted"|"Deleting"|"Failed"|"InService"|"Pending"|string;
3013
- export type AppType = "JupyterServer"|"KernelGateway"|"TensorBoard"|"RStudioServerPro"|"RSessionGateway"|"JupyterLab"|"CodeEditor"|string;
3021
+ export type AppType = "JupyterServer"|"KernelGateway"|"DetailedProfiler"|"TensorBoard"|"VSCode"|"Savitur"|"CodeEditor"|"JupyterLab"|"RStudioServerPro"|"RSession"|"RSessionGateway"|"Canvas"|"DatasetManager"|"SageMakerLite"|"Local"|string;
3014
3022
  export type ApprovalDescription = string;
3015
3023
  export type ArnOrName = string;
3016
3024
  export type ArtifactArn = string;
3017
3025
  export type ArtifactDigest = string;
3026
+ export type ArtifactProperties = {[key: string]: ArtifactPropertyValue};
3027
+ export type ArtifactPropertyValue = string;
3018
3028
  export interface ArtifactSource {
3019
3029
  /**
3020
3030
  * The URI of the source.
3021
3031
  */
3022
- SourceUri: String2048;
3032
+ SourceUri: SourceUri;
3023
3033
  /**
3024
3034
  * A list of source types.
3025
3035
  */
@@ -3085,7 +3095,7 @@ declare namespace SageMaker {
3085
3095
  */
3086
3096
  TrialArn?: TrialArn;
3087
3097
  }
3088
- export type AssociationEdgeType = "ContributedTo"|"AssociatedWith"|"DerivedFrom"|"Produced"|string;
3098
+ export type AssociationEdgeType = "ContributedTo"|"AssociatedWith"|"DerivedFrom"|"Produced"|"SameAs"|string;
3089
3099
  export type AssociationEntityArn = string;
3090
3100
  export type AssociationSummaries = AssociationSummary[];
3091
3101
  export interface AssociationSummary {
@@ -3284,7 +3294,7 @@ declare namespace SageMaker {
3284
3294
  /**
3285
3295
  * The data source for an AutoML channel.
3286
3296
  */
3287
- DataSource: AutoMLDataSource;
3297
+ DataSource?: AutoMLDataSource;
3288
3298
  /**
3289
3299
  * You can use Gzip or None. The default value is None.
3290
3300
  */
@@ -3389,14 +3399,14 @@ declare namespace SageMaker {
3389
3399
  * The security configuration for traffic encryption or Amazon VPC settings.
3390
3400
  */
3391
3401
  SecurityConfig?: AutoMLSecurityConfig;
3392
- /**
3393
- * The configuration for splitting the input training dataset. Type: AutoMLDataSplitConfig
3394
- */
3395
- DataSplitConfig?: AutoMLDataSplitConfig;
3396
3402
  /**
3397
3403
  * The configuration for generating a candidate for an AutoML job (optional).
3398
3404
  */
3399
3405
  CandidateGenerationConfig?: AutoMLCandidateGenerationConfig;
3406
+ /**
3407
+ * The configuration for splitting the input training dataset. Type: AutoMLDataSplitConfig
3408
+ */
3409
+ DataSplitConfig?: AutoMLDataSplitConfig;
3400
3410
  /**
3401
3411
  * The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode.
3402
3412
  */
@@ -3411,7 +3421,7 @@ declare namespace SageMaker {
3411
3421
  MetricName: AutoMLMetricEnum;
3412
3422
  }
3413
3423
  export type AutoMLJobObjectiveType = "Maximize"|"Minimize"|string;
3414
- export type AutoMLJobSecondaryStatus = "Starting"|"AnalyzingData"|"FeatureEngineering"|"ModelTuning"|"MaxCandidatesReached"|"Failed"|"Stopped"|"MaxAutoMLJobRuntimeReached"|"Stopping"|"CandidateDefinitionsGenerated"|"GeneratingExplainabilityReport"|"Completed"|"ExplainabilityError"|"DeployingModel"|"ModelDeploymentError"|"GeneratingModelInsightsReport"|"ModelInsightsError"|"TrainingModels"|"PreTraining"|string;
3424
+ export type AutoMLJobSecondaryStatus = "Starting"|"MaxCandidatesReached"|"Failed"|"Stopped"|"MaxAutoMLJobRuntimeReached"|"Stopping"|"CandidateDefinitionsGenerated"|"Completed"|"ExplainabilityError"|"DeployingModel"|"ModelDeploymentError"|"GeneratingModelInsightsReport"|"ModelInsightsError"|"AnalyzingData"|"FeatureEngineering"|"ModelTuning"|"GeneratingExplainabilityReport"|"TrainingModels"|"PreTraining"|string;
3415
3425
  export type AutoMLJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
3416
3426
  export interface AutoMLJobStepMetadata {
3417
3427
  /**
@@ -3459,7 +3469,8 @@ declare namespace SageMaker {
3459
3469
  PartialFailureReasons?: AutoMLPartialFailureReasons;
3460
3470
  }
3461
3471
  export type AutoMLMaxResults = number;
3462
- export type AutoMLMetricEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"MAE"|"R2"|"BalancedAccuracy"|"Precision"|"PrecisionMacro"|"Recall"|"RecallMacro"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss"|string;
3472
+ export type AutoMLMaxResultsForTrials = number;
3473
+ export type AutoMLMetricEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"BalancedAccuracy"|"R2"|"Recall"|"RecallMacro"|"Precision"|"PrecisionMacro"|"MAE"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss"|string;
3463
3474
  export type AutoMLMetricExtendedEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"MAE"|"R2"|"BalancedAccuracy"|"Precision"|"PrecisionMacro"|"Recall"|"RecallMacro"|"LogLoss"|"InferenceLatency"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss"|"Rouge1"|"Rouge2"|"RougeL"|"RougeLSum"|"Perplexity"|"ValidationLoss"|"TrainingLoss"|string;
3464
3475
  export type AutoMLMode = "AUTO"|"ENSEMBLING"|"HYPERPARAMETER_TUNING"|string;
3465
3476
  export type AutoMLNameContains = string;
@@ -3489,20 +3500,20 @@ declare namespace SageMaker {
3489
3500
  * Settings used to configure an AutoML job V2 for the text classification problem type.
3490
3501
  */
3491
3502
  TextClassificationJobConfig?: TextClassificationJobConfig;
3492
- /**
3493
- * Settings used to configure an AutoML job V2 for the tabular problem type (regression, classification).
3494
- */
3495
- TabularJobConfig?: TabularJobConfig;
3496
3503
  /**
3497
3504
  * Settings used to configure an AutoML job V2 for the time-series forecasting problem type.
3498
3505
  */
3499
3506
  TimeSeriesForecastingJobConfig?: TimeSeriesForecastingJobConfig;
3507
+ /**
3508
+ * Settings used to configure an AutoML job V2 for the tabular problem type (regression, classification).
3509
+ */
3510
+ TabularJobConfig?: TabularJobConfig;
3500
3511
  /**
3501
3512
  * Settings used to configure an AutoML job V2 for the text generation (LLMs fine-tuning) problem type. The text generation models that support fine-tuning in Autopilot are currently accessible exclusively in regions supported by Canvas. Refer to the documentation of Canvas for the full list of its supported Regions.
3502
3513
  */
3503
3514
  TextGenerationJobConfig?: TextGenerationJobConfig;
3504
3515
  }
3505
- export type AutoMLProblemTypeConfigName = "ImageClassification"|"TextClassification"|"Tabular"|"TimeSeriesForecasting"|"TextGeneration"|string;
3516
+ export type AutoMLProblemTypeConfigName = "ImageClassification"|"TextClassification"|"TimeSeriesForecasting"|"Tabular"|"TextGeneration"|string;
3506
3517
  export interface AutoMLProblemTypeResolvedAttributes {
3507
3518
  /**
3508
3519
  * The resolved attributes for the tabular problem type.
@@ -3573,7 +3584,7 @@ declare namespace SageMaker {
3573
3584
  Mode: AutotuneMode;
3574
3585
  }
3575
3586
  export type AutotuneMode = "Enabled"|string;
3576
- export type AwsManagedHumanLoopRequestSource = "AWS/Rekognition/DetectModerationLabels/Image/V3"|"AWS/Textract/AnalyzeDocument/Forms/V1"|string;
3587
+ export type AwsManagedHumanLoopRequestSource = "AWS/Rekognition/DetectModerationLabels/Image/V3"|"AWS/Textract/AnalyzeDocument/Forms/V1"|"AWS/Textract/AnalyzeExpense"|"AWS/Handshake/VerifyIdentity"|"AWS/Bedrock/ModelEvaluation"|string;
3577
3588
  export type BacktestResultsLocation = string;
3578
3589
  export type BaseModelName = string;
3579
3590
  export interface BatchDataCaptureConfig {
@@ -3815,14 +3826,14 @@ declare namespace SageMaker {
3815
3826
  * The settings for connecting to an external data source with OAuth.
3816
3827
  */
3817
3828
  IdentityProviderOAuthSettings?: IdentityProviderOAuthSettings;
3818
- /**
3819
- * The settings for document querying.
3820
- */
3821
- KendraSettings?: KendraSettings;
3822
3829
  /**
3823
3830
  * The model deployment settings for the SageMaker Canvas application.
3824
3831
  */
3825
3832
  DirectDeploySettings?: DirectDeploySettings;
3833
+ /**
3834
+ * The settings for document querying.
3835
+ */
3836
+ KendraSettings?: KendraSettings;
3826
3837
  }
3827
3838
  export interface CapacitySize {
3828
3839
  /**
@@ -3846,7 +3857,7 @@ declare namespace SageMaker {
3846
3857
  */
3847
3858
  JsonContentTypes?: JsonContentTypes;
3848
3859
  }
3849
- export type CaptureMode = "Input"|"Output"|string;
3860
+ export type CaptureMode = "Input"|"Output"|"InputAndOutput"|string;
3850
3861
  export interface CaptureOption {
3851
3862
  /**
3852
3863
  * Specify the boundary of data to capture.
@@ -4472,6 +4483,10 @@ declare namespace SageMaker {
4472
4483
  * The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters. The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating. If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide. If you use a built-in algorithm to create a model, SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl.
4473
4484
  */
4474
4485
  ModelDataUrl?: Url;
4486
+ /**
4487
+ * Specifies the location of ML model data to deploy. Currently you cannot use ModelDataSource in conjunction with SageMaker batch transform, SageMaker serverless endpoints, SageMaker multi-model endpoints, and SageMaker Marketplace.
4488
+ */
4489
+ ModelDataSource?: ModelDataSource;
4475
4490
  /**
4476
4491
  * The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
4477
4492
  */
@@ -4488,10 +4503,6 @@ declare namespace SageMaker {
4488
4503
  * Specifies additional configuration for multi-model endpoints.
4489
4504
  */
4490
4505
  MultiModelConfig?: MultiModelConfig;
4491
- /**
4492
- * Specifies the location of ML model data to deploy. Currently you cannot use ModelDataSource in conjunction with SageMaker batch transform, SageMaker serverless endpoints, SageMaker multi-model endpoints, and SageMaker Marketplace.
4493
- */
4494
- ModelDataSource?: ModelDataSource;
4495
4506
  }
4496
4507
  export type ContainerDefinitionList = ContainerDefinition[];
4497
4508
  export type ContainerEntrypoint = ContainerEntrypointString[];
@@ -4506,11 +4517,13 @@ declare namespace SageMaker {
4506
4517
  export type ContentType = string;
4507
4518
  export type ContentTypes = ContentType[];
4508
4519
  export type ContextArn = string;
4520
+ export type ContextName = string;
4521
+ export type ContextNameOrArn = string;
4509
4522
  export interface ContextSource {
4510
4523
  /**
4511
4524
  * The URI of the source.
4512
4525
  */
4513
- SourceUri: String2048;
4526
+ SourceUri: SourceUri;
4514
4527
  /**
4515
4528
  * The type of the source.
4516
4529
  */
@@ -4529,7 +4542,7 @@ declare namespace SageMaker {
4529
4542
  /**
4530
4543
  * The name of the context.
4531
4544
  */
4532
- ContextName?: ExperimentEntityName;
4545
+ ContextName?: ContextName;
4533
4546
  /**
4534
4547
  * The source of the context.
4535
4548
  */
@@ -4689,6 +4702,10 @@ declare namespace SageMaker {
4689
4702
  * The user profile name. If this value is not set, then SpaceName must be set.
4690
4703
  */
4691
4704
  UserProfileName?: UserProfileName;
4705
+ /**
4706
+ * The name of the space. If this value is not set, then UserProfileName must be set.
4707
+ */
4708
+ SpaceName?: SpaceName;
4692
4709
  /**
4693
4710
  * The type of app.
4694
4711
  */
@@ -4705,10 +4722,6 @@ declare namespace SageMaker {
4705
4722
  * The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance. The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.
4706
4723
  */
4707
4724
  ResourceSpec?: ResourceSpec;
4708
- /**
4709
- * The name of the space. If this value is not set, then UserProfileName must be set.
4710
- */
4711
- SpaceName?: SpaceName;
4712
4725
  }
4713
4726
  export interface CreateAppResponse {
4714
4727
  /**
@@ -4732,7 +4745,7 @@ declare namespace SageMaker {
4732
4745
  /**
4733
4746
  * A list of properties to add to the artifact.
4734
4747
  */
4735
- Properties?: LineageEntityParameters;
4748
+ Properties?: ArtifactProperties;
4736
4749
  MetadataProperties?: MetadataProperties;
4737
4750
  /**
4738
4751
  * A list of tags to apply to the artifact.
@@ -4926,7 +4939,7 @@ declare namespace SageMaker {
4926
4939
  /**
4927
4940
  * The name of the context. Must be unique to your account in an Amazon Web Services Region.
4928
4941
  */
4929
- ContextName: ExperimentEntityName;
4942
+ ContextName: ContextName;
4930
4943
  /**
4931
4944
  * The source type, ID, and URI.
4932
4945
  */
@@ -5032,6 +5045,10 @@ declare namespace SageMaker {
5032
5045
  * The default settings to use to create a user profile when UserSettings isn't specified in the call to the CreateUserProfile API. SecurityGroups is aggregated when specified in both calls. For all other settings in UserSettings, the values specified in CreateUserProfile take precedence over those specified in CreateDomain.
5033
5046
  */
5034
5047
  DefaultUserSettings: UserSettings;
5048
+ /**
5049
+ * A collection of Domain settings.
5050
+ */
5051
+ DomainSettings?: DomainSettings;
5035
5052
  /**
5036
5053
  * The VPC subnets that the domain uses for communication.
5037
5054
  */
@@ -5060,10 +5077,6 @@ declare namespace SageMaker {
5060
5077
  * The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided. If setting up the domain for use with RStudio, this value must be set to Service.
5061
5078
  */
5062
5079
  AppSecurityGroupManagement?: AppSecurityGroupManagement;
5063
- /**
5064
- * A collection of Domain settings.
5065
- */
5066
- DomainSettings?: DomainSettings;
5067
5080
  /**
5068
5081
  * The default settings used to create a space.
5069
5082
  */
@@ -5302,7 +5315,7 @@ declare namespace SageMaker {
5302
5315
  /**
5303
5316
  * An object containing information about the tasks the human reviewers will perform.
5304
5317
  */
5305
- HumanLoopConfig: HumanLoopConfig;
5318
+ HumanLoopConfig?: HumanLoopConfig;
5306
5319
  /**
5307
5320
  * An object containing information about where the human review results will be uploaded.
5308
5321
  */
@@ -5895,14 +5908,6 @@ declare namespace SageMaker {
5895
5908
  * A unique token that guarantees that the call to this API is idempotent.
5896
5909
  */
5897
5910
  ClientToken?: ClientToken;
5898
- /**
5899
- * The metadata properties associated with the model package versions.
5900
- */
5901
- CustomerMetadataProperties?: CustomerMetadataMap;
5902
- /**
5903
- * Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide.
5904
- */
5905
- DriftCheckBaselines?: DriftCheckBaselines;
5906
5911
  /**
5907
5912
  * The machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.
5908
5913
  */
@@ -5915,6 +5920,14 @@ declare namespace SageMaker {
5915
5920
  * The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). This archive can hold multiple files that are all equally used in the load test. Each file in the archive must satisfy the size constraints of the InvokeEndpoint call.
5916
5921
  */
5917
5922
  SamplePayloadUrl?: S3Uri;
5923
+ /**
5924
+ * The metadata properties associated with the model package versions.
5925
+ */
5926
+ CustomerMetadataProperties?: CustomerMetadataMap;
5927
+ /**
5928
+ * Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide.
5929
+ */
5930
+ DriftCheckBaselines?: DriftCheckBaselines;
5918
5931
  /**
5919
5932
  * An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
5920
5933
  */
@@ -6147,7 +6160,7 @@ declare namespace SageMaker {
6147
6160
  */
6148
6161
  SpaceName?: SpaceName;
6149
6162
  /**
6150
- * The landing page that the user is directed to when accessing the presigned URL. Using this value, users can access Studio or Studio Classic, even if it is not the default experience for the domain. The supported values are: studio::relative/path: Directs users to the relative path in Studio. app:JupyterServer:relative/path: Directs users to the relative path in the Studio Classic application. app:JupyterLab:relative/path: Directs users to the relative path in the JupyterLab application. app:RStudioServerPro:relative/path: Directs users to the relative path in the RStudio application. app:Canvas:relative/path: Directs users to the relative path in the Canvas application.
6163
+ * The landing page that the user is directed to when accessing the presigned URL. Using this value, users can access Studio or Studio Classic, even if it is not the default experience for the domain. The supported values are: studio::relative/path: Directs users to the relative path in Studio. app:JupyterServer:relative/path: Directs users to the relative path in the Studio Classic application. app:JupyterLab:relative/path: Directs users to the relative path in the JupyterLab application. app:RStudioServerPro:relative/path: Directs users to the relative path in the RStudio application. app:CodeEditor:relative/path: Directs users to the relative path in the Code Editor, based on Code-OSS, Visual Studio Code - Open Source application. app:Canvas:relative/path: Directs users to the relative path in the Canvas application.
6151
6164
  */
6152
6165
  LandingUri?: LandingUri;
6153
6166
  }
@@ -6267,10 +6280,6 @@ declare namespace SageMaker {
6267
6280
  * A collection of space settings.
6268
6281
  */
6269
6282
  SpaceSettings?: SpaceSettings;
6270
- /**
6271
- * The name of the space that appears in the SageMaker Studio UI.
6272
- */
6273
- SpaceDisplayName?: NonEmptyString64;
6274
6283
  /**
6275
6284
  * A collection of ownership settings.
6276
6285
  */
@@ -6279,6 +6288,10 @@ declare namespace SageMaker {
6279
6288
  * A collection of space sharing settings.
6280
6289
  */
6281
6290
  SpaceSharingSettings?: SpaceSharingSettings;
6291
+ /**
6292
+ * The name of the space that appears in the SageMaker Studio UI.
6293
+ */
6294
+ SpaceDisplayName?: NonEmptyString64;
6282
6295
  }
6283
6296
  export interface CreateSpaceResponse {
6284
6297
  /**
@@ -6969,6 +6982,10 @@ declare namespace SageMaker {
6969
6982
  * The user profile name. If this value is not set, then SpaceName must be set.
6970
6983
  */
6971
6984
  UserProfileName?: UserProfileName;
6985
+ /**
6986
+ * The name of the space. If this value is not set, then UserProfileName must be set.
6987
+ */
6988
+ SpaceName?: SpaceName;
6972
6989
  /**
6973
6990
  * The type of app.
6974
6991
  */
@@ -6977,10 +6994,6 @@ declare namespace SageMaker {
6977
6994
  * The name of the app.
6978
6995
  */
6979
6996
  AppName: AppName;
6980
- /**
6981
- * The name of the space. If this value is not set, then UserProfileName must be set.
6982
- */
6983
- SpaceName?: SpaceName;
6984
6997
  }
6985
6998
  export interface DeleteArtifactRequest {
6986
6999
  /**
@@ -7036,11 +7049,17 @@ declare namespace SageMaker {
7036
7049
  */
7037
7050
  CodeRepositoryName: EntityName;
7038
7051
  }
7052
+ export interface DeleteCompilationJobRequest {
7053
+ /**
7054
+ * The name of the compilation job to delete.
7055
+ */
7056
+ CompilationJobName: EntityName;
7057
+ }
7039
7058
  export interface DeleteContextRequest {
7040
7059
  /**
7041
7060
  * The name of the context to delete.
7042
7061
  */
7043
- ContextName: ExperimentEntityName;
7062
+ ContextName: ContextName;
7044
7063
  }
7045
7064
  export interface DeleteContextResponse {
7046
7065
  /**
@@ -7390,14 +7409,14 @@ declare namespace SageMaker {
7390
7409
  * Update policy for a blue/green deployment. If this update policy is specified, SageMaker creates a new fleet during the deployment while maintaining the old fleet. SageMaker flips traffic to the new fleet according to the specified traffic routing configuration. Only one update policy should be used in the deployment configuration. If no update policy is specified, SageMaker uses a blue/green deployment strategy with all at once traffic shifting by default.
7391
7410
  */
7392
7411
  BlueGreenUpdatePolicy?: BlueGreenUpdatePolicy;
7393
- /**
7394
- * Automatic rollback configuration for handling endpoint deployment failures and recovery.
7395
- */
7396
- AutoRollbackConfiguration?: AutoRollbackConfig;
7397
7412
  /**
7398
7413
  * Specifies a rolling deployment strategy for updating a SageMaker endpoint.
7399
7414
  */
7400
7415
  RollingUpdatePolicy?: RollingUpdatePolicy;
7416
+ /**
7417
+ * Automatic rollback configuration for handling endpoint deployment failures and recovery.
7418
+ */
7419
+ AutoRollbackConfiguration?: AutoRollbackConfig;
7401
7420
  }
7402
7421
  export interface DeploymentRecommendation {
7403
7422
  /**
@@ -7464,7 +7483,7 @@ declare namespace SageMaker {
7464
7483
  /**
7465
7484
  * The name of the action to describe.
7466
7485
  */
7467
- ActionName: ExperimentEntityName;
7486
+ ActionName: ExperimentEntityNameOrArn;
7468
7487
  }
7469
7488
  export interface DescribeActionResponse {
7470
7489
  /**
@@ -7604,6 +7623,10 @@ declare namespace SageMaker {
7604
7623
  * The user profile name. If this value is not set, then SpaceName must be set.
7605
7624
  */
7606
7625
  UserProfileName?: UserProfileName;
7626
+ /**
7627
+ * The name of the space.
7628
+ */
7629
+ SpaceName?: SpaceName;
7607
7630
  /**
7608
7631
  * The type of app.
7609
7632
  */
@@ -7612,10 +7635,6 @@ declare namespace SageMaker {
7612
7635
  * The name of the app.
7613
7636
  */
7614
7637
  AppName: AppName;
7615
- /**
7616
- * The name of the space.
7617
- */
7618
- SpaceName?: SpaceName;
7619
7638
  }
7620
7639
  export interface DescribeAppResponse {
7621
7640
  /**
@@ -7638,6 +7657,10 @@ declare namespace SageMaker {
7638
7657
  * The user profile name.
7639
7658
  */
7640
7659
  UserProfileName?: UserProfileName;
7660
+ /**
7661
+ * The name of the space. If this value is not set, then UserProfileName must be set.
7662
+ */
7663
+ SpaceName?: SpaceName;
7641
7664
  /**
7642
7665
  * The status.
7643
7666
  */
@@ -7653,7 +7676,7 @@ declare namespace SageMaker {
7653
7676
  /**
7654
7677
  * The creation time.
7655
7678
  */
7656
- CreationTime?: CreationTime;
7679
+ CreationTime?: Timestamp;
7657
7680
  /**
7658
7681
  * The failure reason.
7659
7682
  */
@@ -7662,10 +7685,6 @@ declare namespace SageMaker {
7662
7685
  * The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
7663
7686
  */
7664
7687
  ResourceSpec?: ResourceSpec;
7665
- /**
7666
- * The name of the space. If this value is not set, then UserProfileName must be set.
7667
- */
7668
- SpaceName?: SpaceName;
7669
7688
  }
7670
7689
  export interface DescribeArtifactRequest {
7671
7690
  /**
@@ -7837,6 +7856,10 @@ declare namespace SageMaker {
7837
7856
  * Returns the configuration settings of the problem type set for the AutoML job V2.
7838
7857
  */
7839
7858
  AutoMLProblemTypeConfig?: AutoMLProblemTypeConfig;
7859
+ /**
7860
+ * Returns the name of the problem type configuration set for the AutoML job V2.
7861
+ */
7862
+ AutoMLProblemTypeConfigName?: AutoMLProblemTypeConfigName;
7840
7863
  /**
7841
7864
  * Returns the creation time of the AutoML job V2.
7842
7865
  */
@@ -7869,6 +7892,11 @@ declare namespace SageMaker {
7869
7892
  * Returns the secondary status of the AutoML job V2.
7870
7893
  */
7871
7894
  AutoMLJobSecondaryStatus: AutoMLJobSecondaryStatus;
7895
+ AutoMLJobArtifacts?: AutoMLJobArtifacts;
7896
+ /**
7897
+ * Returns the resolved attributes used by the AutoML job V2.
7898
+ */
7899
+ ResolvedAttributes?: AutoMLResolvedAttributes;
7872
7900
  /**
7873
7901
  * Indicates whether the model was deployed automatically to an endpoint and the name of that endpoint if deployed automatically.
7874
7902
  */
@@ -7885,15 +7913,6 @@ declare namespace SageMaker {
7885
7913
  * Returns the security configuration for traffic encryption or Amazon VPC settings.
7886
7914
  */
7887
7915
  SecurityConfig?: AutoMLSecurityConfig;
7888
- AutoMLJobArtifacts?: AutoMLJobArtifacts;
7889
- /**
7890
- * Returns the resolved attributes used by the AutoML job V2.
7891
- */
7892
- ResolvedAttributes?: AutoMLResolvedAttributes;
7893
- /**
7894
- * Returns the name of the problem type configuration set for the AutoML job V2.
7895
- */
7896
- AutoMLProblemTypeConfigName?: AutoMLProblemTypeConfigName;
7897
7916
  }
7898
7917
  export interface DescribeClusterNodeRequest {
7899
7918
  /**
@@ -8056,13 +8075,13 @@ declare namespace SageMaker {
8056
8075
  /**
8057
8076
  * The name of the context to describe.
8058
8077
  */
8059
- ContextName: ExperimentEntityNameOrArn;
8078
+ ContextName: ContextNameOrArn;
8060
8079
  }
8061
8080
  export interface DescribeContextResponse {
8062
8081
  /**
8063
8082
  * The name of the context.
8064
8083
  */
8065
- ContextName?: ExperimentEntityName;
8084
+ ContextName?: ContextName;
8066
8085
  /**
8067
8086
  * The Amazon Resource Name (ARN) of the context.
8068
8087
  */
@@ -8269,7 +8288,7 @@ declare namespace SageMaker {
8269
8288
  */
8270
8289
  SingleSignOnManagedApplicationInstanceId?: String256;
8271
8290
  /**
8272
- * The ARN of the application managed by SageMaker in IAM Identity Center. This value is only returned for domains created after September 19, 2023.
8291
+ * The ARN of the application managed by SageMaker in IAM Identity Center. This value is only returned for domains created after October 1, 2023.
8273
8292
  */
8274
8293
  SingleSignOnApplicationArn?: SingleSignOnApplicationArn;
8275
8294
  /**
@@ -8288,6 +8307,10 @@ declare namespace SageMaker {
8288
8307
  * The failure reason.
8289
8308
  */
8290
8309
  FailureReason?: FailureReason;
8310
+ /**
8311
+ * The ID of the security group that authorizes traffic between the RSessionGateway apps and the RStudioServerPro app.
8312
+ */
8313
+ SecurityGroupIdForDomainBoundary?: SecurityGroupId;
8291
8314
  /**
8292
8315
  * The domain's authentication mode.
8293
8316
  */
@@ -8296,6 +8319,10 @@ declare namespace SageMaker {
8296
8319
  * Settings which are applied to UserProfiles in this domain if settings are not explicitly specified in a given UserProfile.
8297
8320
  */
8298
8321
  DefaultUserSettings?: UserSettings;
8322
+ /**
8323
+ * A collection of Domain settings.
8324
+ */
8325
+ DomainSettings?: DomainSettings;
8299
8326
  /**
8300
8327
  * Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
8301
8328
  */
@@ -8320,18 +8347,10 @@ declare namespace SageMaker {
8320
8347
  * The Amazon Web Services KMS customer managed key used to encrypt the EFS volume attached to the domain.
8321
8348
  */
8322
8349
  KmsKeyId?: KmsKeyId;
8323
- /**
8324
- * A collection of Domain settings.
8325
- */
8326
- DomainSettings?: DomainSettings;
8327
8350
  /**
8328
8351
  * The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided.
8329
8352
  */
8330
8353
  AppSecurityGroupManagement?: AppSecurityGroupManagement;
8331
- /**
8332
- * The ID of the security group that authorizes traffic between the RSessionGateway apps and the RStudioServerPro app.
8333
- */
8334
- SecurityGroupIdForDomainBoundary?: SecurityGroupId;
8335
8354
  /**
8336
8355
  * The default settings used to create a space.
8337
8356
  */
@@ -8533,7 +8552,7 @@ declare namespace SageMaker {
8533
8552
  /**
8534
8553
  * The name of the endpoint configuration associated with this endpoint.
8535
8554
  */
8536
- EndpointConfigName: EndpointConfigName;
8555
+ EndpointConfigName?: EndpointConfigName;
8537
8556
  /**
8538
8557
  * An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.
8539
8558
  */
@@ -8778,7 +8797,7 @@ declare namespace SageMaker {
8778
8797
  /**
8779
8798
  * An object containing information about who works on the task, the workforce task price, and other task details.
8780
8799
  */
8781
- HumanLoopConfig: HumanLoopConfig;
8800
+ HumanLoopConfig?: HumanLoopConfig;
8782
8801
  /**
8783
8802
  * An object containing information about the output file.
8784
8803
  */
@@ -9012,6 +9031,10 @@ declare namespace SageMaker {
9012
9031
  * The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.
9013
9032
  */
9014
9033
  WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
9034
+ /**
9035
+ * A flag to indicate if autotune is enabled for the hyperparameter tuning job.
9036
+ */
9037
+ Autotune?: Autotune;
9015
9038
  /**
9016
9039
  * If the tuning job failed, the reason it failed.
9017
9040
  */
@@ -9021,10 +9044,6 @@ declare namespace SageMaker {
9021
9044
  */
9022
9045
  TuningJobCompletionDetails?: HyperParameterTuningJobCompletionDetails;
9023
9046
  ConsumedResources?: HyperParameterTuningJobConsumedResources;
9024
- /**
9025
- * A flag to indicate if autotune is enabled for the hyperparameter tuning job.
9026
- */
9027
- Autotune?: Autotune;
9028
9047
  }
9029
9048
  export interface DescribeImageRequest {
9030
9049
  /**
@@ -9787,14 +9806,6 @@ declare namespace SageMaker {
9787
9806
  * A description provided for the model approval.
9788
9807
  */
9789
9808
  ApprovalDescription?: ApprovalDescription;
9790
- /**
9791
- * The metadata properties associated with the model package versions.
9792
- */
9793
- CustomerMetadataProperties?: CustomerMetadataMap;
9794
- /**
9795
- * Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide.
9796
- */
9797
- DriftCheckBaselines?: DriftCheckBaselines;
9798
9809
  /**
9799
9810
  * The machine learning domain of the model package you specified. Common machine learning domains include computer vision and natural language processing.
9800
9811
  */
@@ -9807,6 +9818,14 @@ declare namespace SageMaker {
9807
9818
  * The Amazon Simple Storage Service (Amazon S3) path where the sample payload are stored. This path points to a single gzip compressed tar archive (.tar.gz suffix).
9808
9819
  */
9809
9820
  SamplePayloadUrl?: String;
9821
+ /**
9822
+ * The metadata properties associated with the model package versions.
9823
+ */
9824
+ CustomerMetadataProperties?: CustomerMetadataMap;
9825
+ /**
9826
+ * Represents the drift check baselines that can be used when the model monitor is set using the model package. For more information, see the topic on Drift Detection against Previous Baselines in SageMaker Pipelines in the Amazon SageMaker Developer Guide.
9827
+ */
9828
+ DriftCheckBaselines?: DriftCheckBaselines;
9810
9829
  /**
9811
9830
  * An array of additional Inference Specification objects. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
9812
9831
  */
@@ -10341,14 +10360,6 @@ declare namespace SageMaker {
10341
10360
  * A collection of space settings.
10342
10361
  */
10343
10362
  SpaceSettings?: SpaceSettings;
10344
- /**
10345
- * Returns the URL of the space. If the space is created with Amazon Web Services IAM Identity Center (Successor to Amazon Web Services Single Sign-On) authentication, users can navigate to the URL after appending the respective redirect parameter for the application type to be federated through Amazon Web Services IAM Identity Center. The following application types are supported: Studio Classic: &amp;redirect=JupyterServer JupyterLab: &amp;redirect=JupyterLab
10346
- */
10347
- Url?: String1024;
10348
- /**
10349
- * The name of the space that appears in the Amazon SageMaker Studio UI.
10350
- */
10351
- SpaceDisplayName?: NonEmptyString64;
10352
10363
  /**
10353
10364
  * The collection of ownership settings for a space.
10354
10365
  */
@@ -10357,6 +10368,14 @@ declare namespace SageMaker {
10357
10368
  * The collection of space sharing settings for a space.
10358
10369
  */
10359
10370
  SpaceSharingSettings?: SpaceSharingSettings;
10371
+ /**
10372
+ * The name of the space that appears in the Amazon SageMaker Studio UI.
10373
+ */
10374
+ SpaceDisplayName?: NonEmptyString64;
10375
+ /**
10376
+ * Returns the URL of the space. If the space is created with Amazon Web Services IAM Identity Center (Successor to Amazon Web Services Single Sign-On) authentication, users can navigate to the URL after appending the respective redirect parameter for the application type to be federated through Amazon Web Services IAM Identity Center. The following application types are supported: Studio Classic: &amp;redirect=JupyterServer JupyterLab: &amp;redirect=JupyterLab Code Editor, based on Code-OSS, Visual Studio Code - Open Source: &amp;redirect=CodeEditor
10377
+ */
10378
+ Url?: String1024;
10360
10379
  }
10361
10380
  export interface DescribeStudioLifecycleConfigRequest {
10362
10381
  /**
@@ -10469,6 +10488,10 @@ declare namespace SageMaker {
10469
10488
  * Resources, including ML compute instances and ML storage volumes, that are configured for model training.
10470
10489
  */
10471
10490
  ResourceConfig: ResourceConfig;
10491
+ /**
10492
+ * The status of the warm pool associated with the training job.
10493
+ */
10494
+ WarmPoolStatus?: WarmPoolStatus;
10472
10495
  /**
10473
10496
  * A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
10474
10497
  */
@@ -10546,18 +10569,14 @@ declare namespace SageMaker {
10546
10569
  * Profiling status of a training job.
10547
10570
  */
10548
10571
  ProfilingStatus?: ProfilingStatus;
10549
- /**
10550
- * The number of times to retry the job when the job fails due to an InternalServerError.
10551
- */
10552
- RetryStrategy?: RetryStrategy;
10553
10572
  /**
10554
10573
  * The environment variables to set in the Docker container.
10555
10574
  */
10556
10575
  Environment?: TrainingEnvironmentMap;
10557
10576
  /**
10558
- * The status of the warm pool associated with the training job.
10577
+ * The number of times to retry the job when the job fails due to an InternalServerError.
10559
10578
  */
10560
- WarmPoolStatus?: WarmPoolStatus;
10579
+ RetryStrategy?: RetryStrategy;
10561
10580
  /**
10562
10581
  * Contains information about the infrastructure health check configuration for the training job.
10563
10582
  */
@@ -11568,7 +11587,7 @@ declare namespace SageMaker {
11568
11587
  /**
11569
11588
  * The name of a customer's endpoint.
11570
11589
  */
11571
- EndpointName: EndpointName;
11590
+ EndpointName?: EndpointName;
11572
11591
  }
11573
11592
  export interface EndpointInput {
11574
11593
  /**
@@ -11621,6 +11640,7 @@ declare namespace SageMaker {
11621
11640
  * The instance types to use for the load test.
11622
11641
  */
11623
11642
  InstanceType?: ProductionVariantInstanceType;
11643
+ ServerlessConfig?: ProductionVariantServerlessConfig;
11624
11644
  /**
11625
11645
  * The inference specification name in the model package version.
11626
11646
  */
@@ -11629,7 +11649,6 @@ declare namespace SageMaker {
11629
11649
  * The parameter you want to benchmark against.
11630
11650
  */
11631
11651
  EnvironmentParameterRanges?: EnvironmentParameterRanges;
11632
- ServerlessConfig?: ProductionVariantServerlessConfig;
11633
11652
  }
11634
11653
  export type EndpointInputConfigurations = EndpointInputConfiguration[];
11635
11654
  export interface EndpointMetadata {
@@ -11855,11 +11874,11 @@ declare namespace SageMaker {
11855
11874
  /**
11856
11875
  * The name of a feature. The type must be a string. FeatureName cannot be any of the following: is_deleted, write_time, api_invocation_time.
11857
11876
  */
11858
- FeatureName?: FeatureName;
11877
+ FeatureName: FeatureName;
11859
11878
  /**
11860
11879
  * The value type of a feature. Valid values are Integral, Fractional, or String.
11861
11880
  */
11862
- FeatureType?: FeatureType;
11881
+ FeatureType: FeatureType;
11863
11882
  /**
11864
11883
  * A grouping of elements where each element within the collection must have the same feature type (String, Integral, or Fractional). List: An ordered collection of elements. Set: An unordered collection of unique elements. Vector: A specialized list that represents a fixed-size array of elements. The vector dimension is determined by you. Must have elements with fractional feature types.
11865
11884
  */
@@ -12664,6 +12683,10 @@ declare namespace SageMaker {
12664
12683
  * The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches. Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1. If you want to use hyperparameter optimization with instance type flexibility, use HyperParameterTuningResourceConfig instead.
12665
12684
  */
12666
12685
  ResourceConfig?: ResourceConfig;
12686
+ /**
12687
+ * The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecification parameter to additionally store training data in the storage volume (optional).
12688
+ */
12689
+ HyperParameterTuningResourceConfig?: HyperParameterTuningResourceConfig;
12667
12690
  /**
12668
12691
  * Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
12669
12692
  */
@@ -12685,10 +12708,6 @@ declare namespace SageMaker {
12685
12708
  * The number of times to retry the job when the job fails due to an InternalServerError.
12686
12709
  */
12687
12710
  RetryStrategy?: RetryStrategy;
12688
- /**
12689
- * The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecification parameter to additionally store training data in the storage volume (optional).
12690
- */
12691
- HyperParameterTuningResourceConfig?: HyperParameterTuningResourceConfig;
12692
12711
  /**
12693
12712
  * An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information. The maximum number of items specified for Map Entries refers to the maximum number of environment variables for each TrainingJobDefinition and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.
12694
12713
  */
@@ -12870,10 +12889,6 @@ declare namespace SageMaker {
12870
12889
  * The error that was created when a hyperparameter tuning job failed.
12871
12890
  */
12872
12891
  FailureReason?: FailureReason;
12873
- /**
12874
- * The tags associated with a hyperparameter tuning job. For more information see Tagging Amazon Web Services resources.
12875
- */
12876
- Tags?: TagList;
12877
12892
  /**
12878
12893
  * Information about either a current or completed hyperparameter tuning job.
12879
12894
  */
@@ -12882,9 +12897,13 @@ declare namespace SageMaker {
12882
12897
  * The total amount of resources consumed by a hyperparameter tuning job.
12883
12898
  */
12884
12899
  ConsumedResources?: HyperParameterTuningJobConsumedResources;
12900
+ /**
12901
+ * The tags associated with a hyperparameter tuning job. For more information see Tagging Amazon Web Services resources.
12902
+ */
12903
+ Tags?: TagList;
12885
12904
  }
12886
12905
  export type HyperParameterTuningJobSortByOptions = "Name"|"Status"|"CreationTime"|string;
12887
- export type HyperParameterTuningJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
12906
+ export type HyperParameterTuningJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|"Deleting"|"DeleteFailed"|string;
12888
12907
  export interface HyperParameterTuningJobStrategyConfig {
12889
12908
  /**
12890
12909
  * The configuration for the object that specifies the Hyperband strategy. This parameter is only supported for the Hyperband selection for Strategy within the HyperParameterTuningJobConfig API.
@@ -13411,6 +13430,10 @@ declare namespace SageMaker {
13411
13430
  ModelLatency: Integer;
13412
13431
  }
13413
13432
  export interface InferenceRecommendation {
13433
+ /**
13434
+ * The recommendation ID which uniquely identifies each recommendation.
13435
+ */
13436
+ RecommendationId?: String;
13414
13437
  /**
13415
13438
  * The metrics used to decide what recommendation to make.
13416
13439
  */
@@ -13423,10 +13446,6 @@ declare namespace SageMaker {
13423
13446
  * Defines the model configuration.
13424
13447
  */
13425
13448
  ModelConfiguration: ModelConfiguration;
13426
- /**
13427
- * The recommendation ID which uniquely identifies each recommendation.
13428
- */
13429
- RecommendationId?: String;
13430
13449
  /**
13431
13450
  * A timestamp that shows when the benchmark completed.
13432
13451
  */
@@ -13618,7 +13637,6 @@ declare namespace SageMaker {
13618
13637
  MaxValue: ParameterValue;
13619
13638
  }
13620
13639
  export type IntegerParameterRanges = IntegerParameterRange[];
13621
- export type IntegerValue = number;
13622
13640
  export type InvocationEndTime = Date;
13623
13641
  export type InvocationStartTime = Date;
13624
13642
  export type InvocationsMaxRetries = number;
@@ -13634,6 +13652,7 @@ declare namespace SageMaker {
13634
13652
  export type JsonContentTypes = JsonContentType[];
13635
13653
  export type JsonPath = string;
13636
13654
  export interface JupyterLabAppImageConfig {
13655
+ FileSystemConfig?: FileSystemConfig;
13637
13656
  ContainerConfig?: ContainerConfig;
13638
13657
  }
13639
13658
  export interface JupyterLabAppSettings {
@@ -14356,7 +14375,7 @@ declare namespace SageMaker {
14356
14375
  /**
14357
14376
  * List the job's candidates up to a specified limit.
14358
14377
  */
14359
- MaxResults?: AutoMLMaxResults;
14378
+ MaxResults?: AutoMLMaxResultsForTrials;
14360
14379
  /**
14361
14380
  * If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
14362
14381
  */
@@ -15030,7 +15049,7 @@ declare namespace SageMaker {
15030
15049
  /**
15031
15050
  * A token to resume pagination of ListFeatureGroups results.
15032
15051
  */
15033
- NextToken: NextToken;
15052
+ NextToken?: NextToken;
15034
15053
  }
15035
15054
  export interface ListFlowDefinitionsRequest {
15036
15055
  /**
@@ -17815,7 +17834,7 @@ declare namespace SageMaker {
17815
17834
  /**
17816
17835
  * Specifies the S3 location of ML model data to deploy.
17817
17836
  */
17818
- S3DataSource: S3ModelDataSource;
17837
+ S3DataSource?: S3ModelDataSource;
17819
17838
  }
17820
17839
  export interface ModelDeployConfig {
17821
17840
  /**
@@ -19078,7 +19097,7 @@ declare namespace SageMaker {
19078
19097
  /**
19079
19098
  * A list of comma seperated strings that identifies user groups in your OIDC IdP. Each user group is made up of a group of private workers.
19080
19099
  */
19081
- Groups: Groups;
19100
+ Groups?: Groups;
19082
19101
  }
19083
19102
  export interface OnlineStoreConfig {
19084
19103
  /**
@@ -19141,7 +19160,7 @@ declare namespace SageMaker {
19141
19160
  }
19142
19161
  export interface OutputDataConfig {
19143
19162
  /**
19144
- * The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" // KMS Key Alias "alias/ExampleAlias" // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias" If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob, CreateTransformJob, or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
19163
+ * The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" // KMS Key Alias "alias/ExampleAlias" // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias" If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. If the output data is stored in Amazon S3 Express One Zone, it is encrypted with server-side encryption with Amazon S3 managed keys (SSE-S3). KMS key is not supported for Amazon S3 Express One Zone The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob, CreateTransformJob, or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
19145
19164
  */
19146
19165
  KmsKeyId?: KmsKeyId;
19147
19166
  /**
@@ -19443,14 +19462,14 @@ declare namespace SageMaker {
19443
19462
  * The parallelism configuration applied to the pipeline execution.
19444
19463
  */
19445
19464
  ParallelismConfiguration?: ParallelismConfiguration;
19446
- /**
19447
- * Contains a list of pipeline parameters. This list can be empty.
19448
- */
19449
- PipelineParameters?: ParameterList;
19450
19465
  /**
19451
19466
  * The selective execution configuration applied to the pipeline run.
19452
19467
  */
19453
19468
  SelectiveExecutionConfig?: SelectiveExecutionConfig;
19469
+ /**
19470
+ * Contains a list of pipeline parameters. This list can be empty.
19471
+ */
19472
+ PipelineParameters?: ParameterList;
19454
19473
  }
19455
19474
  export type PipelineExecutionArn = string;
19456
19475
  export type PipelineExecutionDescription = string;
@@ -19486,10 +19505,6 @@ declare namespace SageMaker {
19486
19505
  * If this pipeline execution step was cached, details on the cache hit.
19487
19506
  */
19488
19507
  CacheHitResult?: CacheHitResult;
19489
- /**
19490
- * The current attempt of the execution step. For more information, see Retry Policy for SageMaker Pipelines steps.
19491
- */
19492
- AttemptCount?: IntegerValue;
19493
19508
  /**
19494
19509
  * The reason why the step failed execution. This is only returned if the step failed its execution.
19495
19510
  */
@@ -19498,6 +19513,10 @@ declare namespace SageMaker {
19498
19513
  * Metadata to run the pipeline step.
19499
19514
  */
19500
19515
  Metadata?: PipelineExecutionStepMetadata;
19516
+ /**
19517
+ * The current attempt of the execution step. For more information, see Retry Policy for SageMaker Pipelines steps.
19518
+ */
19519
+ AttemptCount?: Integer;
19501
19520
  /**
19502
19521
  * The ARN from an execution of the current pipeline from which results are reused for this step.
19503
19522
  */
@@ -19541,6 +19560,10 @@ declare namespace SageMaker {
19541
19560
  * The Amazon Resource Name (ARN) of the Lambda function that was run by this step execution and a list of output parameters.
19542
19561
  */
19543
19562
  Lambda?: LambdaStepMetadata;
19563
+ /**
19564
+ * The configurations and outcomes of an Amazon EMR step execution.
19565
+ */
19566
+ EMR?: EMRStepMetadata;
19544
19567
  /**
19545
19568
  * The configurations and outcomes of the check step execution. This includes: The type of the check conducted. The Amazon S3 URIs of baseline constraints and statistics files to be used for the drift check. The Amazon S3 URIs of newly calculated baseline constraints and statistics. The model package group name provided. The Amazon S3 URI of the violation report if violations detected. The Amazon Resource Name (ARN) of check processing job initiated by the step execution. The Boolean flags indicating if the drift check is skipped. If step property BaselineUsedForDriftCheck is set the same as CalculatedBaseline.
19546
19569
  */
@@ -19549,10 +19572,6 @@ declare namespace SageMaker {
19549
19572
  * Container for the metadata for a Clarify check step. The configurations and outcomes of the check step execution. This includes: The type of the check conducted, The Amazon S3 URIs of baseline constraints and statistics files to be used for the drift check. The Amazon S3 URIs of newly calculated baseline constraints and statistics. The model package group name provided. The Amazon S3 URI of the violation report if violations detected. The Amazon Resource Name (ARN) of check processing job initiated by the step execution. The boolean flags indicating if the drift check is skipped. If step property BaselineUsedForDriftCheck is set the same as CalculatedBaseline.
19550
19573
  */
19551
19574
  ClarifyCheck?: ClarifyCheckStepMetadata;
19552
- /**
19553
- * The configurations and outcomes of an Amazon EMR step execution.
19554
- */
19555
- EMR?: EMRStepMetadata;
19556
19575
  /**
19557
19576
  * The configurations and outcomes of a Fail step execution.
19558
19577
  */
@@ -19602,7 +19621,7 @@ declare namespace SageMaker {
19602
19621
  export type PipelineName = string;
19603
19622
  export type PipelineNameOrArn = string;
19604
19623
  export type PipelineParameterName = string;
19605
- export type PipelineStatus = "Active"|string;
19624
+ export type PipelineStatus = "Active"|"Deleting"|string;
19606
19625
  export interface PipelineSummary {
19607
19626
  /**
19608
19627
  * The Amazon Resource Name (ARN) of the pipeline.
@@ -19975,7 +19994,7 @@ declare namespace SageMaker {
19975
19994
  */
19976
19995
  KmsKeyId?: KmsKeyId;
19977
19996
  }
19978
- export type ProductionVariantInstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge"|"ml.c6i.large"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.4xlarge"|"ml.c6i.8xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.p4d.24xlarge"|"ml.c7g.large"|"ml.c7g.xlarge"|"ml.c7g.2xlarge"|"ml.c7g.4xlarge"|"ml.c7g.8xlarge"|"ml.c7g.12xlarge"|"ml.c7g.16xlarge"|"ml.m6g.large"|"ml.m6g.xlarge"|"ml.m6g.2xlarge"|"ml.m6g.4xlarge"|"ml.m6g.8xlarge"|"ml.m6g.12xlarge"|"ml.m6g.16xlarge"|"ml.m6gd.large"|"ml.m6gd.xlarge"|"ml.m6gd.2xlarge"|"ml.m6gd.4xlarge"|"ml.m6gd.8xlarge"|"ml.m6gd.12xlarge"|"ml.m6gd.16xlarge"|"ml.c6g.large"|"ml.c6g.xlarge"|"ml.c6g.2xlarge"|"ml.c6g.4xlarge"|"ml.c6g.8xlarge"|"ml.c6g.12xlarge"|"ml.c6g.16xlarge"|"ml.c6gd.large"|"ml.c6gd.xlarge"|"ml.c6gd.2xlarge"|"ml.c6gd.4xlarge"|"ml.c6gd.8xlarge"|"ml.c6gd.12xlarge"|"ml.c6gd.16xlarge"|"ml.c6gn.large"|"ml.c6gn.xlarge"|"ml.c6gn.2xlarge"|"ml.c6gn.4xlarge"|"ml.c6gn.8xlarge"|"ml.c6gn.12xlarge"|"ml.c6gn.16xlarge"|"ml.r6g.large"|"ml.r6g.xlarge"|"ml.r6g.2xlarge"|"ml.r6g.4xlarge"|"ml.r6g.8xlarge"|"ml.r6g.12xlarge"|"ml.r6g.16xlarge"|"ml.r6gd.large"|"ml.r6gd.xlarge"|"ml.r6gd.2xlarge"|"ml.r6gd.4xlarge"|"ml.r6gd.8xlarge"|"ml.r6gd.12xlarge"|"ml.r6gd.16xlarge"|"ml.p4de.24xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.inf2.xlarge"|"ml.inf2.8xlarge"|"ml.inf2.24xlarge"|"ml.inf2.48xlarge"|"ml.p5.48xlarge"|string;
19997
+ export type ProductionVariantInstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge"|"ml.dl1.24xlarge"|"ml.c6i.large"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.4xlarge"|"ml.c6i.8xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.p4d.24xlarge"|"ml.c7g.large"|"ml.c7g.xlarge"|"ml.c7g.2xlarge"|"ml.c7g.4xlarge"|"ml.c7g.8xlarge"|"ml.c7g.12xlarge"|"ml.c7g.16xlarge"|"ml.m6g.large"|"ml.m6g.xlarge"|"ml.m6g.2xlarge"|"ml.m6g.4xlarge"|"ml.m6g.8xlarge"|"ml.m6g.12xlarge"|"ml.m6g.16xlarge"|"ml.m6gd.large"|"ml.m6gd.xlarge"|"ml.m6gd.2xlarge"|"ml.m6gd.4xlarge"|"ml.m6gd.8xlarge"|"ml.m6gd.12xlarge"|"ml.m6gd.16xlarge"|"ml.c6g.large"|"ml.c6g.xlarge"|"ml.c6g.2xlarge"|"ml.c6g.4xlarge"|"ml.c6g.8xlarge"|"ml.c6g.12xlarge"|"ml.c6g.16xlarge"|"ml.c6gd.large"|"ml.c6gd.xlarge"|"ml.c6gd.2xlarge"|"ml.c6gd.4xlarge"|"ml.c6gd.8xlarge"|"ml.c6gd.12xlarge"|"ml.c6gd.16xlarge"|"ml.c6gn.large"|"ml.c6gn.xlarge"|"ml.c6gn.2xlarge"|"ml.c6gn.4xlarge"|"ml.c6gn.8xlarge"|"ml.c6gn.12xlarge"|"ml.c6gn.16xlarge"|"ml.r6g.large"|"ml.r6g.xlarge"|"ml.r6g.2xlarge"|"ml.r6g.4xlarge"|"ml.r6g.8xlarge"|"ml.r6g.12xlarge"|"ml.r6g.16xlarge"|"ml.r6gd.large"|"ml.r6gd.xlarge"|"ml.r6gd.2xlarge"|"ml.r6gd.4xlarge"|"ml.r6gd.8xlarge"|"ml.r6gd.12xlarge"|"ml.r6gd.16xlarge"|"ml.p4de.24xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.trn1n.32xlarge"|"ml.inf2.xlarge"|"ml.inf2.8xlarge"|"ml.inf2.24xlarge"|"ml.inf2.48xlarge"|"ml.p5.48xlarge"|"ml.m7i.large"|"ml.m7i.xlarge"|"ml.m7i.2xlarge"|"ml.m7i.4xlarge"|"ml.m7i.8xlarge"|"ml.m7i.12xlarge"|"ml.m7i.16xlarge"|"ml.m7i.24xlarge"|"ml.m7i.48xlarge"|"ml.c7i.large"|"ml.c7i.xlarge"|"ml.c7i.2xlarge"|"ml.c7i.4xlarge"|"ml.c7i.8xlarge"|"ml.c7i.12xlarge"|"ml.c7i.16xlarge"|"ml.c7i.24xlarge"|"ml.c7i.48xlarge"|"ml.r7i.large"|"ml.r7i.xlarge"|"ml.r7i.2xlarge"|"ml.r7i.4xlarge"|"ml.r7i.8xlarge"|"ml.r7i.12xlarge"|"ml.r7i.16xlarge"|"ml.r7i.24xlarge"|"ml.r7i.48xlarge"|string;
19979
19998
  export type ProductionVariantList = ProductionVariant[];
19980
19999
  export interface ProductionVariantManagedInstanceScaling {
19981
20000
  /**
@@ -20527,7 +20546,7 @@ declare namespace SageMaker {
20527
20546
  /**
20528
20547
  * The framework version of the container image.
20529
20548
  */
20530
- FrameworkVersion?: String;
20549
+ FrameworkVersion?: RecommendationJobFrameworkVersion;
20531
20550
  /**
20532
20551
  * Specifies the SamplePayloadUrl and all other sample payload-related fields.
20533
20552
  */
@@ -20540,14 +20559,14 @@ declare namespace SageMaker {
20540
20559
  * A list of the instance types that are used to generate inferences in real-time.
20541
20560
  */
20542
20561
  SupportedInstanceTypes?: RecommendationJobSupportedInstanceTypes;
20543
- /**
20544
- * Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.
20545
- */
20546
- DataInputConfig?: RecommendationJobDataInputConfig;
20547
20562
  /**
20548
20563
  * The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.
20549
20564
  */
20550
20565
  SupportedEndpointType?: RecommendationJobSupportedEndpointType;
20566
+ /**
20567
+ * Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.
20568
+ */
20569
+ DataInputConfig?: RecommendationJobDataInputConfig;
20551
20570
  /**
20552
20571
  * The supported MIME types for the output data.
20553
20572
  */
@@ -20555,15 +20574,16 @@ declare namespace SageMaker {
20555
20574
  }
20556
20575
  export type RecommendationJobDataInputConfig = string;
20557
20576
  export type RecommendationJobDescription = string;
20577
+ export type RecommendationJobFrameworkVersion = string;
20558
20578
  export interface RecommendationJobInferenceBenchmark {
20559
20579
  Metrics?: RecommendationMetrics;
20580
+ EndpointMetrics?: InferenceMetrics;
20560
20581
  EndpointConfiguration?: EndpointOutputConfiguration;
20561
20582
  ModelConfiguration: ModelConfiguration;
20562
20583
  /**
20563
20584
  * The reason why a benchmark failed.
20564
20585
  */
20565
20586
  FailureReason?: RecommendationFailureReason;
20566
- EndpointMetrics?: InferenceMetrics;
20567
20587
  /**
20568
20588
  * A timestamp that shows when the benchmark completed.
20569
20589
  */
@@ -20578,6 +20598,10 @@ declare namespace SageMaker {
20578
20598
  * The Amazon Resource Name (ARN) of a versioned model package.
20579
20599
  */
20580
20600
  ModelPackageVersionArn?: ModelPackageArn;
20601
+ /**
20602
+ * The name of the created model.
20603
+ */
20604
+ ModelName?: ModelName;
20581
20605
  /**
20582
20606
  * Specifies the maximum duration of the job, in seconds. The maximum value is 18,000 seconds.
20583
20607
  */
@@ -20610,10 +20634,6 @@ declare namespace SageMaker {
20610
20634
  * Inference Recommender provisions SageMaker endpoints with access to VPC in the inference recommendation job.
20611
20635
  */
20612
20636
  VpcConfig?: RecommendationJobVpcConfig;
20613
- /**
20614
- * The name of the created model.
20615
- */
20616
- ModelName?: ModelName;
20617
20637
  }
20618
20638
  export type RecommendationJobName = string;
20619
20639
  export interface RecommendationJobOutputConfig {
@@ -20630,7 +20650,7 @@ declare namespace SageMaker {
20630
20650
  /**
20631
20651
  * The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
20632
20652
  */
20633
- SamplePayloadUrl?: String;
20653
+ SamplePayloadUrl?: S3Uri;
20634
20654
  /**
20635
20655
  * The supported MIME types for the input data.
20636
20656
  */
@@ -20646,7 +20666,7 @@ declare namespace SageMaker {
20646
20666
  */
20647
20667
  MaxParallelOfTests?: MaxParallelOfTests;
20648
20668
  }
20649
- export type RecommendationJobStatus = "PENDING"|"IN_PROGRESS"|"COMPLETED"|"FAILED"|"STOPPING"|"STOPPED"|string;
20669
+ export type RecommendationJobStatus = "PENDING"|"IN_PROGRESS"|"COMPLETED"|"FAILED"|"STOPPING"|"STOPPED"|"DELETING"|"DELETED"|string;
20650
20670
  export interface RecommendationJobStoppingConditions {
20651
20671
  /**
20652
20672
  * The maximum number of requests per minute expected for the endpoint.
@@ -20661,7 +20681,8 @@ declare namespace SageMaker {
20661
20681
  */
20662
20682
  FlatInvocations?: FlatInvocations;
20663
20683
  }
20664
- export type RecommendationJobSupportedContentTypes = String[];
20684
+ export type RecommendationJobSupportedContentType = string;
20685
+ export type RecommendationJobSupportedContentTypes = RecommendationJobSupportedContentType[];
20665
20686
  export type RecommendationJobSupportedEndpointType = "RealTime"|"Serverless"|string;
20666
20687
  export type RecommendationJobSupportedInstanceTypes = String[];
20667
20688
  export type RecommendationJobSupportedResponseMIMEType = string;
@@ -20865,14 +20886,14 @@ declare namespace SageMaker {
20865
20886
  * The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes. The VolumeKmsKeyId can be in any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
20866
20887
  */
20867
20888
  VolumeKmsKeyId?: KmsKeyId;
20868
- /**
20869
- * The configuration of a heterogeneous cluster in JSON format.
20870
- */
20871
- InstanceGroups?: InstanceGroups;
20872
20889
  /**
20873
20890
  * The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
20874
20891
  */
20875
20892
  KeepAlivePeriodInSeconds?: KeepAlivePeriodInSeconds;
20893
+ /**
20894
+ * The configuration of a heterogeneous cluster in JSON format.
20895
+ */
20896
+ InstanceGroups?: InstanceGroups;
20876
20897
  }
20877
20898
  export interface ResourceConfigForUpdate {
20878
20899
  /**
@@ -20908,7 +20929,7 @@ declare namespace SageMaker {
20908
20929
  */
20909
20930
  SageMakerImageVersionArn?: ImageVersionArn;
20910
20931
  /**
20911
- * The SageMakerImageVersionAlias.
20932
+ * The SageMakerImageVersionAlias of the image to launch with. This value is in SemVer 2.0.0 versioning format.
20912
20933
  */
20913
20934
  SageMakerImageVersionAlias?: ImageVersionAlias;
20914
20935
  /**
@@ -20920,7 +20941,7 @@ declare namespace SageMaker {
20920
20941
  */
20921
20942
  LifecycleConfigArn?: StudioLifecycleConfigArn;
20922
20943
  }
20923
- export type ResourceType = "TrainingJob"|"Experiment"|"ExperimentTrial"|"ExperimentTrialComponent"|"Endpoint"|"ModelPackage"|"ModelPackageGroup"|"Pipeline"|"PipelineExecution"|"FeatureGroup"|"Project"|"FeatureMetadata"|"HyperParameterTuningJob"|"ModelCard"|"Model"|string;
20944
+ export type ResourceType = "TrainingJob"|"Experiment"|"ExperimentTrial"|"ExperimentTrialComponent"|"Endpoint"|"Model"|"ModelPackage"|"ModelPackageGroup"|"Pipeline"|"PipelineExecution"|"FeatureGroup"|"FeatureMetadata"|"Image"|"ImageVersion"|"Project"|"HyperParameterTuningJob"|"ModelCard"|string;
20924
20945
  export type ResponseMIMEType = string;
20925
20946
  export type ResponseMIMETypes = ResponseMIMEType[];
20926
20947
  export interface RetentionPolicy {
@@ -21130,23 +21151,23 @@ declare namespace SageMaker {
21130
21151
  Pipeline?: Pipeline;
21131
21152
  PipelineExecution?: PipelineExecution;
21132
21153
  FeatureGroup?: FeatureGroup;
21133
- /**
21134
- * The properties of a project.
21135
- */
21136
- Project?: Project;
21137
21154
  /**
21138
21155
  * The feature metadata used to search through the features.
21139
21156
  */
21140
21157
  FeatureMetadata?: FeatureMetadata;
21158
+ /**
21159
+ * The properties of a project.
21160
+ */
21161
+ Project?: Project;
21141
21162
  /**
21142
21163
  * The properties of a hyperparameter tuning job.
21143
21164
  */
21144
21165
  HyperParameterTuningJob?: HyperParameterTuningJobSearchEntity;
21145
- Model?: ModelDashboardModel;
21146
21166
  /**
21147
21167
  * An Amazon SageMaker Model Card that documents details about a machine learning model.
21148
21168
  */
21149
21169
  ModelCard?: ModelCard;
21170
+ Model?: ModelDashboardModel;
21150
21171
  }
21151
21172
  export interface SearchRequest {
21152
21173
  /**
@@ -21190,7 +21211,7 @@ declare namespace SageMaker {
21190
21211
  }
21191
21212
  export type SearchResultsList = SearchRecord[];
21192
21213
  export type SearchSortOrder = "Ascending"|"Descending"|string;
21193
- export type SecondaryStatus = "Starting"|"LaunchingMLInstances"|"PreparingTrainingStack"|"Downloading"|"DownloadingTrainingImage"|"Training"|"Uploading"|"Stopping"|"Stopped"|"MaxRuntimeExceeded"|"Completed"|"Failed"|"Interrupted"|"MaxWaitTimeExceeded"|"Updating"|"Restarting"|string;
21214
+ export type SecondaryStatus = "Starting"|"LaunchingMLInstances"|"PreparingTrainingStack"|"Downloading"|"DownloadingTrainingImage"|"Training"|"Uploading"|"Stopping"|"Stopped"|"MaxRuntimeExceeded"|"Completed"|"Failed"|"Interrupted"|"MaxWaitTimeExceeded"|"Updating"|"Restarting"|"Pending"|string;
21194
21215
  export interface SecondaryStatusTransition {
21195
21216
  /**
21196
21217
  * Contains a secondary status information from a training job. Status might be one of the following secondary statuses: InProgress Starting - Starting the training job. Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes. Training - Training is in progress. Uploading - Training is complete and the model artifacts are being uploaded to the S3 location. Completed Completed - The training job has completed. Failed Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse. Stopped MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime. Stopped - The training job has stopped. Stopping Stopping - Stopping the training job. We no longer support the following secondary statuses: LaunchingMLInstances PreparingTrainingStack DownloadingTrainingImage
@@ -21429,10 +21450,6 @@ declare namespace SageMaker {
21429
21450
  * The last modified time.
21430
21451
  */
21431
21452
  LastModifiedTime?: LastModifiedTime;
21432
- /**
21433
- * The name of the space that appears in the Studio UI.
21434
- */
21435
- SpaceDisplayName?: NonEmptyString64;
21436
21453
  /**
21437
21454
  * Specifies summary information about the space settings.
21438
21455
  */
@@ -21445,6 +21462,10 @@ declare namespace SageMaker {
21445
21462
  * Specifies summary information about the ownership settings.
21446
21463
  */
21447
21464
  OwnershipSettingsSummary?: OwnershipSettingsSummary;
21465
+ /**
21466
+ * The name of the space that appears in the Studio UI.
21467
+ */
21468
+ SpaceDisplayName?: NonEmptyString64;
21448
21469
  }
21449
21470
  export type SpaceEbsVolumeSizeInGb = number;
21450
21471
  export interface SpaceJupyterLabAppSettings {
@@ -21459,22 +21480,22 @@ declare namespace SageMaker {
21459
21480
  export interface SpaceSettings {
21460
21481
  JupyterServerAppSettings?: JupyterServerAppSettings;
21461
21482
  KernelGatewayAppSettings?: KernelGatewayAppSettings;
21462
- /**
21463
- * The settings for the JupyterLab application.
21464
- */
21465
- JupyterLabAppSettings?: SpaceJupyterLabAppSettings;
21466
21483
  /**
21467
21484
  * The Code Editor application settings.
21468
21485
  */
21469
21486
  CodeEditorAppSettings?: SpaceCodeEditorAppSettings;
21470
21487
  /**
21471
- * The storage settings for a private space.
21488
+ * The settings for the JupyterLab application.
21472
21489
  */
21473
- SpaceStorageSettings?: SpaceStorageSettings;
21490
+ JupyterLabAppSettings?: SpaceJupyterLabAppSettings;
21474
21491
  /**
21475
21492
  * The type of app created within the space.
21476
21493
  */
21477
21494
  AppType?: AppType;
21495
+ /**
21496
+ * The storage settings for a private space.
21497
+ */
21498
+ SpaceStorageSettings?: SpaceStorageSettings;
21478
21499
  /**
21479
21500
  * A file system, created by you, that you assign to a space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
21480
21501
  */
@@ -21743,14 +21764,13 @@ declare namespace SageMaker {
21743
21764
  export type String1024 = string;
21744
21765
  export type String128 = string;
21745
21766
  export type String200 = string;
21746
- export type String2048 = string;
21747
21767
  export type String256 = string;
21748
21768
  export type String3072 = string;
21749
21769
  export type String40 = string;
21750
21770
  export type String64 = string;
21751
21771
  export type String8192 = string;
21752
21772
  export type StringParameterValue = string;
21753
- export type StudioLifecycleConfigAppType = "JupyterServer"|"KernelGateway"|"JupyterLab"|"CodeEditor"|string;
21773
+ export type StudioLifecycleConfigAppType = "JupyterServer"|"KernelGateway"|"VSCode"|"Savitur"|"CodeEditor"|"JupyterLab"|string;
21754
21774
  export type StudioLifecycleConfigArn = string;
21755
21775
  export type StudioLifecycleConfigContent = string;
21756
21776
  export interface StudioLifecycleConfigDetails {
@@ -21811,7 +21831,7 @@ declare namespace SageMaker {
21811
21831
  */
21812
21832
  PropertyNameQuery?: PropertyNameQuery;
21813
21833
  }
21814
- export type TableFormat = "Glue"|"Iceberg"|string;
21834
+ export type TableFormat = "Default"|"Glue"|"Iceberg"|string;
21815
21835
  export type TableName = string;
21816
21836
  export interface TabularJobConfig {
21817
21837
  /**
@@ -21865,7 +21885,7 @@ declare namespace SageMaker {
21865
21885
  export type TagList = Tag[];
21866
21886
  export type TagValue = string;
21867
21887
  export type TargetAttributeName = string;
21868
- export type TargetDevice = "lambda"|"ml_m4"|"ml_m5"|"ml_c4"|"ml_c5"|"ml_p2"|"ml_p3"|"ml_g4dn"|"ml_inf1"|"ml_inf2"|"ml_trn1"|"ml_eia2"|"jetson_tx1"|"jetson_tx2"|"jetson_nano"|"jetson_xavier"|"rasp3b"|"imx8qm"|"deeplens"|"rk3399"|"rk3288"|"aisage"|"sbe_c"|"qcs605"|"qcs603"|"sitara_am57x"|"amba_cv2"|"amba_cv22"|"amba_cv25"|"x86_win32"|"x86_win64"|"coreml"|"jacinto_tda4vm"|"imx8mplus"|string;
21888
+ export type TargetDevice = "lambda"|"ml_m4"|"ml_m5"|"ml_m6g"|"ml_c4"|"ml_c5"|"ml_c6g"|"ml_p2"|"ml_p3"|"ml_g4dn"|"ml_inf1"|"ml_inf2"|"ml_trn1"|"ml_eia2"|"jetson_tx1"|"jetson_tx2"|"jetson_nano"|"jetson_xavier"|"rasp3b"|"rasp4b"|"imx8qm"|"deeplens"|"rk3399"|"rk3288"|"aisage"|"sbe_c"|"qcs605"|"qcs603"|"sitara_am57x"|"amba_cv2"|"amba_cv22"|"amba_cv25"|"x86_win32"|"x86_win64"|"coreml"|"jacinto_tda4vm"|"imx8mplus"|string;
21869
21889
  export type TargetLabelColumn = string;
21870
21890
  export type TargetObjectiveMetricValue = number;
21871
21891
  export interface TargetPlatform {
@@ -21954,6 +21974,7 @@ declare namespace SageMaker {
21954
21974
  * The hyperparameters used to configure and optimize the learning process of the base model. You can set any combination of the following hyperparameters for all base models. For more information on each supported hyperparameter, see Optimize the learning process of your text generation models with hyperparameters. "epochCount": The number of times the model goes through the entire training dataset. Its value should be a string containing an integer value within the range of "1" to "10". "batchSize": The number of data samples used in each iteration of training. Its value should be a string containing an integer value within the range of "1" to "64". "learningRate": The step size at which a model's parameters are updated during training. Its value should be a string containing a floating-point value within the range of "0" to "1". "learningRateWarmupSteps": The number of training steps during which the learning rate gradually increases before reaching its target or maximum value. Its value should be a string containing an integer value within the range of "0" to "250". Here is an example where all four hyperparameters are configured. { "epochCount":"5", "learningRate":"0.5", "batchSize": "32", "learningRateWarmupSteps": "10" }
21955
21975
  */
21956
21976
  TextGenerationHyperParameters?: TextGenerationHyperParameters;
21977
+ ModelAccessConfig?: ModelAccessConfig;
21957
21978
  }
21958
21979
  export interface TextGenerationResolvedAttributes {
21959
21980
  /**
@@ -22087,7 +22108,7 @@ declare namespace SageMaker {
22087
22108
  }
22088
22109
  export type TrainingInputMode = "Pipe"|"File"|"FastFile"|string;
22089
22110
  export type TrainingInstanceCount = number;
22090
- export type TrainingInstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.p4d.24xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5n.xlarge"|"ml.c5n.2xlarge"|"ml.c5n.4xlarge"|"ml.c5n.9xlarge"|"ml.c5n.18xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.16xlarge"|"ml.g5.12xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.trn1n.32xlarge"|"ml.p5.48xlarge"|string;
22111
+ export type TrainingInstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.p4d.24xlarge"|"ml.p4de.24xlarge"|"ml.p5.48xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5n.xlarge"|"ml.c5n.2xlarge"|"ml.c5n.4xlarge"|"ml.c5n.9xlarge"|"ml.c5n.18xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.16xlarge"|"ml.g5.12xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.trn1n.32xlarge"|"ml.m6i.large"|"ml.m6i.xlarge"|"ml.m6i.2xlarge"|"ml.m6i.4xlarge"|"ml.m6i.8xlarge"|"ml.m6i.12xlarge"|"ml.m6i.16xlarge"|"ml.m6i.24xlarge"|"ml.m6i.32xlarge"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.8xlarge"|"ml.c6i.4xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|string;
22091
22112
  export type TrainingInstanceTypes = TrainingInstanceType[];
22092
22113
  export interface TrainingJob {
22093
22114
  /**
@@ -22433,6 +22454,7 @@ declare namespace SageMaker {
22433
22454
  Environment?: TransformEnvironmentMap;
22434
22455
  TransformInput?: TransformInput;
22435
22456
  TransformOutput?: TransformOutput;
22457
+ DataCaptureConfig?: BatchDataCaptureConfig;
22436
22458
  TransformResources?: TransformResources;
22437
22459
  /**
22438
22460
  * A timestamp that shows when the transform Job was created.
@@ -22460,7 +22482,6 @@ declare namespace SageMaker {
22460
22482
  * A list of tags associated with the transform job.
22461
22483
  */
22462
22484
  Tags?: TagList;
22463
- DataCaptureConfig?: BatchDataCaptureConfig;
22464
22485
  }
22465
22486
  export type TransformJobArn = string;
22466
22487
  export interface TransformJobDefinition {
@@ -22707,8 +22728,9 @@ declare namespace SageMaker {
22707
22728
  }
22708
22729
  export type TrialComponentArtifactValue = string;
22709
22730
  export type TrialComponentArtifacts = {[key: string]: TrialComponentArtifact};
22731
+ export type TrialComponentKey128 = string;
22710
22732
  export type TrialComponentKey256 = string;
22711
- export type TrialComponentKey64 = string;
22733
+ export type TrialComponentKey320 = string;
22712
22734
  export type TrialComponentMetricSummaries = TrialComponentMetricSummary[];
22713
22735
  export interface TrialComponentMetricSummary {
22714
22736
  /**
@@ -23030,7 +23052,7 @@ declare namespace SageMaker {
23030
23052
  /**
23031
23053
  * The new list of properties. Overwrites the current property list.
23032
23054
  */
23033
- Properties?: LineageEntityParameters;
23055
+ Properties?: ArtifactProperties;
23034
23056
  /**
23035
23057
  * A list of properties to remove.
23036
23058
  */
@@ -23078,7 +23100,7 @@ declare namespace SageMaker {
23078
23100
  /**
23079
23101
  * The name of the context to update.
23080
23102
  */
23081
- ContextName: ExperimentEntityName;
23103
+ ContextName: ContextName;
23082
23104
  /**
23083
23105
  * The new description for the context.
23084
23106
  */
@@ -23143,14 +23165,14 @@ declare namespace SageMaker {
23143
23165
  * A collection of DomainSettings configuration values to update.
23144
23166
  */
23145
23167
  DomainSettingsForUpdate?: DomainSettingsForUpdate;
23146
- /**
23147
- * The default settings used to create a space within the Domain.
23148
- */
23149
- DefaultSpaceSettings?: DefaultSpaceSettings;
23150
23168
  /**
23151
23169
  * The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided. If setting up the domain for use with RStudio, this value must be set to Service.
23152
23170
  */
23153
23171
  AppSecurityGroupManagement?: AppSecurityGroupManagement;
23172
+ /**
23173
+ * The default settings used to create a space within the Domain.
23174
+ */
23175
+ DefaultSpaceSettings?: DefaultSpaceSettings;
23154
23176
  /**
23155
23177
  * The VPC subnets that Studio uses for communication. If removing subnets, ensure there are no apps in the InService, Pending, or Deleting state.
23156
23178
  */
@@ -23975,14 +23997,14 @@ declare namespace SageMaker {
23975
23997
  * The Canvas app settings.
23976
23998
  */
23977
23999
  CanvasAppSettings?: CanvasAppSettings;
23978
- /**
23979
- * The settings for the JupyterLab application.
23980
- */
23981
- JupyterLabAppSettings?: JupyterLabAppSettings;
23982
24000
  /**
23983
24001
  * The Code Editor application settings.
23984
24002
  */
23985
24003
  CodeEditorAppSettings?: CodeEditorAppSettings;
24004
+ /**
24005
+ * The settings for the JupyterLab application.
24006
+ */
24007
+ JupyterLabAppSettings?: JupyterLabAppSettings;
23986
24008
  /**
23987
24009
  * The storage settings for a private space.
23988
24010
  */