cdk-lambda-subminute 2.0.279 → 2.0.281

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. package/.jsii +3 -3
  2. package/lib/cdk-lambda-subminute.js +3 -3
  3. package/node_modules/aws-sdk/CHANGELOG.md +17 -1
  4. package/node_modules/aws-sdk/README.md +1 -1
  5. package/node_modules/aws-sdk/apis/appstream-2016-12-01.min.json +28 -5
  6. package/node_modules/aws-sdk/apis/ec2-2016-11-15.min.json +115 -56
  7. package/node_modules/aws-sdk/apis/ec2-2016-11-15.paginators.json +6 -0
  8. package/node_modules/aws-sdk/apis/elasticmapreduce-2009-03-31.min.json +14 -2
  9. package/node_modules/aws-sdk/apis/neptune-2014-10-31.min.json +86 -78
  10. package/node_modules/aws-sdk/apis/network-firewall-2020-11-12.min.json +30 -16
  11. package/node_modules/aws-sdk/apis/opensearch-2021-01-01.min.json +184 -167
  12. package/node_modules/aws-sdk/apis/redshift-2012-12-01.min.json +243 -125
  13. package/node_modules/aws-sdk/apis/redshift-2012-12-01.paginators.json +6 -0
  14. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +877 -862
  15. package/node_modules/aws-sdk/apis/ssm-sap-2018-05-10.min.json +62 -27
  16. package/node_modules/aws-sdk/apis/transfer-2018-11-05.min.json +53 -53
  17. package/node_modules/aws-sdk/apis/transfer-2018-11-05.paginators.json +12 -24
  18. package/node_modules/aws-sdk/apis/transfer-2018-11-05.waiters2.json +33 -41
  19. package/node_modules/aws-sdk/clients/appstream.d.ts +46 -6
  20. package/node_modules/aws-sdk/clients/ec2.d.ts +68 -0
  21. package/node_modules/aws-sdk/clients/emr.d.ts +56 -40
  22. package/node_modules/aws-sdk/clients/neptune.d.ts +20 -4
  23. package/node_modules/aws-sdk/clients/networkfirewall.d.ts +31 -11
  24. package/node_modules/aws-sdk/clients/opensearch.d.ts +47 -22
  25. package/node_modules/aws-sdk/clients/pinpoint.d.ts +3 -3
  26. package/node_modules/aws-sdk/clients/redshift.d.ts +167 -0
  27. package/node_modules/aws-sdk/clients/sagemaker.d.ts +36 -14
  28. package/node_modules/aws-sdk/clients/sns.d.ts +4 -4
  29. package/node_modules/aws-sdk/clients/ssmsap.d.ts +75 -4
  30. package/node_modules/aws-sdk/clients/transfer.d.ts +3 -3
  31. package/node_modules/aws-sdk/clients/wafv2.d.ts +20 -20
  32. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
  33. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +15 -15
  34. package/node_modules/aws-sdk/dist/aws-sdk.js +387 -186
  35. package/node_modules/aws-sdk/dist/aws-sdk.min.js +68 -68
  36. package/node_modules/aws-sdk/lib/core.js +1 -1
  37. package/node_modules/aws-sdk/package.json +1 -1
  38. package/package.json +3 -4
@@ -85,19 +85,19 @@ declare class SageMaker extends Service {
85
85
  */
86
86
  createArtifact(callback?: (err: AWSError, data: SageMaker.Types.CreateArtifactResponse) => void): Request<SageMaker.Types.CreateArtifactResponse, AWSError>;
87
87
  /**
88
- * Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, and non-tabular problem types such as image or text classification. Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
88
+ * Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
89
89
  */
90
90
  createAutoMLJob(params: SageMaker.Types.CreateAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
91
91
  /**
92
- * Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, and non-tabular problem types such as image or text classification. Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
92
+ * Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
93
93
  */
94
94
  createAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
95
95
  /**
96
- * Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, and non-tabular problem types such as image or text classification. Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
96
+ * Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
97
97
  */
98
98
  createAutoMLJobV2(params: SageMaker.Types.CreateAutoMLJobV2Request, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
99
99
  /**
100
- * Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, and non-tabular problem types such as image or text classification. Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
100
+ * Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
101
101
  */
102
102
  createAutoMLJobV2(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
103
103
  /**
@@ -3244,7 +3244,7 @@ declare namespace SageMaker {
3244
3244
  */
3245
3245
  ChannelType?: AutoMLChannelType;
3246
3246
  /**
3247
- * The content type of the data from the input source. The following are the allowed content types for different problems: For tabular problem types: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present. For image classification: image/png, image/jpeg, or image/*. The default value is image/*. For text classification: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present. For time-series forecasting: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
3247
+ * The content type of the data from the input source. The following are the allowed content types for different problems: For tabular problem types: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present. For image classification: image/png, image/jpeg, or image/*. The default value is image/*. For text classification: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present. For time-series forecasting: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present. For text generation (LLMs fine-tuning): text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
3248
3248
  */
3249
3249
  ContentType?: ContentType;
3250
3250
  /**
@@ -3258,7 +3258,7 @@ declare namespace SageMaker {
3258
3258
  }
3259
3259
  export interface AutoMLJobCompletionCriteria {
3260
3260
  /**
3261
- * The maximum number of times a training job is allowed to run. For text and image classification, as well as time-series forecasting problem types, the supported value is 1. For tabular problem types, the maximum value is 750.
3261
+ * The maximum number of times a training job is allowed to run. For text and image classification, time-series forecasting, as well as text generation (LLMs fine-tuning) problem types, the supported value is 1. For tabular problem types, the maximum value is 750.
3262
3262
  */
3263
3263
  MaxCandidates?: MaxCandidates;
3264
3264
  /**
@@ -3296,7 +3296,7 @@ declare namespace SageMaker {
3296
3296
  export type AutoMLJobName = string;
3297
3297
  export interface AutoMLJobObjective {
3298
3298
  /**
3299
- * The name of the objective metric used to measure the predictive quality of a machine learning system. During training, the model's parameters are updated iteratively to optimize its performance based on the feedback provided by the objective metric when evaluating the model on the validation dataset. For the list of all available metrics supported by Autopilot, see Autopilot metrics. If you do not specify a metric explicitly, the default behavior is to automatically use: For tabular problem types: Regression: MSE. Binary classification: F1. Multiclass classification: Accuracy. For image or text classification problem types: Accuracy For time-series forecasting problem types: AverageWeightedQuantileLoss
3299
+ * The name of the objective metric used to measure the predictive quality of a machine learning system. During training, the model's parameters are updated iteratively to optimize its performance based on the feedback provided by the objective metric when evaluating the model on the validation dataset. The list of available metrics supported by Autopilot and the default metric applied when you do not specify a metric name explicitly depend on the problem type. For tabular problem types: List of available metrics: Regression: InferenceLatency, MAE, MSE, R2, RMSE Binary classification: Accuracy, AUC, BalancedAccuracy, F1, InferenceLatency, LogLoss, Precision, Recall Multiclass classification: Accuracy, BalancedAccuracy, F1macro, InferenceLatency, LogLoss, PrecisionMacro, RecallMacro For a description of each metric, see Autopilot metrics for classification and regression. Default objective metrics: Regression: MSE. Binary classification: F1. Multiclass classification: Accuracy. For image or text classification problem types: List of available metrics: Accuracy For a description of each metric, see Autopilot metrics for text and image classification. Default objective metrics: Accuracy For time-series forecasting problem types: List of available metrics: RMSE, wQL, Average wQL, MASE, MAPE, WAPE For a description of each metric, see Autopilot metrics for time-series forecasting. Default objective metrics: AverageWeightedQuantileLoss For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the AutoMLJobObjective field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
3300
3300
  */
3301
3301
  MetricName: AutoMLMetricEnum;
3302
3302
  }
@@ -3350,7 +3350,7 @@ declare namespace SageMaker {
3350
3350
  }
3351
3351
  export type AutoMLMaxResults = number;
3352
3352
  export type AutoMLMetricEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"MAE"|"R2"|"BalancedAccuracy"|"Precision"|"PrecisionMacro"|"Recall"|"RecallMacro"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss"|string;
3353
- export type AutoMLMetricExtendedEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"MAE"|"R2"|"BalancedAccuracy"|"Precision"|"PrecisionMacro"|"Recall"|"RecallMacro"|"LogLoss"|"InferenceLatency"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss"|string;
3353
+ export type AutoMLMetricExtendedEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"MAE"|"R2"|"BalancedAccuracy"|"Precision"|"PrecisionMacro"|"Recall"|"RecallMacro"|"LogLoss"|"InferenceLatency"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss"|"Rouge1"|"Rouge2"|"RougeL"|"RougeLSum"|"Perplexity"|"ValidationLoss"|"TrainingLoss"|string;
3354
3354
  export type AutoMLMode = "AUTO"|"ENSEMBLING"|"HYPERPARAMETER_TUNING"|string;
3355
3355
  export type AutoMLNameContains = string;
3356
3356
  export interface AutoMLOutputDataConfig {
@@ -3380,20 +3380,28 @@ declare namespace SageMaker {
3380
3380
  */
3381
3381
  TextClassificationJobConfig?: TextClassificationJobConfig;
3382
3382
  /**
3383
- * Settings used to configure an AutoML job V2 for a tabular problem type (regression, classification).
3383
+ * Settings used to configure an AutoML job V2 for the tabular problem type (regression, classification).
3384
3384
  */
3385
3385
  TabularJobConfig?: TabularJobConfig;
3386
3386
  /**
3387
- * Settings used to configure an AutoML job V2 for a time-series forecasting problem type.
3387
+ * Settings used to configure an AutoML job V2 for the time-series forecasting problem type.
3388
3388
  */
3389
3389
  TimeSeriesForecastingJobConfig?: TimeSeriesForecastingJobConfig;
3390
+ /**
3391
+ * Settings used to configure an AutoML job V2 for the text generation (LLMs fine-tuning) problem type. The text generation models that support fine-tuning in Autopilot are currently accessible exclusively in regions supported by Canvas. Refer to the documentation of Canvas for the full list of its supported Regions.
3392
+ */
3393
+ TextGenerationJobConfig?: TextGenerationJobConfig;
3390
3394
  }
3391
- export type AutoMLProblemTypeConfigName = "ImageClassification"|"TextClassification"|"Tabular"|"TimeSeriesForecasting"|string;
3395
+ export type AutoMLProblemTypeConfigName = "ImageClassification"|"TextClassification"|"Tabular"|"TimeSeriesForecasting"|"TextGeneration"|string;
3392
3396
  export interface AutoMLProblemTypeResolvedAttributes {
3393
3397
  /**
3394
- * Defines the resolved attributes for the TABULAR problem type.
3398
+ * The resolved attributes for the tabular problem type.
3395
3399
  */
3396
3400
  TabularResolvedAttributes?: TabularResolvedAttributes;
3401
+ /**
3402
+ * The resolved attributes for the text generation problem type.
3403
+ */
3404
+ TextGenerationResolvedAttributes?: TextGenerationResolvedAttributes;
3397
3405
  }
3398
3406
  export type AutoMLProcessingUnit = "CPU"|"GPU"|string;
3399
3407
  export interface AutoMLResolvedAttributes {
@@ -3457,6 +3465,7 @@ declare namespace SageMaker {
3457
3465
  export type AutotuneMode = "Enabled"|string;
3458
3466
  export type AwsManagedHumanLoopRequestSource = "AWS/Rekognition/DetectModerationLabels/Image/V3"|"AWS/Textract/AnalyzeDocument/Forms/V1"|string;
3459
3467
  export type BacktestResultsLocation = string;
3468
+ export type BaseModelName = string;
3460
3469
  export interface BatchDataCaptureConfig {
3461
3470
  /**
3462
3471
  * The Amazon S3 location being used to capture the data.
@@ -4492,7 +4501,7 @@ declare namespace SageMaker {
4492
4501
  */
4493
4502
  AutoMLJobName: AutoMLJobName;
4494
4503
  /**
4495
- * An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the CreateAutoMLJob input parameters. The supported formats depend on the problem type: For tabular problem types: S3Prefix, ManifestFile. For image classification: S3Prefix, ManifestFile, AugmentedManifestFile. For text classification: S3Prefix. For time-series forecasting: S3Prefix.
4504
+ * An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the CreateAutoMLJob input parameters. The supported formats depend on the problem type: For tabular problem types: S3Prefix, ManifestFile. For image classification: S3Prefix, ManifestFile, AugmentedManifestFile. For text classification: S3Prefix. For time-series forecasting: S3Prefix. For text generation (LLMs fine-tuning): S3Prefix.
4496
4505
  */
4497
4506
  AutoMLJobInputDataConfig: AutoMLJobInputDataConfig;
4498
4507
  /**
@@ -4516,7 +4525,7 @@ declare namespace SageMaker {
4516
4525
  */
4517
4526
  SecurityConfig?: AutoMLSecurityConfig;
4518
4527
  /**
4519
- * Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective. For tabular problem types, you must either provide both the AutoMLJobObjective and indicate the type of supervised learning problem in AutoMLProblemTypeConfig (TabularJobConfig.ProblemType), or none at all.
4528
+ * Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective. For tabular problem types: You must either provide both the AutoMLJobObjective and indicate the type of supervised learning problem in AutoMLProblemTypeConfig (TabularJobConfig.ProblemType), or none at all. For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the AutoMLJobObjective field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
4520
4529
  */
4521
4530
  AutoMLJobObjective?: AutoMLJobObjective;
4522
4531
  /**
@@ -20846,6 +20855,19 @@ declare namespace SageMaker {
20846
20855
  */
20847
20856
  TargetLabelColumn: TargetLabelColumn;
20848
20857
  }
20858
+ export interface TextGenerationJobConfig {
20859
+ CompletionCriteria?: AutoMLJobCompletionCriteria;
20860
+ /**
20861
+ * The name of the base model to fine-tune. Autopilot supports fine-tuning a variety of large language models. For information on the list of supported models, see Text generation models supporting fine-tuning in Autopilot. If no BaseModelName is provided, the default model used is Falcon-7B-Instruct.
20862
+ */
20863
+ BaseModelName?: BaseModelName;
20864
+ }
20865
+ export interface TextGenerationResolvedAttributes {
20866
+ /**
20867
+ * The name of the base model to fine-tune.
20868
+ */
20869
+ BaseModelName?: BaseModelName;
20870
+ }
20849
20871
  export type ThingName = string;
20850
20872
  export interface TimeSeriesConfig {
20851
20873
  /**
@@ -308,11 +308,11 @@ declare class SNS extends Service {
308
308
  */
309
309
  setTopicAttributes(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
310
310
  /**
311
- * Subscribes an endpoint to an Amazon SNS topic. If the endpoint type is HTTP/S or email, or if the endpoint and the topic are not in the same Amazon Web Services account, the endpoint owner must run the ConfirmSubscription action to confirm the subscription. You call the ConfirmSubscription action with the token from the subscription response. Confirmation tokens are valid for three days. This action is throttled at 100 transactions per second (TPS).
311
+ * Subscribes an endpoint to an Amazon SNS topic. If the endpoint type is HTTP/S or email, or if the endpoint and the topic are not in the same Amazon Web Services account, the endpoint owner must run the ConfirmSubscription action to confirm the subscription. You call the ConfirmSubscription action with the token from the subscription response. Confirmation tokens are valid for two days. This action is throttled at 100 transactions per second (TPS).
312
312
  */
313
313
  subscribe(params: SNS.Types.SubscribeInput, callback?: (err: AWSError, data: SNS.Types.SubscribeResponse) => void): Request<SNS.Types.SubscribeResponse, AWSError>;
314
314
  /**
315
- * Subscribes an endpoint to an Amazon SNS topic. If the endpoint type is HTTP/S or email, or if the endpoint and the topic are not in the same Amazon Web Services account, the endpoint owner must run the ConfirmSubscription action to confirm the subscription. You call the ConfirmSubscription action with the token from the subscription response. Confirmation tokens are valid for three days. This action is throttled at 100 transactions per second (TPS).
315
+ * Subscribes an endpoint to an Amazon SNS topic. If the endpoint type is HTTP/S or email, or if the endpoint and the topic are not in the same Amazon Web Services account, the endpoint owner must run the ConfirmSubscription action to confirm the subscription. You call the ConfirmSubscription action with the token from the subscription response. Confirmation tokens are valid for two days. This action is throttled at 100 transactions per second (TPS).
316
316
  */
317
317
  subscribe(callback?: (err: AWSError, data: SNS.Types.SubscribeResponse) => void): Request<SNS.Types.SubscribeResponse, AWSError>;
318
318
  /**
@@ -483,7 +483,7 @@ declare namespace SNS {
483
483
  */
484
484
  Name: topicName;
485
485
  /**
486
- * A map of attributes with their corresponding values. The following lists the names, descriptions, and values of the special request parameters that the CreateTopic action uses: DeliveryPolicy – The policy that defines how Amazon SNS retries failed deliveries to HTTP/S endpoints. DisplayName – The display name to use for a topic with SMS subscriptions. FifoTopic – Set to true to create a FIFO topic. Policy – The policy that defines who can access your topic. By default, only the topic owner can publish or subscribe to the topic. SignatureVersion – The signature version corresponds to the hashing algorithm used while creating the signature of the notifications, subscription confirmations, or unsubscribe confirmation messages sent by Amazon SNS. By default, SignatureVersion is set to 1. TracingConfig – Tracing mode of an Amazon SNS topic. By default TracingConfig is set to PassThrough, and the topic passes through the tracing header it receives from an Amazon SNS publisher to its subscriptions. If set to Active, Amazon SNS will vend X-Ray segment data to topic owner account if the sampled flag in the tracing header is true. This is only supported on standard topics. The following attribute applies only to server-side encryption: KmsMasterKeyId – The ID of an Amazon Web Services managed customer master key (CMK) for Amazon SNS or a custom CMK. For more information, see Key Terms. For more examples, see KeyId in the Key Management Service API Reference. The following attributes apply only to FIFO topics: FifoTopicWhen this is set to true, a FIFO topic is created. ContentBasedDeduplication – Enables content-based deduplication for FIFO topics. By default, ContentBasedDeduplication is set to false. If you create a FIFO topic and this attribute is false, you must specify a value for the MessageDeduplicationId parameter for the Publish action. When you set ContentBasedDeduplication to true, Amazon SNS uses a SHA-256 hash to generate the MessageDeduplicationId using the body of the message (but not the attributes of the message). (Optional) To override the generated value, you can specify a value for the MessageDeduplicationId parameter for the Publish action.
486
+ * A map of attributes with their corresponding values. The following lists the names, descriptions, and values of the special request parameters that the CreateTopic action uses: DeliveryPolicy – The policy that defines how Amazon SNS retries failed deliveries to HTTP/S endpoints. DisplayName – The display name to use for a topic with SMS subscriptions. FifoTopic – Set to true to create a FIFO topic. Policy – The policy that defines who can access your topic. By default, only the topic owner can publish or subscribe to the topic. SignatureVersion – The signature version corresponds to the hashing algorithm used while creating the signature of the notifications, subscription confirmations, or unsubscribe confirmation messages sent by Amazon SNS. By default, SignatureVersion is set to 1. TracingConfig – Tracing mode of an Amazon SNS topic. By default TracingConfig is set to PassThrough, and the topic passes through the tracing header it receives from an Amazon SNS publisher to its subscriptions. If set to Active, Amazon SNS will vend X-Ray segment data to topic owner account if the sampled flag in the tracing header is true. This is only supported on standard topics. The following attribute applies only to server-side encryption: KmsMasterKeyId – The ID of an Amazon Web Services managed customer master key (CMK) for Amazon SNS or a custom CMK. For more information, see Key Terms. For more examples, see KeyId in the Key Management Service API Reference. The following attributes apply only to FIFO topics: ArchivePolicyAdds or updates an inline policy document to archive messages stored in the specified Amazon SNS topic. BeginningArchiveTime – The earliest starting point at which a message in the topic’s archive can be replayed from. This point in time is based on the configured message retention period set by the topic’s message archiving policy. ContentBasedDeduplication – Enables content-based deduplication for FIFO topics. By default, ContentBasedDeduplication is set to false. If you create a FIFO topic and this attribute is false, you must specify a value for the MessageDeduplicationId parameter for the Publish action. When you set ContentBasedDeduplication to true, Amazon SNS uses a SHA-256 hash to generate the MessageDeduplicationId using the body of the message (but not the attributes of the message). (Optional) To override the generated value, you can specify a value for the MessageDeduplicationId parameter for the Publish action.
487
487
  */
488
488
  Attributes?: TopicAttributesMap;
489
489
  /**
@@ -1066,7 +1066,7 @@ declare namespace SNS {
1066
1066
  */
1067
1067
  Endpoint?: endpoint;
1068
1068
  /**
1069
- * A map of attributes with their corresponding values. The following lists the names, descriptions, and values of the special request parameters that the Subscribe action uses: DeliveryPolicy – The policy that defines how Amazon SNS retries failed deliveries to HTTP/S endpoints. FilterPolicy – The simple JSON object that lets your subscriber receive only a subset of messages, rather than receiving every message published to the topic. FilterPolicyScope – This attribute lets you choose the filtering scope by using one of the following string value types: MessageAttributes (default) – The filter is applied on the message attributes. MessageBody – The filter is applied on the message body. RawMessageDelivery – When set to true, enables raw message delivery to Amazon SQS or HTTP/S endpoints. This eliminates the need for the endpoints to process JSON formatting, which is otherwise created for Amazon SNS metadata. RedrivePolicy – When specified, sends undeliverable messages to the specified Amazon SQS dead-letter queue. Messages that can't be delivered due to client errors (for example, when the subscribed endpoint is unreachable) or server errors (for example, when the service that powers the subscribed endpoint becomes unavailable) are held in the dead-letter queue for further analysis or reprocessing. The following attribute applies only to Amazon Kinesis Data Firehose delivery stream subscriptions: SubscriptionRoleArn – The ARN of the IAM role that has the following: Permission to write to the Kinesis Data Firehose delivery stream Amazon SNS listed as a trusted entity Specifying a valid ARN for this attribute is required for Kinesis Data Firehose delivery stream subscriptions. For more information, see Fanout to Kinesis Data Firehose delivery streams in the Amazon SNS Developer Guide.
1069
+ * A map of attributes with their corresponding values. The following lists the names, descriptions, and values of the special request parameters that the Subscribe action uses: DeliveryPolicy – The policy that defines how Amazon SNS retries failed deliveries to HTTP/S endpoints. FilterPolicy – The simple JSON object that lets your subscriber receive only a subset of messages, rather than receiving every message published to the topic. FilterPolicyScope – This attribute lets you choose the filtering scope by using one of the following string value types: MessageAttributes (default) – The filter is applied on the message attributes. MessageBody – The filter is applied on the message body. RawMessageDelivery – When set to true, enables raw message delivery to Amazon SQS or HTTP/S endpoints. This eliminates the need for the endpoints to process JSON formatting, which is otherwise created for Amazon SNS metadata. RedrivePolicy – When specified, sends undeliverable messages to the specified Amazon SQS dead-letter queue. Messages that can't be delivered due to client errors (for example, when the subscribed endpoint is unreachable) or server errors (for example, when the service that powers the subscribed endpoint becomes unavailable) are held in the dead-letter queue for further analysis or reprocessing. The following attribute applies only to Amazon Kinesis Data Firehose delivery stream subscriptions: SubscriptionRoleArn – The ARN of the IAM role that has the following: Permission to write to the Kinesis Data Firehose delivery stream Amazon SNS listed as a trusted entity Specifying a valid ARN for this attribute is required for Kinesis Data Firehose delivery stream subscriptions. For more information, see Fanout to Kinesis Data Firehose delivery streams in the Amazon SNS Developer Guide. The following attributes apply only to FIFO topics: ReplayPolicy – Adds or updates an inline policy document for a subscription to replay messages stored in the specified Amazon SNS topic. ReplayStatus – Retrieves the status of the subscription message replay, which can be one of the following: Completed – The replay has successfully redelivered all messages, and is now delivering newly published messages. If an ending point was specified in the ReplayPolicy then the subscription will no longer receive newly published messages. In progress – The replay is currently replaying the selected messages. Failed – The replay was unable to complete. Pending – The default state while the replay initiates.
1070
1070
  */
1071
1071
  Attributes?: SubscriptionAttributesMap;
1072
1072
  /**
@@ -157,6 +157,7 @@ declare class SsmSap extends Service {
157
157
  updateApplicationSettings(callback?: (err: AWSError, data: SsmSap.Types.UpdateApplicationSettingsOutput) => void): Request<SsmSap.Types.UpdateApplicationSettingsOutput, AWSError>;
158
158
  }
159
159
  declare namespace SsmSap {
160
+ export type AllocationType = "VPC_SUBNET"|"ELASTIC_IP"|"OVERLAY"|"UNKNOWN"|string;
160
161
  export type AppRegistryArn = string;
161
162
  export interface Application {
162
163
  /**
@@ -219,6 +220,10 @@ declare namespace SsmSap {
219
220
  * The ID of the application.
220
221
  */
221
222
  Id?: ApplicationId;
223
+ /**
224
+ * The status of the latest discovery.
225
+ */
226
+ DiscoveryStatus?: ApplicationDiscoveryStatus;
222
227
  /**
223
228
  * The type of the application.
224
229
  */
@@ -233,7 +238,7 @@ declare namespace SsmSap {
233
238
  Tags?: TagMap;
234
239
  }
235
240
  export type ApplicationSummaryList = ApplicationSummary[];
236
- export type ApplicationType = "HANA"|string;
241
+ export type ApplicationType = "HANA"|"SAP_ABAP"|string;
237
242
  export type Arn = string;
238
243
  export interface AssociatedHost {
239
244
  /**
@@ -244,6 +249,10 @@ declare namespace SsmSap {
244
249
  * The ID of the Amazon EC2 instance.
245
250
  */
246
251
  Ec2InstanceId?: String;
252
+ /**
253
+ * The IP addresses of the associated host.
254
+ */
255
+ IpAddresses?: IpAddressList;
247
256
  /**
248
257
  * The version of the operating system.
249
258
  */
@@ -267,6 +276,14 @@ declare namespace SsmSap {
267
276
  * The ID of the component.
268
277
  */
269
278
  ComponentId?: ComponentId;
279
+ /**
280
+ * The SAP System Identifier of the application component.
281
+ */
282
+ Sid?: SID;
283
+ /**
284
+ * The SAP system number of the application component.
285
+ */
286
+ SystemNumber?: SAPInstanceNumber;
270
287
  /**
271
288
  * The parent component of a highly available environment. For example, in a highly available SAP on AWS workload, the parent component consists of the entire setup, including the child components.
272
289
  */
@@ -284,13 +301,17 @@ declare namespace SsmSap {
284
301
  */
285
302
  ComponentType?: ComponentType;
286
303
  /**
287
- * The status of the component.
304
+ * The status of the component. ACTIVATED - this status has been deprecated. STARTING - the component is in the process of being started. STOPPED - the component is not running. STOPPING - the component is in the process of being stopped. RUNNING - the component is running. RUNNING_WITH_ERROR - one or more child component(s) of the parent component is not running. Call GetComponent to review the status of each child component. UNDEFINED - AWS Systems Manager for SAP cannot provide the component status based on the discovered information. Verify your SAP application.
288
305
  */
289
306
  Status?: ComponentStatus;
290
307
  /**
291
308
  * The hostname of the component.
292
309
  */
293
310
  SapHostname?: String;
311
+ /**
312
+ * The SAP feature of the component.
313
+ */
314
+ SapFeature?: String;
294
315
  /**
295
316
  * The kernel version of the component.
296
317
  */
@@ -319,6 +340,10 @@ declare namespace SsmSap {
319
340
  * The primary host of the component.
320
341
  */
321
342
  PrimaryHost?: String;
343
+ /**
344
+ * The connection specifications for the database of the component.
345
+ */
346
+ DatabaseConnection?: DatabaseConnection;
322
347
  /**
323
348
  * The time at which the component was last updated.
324
349
  */
@@ -354,7 +379,7 @@ declare namespace SsmSap {
354
379
  Arn?: SsmSapArn;
355
380
  }
356
381
  export type ComponentSummaryList = ComponentSummary[];
357
- export type ComponentType = "HANA"|"HANA_NODE"|string;
382
+ export type ComponentType = "HANA"|"HANA_NODE"|"ABAP"|"ASCS"|"DIALOG"|"WEBDISP"|"WD"|"ERS"|string;
358
383
  export type CredentialType = "ADMIN"|string;
359
384
  export interface Database {
360
385
  /**
@@ -402,6 +427,21 @@ declare namespace SsmSap {
402
427
  */
403
428
  LastUpdated?: Timestamp;
404
429
  }
430
+ export interface DatabaseConnection {
431
+ /**
432
+ * The method of connection.
433
+ */
434
+ DatabaseConnectionMethod?: DatabaseConnectionMethod;
435
+ /**
436
+ * The Amazon Resource Name of the connected SAP HANA database.
437
+ */
438
+ DatabaseArn?: SsmSapArn;
439
+ /**
440
+ * The IP address for connection.
441
+ */
442
+ ConnectionIp?: String;
443
+ }
444
+ export type DatabaseConnectionMethod = "DIRECT"|"OVERLAY"|string;
405
445
  export type DatabaseId = string;
406
446
  export type DatabaseIdList = DatabaseId[];
407
447
  export type DatabaseName = string;
@@ -611,6 +651,21 @@ declare namespace SsmSap {
611
651
  export type InstanceId = string;
612
652
  export type InstanceList = InstanceId[];
613
653
  export type Integer = number;
654
+ export type IpAddressList = IpAddressMember[];
655
+ export interface IpAddressMember {
656
+ /**
657
+ * The IP address.
658
+ */
659
+ IpAddress?: String;
660
+ /**
661
+ * The primary IP address.
662
+ */
663
+ Primary?: Boolean;
664
+ /**
665
+ * The type of allocation for the IP address.
666
+ */
667
+ AllocationType?: AllocationType;
668
+ }
614
669
  export interface ListApplicationsInput {
615
670
  /**
616
671
  * The token for the next page of results.
@@ -620,6 +675,10 @@ declare namespace SsmSap {
620
675
  * The maximum number of results to return with a single call. To retrieve the remaining results, make another call with the returned nextToken value.
621
676
  */
622
677
  MaxResults?: MaxResults;
678
+ /**
679
+ * The filter of name, value, and operator.
680
+ */
681
+ Filters?: FilterList;
623
682
  }
624
683
  export interface ListApplicationsOutput {
625
684
  /**
@@ -827,7 +886,11 @@ declare namespace SsmSap {
827
886
  /**
828
887
  * The credentials of the SAP application.
829
888
  */
830
- Credentials: ApplicationCredentialList;
889
+ Credentials?: ApplicationCredentialList;
890
+ /**
891
+ * The Amazon Resource Name of the SAP HANA database.
892
+ */
893
+ DatabaseArn?: SsmSapArn;
831
894
  }
832
895
  export interface RegisterApplicationOutput {
833
896
  /**
@@ -857,6 +920,10 @@ declare namespace SsmSap {
857
920
  * The cluster status of the component.
858
921
  */
859
922
  ClusterStatus?: ClusterStatus;
923
+ /**
924
+ * Indicates if or not enqueue replication is enabled for the ASCS component.
925
+ */
926
+ EnqueueReplication?: Boolean;
860
927
  }
861
928
  export type ResourceId = string;
862
929
  export type ResourceType = string;
@@ -923,6 +990,10 @@ declare namespace SsmSap {
923
990
  * Installation of AWS Backint Agent for SAP HANA.
924
991
  */
925
992
  Backint?: BackintConfig;
993
+ /**
994
+ * The Amazon Resource Name of the SAP HANA database that replaces the current SAP HANA connection with the SAP_ABAP application.
995
+ */
996
+ DatabaseArn?: SsmSapArn;
926
997
  }
927
998
  export interface UpdateApplicationSettingsOutput {
928
999
  /**
@@ -749,7 +749,7 @@ declare namespace Transfer {
749
749
  /**
750
750
  * The Amazon Resource Name (ARN) of the Identity and Access Management (IAM) role that allows a server to turn on Amazon CloudWatch logging for Amazon S3 or Amazon EFSevents. When set, you can view user activity in your CloudWatch logs.
751
751
  */
752
- LoggingRole?: Role;
752
+ LoggingRole?: NullableRole;
753
753
  /**
754
754
  * Specifies a string to display when users connect to a server. This string is displayed after the user authenticates. The SFTP protocol does not support post-authentication display banners.
755
755
  */
@@ -1481,7 +1481,7 @@ declare namespace Transfer {
1481
1481
  /**
1482
1482
  * The Amazon Resource Name (ARN) of the Identity and Access Management (IAM) role that allows a server to turn on Amazon CloudWatch logging for Amazon S3 or Amazon EFSevents. When set, you can view user activity in your CloudWatch logs.
1483
1483
  */
1484
- LoggingRole?: Role;
1484
+ LoggingRole?: NullableRole;
1485
1485
  /**
1486
1486
  * Specifies a string to display when users connect to a server. This string is displayed after the user authenticates. The SFTP protocol does not support post-authentication display banners.
1487
1487
  */
@@ -2514,7 +2514,7 @@ declare namespace Transfer {
2514
2514
  export type SftpAuthenticationMethods = "PASSWORD"|"PUBLIC_KEY"|"PUBLIC_KEY_OR_PASSWORD"|"PUBLIC_KEY_AND_PASSWORD"|string;
2515
2515
  export interface SftpConnectorConfig {
2516
2516
  /**
2517
- * The identifier for the secret (in Amazon Web Services Secrets Manager) that contains the SFTP user's private key, password, or both. The identifier can be either the Amazon Resource Name (ARN) or the name of the secret.
2517
+ * The identifier for the secret (in Amazon Web Services Secrets Manager) that contains the SFTP user's private key, password, or both. The identifier must be the Amazon Resource Name (ARN) of the secret.
2518
2518
  */
2519
2519
  UserSecretId?: SecretId;
2520
2520
  /**