cdk-lambda-subminute 2.0.311 → 2.0.313

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. package/.jsii +3 -3
  2. package/lib/cdk-lambda-subminute.js +3 -3
  3. package/node_modules/aws-sdk/README.md +1 -1
  4. package/node_modules/aws-sdk/apis/accessanalyzer-2019-11-01.min.json +101 -95
  5. package/node_modules/aws-sdk/apis/bedrock-2023-04-20.min.json +91 -71
  6. package/node_modules/aws-sdk/apis/bedrock-agent-2023-06-05.examples.json +5 -0
  7. package/node_modules/aws-sdk/apis/bedrock-agent-2023-06-05.min.json +2322 -0
  8. package/node_modules/aws-sdk/apis/bedrock-agent-2023-06-05.paginators.json +52 -0
  9. package/node_modules/aws-sdk/apis/bedrock-agent-runtime-2023-07-26.examples.json +5 -0
  10. package/node_modules/aws-sdk/apis/bedrock-agent-runtime-2023-07-26.min.json +697 -0
  11. package/node_modules/aws-sdk/apis/bedrock-agent-runtime-2023-07-26.paginators.json +9 -0
  12. package/node_modules/aws-sdk/apis/bedrock-runtime-2023-09-30.min.json +18 -18
  13. package/node_modules/aws-sdk/apis/bedrock-runtime-2023-09-30.waiters2.json +5 -0
  14. package/node_modules/aws-sdk/apis/cleanrooms-2022-02-17.min.json +1222 -83
  15. package/node_modules/aws-sdk/apis/cleanrooms-2022-02-17.paginators.json +36 -0
  16. package/node_modules/aws-sdk/apis/cleanroomsml-2023-09-06.examples.json +5 -0
  17. package/node_modules/aws-sdk/apis/cleanroomsml-2023-09-06.min.json +1226 -0
  18. package/node_modules/aws-sdk/apis/cleanroomsml-2023-09-06.paginators.json +34 -0
  19. package/node_modules/aws-sdk/apis/connect-2017-08-08.min.json +1180 -417
  20. package/node_modules/aws-sdk/apis/connect-2017-08-08.paginators.json +11 -0
  21. package/node_modules/aws-sdk/apis/customer-profiles-2020-08-15.min.json +129 -84
  22. package/node_modules/aws-sdk/apis/elasticache-2015-02-02.min.json +481 -132
  23. package/node_modules/aws-sdk/apis/elasticache-2015-02-02.paginators.json +12 -0
  24. package/node_modules/aws-sdk/apis/metadata.json +17 -0
  25. package/node_modules/aws-sdk/apis/opensearch-2021-01-01.min.json +369 -195
  26. package/node_modules/aws-sdk/apis/opensearchserverless-2021-11-01.min.json +49 -46
  27. package/node_modules/aws-sdk/apis/qbusiness-2023-11-27.examples.json +5 -0
  28. package/node_modules/aws-sdk/apis/qbusiness-2023-11-27.min.json +3025 -0
  29. package/node_modules/aws-sdk/apis/qbusiness-2023-11-27.paginators.json +76 -0
  30. package/node_modules/aws-sdk/apis/qconnect-2020-10-19.examples.json +5 -0
  31. package/node_modules/aws-sdk/apis/qconnect-2020-10-19.min.json +2499 -0
  32. package/node_modules/aws-sdk/apis/qconnect-2020-10-19.paginators.json +64 -0
  33. package/node_modules/aws-sdk/apis/runtime.sagemaker-2017-05-13.min.json +8 -0
  34. package/node_modules/aws-sdk/apis/s3-2006-03-01.examples.json +128 -128
  35. package/node_modules/aws-sdk/apis/s3-2006-03-01.min.json +649 -186
  36. package/node_modules/aws-sdk/apis/s3-2006-03-01.paginators.json +6 -0
  37. package/node_modules/aws-sdk/apis/s3control-2018-08-20.min.json +121 -115
  38. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +1688 -980
  39. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.paginators.json +18 -0
  40. package/node_modules/aws-sdk/clients/accessanalyzer.d.ts +13 -2
  41. package/node_modules/aws-sdk/clients/all.d.ts +5 -0
  42. package/node_modules/aws-sdk/clients/all.js +6 -1
  43. package/node_modules/aws-sdk/clients/applicationautoscaling.d.ts +31 -31
  44. package/node_modules/aws-sdk/clients/bedrock.d.ts +53 -17
  45. package/node_modules/aws-sdk/clients/bedrockagent.d.ts +1258 -0
  46. package/node_modules/aws-sdk/clients/bedrockagent.js +18 -0
  47. package/node_modules/aws-sdk/clients/bedrockagentruntime.d.ts +439 -0
  48. package/node_modules/aws-sdk/clients/bedrockagentruntime.js +18 -0
  49. package/node_modules/aws-sdk/clients/bedrockruntime.d.ts +13 -13
  50. package/node_modules/aws-sdk/clients/bedrockruntime.js +1 -0
  51. package/node_modules/aws-sdk/clients/cleanrooms.d.ts +1292 -177
  52. package/node_modules/aws-sdk/clients/cleanroomsml.d.ts +1232 -0
  53. package/node_modules/aws-sdk/clients/cleanroomsml.js +18 -0
  54. package/node_modules/aws-sdk/clients/connect.d.ts +886 -20
  55. package/node_modules/aws-sdk/clients/customerprofiles.d.ts +40 -0
  56. package/node_modules/aws-sdk/clients/elasticache.d.ts +484 -12
  57. package/node_modules/aws-sdk/clients/opensearch.d.ts +170 -1
  58. package/node_modules/aws-sdk/clients/opensearchserverless.d.ts +13 -0
  59. package/node_modules/aws-sdk/clients/qbusiness.d.ts +3231 -0
  60. package/node_modules/aws-sdk/clients/qbusiness.js +18 -0
  61. package/node_modules/aws-sdk/clients/qconnect.d.ts +2552 -0
  62. package/node_modules/aws-sdk/clients/qconnect.js +18 -0
  63. package/node_modules/aws-sdk/clients/s3.d.ts +795 -666
  64. package/node_modules/aws-sdk/clients/s3control.d.ts +135 -125
  65. package/node_modules/aws-sdk/clients/sagemaker.d.ts +950 -44
  66. package/node_modules/aws-sdk/clients/sagemakerruntime.d.ts +11 -2
  67. package/node_modules/aws-sdk/clients/sts.d.ts +1 -1
  68. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +2 -2
  69. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +286 -94
  70. package/node_modules/aws-sdk/dist/aws-sdk.js +2343 -722
  71. package/node_modules/aws-sdk/dist/aws-sdk.min.js +83 -82
  72. package/node_modules/aws-sdk/lib/config_service_placeholders.d.ts +10 -0
  73. package/node_modules/aws-sdk/lib/core.js +1 -1
  74. package/node_modules/aws-sdk/package.json +1 -1
  75. package/package.json +3 -3
  76. package/node_modules/aws-sdk/CHANGELOG.md +0 -9325
@@ -21,11 +21,11 @@ declare class SageMaker extends Service {
21
21
  */
22
22
  addAssociation(callback?: (err: AWSError, data: SageMaker.Types.AddAssociationResponse) => void): Request<SageMaker.Types.AddAssociationResponse, AWSError>;
23
23
  /**
24
- * Adds or overwrites one or more tags for the specified SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see Amazon Web Services Tagging Strategies. Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob Tags that you add to a SageMaker Studio Domain or User Profile by calling this API are also added to any Apps that the Domain or User Profile launches after you call this API, but not to Apps that the Domain or User Profile launched before you called this API. To make sure that the tags associated with a Domain or User Profile are also added to all Apps that the Domain or User Profile launches, add the tags when you first create the Domain or User Profile by specifying them in the Tags parameter of CreateDomain or CreateUserProfile.
24
+ * Adds or overwrites one or more tags for the specified SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see Amazon Web Services Tagging Strategies. Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob Tags that you add to a SageMaker Domain or User Profile by calling this API are also added to any Apps that the Domain or User Profile launches after you call this API, but not to Apps that the Domain or User Profile launched before you called this API. To make sure that the tags associated with a Domain or User Profile are also added to all Apps that the Domain or User Profile launches, add the tags when you first create the Domain or User Profile by specifying them in the Tags parameter of CreateDomain or CreateUserProfile.
25
25
  */
26
26
  addTags(params: SageMaker.Types.AddTagsInput, callback?: (err: AWSError, data: SageMaker.Types.AddTagsOutput) => void): Request<SageMaker.Types.AddTagsOutput, AWSError>;
27
27
  /**
28
- * Adds or overwrites one or more tags for the specified SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see Amazon Web Services Tagging Strategies. Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob Tags that you add to a SageMaker Studio Domain or User Profile by calling this API are also added to any Apps that the Domain or User Profile launches after you call this API, but not to Apps that the Domain or User Profile launched before you called this API. To make sure that the tags associated with a Domain or User Profile are also added to all Apps that the Domain or User Profile launches, add the tags when you first create the Domain or User Profile by specifying them in the Tags parameter of CreateDomain or CreateUserProfile.
28
+ * Adds or overwrites one or more tags for the specified SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see Amazon Web Services Tagging Strategies. Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob Tags that you add to a SageMaker Domain or User Profile by calling this API are also added to any Apps that the Domain or User Profile launches after you call this API, but not to Apps that the Domain or User Profile launched before you called this API. To make sure that the tags associated with a Domain or User Profile are also added to all Apps that the Domain or User Profile launches, add the tags when you first create the Domain or User Profile by specifying them in the Tags parameter of CreateDomain or CreateUserProfile.
29
29
  */
30
30
  addTags(callback?: (err: AWSError, data: SageMaker.Types.AddTagsOutput) => void): Request<SageMaker.Types.AddTagsOutput, AWSError>;
31
31
  /**
@@ -61,11 +61,11 @@ declare class SageMaker extends Service {
61
61
  */
62
62
  createAlgorithm(callback?: (err: AWSError, data: SageMaker.Types.CreateAlgorithmOutput) => void): Request<SageMaker.Types.CreateAlgorithmOutput, AWSError>;
63
63
  /**
64
- * Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
64
+ * Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
65
65
  */
66
66
  createApp(params: SageMaker.Types.CreateAppRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateAppResponse) => void): Request<SageMaker.Types.CreateAppResponse, AWSError>;
67
67
  /**
68
- * Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
68
+ * Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
69
69
  */
70
70
  createApp(callback?: (err: AWSError, data: SageMaker.Types.CreateAppResponse) => void): Request<SageMaker.Types.CreateAppResponse, AWSError>;
71
71
  /**
@@ -100,6 +100,14 @@ declare class SageMaker extends Service {
100
100
  * Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
101
101
  */
102
102
  createAutoMLJobV2(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
103
+ /**
104
+ * Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing persistent clusters for developing large machine learning models, such as large language models (LLMs) and diffusion models. To learn more, see Amazon SageMaker HyperPod in the Amazon SageMaker Developer Guide.
105
+ */
106
+ createCluster(params: SageMaker.Types.CreateClusterRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateClusterResponse) => void): Request<SageMaker.Types.CreateClusterResponse, AWSError>;
107
+ /**
108
+ * Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing persistent clusters for developing large machine learning models, such as large language models (LLMs) and diffusion models. To learn more, see Amazon SageMaker HyperPod in the Amazon SageMaker Developer Guide.
109
+ */
110
+ createCluster(callback?: (err: AWSError, data: SageMaker.Types.CreateClusterResponse) => void): Request<SageMaker.Types.CreateClusterResponse, AWSError>;
103
111
  /**
104
112
  * Creates a Git repository as a resource in your SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with. The repository can be hosted either in Amazon Web Services CodeCommit or in any other Git repository.
105
113
  */
@@ -141,11 +149,11 @@ declare class SageMaker extends Service {
141
149
  */
142
150
  createDeviceFleet(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
143
151
  /**
144
- * Creates a Domain used by Amazon SageMaker Studio. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files and other artifacts with each other. EFS storage When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files. SageMaker uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see Protect Data at Rest Using Encryption. VPC configuration All SageMaker Studio traffic between the domain and the EFS volume is through the specified VPC and subnets. For other Studio traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to Studio. The following options are available: PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value. VpcOnly - All Studio traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway. When internet access is disabled, you won't be able to run a Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker API and runtime or a NAT gateway and your security groups allow outbound connections. NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a SageMaker Studio app successfully. For more information, see Connect SageMaker Studio Notebooks to Resources in a VPC.
152
+ * Creates a Domain. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files and other artifacts with each other. EFS storage When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files. SageMaker uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see Protect Data at Rest Using Encryption. VPC configuration All traffic between the domain and the EFS volume is through the specified VPC and subnets. For other traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to the domain. The following options are available: PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value. VpcOnly - All traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway. When internet access is disabled, you won't be able to run a Amazon SageMaker Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker API and runtime or a NAT gateway and your security groups allow outbound connections. NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a Amazon SageMaker Studio app successfully. For more information, see Connect Amazon SageMaker Studio Notebooks to Resources in a VPC.
145
153
  */
146
154
  createDomain(params: SageMaker.Types.CreateDomainRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateDomainResponse) => void): Request<SageMaker.Types.CreateDomainResponse, AWSError>;
147
155
  /**
148
- * Creates a Domain used by Amazon SageMaker Studio. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files and other artifacts with each other. EFS storage When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files. SageMaker uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see Protect Data at Rest Using Encryption. VPC configuration All SageMaker Studio traffic between the domain and the EFS volume is through the specified VPC and subnets. For other Studio traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to Studio. The following options are available: PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value. VpcOnly - All Studio traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway. When internet access is disabled, you won't be able to run a Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker API and runtime or a NAT gateway and your security groups allow outbound connections. NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a SageMaker Studio app successfully. For more information, see Connect SageMaker Studio Notebooks to Resources in a VPC.
156
+ * Creates a Domain. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files and other artifacts with each other. EFS storage When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files. SageMaker uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see Protect Data at Rest Using Encryption. VPC configuration All traffic between the domain and the EFS volume is through the specified VPC and subnets. For other traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to the domain. The following options are available: PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value. VpcOnly - All traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway. When internet access is disabled, you won't be able to run a Amazon SageMaker Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker API and runtime or a NAT gateway and your security groups allow outbound connections. NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a Amazon SageMaker Studio app successfully. For more information, see Connect Amazon SageMaker Studio Notebooks to Resources in a VPC.
149
157
  */
150
158
  createDomain(callback?: (err: AWSError, data: SageMaker.Types.CreateDomainResponse) => void): Request<SageMaker.Types.CreateDomainResponse, AWSError>;
151
159
  /**
@@ -252,6 +260,14 @@ declare class SageMaker extends Service {
252
260
  * Creates a version of the SageMaker image specified by ImageName. The version represents the Amazon Elastic Container Registry (ECR) container image specified by BaseImage.
253
261
  */
254
262
  createImageVersion(callback?: (err: AWSError, data: SageMaker.Types.CreateImageVersionResponse) => void): Request<SageMaker.Types.CreateImageVersionResponse, AWSError>;
263
+ /**
264
+ * Creates an inference component, which is a SageMaker hosting object that you can use to deploy a model to an endpoint. In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.
265
+ */
266
+ createInferenceComponent(params: SageMaker.Types.CreateInferenceComponentInput, callback?: (err: AWSError, data: SageMaker.Types.CreateInferenceComponentOutput) => void): Request<SageMaker.Types.CreateInferenceComponentOutput, AWSError>;
267
+ /**
268
+ * Creates an inference component, which is a SageMaker hosting object that you can use to deploy a model to an endpoint. In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.
269
+ */
270
+ createInferenceComponent(callback?: (err: AWSError, data: SageMaker.Types.CreateInferenceComponentOutput) => void): Request<SageMaker.Types.CreateInferenceComponentOutput, AWSError>;
255
271
  /**
256
272
  * Creates an inference experiment using the configurations specified in the request. Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests. Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration. While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.
257
273
  */
@@ -373,11 +389,11 @@ declare class SageMaker extends Service {
373
389
  */
374
390
  createPipeline(callback?: (err: AWSError, data: SageMaker.Types.CreatePipelineResponse) => void): Request<SageMaker.Types.CreatePipelineResponse, AWSError>;
375
391
  /**
376
- * Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Studio, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM. The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app. You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see Connect to SageMaker Studio Through an Interface VPC Endpoint . The URL that you get from a call to CreatePresignedDomainUrl has a default timeout of 5 minutes. You can configure this value using ExpiresInSeconds. If you try to use the URL after the timeout limit expires, you are directed to the Amazon Web Services console sign-in page.
392
+ * Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to the domain, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM. The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app. You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see Connect to Amazon SageMaker Studio Through an Interface VPC Endpoint . The URL that you get from a call to CreatePresignedDomainUrl has a default timeout of 5 minutes. You can configure this value using ExpiresInSeconds. If you try to use the URL after the timeout limit expires, you are directed to the Amazon Web Services console sign-in page.
377
393
  */
378
394
  createPresignedDomainUrl(params: SageMaker.Types.CreatePresignedDomainUrlRequest, callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedDomainUrlResponse) => void): Request<SageMaker.Types.CreatePresignedDomainUrlResponse, AWSError>;
379
395
  /**
380
- * Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Studio, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM. The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app. You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see Connect to SageMaker Studio Through an Interface VPC Endpoint . The URL that you get from a call to CreatePresignedDomainUrl has a default timeout of 5 minutes. You can configure this value using ExpiresInSeconds. If you try to use the URL after the timeout limit expires, you are directed to the Amazon Web Services console sign-in page.
396
+ * Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to the domain, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM. The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app. You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see Connect to Amazon SageMaker Studio Through an Interface VPC Endpoint . The URL that you get from a call to CreatePresignedDomainUrl has a default timeout of 5 minutes. You can configure this value using ExpiresInSeconds. If you try to use the URL after the timeout limit expires, you are directed to the Amazon Web Services console sign-in page.
381
397
  */
382
398
  createPresignedDomainUrl(callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedDomainUrlResponse) => void): Request<SageMaker.Types.CreatePresignedDomainUrlResponse, AWSError>;
383
399
  /**
@@ -413,11 +429,11 @@ declare class SageMaker extends Service {
413
429
  */
414
430
  createSpace(callback?: (err: AWSError, data: SageMaker.Types.CreateSpaceResponse) => void): Request<SageMaker.Types.CreateSpaceResponse, AWSError>;
415
431
  /**
416
- * Creates a new Studio Lifecycle Configuration.
432
+ * Creates a new Amazon SageMaker Studio Lifecycle Configuration.
417
433
  */
418
434
  createStudioLifecycleConfig(params: SageMaker.Types.CreateStudioLifecycleConfigRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateStudioLifecycleConfigResponse) => void): Request<SageMaker.Types.CreateStudioLifecycleConfigResponse, AWSError>;
419
435
  /**
420
- * Creates a new Studio Lifecycle Configuration.
436
+ * Creates a new Amazon SageMaker Studio Lifecycle Configuration.
421
437
  */
422
438
  createStudioLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateStudioLifecycleConfigResponse) => void): Request<SageMaker.Types.CreateStudioLifecycleConfigResponse, AWSError>;
423
439
  /**
@@ -453,11 +469,11 @@ declare class SageMaker extends Service {
453
469
  */
454
470
  createTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.CreateTrialComponentResponse) => void): Request<SageMaker.Types.CreateTrialComponentResponse, AWSError>;
455
471
  /**
456
- * Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from IAM Identity Center, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.
472
+ * Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to a domain. If an administrator invites a person by email or imports them from IAM Identity Center, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.
457
473
  */
458
474
  createUserProfile(params: SageMaker.Types.CreateUserProfileRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateUserProfileResponse) => void): Request<SageMaker.Types.CreateUserProfileResponse, AWSError>;
459
475
  /**
460
- * Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from IAM Identity Center, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.
476
+ * Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to a domain. If an administrator invites a person by email or imports them from IAM Identity Center, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.
461
477
  */
462
478
  createUserProfile(callback?: (err: AWSError, data: SageMaker.Types.CreateUserProfileResponse) => void): Request<SageMaker.Types.CreateUserProfileResponse, AWSError>;
463
479
  /**
@@ -524,6 +540,14 @@ declare class SageMaker extends Service {
524
540
  * Deletes an association.
525
541
  */
526
542
  deleteAssociation(callback?: (err: AWSError, data: SageMaker.Types.DeleteAssociationResponse) => void): Request<SageMaker.Types.DeleteAssociationResponse, AWSError>;
543
+ /**
544
+ * Delete a SageMaker HyperPod cluster.
545
+ */
546
+ deleteCluster(params: SageMaker.Types.DeleteClusterRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteClusterResponse) => void): Request<SageMaker.Types.DeleteClusterResponse, AWSError>;
547
+ /**
548
+ * Delete a SageMaker HyperPod cluster.
549
+ */
550
+ deleteCluster(callback?: (err: AWSError, data: SageMaker.Types.DeleteClusterResponse) => void): Request<SageMaker.Types.DeleteClusterResponse, AWSError>;
527
551
  /**
528
552
  * Deletes the specified Git repository from your account.
529
553
  */
@@ -660,6 +684,14 @@ declare class SageMaker extends Service {
660
684
  * Deletes a version of a SageMaker image. The container image the version represents isn't deleted.
661
685
  */
662
686
  deleteImageVersion(callback?: (err: AWSError, data: SageMaker.Types.DeleteImageVersionResponse) => void): Request<SageMaker.Types.DeleteImageVersionResponse, AWSError>;
687
+ /**
688
+ * Deletes an inference component.
689
+ */
690
+ deleteInferenceComponent(params: SageMaker.Types.DeleteInferenceComponentInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
691
+ /**
692
+ * Deletes an inference component.
693
+ */
694
+ deleteInferenceComponent(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
663
695
  /**
664
696
  * Deletes an inference experiment. This operation does not delete your endpoint, variants, or any underlying resources. This operation only deletes the metadata of your experiment.
665
697
  */
@@ -781,19 +813,19 @@ declare class SageMaker extends Service {
781
813
  */
782
814
  deleteSpace(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
783
815
  /**
784
- * Deletes the Studio Lifecycle Configuration. In order to delete the Lifecycle Configuration, there must be no running apps using the Lifecycle Configuration. You must also remove the Lifecycle Configuration from UserSettings in all Domains and UserProfiles.
816
+ * Deletes the Amazon SageMaker Studio Lifecycle Configuration. In order to delete the Lifecycle Configuration, there must be no running apps using the Lifecycle Configuration. You must also remove the Lifecycle Configuration from UserSettings in all Domains and UserProfiles.
785
817
  */
786
818
  deleteStudioLifecycleConfig(params: SageMaker.Types.DeleteStudioLifecycleConfigRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
787
819
  /**
788
- * Deletes the Studio Lifecycle Configuration. In order to delete the Lifecycle Configuration, there must be no running apps using the Lifecycle Configuration. You must also remove the Lifecycle Configuration from UserSettings in all Domains and UserProfiles.
820
+ * Deletes the Amazon SageMaker Studio Lifecycle Configuration. In order to delete the Lifecycle Configuration, there must be no running apps using the Lifecycle Configuration. You must also remove the Lifecycle Configuration from UserSettings in all Domains and UserProfiles.
789
821
  */
790
822
  deleteStudioLifecycleConfig(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
791
823
  /**
792
- * Deletes the specified tags from an SageMaker resource. To list a resource's tags, use the ListTags API. When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API. When you call this API to delete tags from a SageMaker Studio Domain or User Profile, the deleted tags are not removed from Apps that the SageMaker Studio Domain or User Profile launched before you called this API.
824
+ * Deletes the specified tags from an SageMaker resource. To list a resource's tags, use the ListTags API. When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API. When you call this API to delete tags from a SageMaker Domain or User Profile, the deleted tags are not removed from Apps that the SageMaker Domain or User Profile launched before you called this API.
793
825
  */
794
826
  deleteTags(params: SageMaker.Types.DeleteTagsInput, callback?: (err: AWSError, data: SageMaker.Types.DeleteTagsOutput) => void): Request<SageMaker.Types.DeleteTagsOutput, AWSError>;
795
827
  /**
796
- * Deletes the specified tags from an SageMaker resource. To list a resource's tags, use the ListTags API. When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API. When you call this API to delete tags from a SageMaker Studio Domain or User Profile, the deleted tags are not removed from Apps that the SageMaker Studio Domain or User Profile launched before you called this API.
828
+ * Deletes the specified tags from an SageMaker resource. To list a resource's tags, use the ListTags API. When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API. When you call this API to delete tags from a SageMaker Domain or User Profile, the deleted tags are not removed from Apps that the SageMaker Domain or User Profile launched before you called this API.
797
829
  */
798
830
  deleteTags(callback?: (err: AWSError, data: SageMaker.Types.DeleteTagsOutput) => void): Request<SageMaker.Types.DeleteTagsOutput, AWSError>;
799
831
  /**
@@ -900,6 +932,22 @@ declare class SageMaker extends Service {
900
932
  * Returns information about an AutoML job created by calling CreateAutoMLJobV2 or CreateAutoMLJob.
901
933
  */
902
934
  describeAutoMLJobV2(callback?: (err: AWSError, data: SageMaker.Types.DescribeAutoMLJobV2Response) => void): Request<SageMaker.Types.DescribeAutoMLJobV2Response, AWSError>;
935
+ /**
936
+ * Retrieves information of a SageMaker HyperPod cluster.
937
+ */
938
+ describeCluster(params: SageMaker.Types.DescribeClusterRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeClusterResponse) => void): Request<SageMaker.Types.DescribeClusterResponse, AWSError>;
939
+ /**
940
+ * Retrieves information of a SageMaker HyperPod cluster.
941
+ */
942
+ describeCluster(callback?: (err: AWSError, data: SageMaker.Types.DescribeClusterResponse) => void): Request<SageMaker.Types.DescribeClusterResponse, AWSError>;
943
+ /**
944
+ * Retrieves information of an instance (also called a node interchangeably) of a SageMaker HyperPod cluster.
945
+ */
946
+ describeClusterNode(params: SageMaker.Types.DescribeClusterNodeRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeClusterNodeResponse) => void): Request<SageMaker.Types.DescribeClusterNodeResponse, AWSError>;
947
+ /**
948
+ * Retrieves information of an instance (also called a node interchangeably) of a SageMaker HyperPod cluster.
949
+ */
950
+ describeClusterNode(callback?: (err: AWSError, data: SageMaker.Types.DescribeClusterNodeResponse) => void): Request<SageMaker.Types.DescribeClusterNodeResponse, AWSError>;
903
951
  /**
904
952
  * Gets details about the specified Git repository.
905
953
  */
@@ -1068,6 +1116,14 @@ declare class SageMaker extends Service {
1068
1116
  * Describes a version of a SageMaker image.
1069
1117
  */
1070
1118
  describeImageVersion(callback?: (err: AWSError, data: SageMaker.Types.DescribeImageVersionResponse) => void): Request<SageMaker.Types.DescribeImageVersionResponse, AWSError>;
1119
+ /**
1120
+ * Returns information about an inference component.
1121
+ */
1122
+ describeInferenceComponent(params: SageMaker.Types.DescribeInferenceComponentInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeInferenceComponentOutput) => void): Request<SageMaker.Types.DescribeInferenceComponentOutput, AWSError>;
1123
+ /**
1124
+ * Returns information about an inference component.
1125
+ */
1126
+ describeInferenceComponent(callback?: (err: AWSError, data: SageMaker.Types.DescribeInferenceComponentOutput) => void): Request<SageMaker.Types.DescribeInferenceComponentOutput, AWSError>;
1071
1127
  /**
1072
1128
  * Returns details about an inference experiment.
1073
1129
  */
@@ -1237,11 +1293,11 @@ declare class SageMaker extends Service {
1237
1293
  */
1238
1294
  describeSpace(callback?: (err: AWSError, data: SageMaker.Types.DescribeSpaceResponse) => void): Request<SageMaker.Types.DescribeSpaceResponse, AWSError>;
1239
1295
  /**
1240
- * Describes the Studio Lifecycle Configuration.
1296
+ * Describes the Amazon SageMaker Studio Lifecycle Configuration.
1241
1297
  */
1242
1298
  describeStudioLifecycleConfig(params: SageMaker.Types.DescribeStudioLifecycleConfigRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeStudioLifecycleConfigResponse) => void): Request<SageMaker.Types.DescribeStudioLifecycleConfigResponse, AWSError>;
1243
1299
  /**
1244
- * Describes the Studio Lifecycle Configuration.
1300
+ * Describes the Amazon SageMaker Studio Lifecycle Configuration.
1245
1301
  */
1246
1302
  describeStudioLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.DescribeStudioLifecycleConfigResponse) => void): Request<SageMaker.Types.DescribeStudioLifecycleConfigResponse, AWSError>;
1247
1303
  /**
@@ -1460,6 +1516,22 @@ declare class SageMaker extends Service {
1460
1516
  * List the candidates created for the job.
1461
1517
  */
1462
1518
  listCandidatesForAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.ListCandidatesForAutoMLJobResponse) => void): Request<SageMaker.Types.ListCandidatesForAutoMLJobResponse, AWSError>;
1519
+ /**
1520
+ * Retrieves the list of instances (also called nodes interchangeably) in a SageMaker HyperPod cluster.
1521
+ */
1522
+ listClusterNodes(params: SageMaker.Types.ListClusterNodesRequest, callback?: (err: AWSError, data: SageMaker.Types.ListClusterNodesResponse) => void): Request<SageMaker.Types.ListClusterNodesResponse, AWSError>;
1523
+ /**
1524
+ * Retrieves the list of instances (also called nodes interchangeably) in a SageMaker HyperPod cluster.
1525
+ */
1526
+ listClusterNodes(callback?: (err: AWSError, data: SageMaker.Types.ListClusterNodesResponse) => void): Request<SageMaker.Types.ListClusterNodesResponse, AWSError>;
1527
+ /**
1528
+ * Retrieves the list of SageMaker HyperPod clusters.
1529
+ */
1530
+ listClusters(params: SageMaker.Types.ListClustersRequest, callback?: (err: AWSError, data: SageMaker.Types.ListClustersResponse) => void): Request<SageMaker.Types.ListClustersResponse, AWSError>;
1531
+ /**
1532
+ * Retrieves the list of SageMaker HyperPod clusters.
1533
+ */
1534
+ listClusters(callback?: (err: AWSError, data: SageMaker.Types.ListClustersResponse) => void): Request<SageMaker.Types.ListClustersResponse, AWSError>;
1463
1535
  /**
1464
1536
  * Gets a list of the Git repositories in your account.
1465
1537
  */
@@ -1628,6 +1700,14 @@ declare class SageMaker extends Service {
1628
1700
  * Lists the images in your account and their properties. The list can be filtered by creation time or modified time, and whether the image name contains a specified string.
1629
1701
  */
1630
1702
  listImages(callback?: (err: AWSError, data: SageMaker.Types.ListImagesResponse) => void): Request<SageMaker.Types.ListImagesResponse, AWSError>;
1703
+ /**
1704
+ * Lists the inference components in your account and their properties.
1705
+ */
1706
+ listInferenceComponents(params: SageMaker.Types.ListInferenceComponentsInput, callback?: (err: AWSError, data: SageMaker.Types.ListInferenceComponentsOutput) => void): Request<SageMaker.Types.ListInferenceComponentsOutput, AWSError>;
1707
+ /**
1708
+ * Lists the inference components in your account and their properties.
1709
+ */
1710
+ listInferenceComponents(callback?: (err: AWSError, data: SageMaker.Types.ListInferenceComponentsOutput) => void): Request<SageMaker.Types.ListInferenceComponentsOutput, AWSError>;
1631
1711
  /**
1632
1712
  * Returns the list of all inference experiments.
1633
1713
  */
@@ -1877,11 +1957,11 @@ declare class SageMaker extends Service {
1877
1957
  */
1878
1958
  listStageDevices(callback?: (err: AWSError, data: SageMaker.Types.ListStageDevicesResponse) => void): Request<SageMaker.Types.ListStageDevicesResponse, AWSError>;
1879
1959
  /**
1880
- * Lists the Studio Lifecycle Configurations in your Amazon Web Services Account.
1960
+ * Lists the Amazon SageMaker Studio Lifecycle Configurations in your Amazon Web Services Account.
1881
1961
  */
1882
1962
  listStudioLifecycleConfigs(params: SageMaker.Types.ListStudioLifecycleConfigsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListStudioLifecycleConfigsResponse) => void): Request<SageMaker.Types.ListStudioLifecycleConfigsResponse, AWSError>;
1883
1963
  /**
1884
- * Lists the Studio Lifecycle Configurations in your Amazon Web Services Account.
1964
+ * Lists the Amazon SageMaker Studio Lifecycle Configurations in your Amazon Web Services Account.
1885
1965
  */
1886
1966
  listStudioLifecycleConfigs(callback?: (err: AWSError, data: SageMaker.Types.ListStudioLifecycleConfigsResponse) => void): Request<SageMaker.Types.ListStudioLifecycleConfigsResponse, AWSError>;
1887
1967
  /**
@@ -2204,6 +2284,14 @@ declare class SageMaker extends Service {
2204
2284
  * Updates an artifact.
2205
2285
  */
2206
2286
  updateArtifact(callback?: (err: AWSError, data: SageMaker.Types.UpdateArtifactResponse) => void): Request<SageMaker.Types.UpdateArtifactResponse, AWSError>;
2287
+ /**
2288
+ * Update a SageMaker HyperPod cluster.
2289
+ */
2290
+ updateCluster(params: SageMaker.Types.UpdateClusterRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateClusterResponse) => void): Request<SageMaker.Types.UpdateClusterResponse, AWSError>;
2291
+ /**
2292
+ * Update a SageMaker HyperPod cluster.
2293
+ */
2294
+ updateCluster(callback?: (err: AWSError, data: SageMaker.Types.UpdateClusterResponse) => void): Request<SageMaker.Types.UpdateClusterResponse, AWSError>;
2207
2295
  /**
2208
2296
  * Updates the specified Git repository with the specified values.
2209
2297
  */
@@ -2308,6 +2396,22 @@ declare class SageMaker extends Service {
2308
2396
  * Updates the properties of a SageMaker image version.
2309
2397
  */
2310
2398
  updateImageVersion(callback?: (err: AWSError, data: SageMaker.Types.UpdateImageVersionResponse) => void): Request<SageMaker.Types.UpdateImageVersionResponse, AWSError>;
2399
+ /**
2400
+ * Updates an inference component.
2401
+ */
2402
+ updateInferenceComponent(params: SageMaker.Types.UpdateInferenceComponentInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateInferenceComponentOutput) => void): Request<SageMaker.Types.UpdateInferenceComponentOutput, AWSError>;
2403
+ /**
2404
+ * Updates an inference component.
2405
+ */
2406
+ updateInferenceComponent(callback?: (err: AWSError, data: SageMaker.Types.UpdateInferenceComponentOutput) => void): Request<SageMaker.Types.UpdateInferenceComponentOutput, AWSError>;
2407
+ /**
2408
+ * Runtime settings for a model that is deployed with an inference component.
2409
+ */
2410
+ updateInferenceComponentRuntimeConfig(params: SageMaker.Types.UpdateInferenceComponentRuntimeConfigInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateInferenceComponentRuntimeConfigOutput) => void): Request<SageMaker.Types.UpdateInferenceComponentRuntimeConfigOutput, AWSError>;
2411
+ /**
2412
+ * Runtime settings for a model that is deployed with an inference component.
2413
+ */
2414
+ updateInferenceComponentRuntimeConfig(callback?: (err: AWSError, data: SageMaker.Types.UpdateInferenceComponentRuntimeConfigOutput) => void): Request<SageMaker.Types.UpdateInferenceComponentRuntimeConfigOutput, AWSError>;
2311
2415
  /**
2312
2416
  * Updates an inference experiment that you created. The status of the inference experiment has to be either Created, Running. For more information on the status of an inference experiment, see DescribeInferenceExperiment.
2313
2417
  */
@@ -3263,7 +3367,7 @@ declare namespace SageMaker {
3263
3367
  */
3264
3368
  MaxCandidates?: MaxCandidates;
3265
3369
  /**
3266
- * The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action. For job V2s (jobs created by calling CreateAutoMLJobV2), this field controls the runtime of the job candidate.
3370
+ * The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action. For job V2s (jobs created by calling CreateAutoMLJobV2), this field controls the runtime of the job candidate. For TextGenerationJobConfig problem types, the maximum time defaults to 72 hours (259200 seconds).
3267
3371
  */
3268
3372
  MaxRuntimePerTrainingJobInSeconds?: MaxRuntimePerTrainingJobInSeconds;
3269
3373
  /**
@@ -4012,6 +4116,169 @@ declare namespace SageMaker {
4012
4116
  export type ClientId = string;
4013
4117
  export type ClientSecret = string;
4014
4118
  export type ClientToken = string;
4119
+ export type ClusterArn = string;
4120
+ export type ClusterInstanceCount = number;
4121
+ export interface ClusterInstanceGroupDetails {
4122
+ /**
4123
+ * The number of instances that are currently in the instance group of a SageMaker HyperPod cluster.
4124
+ */
4125
+ CurrentCount?: ClusterNonNegativeInstanceCount;
4126
+ /**
4127
+ * The number of instances you specified to add to the instance group of a SageMaker HyperPod cluster.
4128
+ */
4129
+ TargetCount?: ClusterInstanceCount;
4130
+ /**
4131
+ * The name of the instance group of a SageMaker HyperPod cluster.
4132
+ */
4133
+ InstanceGroupName?: ClusterInstanceGroupName;
4134
+ /**
4135
+ * The instance type of the instance group of a SageMaker HyperPod cluster.
4136
+ */
4137
+ InstanceType?: ClusterInstanceType;
4138
+ /**
4139
+ * Details of LifeCycle configuration for the instance group.
4140
+ */
4141
+ LifeCycleConfig?: ClusterLifeCycleConfig;
4142
+ /**
4143
+ * The execution role for the instance group to assume.
4144
+ */
4145
+ ExecutionRole?: RoleArn;
4146
+ /**
4147
+ * The number you specified to TreadsPerCore in CreateCluster for enabling or disabling multithreading. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
4148
+ */
4149
+ ThreadsPerCore?: ClusterThreadsPerCore;
4150
+ }
4151
+ export type ClusterInstanceGroupDetailsList = ClusterInstanceGroupDetails[];
4152
+ export type ClusterInstanceGroupName = string;
4153
+ export interface ClusterInstanceGroupSpecification {
4154
+ /**
4155
+ * Specifies the number of instances to add to the instance group of a SageMaker HyperPod cluster.
4156
+ */
4157
+ InstanceCount: ClusterInstanceCount;
4158
+ /**
4159
+ * Specifies the name of the instance group.
4160
+ */
4161
+ InstanceGroupName: ClusterInstanceGroupName;
4162
+ /**
4163
+ * Specifies the instance type of the instance group.
4164
+ */
4165
+ InstanceType: ClusterInstanceType;
4166
+ /**
4167
+ * Specifies the LifeCycle configuration for the instance group.
4168
+ */
4169
+ LifeCycleConfig: ClusterLifeCycleConfig;
4170
+ /**
4171
+ * Specifies an IAM execution role to be assumed by the instance group.
4172
+ */
4173
+ ExecutionRole: RoleArn;
4174
+ /**
4175
+ * Specifies the value for Threads per core. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For instance types that doesn't support multithreading, specify 1. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
4176
+ */
4177
+ ThreadsPerCore?: ClusterThreadsPerCore;
4178
+ }
4179
+ export type ClusterInstanceGroupSpecifications = ClusterInstanceGroupSpecification[];
4180
+ export type ClusterInstanceStatus = "Running"|"Failure"|"Pending"|"ShuttingDown"|"SystemUpdating"|string;
4181
+ export interface ClusterInstanceStatusDetails {
4182
+ /**
4183
+ * The status of an instance in a SageMaker HyperPod cluster.
4184
+ */
4185
+ Status: ClusterInstanceStatus;
4186
+ /**
4187
+ * The message from an instance in a SageMaker HyperPod cluster.
4188
+ */
4189
+ Message?: String;
4190
+ }
4191
+ export type ClusterInstanceType = "ml.p4d.24xlarge"|"ml.p4de.24xlarge"|"ml.p5.48xlarge"|"ml.trn1.32xlarge"|"ml.trn1n.32xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.12xlarge"|"ml.c5.18xlarge"|"ml.c5.24xlarge"|"ml.c5n.large"|"ml.c5n.2xlarge"|"ml.c5n.4xlarge"|"ml.c5n.9xlarge"|"ml.c5n.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.8xlarge"|"ml.m5.12xlarge"|"ml.m5.16xlarge"|"ml.m5.24xlarge"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|string;
4192
+ export interface ClusterLifeCycleConfig {
4193
+ /**
4194
+ * An Amazon S3 bucket path where your LifeCycle scripts are stored.
4195
+ */
4196
+ SourceS3Uri: S3Uri;
4197
+ /**
4198
+ * The directory of the LifeCycle script under SourceS3Uri. This LifeCycle script runs during cluster creation.
4199
+ */
4200
+ OnCreate: ClusterLifeCycleConfigFileName;
4201
+ }
4202
+ export type ClusterLifeCycleConfigFileName = string;
4203
+ export type ClusterName = string;
4204
+ export type ClusterNameOrArn = string;
4205
+ export interface ClusterNodeDetails {
4206
+ /**
4207
+ * The instance group name in which the instance is.
4208
+ */
4209
+ InstanceGroupName?: ClusterInstanceGroupName;
4210
+ /**
4211
+ * The ID of the instance.
4212
+ */
4213
+ InstanceId?: String;
4214
+ /**
4215
+ * The status of the instance.
4216
+ */
4217
+ InstanceStatus?: ClusterInstanceStatusDetails;
4218
+ /**
4219
+ * The type of the instance.
4220
+ */
4221
+ InstanceType?: ClusterInstanceType;
4222
+ /**
4223
+ * The time when the instance is launched.
4224
+ */
4225
+ LaunchTime?: Timestamp;
4226
+ /**
4227
+ * The LifeCycle configuration applied to the instance.
4228
+ */
4229
+ LifeCycleConfig?: ClusterLifeCycleConfig;
4230
+ /**
4231
+ * The number of threads per CPU core you specified under CreateCluster.
4232
+ */
4233
+ ThreadsPerCore?: ClusterThreadsPerCore;
4234
+ }
4235
+ export type ClusterNodeId = string;
4236
+ export type ClusterNodeSummaries = ClusterNodeSummary[];
4237
+ export interface ClusterNodeSummary {
4238
+ /**
4239
+ * The name of the instance group in which the instance is.
4240
+ */
4241
+ InstanceGroupName: ClusterInstanceGroupName;
4242
+ /**
4243
+ * The ID of the instance.
4244
+ */
4245
+ InstanceId: String;
4246
+ /**
4247
+ * The type of the instance.
4248
+ */
4249
+ InstanceType: ClusterInstanceType;
4250
+ /**
4251
+ * The time when the instance is launched.
4252
+ */
4253
+ LaunchTime: Timestamp;
4254
+ /**
4255
+ * The status of the instance.
4256
+ */
4257
+ InstanceStatus: ClusterInstanceStatusDetails;
4258
+ }
4259
+ export type ClusterNonNegativeInstanceCount = number;
4260
+ export type ClusterSortBy = "CREATION_TIME"|"NAME"|string;
4261
+ export type ClusterStatus = "Creating"|"Deleting"|"Failed"|"InService"|"RollingBack"|"SystemUpdating"|"Updating"|string;
4262
+ export type ClusterSummaries = ClusterSummary[];
4263
+ export interface ClusterSummary {
4264
+ /**
4265
+ * The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.
4266
+ */
4267
+ ClusterArn: ClusterArn;
4268
+ /**
4269
+ * The name of the SageMaker HyperPod cluster.
4270
+ */
4271
+ ClusterName: ClusterName;
4272
+ /**
4273
+ * The time when the SageMaker HyperPod cluster is created.
4274
+ */
4275
+ CreationTime: Timestamp;
4276
+ /**
4277
+ * The status of the SageMaker HyperPod cluster.
4278
+ */
4279
+ ClusterStatus: ClusterStatus;
4280
+ }
4281
+ export type ClusterThreadsPerCore = number;
4015
4282
  export type CodeRepositories = CodeRepository[];
4016
4283
  export interface CodeRepository {
4017
4284
  /**
@@ -4544,6 +4811,27 @@ declare namespace SageMaker {
4544
4811
  */
4545
4812
  AutoMLJobArn: AutoMLJobArn;
4546
4813
  }
4814
+ export interface CreateClusterRequest {
4815
+ /**
4816
+ * The name for the new SageMaker HyperPod cluster.
4817
+ */
4818
+ ClusterName: ClusterName;
4819
+ /**
4820
+ * The instance groups to be created in the SageMaker HyperPod cluster.
4821
+ */
4822
+ InstanceGroups: ClusterInstanceGroupSpecifications;
4823
+ VpcConfig?: VpcConfig;
4824
+ /**
4825
+ * Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can add tags to your cluster in the same way you add them in other Amazon Web Services services that support tagging. To learn more about tagging Amazon Web Services resources in general, see Tagging Amazon Web Services Resources User Guide.
4826
+ */
4827
+ Tags?: TagList;
4828
+ }
4829
+ export interface CreateClusterResponse {
4830
+ /**
4831
+ * The Amazon Resource Name (ARN) of the cluster.
4832
+ */
4833
+ ClusterArn: ClusterArn;
4834
+ }
4547
4835
  export interface CreateCodeRepositoryInput {
4548
4836
  /**
4549
4837
  * The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
@@ -4715,11 +5003,11 @@ declare namespace SageMaker {
4715
5003
  */
4716
5004
  DefaultUserSettings: UserSettings;
4717
5005
  /**
4718
- * The VPC subnets that Studio uses for communication.
5006
+ * The VPC subnets that the domain uses for communication.
4719
5007
  */
4720
5008
  SubnetIds: Subnets;
4721
5009
  /**
4722
- * The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
5010
+ * The ID of the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.
4723
5011
  */
4724
5012
  VpcId: VpcId;
4725
5013
  /**
@@ -4727,7 +5015,7 @@ declare namespace SageMaker {
4727
5015
  */
4728
5016
  Tags?: TagList;
4729
5017
  /**
4730
- * Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All Studio traffic is through the specified VPC and subnets
5018
+ * Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
4731
5019
  */
4732
5020
  AppNetworkAccessType?: AppNetworkAccessType;
4733
5021
  /**
@@ -4863,6 +5151,15 @@ declare namespace SageMaker {
4863
5151
  * An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants. If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.
4864
5152
  */
4865
5153
  ShadowProductionVariants?: ProductionVariantList;
5154
+ /**
5155
+ * The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform actions on your behalf. For more information, see SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this action must have the iam:PassRole permission.
5156
+ */
5157
+ ExecutionRoleArn?: RoleArn;
5158
+ VpcConfig?: VpcConfig;
5159
+ /**
5160
+ * Sets whether all model containers deployed to the endpoint are isolated. If they are, no inbound or outbound network calls can be made to or from the model containers.
5161
+ */
5162
+ EnableNetworkIsolation?: Boolean;
4866
5163
  }
4867
5164
  export interface CreateEndpointConfigOutput {
4868
5165
  /**
@@ -5160,6 +5457,38 @@ declare namespace SageMaker {
5160
5457
  */
5161
5458
  ImageVersionArn?: ImageVersionArn;
5162
5459
  }
5460
+ export interface CreateInferenceComponentInput {
5461
+ /**
5462
+ * A unique name to assign to the inference component.
5463
+ */
5464
+ InferenceComponentName: InferenceComponentName;
5465
+ /**
5466
+ * The name of an existing endpoint where you host the inference component.
5467
+ */
5468
+ EndpointName: EndpointName;
5469
+ /**
5470
+ * The name of an existing production variant where you host the inference component.
5471
+ */
5472
+ VariantName: VariantName;
5473
+ /**
5474
+ * Details about the resources to deploy with this inference component, including the model, container, and compute resources.
5475
+ */
5476
+ Specification: InferenceComponentSpecification;
5477
+ /**
5478
+ * Runtime settings for a model that is deployed with an inference component.
5479
+ */
5480
+ RuntimeConfig: InferenceComponentRuntimeConfig;
5481
+ /**
5482
+ * A list of key-value pairs associated with the model. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference.
5483
+ */
5484
+ Tags?: TagList;
5485
+ }
5486
+ export interface CreateInferenceComponentOutput {
5487
+ /**
5488
+ * The Amazon Resource Name (ARN) of the inference component.
5489
+ */
5490
+ InferenceComponentArn: InferenceComponentArn;
5491
+ }
5163
5492
  export interface CreateInferenceExperimentRequest {
5164
5493
  /**
5165
5494
  * The name for the inference experiment.
@@ -5450,7 +5779,7 @@ declare namespace SageMaker {
5450
5779
  /**
5451
5780
  * The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see SageMaker Roles. To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.
5452
5781
  */
5453
- ExecutionRoleArn: RoleArn;
5782
+ ExecutionRoleArn?: RoleArn;
5454
5783
  /**
5455
5784
  * An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
5456
5785
  */
@@ -5787,6 +6116,10 @@ declare namespace SageMaker {
5787
6116
  * The name of the space.
5788
6117
  */
5789
6118
  SpaceName?: SpaceName;
6119
+ /**
6120
+ * The landing page that the user is directed to when accessing the presigned URL. Using this value, users can access Studio or Studio Classic, even if it is not the default experience for the domain. The supported values are: studio::relative/path: Directs users to the relative path in Studio. app:JupyterServer:relative/path: Directs users to the relative path in the Studio Classic application. app:JupyterLab:relative/path: Directs users to the relative path in the JupyterLab application. app:RStudioServerPro:relative/path: Directs users to the relative path in the RStudio application. app:Canvas:relative/path: Directs users to the relative path in the Canvas application.
6121
+ */
6122
+ LandingUri?: LandingUri;
5790
6123
  }
5791
6124
  export interface CreatePresignedDomainUrlResponse {
5792
6125
  /**
@@ -5913,11 +6246,11 @@ declare namespace SageMaker {
5913
6246
  }
5914
6247
  export interface CreateStudioLifecycleConfigRequest {
5915
6248
  /**
5916
- * The name of the Studio Lifecycle Configuration to create.
6249
+ * The name of the Amazon SageMaker Studio Lifecycle Configuration to create.
5917
6250
  */
5918
6251
  StudioLifecycleConfigName: StudioLifecycleConfigName;
5919
6252
  /**
5920
- * The content of your Studio Lifecycle Configuration script. This content must be base64 encoded.
6253
+ * The content of your Amazon SageMaker Studio Lifecycle Configuration script. This content must be base64 encoded.
5921
6254
  */
5922
6255
  StudioLifecycleConfigContent: StudioLifecycleConfigContent;
5923
6256
  /**
@@ -6012,6 +6345,10 @@ declare namespace SageMaker {
6012
6345
  * The number of times to retry the job when the job fails due to an InternalServerError.
6013
6346
  */
6014
6347
  RetryStrategy?: RetryStrategy;
6348
+ /**
6349
+ * Contains information about the infrastructure health check configuration for the training job.
6350
+ */
6351
+ InfraCheckConfig?: InfraCheckConfig;
6015
6352
  }
6016
6353
  export interface CreateTrainingJobResponse {
6017
6354
  /**
@@ -6596,6 +6933,18 @@ declare namespace SageMaker {
6596
6933
  */
6597
6934
  DestinationArn?: AssociationEntityArn;
6598
6935
  }
6936
+ export interface DeleteClusterRequest {
6937
+ /**
6938
+ * The string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster to delete.
6939
+ */
6940
+ ClusterName: ClusterNameOrArn;
6941
+ }
6942
+ export interface DeleteClusterResponse {
6943
+ /**
6944
+ * The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster to delete.
6945
+ */
6946
+ ClusterArn: ClusterArn;
6947
+ }
6599
6948
  export interface DeleteCodeRepositoryInput {
6600
6949
  /**
6601
6950
  * The name of the Git repository to delete.
@@ -6746,6 +7095,12 @@ declare namespace SageMaker {
6746
7095
  }
6747
7096
  export interface DeleteImageVersionResponse {
6748
7097
  }
7098
+ export interface DeleteInferenceComponentInput {
7099
+ /**
7100
+ * The name of the inference component to delete.
7101
+ */
7102
+ InferenceComponentName: InferenceComponentName;
7103
+ }
6749
7104
  export interface DeleteInferenceExperimentRequest {
6750
7105
  /**
6751
7106
  * The name of the inference experiment you want to delete.
@@ -6858,7 +7213,7 @@ declare namespace SageMaker {
6858
7213
  }
6859
7214
  export interface DeleteStudioLifecycleConfigRequest {
6860
7215
  /**
6861
- * The name of the Studio Lifecycle Configuration to delete.
7216
+ * The name of the Amazon SageMaker Studio Lifecycle Configuration to delete.
6862
7217
  */
6863
7218
  StudioLifecycleConfigName: StudioLifecycleConfigName;
6864
7219
  }
@@ -7451,6 +7806,55 @@ declare namespace SageMaker {
7451
7806
  */
7452
7807
  AutoMLProblemTypeConfigName?: AutoMLProblemTypeConfigName;
7453
7808
  }
7809
+ export interface DescribeClusterNodeRequest {
7810
+ /**
7811
+ * The string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster in which the instance is.
7812
+ */
7813
+ ClusterName: ClusterNameOrArn;
7814
+ /**
7815
+ * The ID of the instance.
7816
+ */
7817
+ NodeId: ClusterNodeId;
7818
+ }
7819
+ export interface DescribeClusterNodeResponse {
7820
+ /**
7821
+ * The details of the instance.
7822
+ */
7823
+ NodeDetails: ClusterNodeDetails;
7824
+ }
7825
+ export interface DescribeClusterRequest {
7826
+ /**
7827
+ * The string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.
7828
+ */
7829
+ ClusterName: ClusterNameOrArn;
7830
+ }
7831
+ export interface DescribeClusterResponse {
7832
+ /**
7833
+ * The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.
7834
+ */
7835
+ ClusterArn: ClusterArn;
7836
+ /**
7837
+ * The name of the SageMaker HyperPod cluster.
7838
+ */
7839
+ ClusterName?: ClusterName;
7840
+ /**
7841
+ * The status of the SageMaker HyperPod cluster.
7842
+ */
7843
+ ClusterStatus: ClusterStatus;
7844
+ /**
7845
+ * The time when the SageMaker Cluster is created.
7846
+ */
7847
+ CreationTime?: Timestamp;
7848
+ /**
7849
+ * The failure message of the SageMaker HyperPod cluster.
7850
+ */
7851
+ FailureMessage?: String;
7852
+ /**
7853
+ * The instance groups of the SageMaker HyperPod cluster.
7854
+ */
7855
+ InstanceGroups: ClusterInstanceGroupDetailsList;
7856
+ VpcConfig?: VpcConfig;
7857
+ }
7454
7858
  export interface DescribeCodeRepositoryInput {
7455
7859
  /**
7456
7860
  * The name of the Git repository to describe.
@@ -7804,7 +8208,7 @@ declare namespace SageMaker {
7804
8208
  */
7805
8209
  DefaultUserSettings?: UserSettings;
7806
8210
  /**
7807
- * Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All Studio traffic is through the specified VPC and subnets
8211
+ * Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
7808
8212
  */
7809
8213
  AppNetworkAccessType?: AppNetworkAccessType;
7810
8214
  /**
@@ -7812,7 +8216,7 @@ declare namespace SageMaker {
7812
8216
  */
7813
8217
  HomeEfsFileSystemKmsKeyId?: KmsKeyId;
7814
8218
  /**
7815
- * The VPC subnets that Studio uses for communication.
8219
+ * The VPC subnets that the domain uses for communication.
7816
8220
  */
7817
8221
  SubnetIds?: Subnets;
7818
8222
  /**
@@ -7820,7 +8224,7 @@ declare namespace SageMaker {
7820
8224
  */
7821
8225
  Url?: String1024;
7822
8226
  /**
7823
- * The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
8227
+ * The ID of the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.
7824
8228
  */
7825
8229
  VpcId?: VpcId;
7826
8230
  /**
@@ -8012,6 +8416,15 @@ declare namespace SageMaker {
8012
8416
  * An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.
8013
8417
  */
8014
8418
  ShadowProductionVariants?: ProductionVariantList;
8419
+ /**
8420
+ * The Amazon Resource Name (ARN) of the IAM role that you assigned to the endpoint configuration.
8421
+ */
8422
+ ExecutionRoleArn?: RoleArn;
8423
+ VpcConfig?: VpcConfig;
8424
+ /**
8425
+ * Indicates whether all model containers deployed to the endpoint are isolated. If they are, no inbound or outbound network calls can be made to or from the model containers.
8426
+ */
8427
+ EnableNetworkIsolation?: Boolean;
8015
8428
  }
8016
8429
  export interface DescribeEndpointInput {
8017
8430
  /**
@@ -8648,6 +9061,58 @@ declare namespace SageMaker {
8648
9061
  */
8649
9062
  ReleaseNotes?: ReleaseNotes;
8650
9063
  }
9064
+ export interface DescribeInferenceComponentInput {
9065
+ /**
9066
+ * The name of the inference component.
9067
+ */
9068
+ InferenceComponentName: InferenceComponentName;
9069
+ }
9070
+ export interface DescribeInferenceComponentOutput {
9071
+ /**
9072
+ * The name of the inference component.
9073
+ */
9074
+ InferenceComponentName: InferenceComponentName;
9075
+ /**
9076
+ * The Amazon Resource Name (ARN) of the inference component.
9077
+ */
9078
+ InferenceComponentArn: InferenceComponentArn;
9079
+ /**
9080
+ * The name of the endpoint that hosts the inference component.
9081
+ */
9082
+ EndpointName: EndpointName;
9083
+ /**
9084
+ * The Amazon Resource Name (ARN) of the endpoint that hosts the inference component.
9085
+ */
9086
+ EndpointArn: EndpointArn;
9087
+ /**
9088
+ * The name of the production variant that hosts the inference component.
9089
+ */
9090
+ VariantName?: VariantName;
9091
+ /**
9092
+ * If the inference component status is Failed, the reason for the failure.
9093
+ */
9094
+ FailureReason?: FailureReason;
9095
+ /**
9096
+ * Details about the resources that are deployed with this inference component.
9097
+ */
9098
+ Specification?: InferenceComponentSpecificationSummary;
9099
+ /**
9100
+ * Details about the runtime settings for the model that is deployed with the inference component.
9101
+ */
9102
+ RuntimeConfig?: InferenceComponentRuntimeConfigSummary;
9103
+ /**
9104
+ * The time when the inference component was created.
9105
+ */
9106
+ CreationTime: Timestamp;
9107
+ /**
9108
+ * The time when the inference component was last updated.
9109
+ */
9110
+ LastModifiedTime: Timestamp;
9111
+ /**
9112
+ * The status of the inference component.
9113
+ */
9114
+ InferenceComponentStatus?: InferenceComponentStatus;
9115
+ }
8651
9116
  export interface DescribeInferenceExperimentRequest {
8652
9117
  /**
8653
9118
  * The name of the inference experiment to describe.
@@ -9108,7 +9573,7 @@ declare namespace SageMaker {
9108
9573
  /**
9109
9574
  * The Amazon Resource Name (ARN) of the IAM role that you specified for the model.
9110
9575
  */
9111
- ExecutionRoleArn: RoleArn;
9576
+ ExecutionRoleArn?: RoleArn;
9112
9577
  /**
9113
9578
  * A VpcConfig object that specifies the VPC that this model has access to. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud
9114
9579
  */
@@ -9787,10 +10252,14 @@ declare namespace SageMaker {
9787
10252
  * A collection of space settings.
9788
10253
  */
9789
10254
  SpaceSettings?: SpaceSettings;
10255
+ /**
10256
+ * Returns the URL of the space. If the space is created with Amazon Web Services IAM Identity Center (Successor to Amazon Web Services Single Sign-On) authentication, users can navigate to the URL after appending the respective redirect parameter for the application type to be federated through Amazon Web Services IAM Identity Center. The following application types are supported: Studio Classic: &amp;redirect=JupyterServer JupyterLab: &amp;redirect=JupyterLab
10257
+ */
10258
+ Url?: String1024;
9790
10259
  }
9791
10260
  export interface DescribeStudioLifecycleConfigRequest {
9792
10261
  /**
9793
- * The name of the Studio Lifecycle Configuration to describe.
10262
+ * The name of the Amazon SageMaker Studio Lifecycle Configuration to describe.
9794
10263
  */
9795
10264
  StudioLifecycleConfigName: StudioLifecycleConfigName;
9796
10265
  }
@@ -9800,19 +10269,19 @@ declare namespace SageMaker {
9800
10269
  */
9801
10270
  StudioLifecycleConfigArn?: StudioLifecycleConfigArn;
9802
10271
  /**
9803
- * The name of the Studio Lifecycle Configuration that is described.
10272
+ * The name of the Amazon SageMaker Studio Lifecycle Configuration that is described.
9804
10273
  */
9805
10274
  StudioLifecycleConfigName?: StudioLifecycleConfigName;
9806
10275
  /**
9807
- * The creation time of the Studio Lifecycle Configuration.
10276
+ * The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
9808
10277
  */
9809
10278
  CreationTime?: Timestamp;
9810
10279
  /**
9811
- * This value is equivalent to CreationTime because Studio Lifecycle Configurations are immutable.
10280
+ * This value is equivalent to CreationTime because Amazon SageMaker Studio Lifecycle Configurations are immutable.
9812
10281
  */
9813
10282
  LastModifiedTime?: Timestamp;
9814
10283
  /**
9815
- * The content of your Studio Lifecycle Configuration script.
10284
+ * The content of your Amazon SageMaker Studio Lifecycle Configuration script.
9816
10285
  */
9817
10286
  StudioLifecycleConfigContent?: StudioLifecycleConfigContent;
9818
10287
  /**
@@ -9988,6 +10457,10 @@ declare namespace SageMaker {
9988
10457
  * The status of the warm pool associated with the training job.
9989
10458
  */
9990
10459
  WarmPoolStatus?: WarmPoolStatus;
10460
+ /**
10461
+ * Contains information about the infrastructure health check configuration for the training job.
10462
+ */
10463
+ InfraCheckConfig?: InfraCheckConfig;
9991
10464
  }
9992
10465
  export interface DescribeTransformJobRequest {
9993
10466
  /**
@@ -10895,6 +11368,7 @@ declare namespace SageMaker {
10895
11368
  export type Edges = Edge[];
10896
11369
  export type EfsUid = string;
10897
11370
  export type EnableCapture = boolean;
11371
+ export type EnableInfraCheck = boolean;
10898
11372
  export type EnableIotRoleAlias = boolean;
10899
11373
  export interface EnableSagemakerServicecatalogPortfolioInput {
10900
11374
  }
@@ -12512,6 +12986,7 @@ declare namespace SageMaker {
12512
12986
  */
12513
12987
  Version: ImageVersionNumber;
12514
12988
  }
12989
+ export type ImageVersionAlias = string;
12515
12990
  export type ImageVersionArn = string;
12516
12991
  export type ImageVersionNumber = number;
12517
12992
  export type ImageVersionSortBy = "CREATION_TIME"|"LAST_MODIFIED_TIME"|"VERSION"|string;
@@ -12575,6 +13050,152 @@ declare namespace SageMaker {
12575
13050
  */
12576
13051
  HubContentArn: HubContentArn;
12577
13052
  }
13053
+ export type InferenceComponentArn = string;
13054
+ export interface InferenceComponentComputeResourceRequirements {
13055
+ /**
13056
+ * The number of CPU cores to allocate to run a model that you assign to an inference component.
13057
+ */
13058
+ NumberOfCpuCoresRequired?: NumberOfCpuCores;
13059
+ /**
13060
+ * The number of accelerators to allocate to run a model that you assign to an inference component. Accelerators include GPUs and Amazon Web Services Inferentia.
13061
+ */
13062
+ NumberOfAcceleratorDevicesRequired?: NumberOfAcceleratorDevices;
13063
+ /**
13064
+ * The minimum MB of memory to allocate to run a model that you assign to an inference component.
13065
+ */
13066
+ MinMemoryRequiredInMb: MemoryInMb;
13067
+ /**
13068
+ * The maximum MB of memory to allocate to run a model that you assign to an inference component.
13069
+ */
13070
+ MaxMemoryRequiredInMb?: MemoryInMb;
13071
+ }
13072
+ export interface InferenceComponentContainerSpecification {
13073
+ /**
13074
+ * The Amazon Elastic Container Registry (Amazon ECR) path where the Docker image for the model is stored.
13075
+ */
13076
+ Image?: ContainerImage;
13077
+ /**
13078
+ * The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
13079
+ */
13080
+ ArtifactUrl?: Url;
13081
+ /**
13082
+ * The environment variables to set in the Docker container. Each key and value in the Environment string-to-string map can have length of up to 1024. We support up to 16 entries in the map.
13083
+ */
13084
+ Environment?: EnvironmentMap;
13085
+ }
13086
+ export interface InferenceComponentContainerSpecificationSummary {
13087
+ DeployedImage?: DeployedImage;
13088
+ /**
13089
+ * The Amazon S3 path where the model artifacts are stored.
13090
+ */
13091
+ ArtifactUrl?: Url;
13092
+ /**
13093
+ * The environment variables to set in the Docker container.
13094
+ */
13095
+ Environment?: EnvironmentMap;
13096
+ }
13097
+ export type InferenceComponentCopyCount = number;
13098
+ export type InferenceComponentName = string;
13099
+ export type InferenceComponentNameContains = string;
13100
+ export interface InferenceComponentRuntimeConfig {
13101
+ /**
13102
+ * The number of runtime copies of the model container to deploy with the inference component. Each copy can serve inference requests.
13103
+ */
13104
+ CopyCount: InferenceComponentCopyCount;
13105
+ }
13106
+ export interface InferenceComponentRuntimeConfigSummary {
13107
+ /**
13108
+ * The number of runtime copies of the model container that you requested to deploy with the inference component.
13109
+ */
13110
+ DesiredCopyCount?: InferenceComponentCopyCount;
13111
+ /**
13112
+ * The number of runtime copies of the model container that are currently deployed.
13113
+ */
13114
+ CurrentCopyCount?: InferenceComponentCopyCount;
13115
+ }
13116
+ export type InferenceComponentSortKey = "Name"|"CreationTime"|"Status"|string;
13117
+ export interface InferenceComponentSpecification {
13118
+ /**
13119
+ * The name of an existing SageMaker model object in your account that you want to deploy with the inference component.
13120
+ */
13121
+ ModelName?: ModelName;
13122
+ /**
13123
+ * Defines a container that provides the runtime environment for a model that you deploy with an inference component.
13124
+ */
13125
+ Container?: InferenceComponentContainerSpecification;
13126
+ /**
13127
+ * Settings that take effect while the model container starts up.
13128
+ */
13129
+ StartupParameters?: InferenceComponentStartupParameters;
13130
+ /**
13131
+ * The compute resources allocated to run the model assigned to the inference component.
13132
+ */
13133
+ ComputeResourceRequirements: InferenceComponentComputeResourceRequirements;
13134
+ }
13135
+ export interface InferenceComponentSpecificationSummary {
13136
+ /**
13137
+ * The name of the SageMaker model object that is deployed with the inference component.
13138
+ */
13139
+ ModelName?: ModelName;
13140
+ /**
13141
+ * Details about the container that provides the runtime environment for the model that is deployed with the inference component.
13142
+ */
13143
+ Container?: InferenceComponentContainerSpecificationSummary;
13144
+ /**
13145
+ * Settings that take effect while the model container starts up.
13146
+ */
13147
+ StartupParameters?: InferenceComponentStartupParameters;
13148
+ /**
13149
+ * The compute resources allocated to run the model assigned to the inference component.
13150
+ */
13151
+ ComputeResourceRequirements?: InferenceComponentComputeResourceRequirements;
13152
+ }
13153
+ export interface InferenceComponentStartupParameters {
13154
+ /**
13155
+ * The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this inference component.
13156
+ */
13157
+ ModelDataDownloadTimeoutInSeconds?: ProductionVariantModelDataDownloadTimeoutInSeconds;
13158
+ /**
13159
+ * The timeout value, in seconds, for your inference container to pass health check by Amazon S3 Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.
13160
+ */
13161
+ ContainerStartupHealthCheckTimeoutInSeconds?: ProductionVariantContainerStartupHealthCheckTimeoutInSeconds;
13162
+ }
13163
+ export type InferenceComponentStatus = "InService"|"Creating"|"Updating"|"Failed"|"Deleting"|string;
13164
+ export interface InferenceComponentSummary {
13165
+ /**
13166
+ * The time when the inference component was created.
13167
+ */
13168
+ CreationTime: Timestamp;
13169
+ /**
13170
+ * The Amazon Resource Name (ARN) of the inference component.
13171
+ */
13172
+ InferenceComponentArn: InferenceComponentArn;
13173
+ /**
13174
+ * The name of the inference component.
13175
+ */
13176
+ InferenceComponentName: InferenceComponentName;
13177
+ /**
13178
+ * The Amazon Resource Name (ARN) of the endpoint that hosts the inference component.
13179
+ */
13180
+ EndpointArn: EndpointArn;
13181
+ /**
13182
+ * The name of the endpoint that hosts the inference component.
13183
+ */
13184
+ EndpointName: EndpointName;
13185
+ /**
13186
+ * The name of the production variant that hosts the inference component.
13187
+ */
13188
+ VariantName: VariantName;
13189
+ /**
13190
+ * The status of the inference component.
13191
+ */
13192
+ InferenceComponentStatus?: InferenceComponentStatus;
13193
+ /**
13194
+ * The time when the inference component was last updated.
13195
+ */
13196
+ LastModifiedTime: Timestamp;
13197
+ }
13198
+ export type InferenceComponentSummaryList = InferenceComponentSummary[];
12578
13199
  export interface InferenceExecutionConfig {
12579
13200
  /**
12580
13201
  * How containers in a multi-container are run. The following values are valid. SERIAL - Containers run as a serial pipeline. DIRECT - Only the individual container that you specify is run.
@@ -12788,6 +13409,12 @@ declare namespace SageMaker {
12788
13409
  SupportedResponseMIMETypes?: ResponseMIMETypes;
12789
13410
  }
12790
13411
  export type InferenceSpecificationName = string;
13412
+ export interface InfraCheckConfig {
13413
+ /**
13414
+ * Enables an infrastructure health check.
13415
+ */
13416
+ EnableInfraCheck?: EnableInfraCheck;
13417
+ }
12791
13418
  export type InitialInstanceCount = number;
12792
13419
  export type InitialNumberOfUsers = number;
12793
13420
  export type InitialTaskCount = number;
@@ -13165,6 +13792,7 @@ declare namespace SageMaker {
13165
13792
  */
13166
13793
  OutputParameters?: OutputParameterList;
13167
13794
  }
13795
+ export type LandingUri = string;
13168
13796
  export type LastModifiedTime = Date;
13169
13797
  export interface LastUpdateStatus {
13170
13798
  /**
@@ -13601,6 +14229,90 @@ declare namespace SageMaker {
13601
14229
  */
13602
14230
  NextToken?: NextToken;
13603
14231
  }
14232
+ export interface ListClusterNodesRequest {
14233
+ /**
14234
+ * The string name or the Amazon Resource Name (ARN) of the SageMaker HyperPod cluster in which you want to retrieve the list of nodes.
14235
+ */
14236
+ ClusterName: ClusterNameOrArn;
14237
+ /**
14238
+ * A filter that returns nodes in a SageMaker HyperPod cluster created after the specified time. Timestamps are formatted according to the ISO 8601 standard. Acceptable formats include: YYYY-MM-DDThh:mm:ss.sssTZD (UTC), for example, 2014-10-01T20:30:00.000Z YYYY-MM-DDThh:mm:ss.sssTZD (with offset), for example, 2014-10-01T12:30:00.000-08:00 YYYY-MM-DD, for example, 2014-10-01 Unix time in seconds, for example, 1412195400. This is also referred to as Unix Epoch time and represents the number of seconds since midnight, January 1, 1970 UTC. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.
14239
+ */
14240
+ CreationTimeAfter?: Timestamp;
14241
+ /**
14242
+ * A filter that returns nodes in a SageMaker HyperPod cluster created before the specified time. The acceptable formats are the same as the timestamp formats for CreationTimeAfter. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.
14243
+ */
14244
+ CreationTimeBefore?: Timestamp;
14245
+ /**
14246
+ * A filter that returns the instance groups whose name contain a specified string.
14247
+ */
14248
+ InstanceGroupNameContains?: ClusterInstanceGroupName;
14249
+ /**
14250
+ * The maximum number of nodes to return in the response.
14251
+ */
14252
+ MaxResults?: MaxResults;
14253
+ /**
14254
+ * If the result of the previous ListClusterNodes request was truncated, the response includes a NextToken. To retrieve the next set of cluster nodes, use the token in the next request.
14255
+ */
14256
+ NextToken?: NextToken;
14257
+ /**
14258
+ * The field by which to sort results. The default value is CREATION_TIME.
14259
+ */
14260
+ SortBy?: ClusterSortBy;
14261
+ /**
14262
+ * The sort order for results. The default value is Ascending.
14263
+ */
14264
+ SortOrder?: SortOrder;
14265
+ }
14266
+ export interface ListClusterNodesResponse {
14267
+ /**
14268
+ * The next token specified for listing instances in a SageMaker HyperPod cluster.
14269
+ */
14270
+ NextToken: NextToken;
14271
+ /**
14272
+ * The summaries of listed instances in a SageMaker HyperPod cluster
14273
+ */
14274
+ ClusterNodeSummaries: ClusterNodeSummaries;
14275
+ }
14276
+ export interface ListClustersRequest {
14277
+ /**
14278
+ * Set a start time for the time range during which you want to list SageMaker HyperPod clusters. Timestamps are formatted according to the ISO 8601 standard. Acceptable formats include: YYYY-MM-DDThh:mm:ss.sssTZD (UTC), for example, 2014-10-01T20:30:00.000Z YYYY-MM-DDThh:mm:ss.sssTZD (with offset), for example, 2014-10-01T12:30:00.000-08:00 YYYY-MM-DD, for example, 2014-10-01 Unix time in seconds, for example, 1412195400. This is also referred to as Unix Epoch time and represents the number of seconds since midnight, January 1, 1970 UTC. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.
14279
+ */
14280
+ CreationTimeAfter?: Timestamp;
14281
+ /**
14282
+ * Set an end time for the time range during which you want to list SageMaker HyperPod clusters. A filter that returns nodes in a SageMaker HyperPod cluster created before the specified time. The acceptable formats are the same as the timestamp formats for CreationTimeAfter. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.
14283
+ */
14284
+ CreationTimeBefore?: Timestamp;
14285
+ /**
14286
+ * Set the maximum number of SageMaker HyperPod clusters to list.
14287
+ */
14288
+ MaxResults?: MaxResults;
14289
+ /**
14290
+ * Set the maximum number of instances to print in the list.
14291
+ */
14292
+ NameContains?: NameContains;
14293
+ /**
14294
+ * Set the next token to retrieve the list of SageMaker HyperPod clusters.
14295
+ */
14296
+ NextToken?: NextToken;
14297
+ /**
14298
+ * The field by which to sort results. The default value is CREATION_TIME.
14299
+ */
14300
+ SortBy?: ClusterSortBy;
14301
+ /**
14302
+ * The sort order for results. The default value is Ascending.
14303
+ */
14304
+ SortOrder?: SortOrder;
14305
+ }
14306
+ export interface ListClustersResponse {
14307
+ /**
14308
+ * If the result of the previous ListClusters request was truncated, the response includes a NextToken. To retrieve the next set of clusters, use the token in the next request.
14309
+ */
14310
+ NextToken: NextToken;
14311
+ /**
14312
+ * The summaries of listed SageMaker HyperPod clusters.
14313
+ */
14314
+ ClusterSummaries: ClusterSummaries;
14315
+ }
13604
14316
  export interface ListCodeRepositoriesInput {
13605
14317
  /**
13606
14318
  * A filter that returns only Git repositories that were created after the specified time.
@@ -14545,6 +15257,66 @@ declare namespace SageMaker {
14545
15257
  */
14546
15258
  NextToken?: NextToken;
14547
15259
  }
15260
+ export interface ListInferenceComponentsInput {
15261
+ /**
15262
+ * The field by which to sort the inference components in the response. The default is CreationTime.
15263
+ */
15264
+ SortBy?: InferenceComponentSortKey;
15265
+ /**
15266
+ * The sort order for results. The default is Descending.
15267
+ */
15268
+ SortOrder?: OrderKey;
15269
+ /**
15270
+ * A token that you use to get the next set of results following a truncated response. If the response to the previous request was truncated, that response provides the value for this token.
15271
+ */
15272
+ NextToken?: PaginationToken;
15273
+ /**
15274
+ * The maximum number of inference components to return in the response. This value defaults to 10.
15275
+ */
15276
+ MaxResults?: MaxResults;
15277
+ /**
15278
+ * Filters the results to only those inference components with a name that contains the specified string.
15279
+ */
15280
+ NameContains?: InferenceComponentNameContains;
15281
+ /**
15282
+ * Filters the results to only those inference components that were created before the specified time.
15283
+ */
15284
+ CreationTimeBefore?: Timestamp;
15285
+ /**
15286
+ * Filters the results to only those inference components that were created after the specified time.
15287
+ */
15288
+ CreationTimeAfter?: Timestamp;
15289
+ /**
15290
+ * Filters the results to only those inference components that were updated before the specified time.
15291
+ */
15292
+ LastModifiedTimeBefore?: Timestamp;
15293
+ /**
15294
+ * Filters the results to only those inference components that were updated after the specified time.
15295
+ */
15296
+ LastModifiedTimeAfter?: Timestamp;
15297
+ /**
15298
+ * Filters the results to only those inference components with the specified status.
15299
+ */
15300
+ StatusEquals?: InferenceComponentStatus;
15301
+ /**
15302
+ * An endpoint name to filter the listed inference components. The response includes only those inference components that are hosted at the specified endpoint.
15303
+ */
15304
+ EndpointNameEquals?: EndpointName;
15305
+ /**
15306
+ * A production variant name to filter the listed inference components. The response includes only those inference components that are hosted at the specified variant.
15307
+ */
15308
+ VariantNameEquals?: VariantName;
15309
+ }
15310
+ export interface ListInferenceComponentsOutput {
15311
+ /**
15312
+ * A list of inference components and their properties that matches any of the filters you specified in the request.
15313
+ */
15314
+ InferenceComponents: InferenceComponentSummaryList;
15315
+ /**
15316
+ * The token to use in a subsequent request to get the next set of results following a truncated response.
15317
+ */
15318
+ NextToken?: PaginationToken;
15319
+ }
14548
15320
  export interface ListInferenceExperimentsRequest {
14549
15321
  /**
14550
15322
  * Selects inference experiments whose names contain this name.
@@ -16351,6 +17123,9 @@ declare namespace SageMaker {
16351
17123
  export type ListWorkteamsSortByOptions = "Name"|"CreateDate"|string;
16352
17124
  export type Long = number;
16353
17125
  export type MLFramework = string;
17126
+ export type ManagedInstanceScalingMaxInstanceCount = number;
17127
+ export type ManagedInstanceScalingMinInstanceCount = number;
17128
+ export type ManagedInstanceScalingStatus = "ENABLED"|"DISABLED"|string;
16354
17129
  export type MaxAutoMLJobRuntimeInSeconds = number;
16355
17130
  export type MaxCandidates = number;
16356
17131
  export type MaxConcurrentInvocationsPerInstance = number;
@@ -16384,6 +17159,7 @@ declare namespace SageMaker {
16384
17159
  OidcMemberDefinition?: OidcMemberDefinition;
16385
17160
  }
16386
17161
  export type MemberDefinitions = MemberDefinition[];
17162
+ export type MemoryInMb = number;
16387
17163
  export interface MetadataProperties {
16388
17164
  /**
16389
17165
  * The commit ID.
@@ -18039,6 +18815,8 @@ declare namespace SageMaker {
18039
18815
  NotificationTopicArn?: NotificationTopicArn;
18040
18816
  }
18041
18817
  export type NotificationTopicArn = string;
18818
+ export type NumberOfAcceleratorDevices = number;
18819
+ export type NumberOfCpuCores = number;
18042
18820
  export type NumberOfHumanWorkersPerDataObject = number;
18043
18821
  export type NumberOfSteps = number;
18044
18822
  export type ObjectiveStatus = "Succeeded"|"Pending"|"Failed"|string;
@@ -18377,6 +19155,14 @@ declare namespace SageMaker {
18377
19155
  * The serverless configuration requested for this deployment, as specified in the endpoint configuration for the endpoint.
18378
19156
  */
18379
19157
  DesiredServerlessConfig?: ProductionVariantServerlessConfig;
19158
+ /**
19159
+ * Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.
19160
+ */
19161
+ ManagedInstanceScaling?: ProductionVariantManagedInstanceScaling;
19162
+ /**
19163
+ * Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.
19164
+ */
19165
+ RoutingConfig?: ProductionVariantRoutingConfig;
18380
19166
  }
18381
19167
  export type PendingProductionVariantSummaryList = PendingProductionVariantSummary[];
18382
19168
  export type Percentage = number;
@@ -18970,7 +19756,7 @@ declare namespace SageMaker {
18970
19756
  /**
18971
19757
  * The name of the model that you want to host. This is the name that you specified when creating the model.
18972
19758
  */
18973
- ModelName: ModelName;
19759
+ ModelName?: ModelName;
18974
19760
  /**
18975
19761
  * Number of instances to launch initially.
18976
19762
  */
@@ -19011,6 +19797,14 @@ declare namespace SageMaker {
19011
19797
  * You can use this parameter to turn on native Amazon Web Services Systems Manager (SSM) access for a production variant behind an endpoint. By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling UpdateEndpoint.
19012
19798
  */
19013
19799
  EnableSSMAccess?: ProductionVariantSSMAccess;
19800
+ /**
19801
+ * Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.
19802
+ */
19803
+ ManagedInstanceScaling?: ProductionVariantManagedInstanceScaling;
19804
+ /**
19805
+ * Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.
19806
+ */
19807
+ RoutingConfig?: ProductionVariantRoutingConfig;
19014
19808
  }
19015
19809
  export type ProductionVariantAcceleratorType = "ml.eia1.medium"|"ml.eia1.large"|"ml.eia1.xlarge"|"ml.eia2.medium"|"ml.eia2.large"|"ml.eia2.xlarge"|string;
19016
19810
  export type ProductionVariantContainerStartupHealthCheckTimeoutInSeconds = number;
@@ -19026,7 +19820,27 @@ declare namespace SageMaker {
19026
19820
  }
19027
19821
  export type ProductionVariantInstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge"|"ml.c6i.large"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.4xlarge"|"ml.c6i.8xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.p4d.24xlarge"|"ml.c7g.large"|"ml.c7g.xlarge"|"ml.c7g.2xlarge"|"ml.c7g.4xlarge"|"ml.c7g.8xlarge"|"ml.c7g.12xlarge"|"ml.c7g.16xlarge"|"ml.m6g.large"|"ml.m6g.xlarge"|"ml.m6g.2xlarge"|"ml.m6g.4xlarge"|"ml.m6g.8xlarge"|"ml.m6g.12xlarge"|"ml.m6g.16xlarge"|"ml.m6gd.large"|"ml.m6gd.xlarge"|"ml.m6gd.2xlarge"|"ml.m6gd.4xlarge"|"ml.m6gd.8xlarge"|"ml.m6gd.12xlarge"|"ml.m6gd.16xlarge"|"ml.c6g.large"|"ml.c6g.xlarge"|"ml.c6g.2xlarge"|"ml.c6g.4xlarge"|"ml.c6g.8xlarge"|"ml.c6g.12xlarge"|"ml.c6g.16xlarge"|"ml.c6gd.large"|"ml.c6gd.xlarge"|"ml.c6gd.2xlarge"|"ml.c6gd.4xlarge"|"ml.c6gd.8xlarge"|"ml.c6gd.12xlarge"|"ml.c6gd.16xlarge"|"ml.c6gn.large"|"ml.c6gn.xlarge"|"ml.c6gn.2xlarge"|"ml.c6gn.4xlarge"|"ml.c6gn.8xlarge"|"ml.c6gn.12xlarge"|"ml.c6gn.16xlarge"|"ml.r6g.large"|"ml.r6g.xlarge"|"ml.r6g.2xlarge"|"ml.r6g.4xlarge"|"ml.r6g.8xlarge"|"ml.r6g.12xlarge"|"ml.r6g.16xlarge"|"ml.r6gd.large"|"ml.r6gd.xlarge"|"ml.r6gd.2xlarge"|"ml.r6gd.4xlarge"|"ml.r6gd.8xlarge"|"ml.r6gd.12xlarge"|"ml.r6gd.16xlarge"|"ml.p4de.24xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.inf2.xlarge"|"ml.inf2.8xlarge"|"ml.inf2.24xlarge"|"ml.inf2.48xlarge"|"ml.p5.48xlarge"|string;
19028
19822
  export type ProductionVariantList = ProductionVariant[];
19823
+ export interface ProductionVariantManagedInstanceScaling {
19824
+ /**
19825
+ * Indicates whether managed instance scaling is enabled.
19826
+ */
19827
+ Status?: ManagedInstanceScalingStatus;
19828
+ /**
19829
+ * The minimum number of instances that the endpoint must retain when it scales down to accommodate a decrease in traffic.
19830
+ */
19831
+ MinInstanceCount?: ManagedInstanceScalingMinInstanceCount;
19832
+ /**
19833
+ * The maximum number of instances that the endpoint can provision when it scales up to accommodate an increase in traffic.
19834
+ */
19835
+ MaxInstanceCount?: ManagedInstanceScalingMaxInstanceCount;
19836
+ }
19029
19837
  export type ProductionVariantModelDataDownloadTimeoutInSeconds = number;
19838
+ export interface ProductionVariantRoutingConfig {
19839
+ /**
19840
+ * Sets how the endpoint routes incoming traffic: LEAST_OUTSTANDING_REQUESTS: The endpoint routes requests to the specific instances that have more capacity to process them. RANDOM: The endpoint routes each request to a randomly chosen instance.
19841
+ */
19842
+ RoutingStrategy: RoutingStrategy;
19843
+ }
19030
19844
  export type ProductionVariantSSMAccess = boolean;
19031
19845
  export interface ProductionVariantServerlessConfig {
19032
19846
  /**
@@ -19104,6 +19918,14 @@ declare namespace SageMaker {
19104
19918
  * The serverless configuration requested for the endpoint update.
19105
19919
  */
19106
19920
  DesiredServerlessConfig?: ProductionVariantServerlessConfig;
19921
+ /**
19922
+ * Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.
19923
+ */
19924
+ ManagedInstanceScaling?: ProductionVariantManagedInstanceScaling;
19925
+ /**
19926
+ * Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.
19927
+ */
19928
+ RoutingConfig?: ProductionVariantRoutingConfig;
19107
19929
  }
19108
19930
  export type ProductionVariantSummaryList = ProductionVariantSummary[];
19109
19931
  export type ProductionVariantVolumeSizeInGB = number;
@@ -19928,6 +20750,10 @@ declare namespace SageMaker {
19928
20750
  * The ARN of the image version created on the instance.
19929
20751
  */
19930
20752
  SageMakerImageVersionArn?: ImageVersionArn;
20753
+ /**
20754
+ * The SageMakerImageVersionAlias.
20755
+ */
20756
+ SageMakerImageVersionAlias?: ImageVersionAlias;
19931
20757
  /**
19932
20758
  * The instance type that the image version runs on. JupyterServer apps only support the system value. For KernelGateway apps, the system value is translated to ml.t3.medium. KernelGateway apps also support all other values for available instance types.
19933
20759
  */
@@ -19993,6 +20819,7 @@ declare namespace SageMaker {
19993
20819
  RollbackMaximumBatchSize?: CapacitySize;
19994
20820
  }
19995
20821
  export type RootAccess = "Enabled"|"Disabled"|string;
20822
+ export type RoutingStrategy = "LEAST_OUTSTANDING_REQUESTS"|"RANDOM"|string;
19996
20823
  export type RuleConfigurationName = string;
19997
20824
  export type RuleEvaluationStatus = "InProgress"|"NoIssuesFound"|"IssuesFound"|"Error"|"Stopping"|"Stopped"|string;
19998
20825
  export type RuleParameters = {[key: string]: ConfigValue};
@@ -20699,15 +21526,15 @@ declare namespace SageMaker {
20699
21526
  */
20700
21527
  StudioLifecycleConfigArn?: StudioLifecycleConfigArn;
20701
21528
  /**
20702
- * The name of the Studio Lifecycle Configuration.
21529
+ * The name of the Amazon SageMaker Studio Lifecycle Configuration.
20703
21530
  */
20704
21531
  StudioLifecycleConfigName?: StudioLifecycleConfigName;
20705
21532
  /**
20706
- * The creation time of the Studio Lifecycle Configuration.
21533
+ * The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
20707
21534
  */
20708
21535
  CreationTime?: Timestamp;
20709
21536
  /**
20710
- * This value is equivalent to CreationTime because Studio Lifecycle Configurations are immutable.
21537
+ * This value is equivalent to CreationTime because Amazon SageMaker Studio Lifecycle Configurations are immutable.
20711
21538
  */
20712
21539
  LastModifiedTime?: Timestamp;
20713
21540
  /**
@@ -20718,6 +21545,7 @@ declare namespace SageMaker {
20718
21545
  export type StudioLifecycleConfigName = string;
20719
21546
  export type StudioLifecycleConfigSortKey = "CreationTime"|"LastModifiedTime"|"Name"|string;
20720
21547
  export type StudioLifecycleConfigsList = StudioLifecycleConfigDetails[];
21548
+ export type StudioWebPortal = "ENABLED"|"DISABLED"|string;
20721
21549
  export type SubnetId = string;
20722
21550
  export type Subnets = SubnetId[];
20723
21551
  export interface SubscribedWorkteam {
@@ -20877,12 +21705,22 @@ declare namespace SageMaker {
20877
21705
  */
20878
21706
  TargetLabelColumn: TargetLabelColumn;
20879
21707
  }
21708
+ export type TextGenerationHyperParameterKey = string;
21709
+ export type TextGenerationHyperParameterValue = string;
21710
+ export type TextGenerationHyperParameters = {[key: string]: TextGenerationHyperParameterValue};
20880
21711
  export interface TextGenerationJobConfig {
21712
+ /**
21713
+ * How long a fine-tuning job is allowed to run. For TextGenerationJobConfig problem types, the MaxRuntimePerTrainingJobInSeconds attribute of AutoMLJobCompletionCriteria defaults to 72h (259200s).
21714
+ */
20881
21715
  CompletionCriteria?: AutoMLJobCompletionCriteria;
20882
21716
  /**
20883
- * The name of the base model to fine-tune. Autopilot supports fine-tuning a variety of large language models. For information on the list of supported models, see Text generation models supporting fine-tuning in Autopilot. If no BaseModelName is provided, the default model used is Falcon-7B-Instruct.
21717
+ * The name of the base model to fine-tune. Autopilot supports fine-tuning a variety of large language models. For information on the list of supported models, see Text generation models supporting fine-tuning in Autopilot. If no BaseModelName is provided, the default model used is Falcon7BInstruct.
20884
21718
  */
20885
21719
  BaseModelName?: BaseModelName;
21720
+ /**
21721
+ * The hyperparameters used to configure and optimize the learning process of the base model. You can set any combination of the following hyperparameters for all base models. For more information on each supported hyperparameter, see Optimize the learning process of your text generation models with hyperparameters. "epochCount": The number of times the model goes through the entire training dataset. Its value should be a string containing an integer value within the range of "1" to "10". "batchSize": The number of data samples used in each iteration of training. Its value should be a string containing an integer value within the range of "1" to "64". "learningRate": The step size at which a model's parameters are updated during training. Its value should be a string containing a floating-point value within the range of "0" to "1". "learningRateWarmupSteps": The number of training steps during which the learning rate gradually increases before reaching its target or maximum value. Its value should be a string containing an integer value within the range of "0" to "250". Here is an example where all four hyperparameters are configured. { "epochCount":"5", "learningRate":"0.5", "batchSize": "32", "learningRateWarmupSteps": "10" }
21722
+ */
21723
+ TextGenerationHyperParameters?: TextGenerationHyperParameters;
20886
21724
  }
20887
21725
  export interface TextGenerationResolvedAttributes {
20888
21726
  /**
@@ -21966,6 +22804,22 @@ declare namespace SageMaker {
21966
22804
  */
21967
22805
  ArtifactArn?: ArtifactArn;
21968
22806
  }
22807
+ export interface UpdateClusterRequest {
22808
+ /**
22809
+ * Specify the name of the SageMaker HyperPod cluster you want to update.
22810
+ */
22811
+ ClusterName: ClusterNameOrArn;
22812
+ /**
22813
+ * Specify the instance groups to update.
22814
+ */
22815
+ InstanceGroups: ClusterInstanceGroupSpecifications;
22816
+ }
22817
+ export interface UpdateClusterResponse {
22818
+ /**
22819
+ * The Amazon Resource Name (ARN) of the updated SageMaker HyperPod cluster.
22820
+ */
22821
+ ClusterArn: ClusterArn;
22822
+ }
21969
22823
  export interface UpdateCodeRepositoryInput {
21970
22824
  /**
21971
22825
  * The name of the Git repository to update.
@@ -22059,6 +22913,14 @@ declare namespace SageMaker {
22059
22913
  * The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided. If setting up the domain for use with RStudio, this value must be set to Service.
22060
22914
  */
22061
22915
  AppSecurityGroupManagement?: AppSecurityGroupManagement;
22916
+ /**
22917
+ * The VPC subnets that Studio uses for communication. If removing subnets, ensure there are no apps in the InService, Pending, or Deleting state.
22918
+ */
22919
+ SubnetIds?: Subnets;
22920
+ /**
22921
+ * Specifies the VPC used for non-EFS traffic. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access. VpcOnly - All Studio traffic is through the specified VPC and subnets. This configuration can only be modified if there are no apps in the InService, Pending, or Deleting state. The configuration cannot be updated if DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is already set or DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided as part of the same request.
22922
+ */
22923
+ AppNetworkAccessType?: AppNetworkAccessType;
22062
22924
  }
22063
22925
  export interface UpdateDomainResponse {
22064
22926
  /**
@@ -22284,6 +23146,42 @@ declare namespace SageMaker {
22284
23146
  */
22285
23147
  ImageVersionArn?: ImageVersionArn;
22286
23148
  }
23149
+ export interface UpdateInferenceComponentInput {
23150
+ /**
23151
+ * The name of the inference component.
23152
+ */
23153
+ InferenceComponentName: InferenceComponentName;
23154
+ /**
23155
+ * Details about the resources to deploy with this inference component, including the model, container, and compute resources.
23156
+ */
23157
+ Specification?: InferenceComponentSpecification;
23158
+ /**
23159
+ * Runtime settings for a model that is deployed with an inference component.
23160
+ */
23161
+ RuntimeConfig?: InferenceComponentRuntimeConfig;
23162
+ }
23163
+ export interface UpdateInferenceComponentOutput {
23164
+ /**
23165
+ * The Amazon Resource Name (ARN) of the inference component.
23166
+ */
23167
+ InferenceComponentArn: InferenceComponentArn;
23168
+ }
23169
+ export interface UpdateInferenceComponentRuntimeConfigInput {
23170
+ /**
23171
+ * The name of the inference component to update.
23172
+ */
23173
+ InferenceComponentName: InferenceComponentName;
23174
+ /**
23175
+ * Runtime settings for a model that is deployed with an inference component.
23176
+ */
23177
+ DesiredRuntimeConfig: InferenceComponentRuntimeConfig;
23178
+ }
23179
+ export interface UpdateInferenceComponentRuntimeConfigOutput {
23180
+ /**
23181
+ * The Amazon Resource Name (ARN) of the inference component.
23182
+ */
23183
+ InferenceComponentArn: InferenceComponentArn;
23184
+ }
22287
23185
  export interface UpdateInferenceExperimentRequest {
22288
23186
  /**
22289
23187
  * The name of the inference experiment to be updated.
@@ -22804,11 +23702,11 @@ declare namespace SageMaker {
22804
23702
  */
22805
23703
  ExecutionRole?: RoleArn;
22806
23704
  /**
22807
- * The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
23705
+ * The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
22808
23706
  */
22809
23707
  SecurityGroups?: SecurityGroupIds;
22810
23708
  /**
22811
- * Specifies options for sharing SageMaker Studio notebooks.
23709
+ * Specifies options for sharing Amazon SageMaker Studio notebooks.
22812
23710
  */
22813
23711
  SharingSettings?: SharingSettings;
22814
23712
  /**
@@ -22835,6 +23733,14 @@ declare namespace SageMaker {
22835
23733
  * The Canvas app settings.
22836
23734
  */
22837
23735
  CanvasAppSettings?: CanvasAppSettings;
23736
+ /**
23737
+ * The default experience that the user is directed to when accessing the domain. The supported values are: studio::: Indicates that Studio is the default experience. This value can only be passed if StudioWebPortal is set to ENABLED. app:JupyterServer:: Indicates that Studio Classic is the default experience.
23738
+ */
23739
+ DefaultLandingUri?: LandingUri;
23740
+ /**
23741
+ * Whether the user can access Studio. If this value is set to DISABLED, the user cannot access Studio, even if that is the default experience for the domain.
23742
+ */
23743
+ StudioWebPortal?: StudioWebPortal;
22838
23744
  }
22839
23745
  export type UsersPerStep = number;
22840
23746
  export type UtilizationMetric = number;