cdk-lambda-subminute 2.0.264 → 2.0.266

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. package/.jsii +3 -3
  2. package/lib/cdk-lambda-subminute.js +3 -3
  3. package/node_modules/aws-sdk/CHANGELOG.md +20 -1
  4. package/node_modules/aws-sdk/README.md +1 -1
  5. package/node_modules/aws-sdk/apis/autoscaling-2011-01-01.examples.json +1 -1
  6. package/node_modules/aws-sdk/apis/autoscaling-2011-01-01.min.json +57 -57
  7. package/node_modules/aws-sdk/apis/autoscaling-2011-01-01.paginators.json +15 -0
  8. package/node_modules/aws-sdk/apis/controltower-2018-05-10.min.json +68 -1
  9. package/node_modules/aws-sdk/apis/customer-profiles-2020-08-15.min.json +31 -18
  10. package/node_modules/aws-sdk/apis/ec2-2016-11-15.min.json +134 -82
  11. package/node_modules/aws-sdk/apis/ivs-realtime-2020-07-14.min.json +14 -8
  12. package/node_modules/aws-sdk/apis/lambda-2015-03-31.min.json +102 -96
  13. package/node_modules/aws-sdk/apis/location-2020-11-19.min.json +36 -36
  14. package/node_modules/aws-sdk/apis/machinelearning-2014-12-12.min.json +8 -2
  15. package/node_modules/aws-sdk/apis/rds-2014-10-31.min.json +43 -7
  16. package/node_modules/aws-sdk/apis/rekognition-2016-06-27.min.json +194 -161
  17. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +740 -728
  18. package/node_modules/aws-sdk/apis/textract-2018-06-27.min.json +483 -76
  19. package/node_modules/aws-sdk/apis/textract-2018-06-27.paginators.json +12 -0
  20. package/node_modules/aws-sdk/clients/autoscaling.d.ts +4 -3
  21. package/node_modules/aws-sdk/clients/configservice.d.ts +15 -15
  22. package/node_modules/aws-sdk/clients/controltower.d.ts +104 -15
  23. package/node_modules/aws-sdk/clients/customerprofiles.d.ts +6 -6
  24. package/node_modules/aws-sdk/clients/ec2.d.ts +62 -6
  25. package/node_modules/aws-sdk/clients/elbv2.d.ts +7 -7
  26. package/node_modules/aws-sdk/clients/glue.d.ts +5 -5
  27. package/node_modules/aws-sdk/clients/inspector2.d.ts +25 -25
  28. package/node_modules/aws-sdk/clients/ivsrealtime.d.ts +25 -0
  29. package/node_modules/aws-sdk/clients/lambda.d.ts +9 -0
  30. package/node_modules/aws-sdk/clients/pricing.d.ts +8 -8
  31. package/node_modules/aws-sdk/clients/rds.d.ts +48 -0
  32. package/node_modules/aws-sdk/clients/rekognition.d.ts +141 -72
  33. package/node_modules/aws-sdk/clients/sagemaker.d.ts +26 -6
  34. package/node_modules/aws-sdk/clients/textract.d.ts +534 -2
  35. package/node_modules/aws-sdk/clients/transcribeservice.d.ts +1 -1
  36. package/node_modules/aws-sdk/clients/workspaces.d.ts +2 -2
  37. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
  38. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +15 -15
  39. package/node_modules/aws-sdk/dist/aws-sdk.js +592 -444
  40. package/node_modules/aws-sdk/dist/aws-sdk.min.js +99 -99
  41. package/node_modules/aws-sdk/lib/core.js +1 -1
  42. package/node_modules/aws-sdk/package.json +1 -1
  43. package/node_modules/function-bind/.eslintrc +11 -5
  44. package/node_modules/function-bind/.github/FUNDING.yml +12 -0
  45. package/node_modules/function-bind/.github/SECURITY.md +3 -0
  46. package/node_modules/function-bind/.nycrc +13 -0
  47. package/node_modules/function-bind/CHANGELOG.md +136 -0
  48. package/node_modules/function-bind/README.md +25 -27
  49. package/node_modules/function-bind/implementation.js +44 -12
  50. package/node_modules/function-bind/package.json +38 -14
  51. package/package.json +3 -3
  52. package/node_modules/function-bind/.editorconfig +0 -20
  53. package/node_modules/function-bind/.jscs.json +0 -176
  54. package/node_modules/function-bind/.npmignore +0 -22
  55. package/node_modules/function-bind/.travis.yml +0 -168
@@ -29,11 +29,11 @@ declare class Rekognition extends Service {
29
29
  */
30
30
  compareFaces(callback?: (err: AWSError, data: Rekognition.Types.CompareFacesResponse) => void): Request<Rekognition.Types.CompareFacesResponse, AWSError>;
31
31
  /**
32
- * Copies a version of an Amazon Rekognition Custom Labels model from a source project to a destination project. The source and destination projects can be in different AWS accounts but must be in the same AWS Region. You can't copy a model to another AWS service. To copy a model version to a different AWS account, you need to create a resource-based policy known as a project policy. You attach the project policy to the source project by calling PutProjectPolicy. The project policy gives permission to copy the model version from a trusting AWS account to a trusted account. For more information creating and attaching a project policy, see Attaching a project policy (SDK) in the Amazon Rekognition Custom Labels Developer Guide. If you are copying a model version to a project in the same AWS account, you don't need to create a project policy. To copy a model, the destination project, source project, and source model version must already exist. Copying a model version takes a while to complete. To get the current status, call DescribeProjectVersions and check the value of Status in the ProjectVersionDescription object. The copy operation has finished when the value of Status is COPYING_COMPLETED. This operation requires permissions to perform the rekognition:CopyProjectVersion action.
32
+ * This operation applies only to Amazon Rekognition Custom Labels. Copies a version of an Amazon Rekognition Custom Labels model from a source project to a destination project. The source and destination projects can be in different AWS accounts but must be in the same AWS Region. You can't copy a model to another AWS service. To copy a model version to a different AWS account, you need to create a resource-based policy known as a project policy. You attach the project policy to the source project by calling PutProjectPolicy. The project policy gives permission to copy the model version from a trusting AWS account to a trusted account. For more information creating and attaching a project policy, see Attaching a project policy (SDK) in the Amazon Rekognition Custom Labels Developer Guide. If you are copying a model version to a project in the same AWS account, you don't need to create a project policy. Copying project versions is supported only for Custom Labels models. To copy a model, the destination project, source project, and source model version must already exist. Copying a model version takes a while to complete. To get the current status, call DescribeProjectVersions and check the value of Status in the ProjectVersionDescription object. The copy operation has finished when the value of Status is COPYING_COMPLETED. This operation requires permissions to perform the rekognition:CopyProjectVersion action.
33
33
  */
34
34
  copyProjectVersion(params: Rekognition.Types.CopyProjectVersionRequest, callback?: (err: AWSError, data: Rekognition.Types.CopyProjectVersionResponse) => void): Request<Rekognition.Types.CopyProjectVersionResponse, AWSError>;
35
35
  /**
36
- * Copies a version of an Amazon Rekognition Custom Labels model from a source project to a destination project. The source and destination projects can be in different AWS accounts but must be in the same AWS Region. You can't copy a model to another AWS service. To copy a model version to a different AWS account, you need to create a resource-based policy known as a project policy. You attach the project policy to the source project by calling PutProjectPolicy. The project policy gives permission to copy the model version from a trusting AWS account to a trusted account. For more information creating and attaching a project policy, see Attaching a project policy (SDK) in the Amazon Rekognition Custom Labels Developer Guide. If you are copying a model version to a project in the same AWS account, you don't need to create a project policy. To copy a model, the destination project, source project, and source model version must already exist. Copying a model version takes a while to complete. To get the current status, call DescribeProjectVersions and check the value of Status in the ProjectVersionDescription object. The copy operation has finished when the value of Status is COPYING_COMPLETED. This operation requires permissions to perform the rekognition:CopyProjectVersion action.
36
+ * This operation applies only to Amazon Rekognition Custom Labels. Copies a version of an Amazon Rekognition Custom Labels model from a source project to a destination project. The source and destination projects can be in different AWS accounts but must be in the same AWS Region. You can't copy a model to another AWS service. To copy a model version to a different AWS account, you need to create a resource-based policy known as a project policy. You attach the project policy to the source project by calling PutProjectPolicy. The project policy gives permission to copy the model version from a trusting AWS account to a trusted account. For more information creating and attaching a project policy, see Attaching a project policy (SDK) in the Amazon Rekognition Custom Labels Developer Guide. If you are copying a model version to a project in the same AWS account, you don't need to create a project policy. Copying project versions is supported only for Custom Labels models. To copy a model, the destination project, source project, and source model version must already exist. Copying a model version takes a while to complete. To get the current status, call DescribeProjectVersions and check the value of Status in the ProjectVersionDescription object. The copy operation has finished when the value of Status is COPYING_COMPLETED. This operation requires permissions to perform the rekognition:CopyProjectVersion action.
37
37
  */
38
38
  copyProjectVersion(callback?: (err: AWSError, data: Rekognition.Types.CopyProjectVersionResponse) => void): Request<Rekognition.Types.CopyProjectVersionResponse, AWSError>;
39
39
  /**
@@ -45,11 +45,11 @@ declare class Rekognition extends Service {
45
45
  */
46
46
  createCollection(callback?: (err: AWSError, data: Rekognition.Types.CreateCollectionResponse) => void): Request<Rekognition.Types.CreateCollectionResponse, AWSError>;
47
47
  /**
48
- * Creates a new Amazon Rekognition Custom Labels dataset. You can create a dataset by using an Amazon Sagemaker format manifest file or by copying an existing Amazon Rekognition Custom Labels dataset. To create a training dataset for a project, specify TRAIN for the value of DatasetType. To create the test dataset for a project, specify TEST for the value of DatasetType. The response from CreateDataset is the Amazon Resource Name (ARN) for the dataset. Creating a dataset takes a while to complete. Use DescribeDataset to check the current status. The dataset created successfully if the value of Status is CREATE_COMPLETE. To check if any non-terminal errors occurred, call ListDatasetEntries and check for the presence of errors lists in the JSON Lines. Dataset creation fails if a terminal error occurs (Status = CREATE_FAILED). Currently, you can't access the terminal error information. For more information, see Creating dataset in the Amazon Rekognition Custom Labels Developer Guide. This operation requires permissions to perform the rekognition:CreateDataset action. If you want to copy an existing dataset, you also require permission to perform the rekognition:ListDatasetEntries action.
48
+ * This operation applies only to Amazon Rekognition Custom Labels. Creates a new Amazon Rekognition Custom Labels dataset. You can create a dataset by using an Amazon Sagemaker format manifest file or by copying an existing Amazon Rekognition Custom Labels dataset. To create a training dataset for a project, specify TRAIN for the value of DatasetType. To create the test dataset for a project, specify TEST for the value of DatasetType. The response from CreateDataset is the Amazon Resource Name (ARN) for the dataset. Creating a dataset takes a while to complete. Use DescribeDataset to check the current status. The dataset created successfully if the value of Status is CREATE_COMPLETE. To check if any non-terminal errors occurred, call ListDatasetEntries and check for the presence of errors lists in the JSON Lines. Dataset creation fails if a terminal error occurs (Status = CREATE_FAILED). Currently, you can't access the terminal error information. For more information, see Creating dataset in the Amazon Rekognition Custom Labels Developer Guide. This operation requires permissions to perform the rekognition:CreateDataset action. If you want to copy an existing dataset, you also require permission to perform the rekognition:ListDatasetEntries action.
49
49
  */
50
50
  createDataset(params: Rekognition.Types.CreateDatasetRequest, callback?: (err: AWSError, data: Rekognition.Types.CreateDatasetResponse) => void): Request<Rekognition.Types.CreateDatasetResponse, AWSError>;
51
51
  /**
52
- * Creates a new Amazon Rekognition Custom Labels dataset. You can create a dataset by using an Amazon Sagemaker format manifest file or by copying an existing Amazon Rekognition Custom Labels dataset. To create a training dataset for a project, specify TRAIN for the value of DatasetType. To create the test dataset for a project, specify TEST for the value of DatasetType. The response from CreateDataset is the Amazon Resource Name (ARN) for the dataset. Creating a dataset takes a while to complete. Use DescribeDataset to check the current status. The dataset created successfully if the value of Status is CREATE_COMPLETE. To check if any non-terminal errors occurred, call ListDatasetEntries and check for the presence of errors lists in the JSON Lines. Dataset creation fails if a terminal error occurs (Status = CREATE_FAILED). Currently, you can't access the terminal error information. For more information, see Creating dataset in the Amazon Rekognition Custom Labels Developer Guide. This operation requires permissions to perform the rekognition:CreateDataset action. If you want to copy an existing dataset, you also require permission to perform the rekognition:ListDatasetEntries action.
52
+ * This operation applies only to Amazon Rekognition Custom Labels. Creates a new Amazon Rekognition Custom Labels dataset. You can create a dataset by using an Amazon Sagemaker format manifest file or by copying an existing Amazon Rekognition Custom Labels dataset. To create a training dataset for a project, specify TRAIN for the value of DatasetType. To create the test dataset for a project, specify TEST for the value of DatasetType. The response from CreateDataset is the Amazon Resource Name (ARN) for the dataset. Creating a dataset takes a while to complete. Use DescribeDataset to check the current status. The dataset created successfully if the value of Status is CREATE_COMPLETE. To check if any non-terminal errors occurred, call ListDatasetEntries and check for the presence of errors lists in the JSON Lines. Dataset creation fails if a terminal error occurs (Status = CREATE_FAILED). Currently, you can't access the terminal error information. For more information, see Creating dataset in the Amazon Rekognition Custom Labels Developer Guide. This operation requires permissions to perform the rekognition:CreateDataset action. If you want to copy an existing dataset, you also require permission to perform the rekognition:ListDatasetEntries action.
53
53
  */
54
54
  createDataset(callback?: (err: AWSError, data: Rekognition.Types.CreateDatasetResponse) => void): Request<Rekognition.Types.CreateDatasetResponse, AWSError>;
55
55
  /**
@@ -61,19 +61,19 @@ declare class Rekognition extends Service {
61
61
  */
62
62
  createFaceLivenessSession(callback?: (err: AWSError, data: Rekognition.Types.CreateFaceLivenessSessionResponse) => void): Request<Rekognition.Types.CreateFaceLivenessSessionResponse, AWSError>;
63
63
  /**
64
- * Creates a new Amazon Rekognition Custom Labels project. A project is a group of resources (datasets, model versions) that you use to create and manage Amazon Rekognition Custom Labels models. This operation requires permissions to perform the rekognition:CreateProject action.
64
+ * Creates a new Amazon Rekognition project. A project is a group of resources (datasets, model versions) that you use to create and manage a Amazon Rekognition Custom Labels Model or custom adapter. You can specify a feature to create the project with, if no feature is specified then Custom Labels is used by default. For adapters, you can also choose whether or not to have the project auto update by using the AutoUpdate argument. This operation requires permissions to perform the rekognition:CreateProject action.
65
65
  */
66
66
  createProject(params: Rekognition.Types.CreateProjectRequest, callback?: (err: AWSError, data: Rekognition.Types.CreateProjectResponse) => void): Request<Rekognition.Types.CreateProjectResponse, AWSError>;
67
67
  /**
68
- * Creates a new Amazon Rekognition Custom Labels project. A project is a group of resources (datasets, model versions) that you use to create and manage Amazon Rekognition Custom Labels models. This operation requires permissions to perform the rekognition:CreateProject action.
68
+ * Creates a new Amazon Rekognition project. A project is a group of resources (datasets, model versions) that you use to create and manage a Amazon Rekognition Custom Labels Model or custom adapter. You can specify a feature to create the project with, if no feature is specified then Custom Labels is used by default. For adapters, you can also choose whether or not to have the project auto update by using the AutoUpdate argument. This operation requires permissions to perform the rekognition:CreateProject action.
69
69
  */
70
70
  createProject(callback?: (err: AWSError, data: Rekognition.Types.CreateProjectResponse) => void): Request<Rekognition.Types.CreateProjectResponse, AWSError>;
71
71
  /**
72
- * Creates a new version of a model and begins training. Models are managed as part of an Amazon Rekognition Custom Labels project. The response from CreateProjectVersion is an Amazon Resource Name (ARN) for the version of the model. Training uses the training and test datasets associated with the project. For more information, see Creating training and test dataset in the Amazon Rekognition Custom Labels Developer Guide. You can train a model in a project that doesn't have associated datasets by specifying manifest files in the TrainingData and TestingData fields. If you open the console after training a model with manifest files, Amazon Rekognition Custom Labels creates the datasets for you using the most recent manifest files. You can no longer train a model version for the project by specifying manifest files. Instead of training with a project without associated datasets, we recommend that you use the manifest files to create training and test datasets for the project. Training takes a while to complete. You can get the current status by calling DescribeProjectVersions. Training completed successfully if the value of the Status field is TRAINING_COMPLETED. If training fails, see Debugging a failed model training in the Amazon Rekognition Custom Labels developer guide. Once training has successfully completed, call DescribeProjectVersions to get the training results and evaluate the model. For more information, see Improving a trained Amazon Rekognition Custom Labels model in the Amazon Rekognition Custom Labels developers guide. After evaluating the model, you start the model by calling StartProjectVersion. This operation requires permissions to perform the rekognition:CreateProjectVersion action.
72
+ * Creates a new version of Amazon Rekognition project (like a Custom Labels model or a custom adapter) and begins training. Models and adapters are managed as part of a Rekognition project. The response from CreateProjectVersion is an Amazon Resource Name (ARN) for the project version. The FeatureConfig operation argument allows you to configure specific model or adapter settings. You can provide a description to the project version by using the VersionDescription argment. Training can take a while to complete. You can get the current status by calling DescribeProjectVersions. Training completed successfully if the value of the Status field is TRAINING_COMPLETED. Once training has successfully completed, call DescribeProjectVersions to get the training results and evaluate the model. This operation requires permissions to perform the rekognition:CreateProjectVersion action. The following applies only to projects with Amazon Rekognition Custom Labels as the chosen feature: You can train a model in a project that doesn't have associated datasets by specifying manifest files in the TrainingData and TestingData fields. If you open the console after training a model with manifest files, Amazon Rekognition Custom Labels creates the datasets for you using the most recent manifest files. You can no longer train a model version for the project by specifying manifest files. Instead of training with a project without associated datasets, we recommend that you use the manifest files to create training and test datasets for the project.
73
73
  */
74
74
  createProjectVersion(params: Rekognition.Types.CreateProjectVersionRequest, callback?: (err: AWSError, data: Rekognition.Types.CreateProjectVersionResponse) => void): Request<Rekognition.Types.CreateProjectVersionResponse, AWSError>;
75
75
  /**
76
- * Creates a new version of a model and begins training. Models are managed as part of an Amazon Rekognition Custom Labels project. The response from CreateProjectVersion is an Amazon Resource Name (ARN) for the version of the model. Training uses the training and test datasets associated with the project. For more information, see Creating training and test dataset in the Amazon Rekognition Custom Labels Developer Guide. You can train a model in a project that doesn't have associated datasets by specifying manifest files in the TrainingData and TestingData fields. If you open the console after training a model with manifest files, Amazon Rekognition Custom Labels creates the datasets for you using the most recent manifest files. You can no longer train a model version for the project by specifying manifest files. Instead of training with a project without associated datasets, we recommend that you use the manifest files to create training and test datasets for the project. Training takes a while to complete. You can get the current status by calling DescribeProjectVersions. Training completed successfully if the value of the Status field is TRAINING_COMPLETED. If training fails, see Debugging a failed model training in the Amazon Rekognition Custom Labels developer guide. Once training has successfully completed, call DescribeProjectVersions to get the training results and evaluate the model. For more information, see Improving a trained Amazon Rekognition Custom Labels model in the Amazon Rekognition Custom Labels developers guide. After evaluating the model, you start the model by calling StartProjectVersion. This operation requires permissions to perform the rekognition:CreateProjectVersion action.
76
+ * Creates a new version of Amazon Rekognition project (like a Custom Labels model or a custom adapter) and begins training. Models and adapters are managed as part of a Rekognition project. The response from CreateProjectVersion is an Amazon Resource Name (ARN) for the project version. The FeatureConfig operation argument allows you to configure specific model or adapter settings. You can provide a description to the project version by using the VersionDescription argment. Training can take a while to complete. You can get the current status by calling DescribeProjectVersions. Training completed successfully if the value of the Status field is TRAINING_COMPLETED. Once training has successfully completed, call DescribeProjectVersions to get the training results and evaluate the model. This operation requires permissions to perform the rekognition:CreateProjectVersion action. The following applies only to projects with Amazon Rekognition Custom Labels as the chosen feature: You can train a model in a project that doesn't have associated datasets by specifying manifest files in the TrainingData and TestingData fields. If you open the console after training a model with manifest files, Amazon Rekognition Custom Labels creates the datasets for you using the most recent manifest files. You can no longer train a model version for the project by specifying manifest files. Instead of training with a project without associated datasets, we recommend that you use the manifest files to create training and test datasets for the project.
77
77
  */
78
78
  createProjectVersion(callback?: (err: AWSError, data: Rekognition.Types.CreateProjectVersionResponse) => void): Request<Rekognition.Types.CreateProjectVersionResponse, AWSError>;
79
79
  /**
@@ -101,11 +101,11 @@ declare class Rekognition extends Service {
101
101
  */
102
102
  deleteCollection(callback?: (err: AWSError, data: Rekognition.Types.DeleteCollectionResponse) => void): Request<Rekognition.Types.DeleteCollectionResponse, AWSError>;
103
103
  /**
104
- * Deletes an existing Amazon Rekognition Custom Labels dataset. Deleting a dataset might take while. Use DescribeDataset to check the current status. The dataset is still deleting if the value of Status is DELETE_IN_PROGRESS. If you try to access the dataset after it is deleted, you get a ResourceNotFoundException exception. You can't delete a dataset while it is creating (Status = CREATE_IN_PROGRESS) or if the dataset is updating (Status = UPDATE_IN_PROGRESS). This operation requires permissions to perform the rekognition:DeleteDataset action.
104
+ * This operation applies only to Amazon Rekognition Custom Labels. Deletes an existing Amazon Rekognition Custom Labels dataset. Deleting a dataset might take while. Use DescribeDataset to check the current status. The dataset is still deleting if the value of Status is DELETE_IN_PROGRESS. If you try to access the dataset after it is deleted, you get a ResourceNotFoundException exception. You can't delete a dataset while it is creating (Status = CREATE_IN_PROGRESS) or if the dataset is updating (Status = UPDATE_IN_PROGRESS). This operation requires permissions to perform the rekognition:DeleteDataset action.
105
105
  */
106
106
  deleteDataset(params: Rekognition.Types.DeleteDatasetRequest, callback?: (err: AWSError, data: Rekognition.Types.DeleteDatasetResponse) => void): Request<Rekognition.Types.DeleteDatasetResponse, AWSError>;
107
107
  /**
108
- * Deletes an existing Amazon Rekognition Custom Labels dataset. Deleting a dataset might take while. Use DescribeDataset to check the current status. The dataset is still deleting if the value of Status is DELETE_IN_PROGRESS. If you try to access the dataset after it is deleted, you get a ResourceNotFoundException exception. You can't delete a dataset while it is creating (Status = CREATE_IN_PROGRESS) or if the dataset is updating (Status = UPDATE_IN_PROGRESS). This operation requires permissions to perform the rekognition:DeleteDataset action.
108
+ * This operation applies only to Amazon Rekognition Custom Labels. Deletes an existing Amazon Rekognition Custom Labels dataset. Deleting a dataset might take while. Use DescribeDataset to check the current status. The dataset is still deleting if the value of Status is DELETE_IN_PROGRESS. If you try to access the dataset after it is deleted, you get a ResourceNotFoundException exception. You can't delete a dataset while it is creating (Status = CREATE_IN_PROGRESS) or if the dataset is updating (Status = UPDATE_IN_PROGRESS). This operation requires permissions to perform the rekognition:DeleteDataset action.
109
109
  */
110
110
  deleteDataset(callback?: (err: AWSError, data: Rekognition.Types.DeleteDatasetResponse) => void): Request<Rekognition.Types.DeleteDatasetResponse, AWSError>;
111
111
  /**
@@ -117,27 +117,27 @@ declare class Rekognition extends Service {
117
117
  */
118
118
  deleteFaces(callback?: (err: AWSError, data: Rekognition.Types.DeleteFacesResponse) => void): Request<Rekognition.Types.DeleteFacesResponse, AWSError>;
119
119
  /**
120
- * Deletes an Amazon Rekognition Custom Labels project. To delete a project you must first delete all models associated with the project. To delete a model, see DeleteProjectVersion. DeleteProject is an asynchronous operation. To check if the project is deleted, call DescribeProjects. The project is deleted when the project no longer appears in the response. Be aware that deleting a given project will also delete any ProjectPolicies associated with that project. This operation requires permissions to perform the rekognition:DeleteProject action.
120
+ * Deletes a Amazon Rekognition project. To delete a project you must first delete all models or adapters associated with the project. To delete a model or adapter, see DeleteProjectVersion. DeleteProject is an asynchronous operation. To check if the project is deleted, call DescribeProjects. The project is deleted when the project no longer appears in the response. Be aware that deleting a given project will also delete any ProjectPolicies associated with that project. This operation requires permissions to perform the rekognition:DeleteProject action.
121
121
  */
122
122
  deleteProject(params: Rekognition.Types.DeleteProjectRequest, callback?: (err: AWSError, data: Rekognition.Types.DeleteProjectResponse) => void): Request<Rekognition.Types.DeleteProjectResponse, AWSError>;
123
123
  /**
124
- * Deletes an Amazon Rekognition Custom Labels project. To delete a project you must first delete all models associated with the project. To delete a model, see DeleteProjectVersion. DeleteProject is an asynchronous operation. To check if the project is deleted, call DescribeProjects. The project is deleted when the project no longer appears in the response. Be aware that deleting a given project will also delete any ProjectPolicies associated with that project. This operation requires permissions to perform the rekognition:DeleteProject action.
124
+ * Deletes a Amazon Rekognition project. To delete a project you must first delete all models or adapters associated with the project. To delete a model or adapter, see DeleteProjectVersion. DeleteProject is an asynchronous operation. To check if the project is deleted, call DescribeProjects. The project is deleted when the project no longer appears in the response. Be aware that deleting a given project will also delete any ProjectPolicies associated with that project. This operation requires permissions to perform the rekognition:DeleteProject action.
125
125
  */
126
126
  deleteProject(callback?: (err: AWSError, data: Rekognition.Types.DeleteProjectResponse) => void): Request<Rekognition.Types.DeleteProjectResponse, AWSError>;
127
127
  /**
128
- * Deletes an existing project policy. To get a list of project policies attached to a project, call ListProjectPolicies. To attach a project policy to a project, call PutProjectPolicy. This operation requires permissions to perform the rekognition:DeleteProjectPolicy action.
128
+ * This operation applies only to Amazon Rekognition Custom Labels. Deletes an existing project policy. To get a list of project policies attached to a project, call ListProjectPolicies. To attach a project policy to a project, call PutProjectPolicy. This operation requires permissions to perform the rekognition:DeleteProjectPolicy action.
129
129
  */
130
130
  deleteProjectPolicy(params: Rekognition.Types.DeleteProjectPolicyRequest, callback?: (err: AWSError, data: Rekognition.Types.DeleteProjectPolicyResponse) => void): Request<Rekognition.Types.DeleteProjectPolicyResponse, AWSError>;
131
131
  /**
132
- * Deletes an existing project policy. To get a list of project policies attached to a project, call ListProjectPolicies. To attach a project policy to a project, call PutProjectPolicy. This operation requires permissions to perform the rekognition:DeleteProjectPolicy action.
132
+ * This operation applies only to Amazon Rekognition Custom Labels. Deletes an existing project policy. To get a list of project policies attached to a project, call ListProjectPolicies. To attach a project policy to a project, call PutProjectPolicy. This operation requires permissions to perform the rekognition:DeleteProjectPolicy action.
133
133
  */
134
134
  deleteProjectPolicy(callback?: (err: AWSError, data: Rekognition.Types.DeleteProjectPolicyResponse) => void): Request<Rekognition.Types.DeleteProjectPolicyResponse, AWSError>;
135
135
  /**
136
- * Deletes an Amazon Rekognition Custom Labels model. You can't delete a model if it is running or if it is training. To check the status of a model, use the Status field returned from DescribeProjectVersions. To stop a running model call StopProjectVersion. If the model is training, wait until it finishes. This operation requires permissions to perform the rekognition:DeleteProjectVersion action.
136
+ * Deletes a Rekognition project model or project version, like a Amazon Rekognition Custom Labels model or a custom adapter. You can't delete a project version if it is running or if it is training. To check the status of a project version, use the Status field returned from DescribeProjectVersions. To stop a project version call StopProjectVersion. If the project version is training, wait until it finishes. This operation requires permissions to perform the rekognition:DeleteProjectVersion action.
137
137
  */
138
138
  deleteProjectVersion(params: Rekognition.Types.DeleteProjectVersionRequest, callback?: (err: AWSError, data: Rekognition.Types.DeleteProjectVersionResponse) => void): Request<Rekognition.Types.DeleteProjectVersionResponse, AWSError>;
139
139
  /**
140
- * Deletes an Amazon Rekognition Custom Labels model. You can't delete a model if it is running or if it is training. To check the status of a model, use the Status field returned from DescribeProjectVersions. To stop a running model call StopProjectVersion. If the model is training, wait until it finishes. This operation requires permissions to perform the rekognition:DeleteProjectVersion action.
140
+ * Deletes a Rekognition project model or project version, like a Amazon Rekognition Custom Labels model or a custom adapter. You can't delete a project version if it is running or if it is training. To check the status of a project version, use the Status field returned from DescribeProjectVersions. To stop a project version call StopProjectVersion. If the project version is training, wait until it finishes. This operation requires permissions to perform the rekognition:DeleteProjectVersion action.
141
141
  */
142
142
  deleteProjectVersion(callback?: (err: AWSError, data: Rekognition.Types.DeleteProjectVersionResponse) => void): Request<Rekognition.Types.DeleteProjectVersionResponse, AWSError>;
143
143
  /**
@@ -165,27 +165,27 @@ declare class Rekognition extends Service {
165
165
  */
166
166
  describeCollection(callback?: (err: AWSError, data: Rekognition.Types.DescribeCollectionResponse) => void): Request<Rekognition.Types.DescribeCollectionResponse, AWSError>;
167
167
  /**
168
- * Describes an Amazon Rekognition Custom Labels dataset. You can get information such as the current status of a dataset and statistics about the images and labels in a dataset. This operation requires permissions to perform the rekognition:DescribeDataset action.
168
+ * This operation applies only to Amazon Rekognition Custom Labels. Describes an Amazon Rekognition Custom Labels dataset. You can get information such as the current status of a dataset and statistics about the images and labels in a dataset. This operation requires permissions to perform the rekognition:DescribeDataset action.
169
169
  */
170
170
  describeDataset(params: Rekognition.Types.DescribeDatasetRequest, callback?: (err: AWSError, data: Rekognition.Types.DescribeDatasetResponse) => void): Request<Rekognition.Types.DescribeDatasetResponse, AWSError>;
171
171
  /**
172
- * Describes an Amazon Rekognition Custom Labels dataset. You can get information such as the current status of a dataset and statistics about the images and labels in a dataset. This operation requires permissions to perform the rekognition:DescribeDataset action.
172
+ * This operation applies only to Amazon Rekognition Custom Labels. Describes an Amazon Rekognition Custom Labels dataset. You can get information such as the current status of a dataset and statistics about the images and labels in a dataset. This operation requires permissions to perform the rekognition:DescribeDataset action.
173
173
  */
174
174
  describeDataset(callback?: (err: AWSError, data: Rekognition.Types.DescribeDatasetResponse) => void): Request<Rekognition.Types.DescribeDatasetResponse, AWSError>;
175
175
  /**
176
- * Lists and describes the versions of a model in an Amazon Rekognition Custom Labels project. You can specify up to 10 model versions in ProjectVersionArns. If you don't specify a value, descriptions for all model versions in the project are returned. This operation requires permissions to perform the rekognition:DescribeProjectVersions action.
176
+ * Lists and describes the versions of an Amazon Rekognition project. You can specify up to 10 model or adapter versions in ProjectVersionArns. If you don't specify a value, descriptions for all model/adapter versions in the project are returned. This operation requires permissions to perform the rekognition:DescribeProjectVersions action.
177
177
  */
178
178
  describeProjectVersions(params: Rekognition.Types.DescribeProjectVersionsRequest, callback?: (err: AWSError, data: Rekognition.Types.DescribeProjectVersionsResponse) => void): Request<Rekognition.Types.DescribeProjectVersionsResponse, AWSError>;
179
179
  /**
180
- * Lists and describes the versions of a model in an Amazon Rekognition Custom Labels project. You can specify up to 10 model versions in ProjectVersionArns. If you don't specify a value, descriptions for all model versions in the project are returned. This operation requires permissions to perform the rekognition:DescribeProjectVersions action.
180
+ * Lists and describes the versions of an Amazon Rekognition project. You can specify up to 10 model or adapter versions in ProjectVersionArns. If you don't specify a value, descriptions for all model/adapter versions in the project are returned. This operation requires permissions to perform the rekognition:DescribeProjectVersions action.
181
181
  */
182
182
  describeProjectVersions(callback?: (err: AWSError, data: Rekognition.Types.DescribeProjectVersionsResponse) => void): Request<Rekognition.Types.DescribeProjectVersionsResponse, AWSError>;
183
183
  /**
184
- * Gets information about your Amazon Rekognition Custom Labels projects. This operation requires permissions to perform the rekognition:DescribeProjects action.
184
+ * Gets information about your Rekognition projects. This operation requires permissions to perform the rekognition:DescribeProjects action.
185
185
  */
186
186
  describeProjects(params: Rekognition.Types.DescribeProjectsRequest, callback?: (err: AWSError, data: Rekognition.Types.DescribeProjectsResponse) => void): Request<Rekognition.Types.DescribeProjectsResponse, AWSError>;
187
187
  /**
188
- * Gets information about your Amazon Rekognition Custom Labels projects. This operation requires permissions to perform the rekognition:DescribeProjects action.
188
+ * Gets information about your Rekognition projects. This operation requires permissions to perform the rekognition:DescribeProjects action.
189
189
  */
190
190
  describeProjects(callback?: (err: AWSError, data: Rekognition.Types.DescribeProjectsResponse) => void): Request<Rekognition.Types.DescribeProjectsResponse, AWSError>;
191
191
  /**
@@ -197,11 +197,11 @@ declare class Rekognition extends Service {
197
197
  */
198
198
  describeStreamProcessor(callback?: (err: AWSError, data: Rekognition.Types.DescribeStreamProcessorResponse) => void): Request<Rekognition.Types.DescribeStreamProcessorResponse, AWSError>;
199
199
  /**
200
- * Detects custom labels in a supplied image by using an Amazon Rekognition Custom Labels model. You specify which version of a model version to use by using the ProjectVersionArn input parameter. You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. For each object that the model version detects on an image, the API returns a (CustomLabel) object in an array (CustomLabels). Each CustomLabel object provides the label name (Name), the level of confidence that the image contains the object (Confidence), and object location information, if it exists, for the label on the image (Geometry). To filter labels that are returned, specify a value for MinConfidence. DetectCustomLabelsLabels only returns labels with a confidence that's higher than the specified value. The value of MinConfidence maps to the assumed threshold values created during training. For more information, see Assumed threshold in the Amazon Rekognition Custom Labels Developer Guide. Amazon Rekognition Custom Labels metrics expresses an assumed threshold as a floating point value between 0-1. The range of MinConfidence normalizes the threshold value to a percentage value (0-100). Confidence responses from DetectCustomLabels are also returned as a percentage. You can use MinConfidence to change the precision and recall or your model. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide. If you don't specify a value for MinConfidence, DetectCustomLabels returns labels based on the assumed threshold of each label. This is a stateless API operation. That is, the operation does not persist any data. This operation requires permissions to perform the rekognition:DetectCustomLabels action. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide.
200
+ * This operation applies only to Amazon Rekognition Custom Labels. Detects custom labels in a supplied image by using an Amazon Rekognition Custom Labels model. You specify which version of a model version to use by using the ProjectVersionArn input parameter. You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. For each object that the model version detects on an image, the API returns a (CustomLabel) object in an array (CustomLabels). Each CustomLabel object provides the label name (Name), the level of confidence that the image contains the object (Confidence), and object location information, if it exists, for the label on the image (Geometry). To filter labels that are returned, specify a value for MinConfidence. DetectCustomLabelsLabels only returns labels with a confidence that's higher than the specified value. The value of MinConfidence maps to the assumed threshold values created during training. For more information, see Assumed threshold in the Amazon Rekognition Custom Labels Developer Guide. Amazon Rekognition Custom Labels metrics expresses an assumed threshold as a floating point value between 0-1. The range of MinConfidence normalizes the threshold value to a percentage value (0-100). Confidence responses from DetectCustomLabels are also returned as a percentage. You can use MinConfidence to change the precision and recall or your model. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide. If you don't specify a value for MinConfidence, DetectCustomLabels returns labels based on the assumed threshold of each label. This is a stateless API operation. That is, the operation does not persist any data. This operation requires permissions to perform the rekognition:DetectCustomLabels action. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide.
201
201
  */
202
202
  detectCustomLabels(params: Rekognition.Types.DetectCustomLabelsRequest, callback?: (err: AWSError, data: Rekognition.Types.DetectCustomLabelsResponse) => void): Request<Rekognition.Types.DetectCustomLabelsResponse, AWSError>;
203
203
  /**
204
- * Detects custom labels in a supplied image by using an Amazon Rekognition Custom Labels model. You specify which version of a model version to use by using the ProjectVersionArn input parameter. You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. For each object that the model version detects on an image, the API returns a (CustomLabel) object in an array (CustomLabels). Each CustomLabel object provides the label name (Name), the level of confidence that the image contains the object (Confidence), and object location information, if it exists, for the label on the image (Geometry). To filter labels that are returned, specify a value for MinConfidence. DetectCustomLabelsLabels only returns labels with a confidence that's higher than the specified value. The value of MinConfidence maps to the assumed threshold values created during training. For more information, see Assumed threshold in the Amazon Rekognition Custom Labels Developer Guide. Amazon Rekognition Custom Labels metrics expresses an assumed threshold as a floating point value between 0-1. The range of MinConfidence normalizes the threshold value to a percentage value (0-100). Confidence responses from DetectCustomLabels are also returned as a percentage. You can use MinConfidence to change the precision and recall or your model. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide. If you don't specify a value for MinConfidence, DetectCustomLabels returns labels based on the assumed threshold of each label. This is a stateless API operation. That is, the operation does not persist any data. This operation requires permissions to perform the rekognition:DetectCustomLabels action. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide.
204
+ * This operation applies only to Amazon Rekognition Custom Labels. Detects custom labels in a supplied image by using an Amazon Rekognition Custom Labels model. You specify which version of a model version to use by using the ProjectVersionArn input parameter. You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. For each object that the model version detects on an image, the API returns a (CustomLabel) object in an array (CustomLabels). Each CustomLabel object provides the label name (Name), the level of confidence that the image contains the object (Confidence), and object location information, if it exists, for the label on the image (Geometry). To filter labels that are returned, specify a value for MinConfidence. DetectCustomLabelsLabels only returns labels with a confidence that's higher than the specified value. The value of MinConfidence maps to the assumed threshold values created during training. For more information, see Assumed threshold in the Amazon Rekognition Custom Labels Developer Guide. Amazon Rekognition Custom Labels metrics expresses an assumed threshold as a floating point value between 0-1. The range of MinConfidence normalizes the threshold value to a percentage value (0-100). Confidence responses from DetectCustomLabels are also returned as a percentage. You can use MinConfidence to change the precision and recall or your model. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide. If you don't specify a value for MinConfidence, DetectCustomLabels returns labels based on the assumed threshold of each label. This is a stateless API operation. That is, the operation does not persist any data. This operation requires permissions to perform the rekognition:DetectCustomLabels action. For more information, see Analyzing an image in the Amazon Rekognition Custom Labels Developer Guide.
205
205
  */
206
206
  detectCustomLabels(callback?: (err: AWSError, data: Rekognition.Types.DetectCustomLabelsResponse) => void): Request<Rekognition.Types.DetectCustomLabelsResponse, AWSError>;
207
207
  /**
@@ -221,11 +221,11 @@ declare class Rekognition extends Service {
221
221
  */
222
222
  detectLabels(callback?: (err: AWSError, data: Rekognition.Types.DetectLabelsResponse) => void): Request<Rekognition.Types.DetectLabelsResponse, AWSError>;
223
223
  /**
224
- * Detects unsafe content in a specified JPEG or PNG format image. Use DetectModerationLabels to moderate images depending on your requirements. For example, you might want to filter images that contain nudity, but not images containing suggestive content. To filter images, use the labels returned by DetectModerationLabels to determine which types of content are appropriate. For information about moderation labels, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide. You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file.
224
+ * Detects unsafe content in a specified JPEG or PNG format image. Use DetectModerationLabels to moderate images depending on your requirements. For example, you might want to filter images that contain nudity, but not images containing suggestive content. To filter images, use the labels returned by DetectModerationLabels to determine which types of content are appropriate. For information about moderation labels, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide. You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. You can specify an adapter to use when retrieving label predictions by providing a ProjectVersionArn to the ProjectVersion argument.
225
225
  */
226
226
  detectModerationLabels(params: Rekognition.Types.DetectModerationLabelsRequest, callback?: (err: AWSError, data: Rekognition.Types.DetectModerationLabelsResponse) => void): Request<Rekognition.Types.DetectModerationLabelsResponse, AWSError>;
227
227
  /**
228
- * Detects unsafe content in a specified JPEG or PNG format image. Use DetectModerationLabels to moderate images depending on your requirements. For example, you might want to filter images that contain nudity, but not images containing suggestive content. To filter images, use the labels returned by DetectModerationLabels to determine which types of content are appropriate. For information about moderation labels, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide. You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file.
228
+ * Detects unsafe content in a specified JPEG or PNG format image. Use DetectModerationLabels to moderate images depending on your requirements. For example, you might want to filter images that contain nudity, but not images containing suggestive content. To filter images, use the labels returned by DetectModerationLabels to determine which types of content are appropriate. For information about moderation labels, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide. You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. You can specify an adapter to use when retrieving label predictions by providing a ProjectVersionArn to the ProjectVersion argument.
229
229
  */
230
230
  detectModerationLabels(callback?: (err: AWSError, data: Rekognition.Types.DetectModerationLabelsResponse) => void): Request<Rekognition.Types.DetectModerationLabelsResponse, AWSError>;
231
231
  /**
@@ -253,11 +253,11 @@ declare class Rekognition extends Service {
253
253
  */
254
254
  disassociateFaces(callback?: (err: AWSError, data: Rekognition.Types.DisassociateFacesResponse) => void): Request<Rekognition.Types.DisassociateFacesResponse, AWSError>;
255
255
  /**
256
- * Distributes the entries (images) in a training dataset across the training dataset and the test dataset for a project. DistributeDatasetEntries moves 20% of the training dataset images to the test dataset. An entry is a JSON Line that describes an image. You supply the Amazon Resource Names (ARN) of a project's training dataset and test dataset. The training dataset must contain the images that you want to split. The test dataset must be empty. The datasets must belong to the same project. To create training and test datasets for a project, call CreateDataset. Distributing a dataset takes a while to complete. To check the status call DescribeDataset. The operation is complete when the Status field for the training dataset and the test dataset is UPDATE_COMPLETE. If the dataset split fails, the value of Status is UPDATE_FAILED. This operation requires permissions to perform the rekognition:DistributeDatasetEntries action.
256
+ * This operation applies only to Amazon Rekognition Custom Labels. Distributes the entries (images) in a training dataset across the training dataset and the test dataset for a project. DistributeDatasetEntries moves 20% of the training dataset images to the test dataset. An entry is a JSON Line that describes an image. You supply the Amazon Resource Names (ARN) of a project's training dataset and test dataset. The training dataset must contain the images that you want to split. The test dataset must be empty. The datasets must belong to the same project. To create training and test datasets for a project, call CreateDataset. Distributing a dataset takes a while to complete. To check the status call DescribeDataset. The operation is complete when the Status field for the training dataset and the test dataset is UPDATE_COMPLETE. If the dataset split fails, the value of Status is UPDATE_FAILED. This operation requires permissions to perform the rekognition:DistributeDatasetEntries action.
257
257
  */
258
258
  distributeDatasetEntries(params: Rekognition.Types.DistributeDatasetEntriesRequest, callback?: (err: AWSError, data: Rekognition.Types.DistributeDatasetEntriesResponse) => void): Request<Rekognition.Types.DistributeDatasetEntriesResponse, AWSError>;
259
259
  /**
260
- * Distributes the entries (images) in a training dataset across the training dataset and the test dataset for a project. DistributeDatasetEntries moves 20% of the training dataset images to the test dataset. An entry is a JSON Line that describes an image. You supply the Amazon Resource Names (ARN) of a project's training dataset and test dataset. The training dataset must contain the images that you want to split. The test dataset must be empty. The datasets must belong to the same project. To create training and test datasets for a project, call CreateDataset. Distributing a dataset takes a while to complete. To check the status call DescribeDataset. The operation is complete when the Status field for the training dataset and the test dataset is UPDATE_COMPLETE. If the dataset split fails, the value of Status is UPDATE_FAILED. This operation requires permissions to perform the rekognition:DistributeDatasetEntries action.
260
+ * This operation applies only to Amazon Rekognition Custom Labels. Distributes the entries (images) in a training dataset across the training dataset and the test dataset for a project. DistributeDatasetEntries moves 20% of the training dataset images to the test dataset. An entry is a JSON Line that describes an image. You supply the Amazon Resource Names (ARN) of a project's training dataset and test dataset. The training dataset must contain the images that you want to split. The test dataset must be empty. The datasets must belong to the same project. To create training and test datasets for a project, call CreateDataset. Distributing a dataset takes a while to complete. To check the status call DescribeDataset. The operation is complete when the Status field for the training dataset and the test dataset is UPDATE_COMPLETE. If the dataset split fails, the value of Status is UPDATE_FAILED. This operation requires permissions to perform the rekognition:DistributeDatasetEntries action.
261
261
  */
262
262
  distributeDatasetEntries(callback?: (err: AWSError, data: Rekognition.Types.DistributeDatasetEntriesResponse) => void): Request<Rekognition.Types.DistributeDatasetEntriesResponse, AWSError>;
263
263
  /**
@@ -357,19 +357,19 @@ declare class Rekognition extends Service {
357
357
  */
358
358
  listCollections(callback?: (err: AWSError, data: Rekognition.Types.ListCollectionsResponse) => void): Request<Rekognition.Types.ListCollectionsResponse, AWSError>;
359
359
  /**
360
- * Lists the entries (images) within a dataset. An entry is a JSON Line that contains the information for a single image, including the image location, assigned labels, and object location bounding boxes. For more information, see Creating a manifest file. JSON Lines in the response include information about non-terminal errors found in the dataset. Non terminal errors are reported in errors lists within each JSON Line. The same information is reported in the training and testing validation result manifests that Amazon Rekognition Custom Labels creates during model training. You can filter the response in variety of ways, such as choosing which labels to return and returning JSON Lines created after a specific date. This operation requires permissions to perform the rekognition:ListDatasetEntries action.
360
+ * This operation applies only to Amazon Rekognition Custom Labels. Lists the entries (images) within a dataset. An entry is a JSON Line that contains the information for a single image, including the image location, assigned labels, and object location bounding boxes. For more information, see Creating a manifest file. JSON Lines in the response include information about non-terminal errors found in the dataset. Non terminal errors are reported in errors lists within each JSON Line. The same information is reported in the training and testing validation result manifests that Amazon Rekognition Custom Labels creates during model training. You can filter the response in variety of ways, such as choosing which labels to return and returning JSON Lines created after a specific date. This operation requires permissions to perform the rekognition:ListDatasetEntries action.
361
361
  */
362
362
  listDatasetEntries(params: Rekognition.Types.ListDatasetEntriesRequest, callback?: (err: AWSError, data: Rekognition.Types.ListDatasetEntriesResponse) => void): Request<Rekognition.Types.ListDatasetEntriesResponse, AWSError>;
363
363
  /**
364
- * Lists the entries (images) within a dataset. An entry is a JSON Line that contains the information for a single image, including the image location, assigned labels, and object location bounding boxes. For more information, see Creating a manifest file. JSON Lines in the response include information about non-terminal errors found in the dataset. Non terminal errors are reported in errors lists within each JSON Line. The same information is reported in the training and testing validation result manifests that Amazon Rekognition Custom Labels creates during model training. You can filter the response in variety of ways, such as choosing which labels to return and returning JSON Lines created after a specific date. This operation requires permissions to perform the rekognition:ListDatasetEntries action.
364
+ * This operation applies only to Amazon Rekognition Custom Labels. Lists the entries (images) within a dataset. An entry is a JSON Line that contains the information for a single image, including the image location, assigned labels, and object location bounding boxes. For more information, see Creating a manifest file. JSON Lines in the response include information about non-terminal errors found in the dataset. Non terminal errors are reported in errors lists within each JSON Line. The same information is reported in the training and testing validation result manifests that Amazon Rekognition Custom Labels creates during model training. You can filter the response in variety of ways, such as choosing which labels to return and returning JSON Lines created after a specific date. This operation requires permissions to perform the rekognition:ListDatasetEntries action.
365
365
  */
366
366
  listDatasetEntries(callback?: (err: AWSError, data: Rekognition.Types.ListDatasetEntriesResponse) => void): Request<Rekognition.Types.ListDatasetEntriesResponse, AWSError>;
367
367
  /**
368
- * Lists the labels in a dataset. Amazon Rekognition Custom Labels uses labels to describe images. For more information, see Labeling images. Lists the labels in a dataset. Amazon Rekognition Custom Labels uses labels to describe images. For more information, see Labeling images in the Amazon Rekognition Custom Labels Developer Guide.
368
+ * This operation applies only to Amazon Rekognition Custom Labels. Lists the labels in a dataset. Amazon Rekognition Custom Labels uses labels to describe images. For more information, see Labeling images. Lists the labels in a dataset. Amazon Rekognition Custom Labels uses labels to describe images. For more information, see Labeling images in the Amazon Rekognition Custom Labels Developer Guide.
369
369
  */
370
370
  listDatasetLabels(params: Rekognition.Types.ListDatasetLabelsRequest, callback?: (err: AWSError, data: Rekognition.Types.ListDatasetLabelsResponse) => void): Request<Rekognition.Types.ListDatasetLabelsResponse, AWSError>;
371
371
  /**
372
- * Lists the labels in a dataset. Amazon Rekognition Custom Labels uses labels to describe images. For more information, see Labeling images. Lists the labels in a dataset. Amazon Rekognition Custom Labels uses labels to describe images. For more information, see Labeling images in the Amazon Rekognition Custom Labels Developer Guide.
372
+ * This operation applies only to Amazon Rekognition Custom Labels. Lists the labels in a dataset. Amazon Rekognition Custom Labels uses labels to describe images. For more information, see Labeling images. Lists the labels in a dataset. Amazon Rekognition Custom Labels uses labels to describe images. For more information, see Labeling images in the Amazon Rekognition Custom Labels Developer Guide.
373
373
  */
374
374
  listDatasetLabels(callback?: (err: AWSError, data: Rekognition.Types.ListDatasetLabelsResponse) => void): Request<Rekognition.Types.ListDatasetLabelsResponse, AWSError>;
375
375
  /**
@@ -381,11 +381,11 @@ declare class Rekognition extends Service {
381
381
  */
382
382
  listFaces(callback?: (err: AWSError, data: Rekognition.Types.ListFacesResponse) => void): Request<Rekognition.Types.ListFacesResponse, AWSError>;
383
383
  /**
384
- * Gets a list of the project policies attached to a project. To attach a project policy to a project, call PutProjectPolicy. To remove a project policy from a project, call DeleteProjectPolicy. This operation requires permissions to perform the rekognition:ListProjectPolicies action.
384
+ * This operation applies only to Amazon Rekognition Custom Labels. Gets a list of the project policies attached to a project. To attach a project policy to a project, call PutProjectPolicy. To remove a project policy from a project, call DeleteProjectPolicy. This operation requires permissions to perform the rekognition:ListProjectPolicies action.
385
385
  */
386
386
  listProjectPolicies(params: Rekognition.Types.ListProjectPoliciesRequest, callback?: (err: AWSError, data: Rekognition.Types.ListProjectPoliciesResponse) => void): Request<Rekognition.Types.ListProjectPoliciesResponse, AWSError>;
387
387
  /**
388
- * Gets a list of the project policies attached to a project. To attach a project policy to a project, call PutProjectPolicy. To remove a project policy from a project, call DeleteProjectPolicy. This operation requires permissions to perform the rekognition:ListProjectPolicies action.
388
+ * This operation applies only to Amazon Rekognition Custom Labels. Gets a list of the project policies attached to a project. To attach a project policy to a project, call PutProjectPolicy. To remove a project policy from a project, call DeleteProjectPolicy. This operation requires permissions to perform the rekognition:ListProjectPolicies action.
389
389
  */
390
390
  listProjectPolicies(callback?: (err: AWSError, data: Rekognition.Types.ListProjectPoliciesResponse) => void): Request<Rekognition.Types.ListProjectPoliciesResponse, AWSError>;
391
391
  /**
@@ -413,11 +413,11 @@ declare class Rekognition extends Service {
413
413
  */
414
414
  listUsers(callback?: (err: AWSError, data: Rekognition.Types.ListUsersResponse) => void): Request<Rekognition.Types.ListUsersResponse, AWSError>;
415
415
  /**
416
- * Attaches a project policy to a Amazon Rekognition Custom Labels project in a trusting AWS account. A project policy specifies that a trusted AWS account can copy a model version from a trusting AWS account to a project in the trusted AWS account. To copy a model version you use the CopyProjectVersion operation. For more information about the format of a project policy document, see Attaching a project policy (SDK) in the Amazon Rekognition Custom Labels Developer Guide. The response from PutProjectPolicy is a revision ID for the project policy. You can attach multiple project policies to a project. You can also update an existing project policy by specifying the policy revision ID of the existing policy. To remove a project policy from a project, call DeleteProjectPolicy. To get a list of project policies attached to a project, call ListProjectPolicies. You copy a model version by calling CopyProjectVersion. This operation requires permissions to perform the rekognition:PutProjectPolicy action.
416
+ * This operation applies only to Amazon Rekognition Custom Labels. Attaches a project policy to a Amazon Rekognition Custom Labels project in a trusting AWS account. A project policy specifies that a trusted AWS account can copy a model version from a trusting AWS account to a project in the trusted AWS account. To copy a model version you use the CopyProjectVersion operation. Only applies to Custom Labels projects. For more information about the format of a project policy document, see Attaching a project policy (SDK) in the Amazon Rekognition Custom Labels Developer Guide. The response from PutProjectPolicy is a revision ID for the project policy. You can attach multiple project policies to a project. You can also update an existing project policy by specifying the policy revision ID of the existing policy. To remove a project policy from a project, call DeleteProjectPolicy. To get a list of project policies attached to a project, call ListProjectPolicies. You copy a model version by calling CopyProjectVersion. This operation requires permissions to perform the rekognition:PutProjectPolicy action.
417
417
  */
418
418
  putProjectPolicy(params: Rekognition.Types.PutProjectPolicyRequest, callback?: (err: AWSError, data: Rekognition.Types.PutProjectPolicyResponse) => void): Request<Rekognition.Types.PutProjectPolicyResponse, AWSError>;
419
419
  /**
420
- * Attaches a project policy to a Amazon Rekognition Custom Labels project in a trusting AWS account. A project policy specifies that a trusted AWS account can copy a model version from a trusting AWS account to a project in the trusted AWS account. To copy a model version you use the CopyProjectVersion operation. For more information about the format of a project policy document, see Attaching a project policy (SDK) in the Amazon Rekognition Custom Labels Developer Guide. The response from PutProjectPolicy is a revision ID for the project policy. You can attach multiple project policies to a project. You can also update an existing project policy by specifying the policy revision ID of the existing policy. To remove a project policy from a project, call DeleteProjectPolicy. To get a list of project policies attached to a project, call ListProjectPolicies. You copy a model version by calling CopyProjectVersion. This operation requires permissions to perform the rekognition:PutProjectPolicy action.
420
+ * This operation applies only to Amazon Rekognition Custom Labels. Attaches a project policy to a Amazon Rekognition Custom Labels project in a trusting AWS account. A project policy specifies that a trusted AWS account can copy a model version from a trusting AWS account to a project in the trusted AWS account. To copy a model version you use the CopyProjectVersion operation. Only applies to Custom Labels projects. For more information about the format of a project policy document, see Attaching a project policy (SDK) in the Amazon Rekognition Custom Labels Developer Guide. The response from PutProjectPolicy is a revision ID for the project policy. You can attach multiple project policies to a project. You can also update an existing project policy by specifying the policy revision ID of the existing policy. To remove a project policy from a project, call DeleteProjectPolicy. To get a list of project policies attached to a project, call ListProjectPolicies. You copy a model version by calling CopyProjectVersion. This operation requires permissions to perform the rekognition:PutProjectPolicy action.
421
421
  */
422
422
  putProjectPolicy(callback?: (err: AWSError, data: Rekognition.Types.PutProjectPolicyResponse) => void): Request<Rekognition.Types.PutProjectPolicyResponse, AWSError>;
423
423
  /**
@@ -509,11 +509,11 @@ declare class Rekognition extends Service {
509
509
  */
510
510
  startPersonTracking(callback?: (err: AWSError, data: Rekognition.Types.StartPersonTrackingResponse) => void): Request<Rekognition.Types.StartPersonTrackingResponse, AWSError>;
511
511
  /**
512
- * Starts the running of the version of a model. Starting a model takes a while to complete. To check the current state of the model, use DescribeProjectVersions. Once the model is running, you can detect custom labels in new images by calling DetectCustomLabels. You are charged for the amount of time that the model is running. To stop a running model, call StopProjectVersion. For more information, see Running a trained Amazon Rekognition Custom Labels model in the Amazon Rekognition Custom Labels Guide. This operation requires permissions to perform the rekognition:StartProjectVersion action.
512
+ * This operation applies only to Amazon Rekognition Custom Labels. Starts the running of the version of a model. Starting a model takes a while to complete. To check the current state of the model, use DescribeProjectVersions. Once the model is running, you can detect custom labels in new images by calling DetectCustomLabels. You are charged for the amount of time that the model is running. To stop a running model, call StopProjectVersion. This operation requires permissions to perform the rekognition:StartProjectVersion action.
513
513
  */
514
514
  startProjectVersion(params: Rekognition.Types.StartProjectVersionRequest, callback?: (err: AWSError, data: Rekognition.Types.StartProjectVersionResponse) => void): Request<Rekognition.Types.StartProjectVersionResponse, AWSError>;
515
515
  /**
516
- * Starts the running of the version of a model. Starting a model takes a while to complete. To check the current state of the model, use DescribeProjectVersions. Once the model is running, you can detect custom labels in new images by calling DetectCustomLabels. You are charged for the amount of time that the model is running. To stop a running model, call StopProjectVersion. For more information, see Running a trained Amazon Rekognition Custom Labels model in the Amazon Rekognition Custom Labels Guide. This operation requires permissions to perform the rekognition:StartProjectVersion action.
516
+ * This operation applies only to Amazon Rekognition Custom Labels. Starts the running of the version of a model. Starting a model takes a while to complete. To check the current state of the model, use DescribeProjectVersions. Once the model is running, you can detect custom labels in new images by calling DetectCustomLabels. You are charged for the amount of time that the model is running. To stop a running model, call StopProjectVersion. This operation requires permissions to perform the rekognition:StartProjectVersion action.
517
517
  */
518
518
  startProjectVersion(callback?: (err: AWSError, data: Rekognition.Types.StartProjectVersionResponse) => void): Request<Rekognition.Types.StartProjectVersionResponse, AWSError>;
519
519
  /**
@@ -541,11 +541,11 @@ declare class Rekognition extends Service {
541
541
  */
542
542
  startTextDetection(callback?: (err: AWSError, data: Rekognition.Types.StartTextDetectionResponse) => void): Request<Rekognition.Types.StartTextDetectionResponse, AWSError>;
543
543
  /**
544
- * Stops a running model. The operation might take a while to complete. To check the current status, call DescribeProjectVersions. This operation requires permissions to perform the rekognition:StopProjectVersion action.
544
+ * This operation applies only to Amazon Rekognition Custom Labels. Stops a running model. The operation might take a while to complete. To check the current status, call DescribeProjectVersions. Only applies to Custom Labels projects. This operation requires permissions to perform the rekognition:StopProjectVersion action.
545
545
  */
546
546
  stopProjectVersion(params: Rekognition.Types.StopProjectVersionRequest, callback?: (err: AWSError, data: Rekognition.Types.StopProjectVersionResponse) => void): Request<Rekognition.Types.StopProjectVersionResponse, AWSError>;
547
547
  /**
548
- * Stops a running model. The operation might take a while to complete. To check the current status, call DescribeProjectVersions. This operation requires permissions to perform the rekognition:StopProjectVersion action.
548
+ * This operation applies only to Amazon Rekognition Custom Labels. Stops a running model. The operation might take a while to complete. To check the current status, call DescribeProjectVersions. Only applies to Custom Labels projects. This operation requires permissions to perform the rekognition:StopProjectVersion action.
549
549
  */
550
550
  stopProjectVersion(callback?: (err: AWSError, data: Rekognition.Types.StopProjectVersionResponse) => void): Request<Rekognition.Types.StopProjectVersionResponse, AWSError>;
551
551
  /**
@@ -573,11 +573,11 @@ declare class Rekognition extends Service {
573
573
  */
574
574
  untagResource(callback?: (err: AWSError, data: Rekognition.Types.UntagResourceResponse) => void): Request<Rekognition.Types.UntagResourceResponse, AWSError>;
575
575
  /**
576
- * Adds or updates one or more entries (images) in a dataset. An entry is a JSON Line which contains the information for a single image, including the image location, assigned labels, and object location bounding boxes. For more information, see Image-Level labels in manifest files and Object localization in manifest files in the Amazon Rekognition Custom Labels Developer Guide. If the source-ref field in the JSON line references an existing image, the existing image in the dataset is updated. If source-ref field doesn't reference an existing image, the image is added as a new image to the dataset. You specify the changes that you want to make in the Changes input parameter. There isn't a limit to the number JSON Lines that you can change, but the size of Changes must be less than 5MB. UpdateDatasetEntries returns immediatly, but the dataset update might take a while to complete. Use DescribeDataset to check the current status. The dataset updated successfully if the value of Status is UPDATE_COMPLETE. To check if any non-terminal errors occured, call ListDatasetEntries and check for the presence of errors lists in the JSON Lines. Dataset update fails if a terminal error occurs (Status = UPDATE_FAILED). Currently, you can't access the terminal error information from the Amazon Rekognition Custom Labels SDK. This operation requires permissions to perform the rekognition:UpdateDatasetEntries action.
576
+ * This operation applies only to Amazon Rekognition Custom Labels. Adds or updates one or more entries (images) in a dataset. An entry is a JSON Line which contains the information for a single image, including the image location, assigned labels, and object location bounding boxes. For more information, see Image-Level labels in manifest files and Object localization in manifest files in the Amazon Rekognition Custom Labels Developer Guide. If the source-ref field in the JSON line references an existing image, the existing image in the dataset is updated. If source-ref field doesn't reference an existing image, the image is added as a new image to the dataset. You specify the changes that you want to make in the Changes input parameter. There isn't a limit to the number JSON Lines that you can change, but the size of Changes must be less than 5MB. UpdateDatasetEntries returns immediatly, but the dataset update might take a while to complete. Use DescribeDataset to check the current status. The dataset updated successfully if the value of Status is UPDATE_COMPLETE. To check if any non-terminal errors occured, call ListDatasetEntries and check for the presence of errors lists in the JSON Lines. Dataset update fails if a terminal error occurs (Status = UPDATE_FAILED). Currently, you can't access the terminal error information from the Amazon Rekognition Custom Labels SDK. This operation requires permissions to perform the rekognition:UpdateDatasetEntries action.
577
577
  */
578
578
  updateDatasetEntries(params: Rekognition.Types.UpdateDatasetEntriesRequest, callback?: (err: AWSError, data: Rekognition.Types.UpdateDatasetEntriesResponse) => void): Request<Rekognition.Types.UpdateDatasetEntriesResponse, AWSError>;
579
579
  /**
580
- * Adds or updates one or more entries (images) in a dataset. An entry is a JSON Line which contains the information for a single image, including the image location, assigned labels, and object location bounding boxes. For more information, see Image-Level labels in manifest files and Object localization in manifest files in the Amazon Rekognition Custom Labels Developer Guide. If the source-ref field in the JSON line references an existing image, the existing image in the dataset is updated. If source-ref field doesn't reference an existing image, the image is added as a new image to the dataset. You specify the changes that you want to make in the Changes input parameter. There isn't a limit to the number JSON Lines that you can change, but the size of Changes must be less than 5MB. UpdateDatasetEntries returns immediatly, but the dataset update might take a while to complete. Use DescribeDataset to check the current status. The dataset updated successfully if the value of Status is UPDATE_COMPLETE. To check if any non-terminal errors occured, call ListDatasetEntries and check for the presence of errors lists in the JSON Lines. Dataset update fails if a terminal error occurs (Status = UPDATE_FAILED). Currently, you can't access the terminal error information from the Amazon Rekognition Custom Labels SDK. This operation requires permissions to perform the rekognition:UpdateDatasetEntries action.
580
+ * This operation applies only to Amazon Rekognition Custom Labels. Adds or updates one or more entries (images) in a dataset. An entry is a JSON Line which contains the information for a single image, including the image location, assigned labels, and object location bounding boxes. For more information, see Image-Level labels in manifest files and Object localization in manifest files in the Amazon Rekognition Custom Labels Developer Guide. If the source-ref field in the JSON line references an existing image, the existing image in the dataset is updated. If source-ref field doesn't reference an existing image, the image is added as a new image to the dataset. You specify the changes that you want to make in the Changes input parameter. There isn't a limit to the number JSON Lines that you can change, but the size of Changes must be less than 5MB. UpdateDatasetEntries returns immediatly, but the dataset update might take a while to complete. Use DescribeDataset to check the current status. The dataset updated successfully if the value of Status is UPDATE_COMPLETE. To check if any non-terminal errors occured, call ListDatasetEntries and check for the presence of errors lists in the JSON Lines. Dataset update fails if a terminal error occurs (Status = UPDATE_FAILED). Currently, you can't access the terminal error information from the Amazon Rekognition Custom Labels SDK. This operation requires permissions to perform the rekognition:UpdateDatasetEntries action.
581
581
  */
582
582
  updateDatasetEntries(callback?: (err: AWSError, data: Rekognition.Types.UpdateDatasetEntriesResponse) => void): Request<Rekognition.Types.UpdateDatasetEntriesResponse, AWSError>;
583
583
  /**
@@ -1073,6 +1073,14 @@ declare namespace Rekognition {
1073
1073
  * The name of the project to create.
1074
1074
  */
1075
1075
  ProjectName: ProjectName;
1076
+ /**
1077
+ * Specifies feature that is being customized. If no value is provided CUSTOM_LABELS is used as a default.
1078
+ */
1079
+ Feature?: CustomizationFeature;
1080
+ /**
1081
+ * Specifies whether automatic retraining should be attempted for the versions of the project. Automatic retraining is done as a best effort. Required argument for Content Moderation. Applicable only to adapters.
1082
+ */
1083
+ AutoUpdate?: ProjectAutoUpdate;
1076
1084
  }
1077
1085
  export interface CreateProjectResponse {
1078
1086
  /**
@@ -1082,37 +1090,45 @@ declare namespace Rekognition {
1082
1090
  }
1083
1091
  export interface CreateProjectVersionRequest {
1084
1092
  /**
1085
- * The ARN of the Amazon Rekognition Custom Labels project that manages the model that you want to train.
1093
+ * The ARN of the Amazon Rekognition project that will manage the project version you want to train.
1086
1094
  */
1087
1095
  ProjectArn: ProjectArn;
1088
1096
  /**
1089
- * A name for the version of the model. This value must be unique.
1097
+ * A name for the version of the project version. This value must be unique.
1090
1098
  */
1091
1099
  VersionName: VersionName;
1092
1100
  /**
1093
- * The Amazon S3 bucket location to store the results of training. The S3 bucket can be in any AWS account as long as the caller has s3:PutObject permissions on the S3 bucket.
1101
+ * The Amazon S3 bucket location to store the results of training. The bucket can be any S3 bucket in your AWS account. You need s3:PutObject permission on the bucket.
1094
1102
  */
1095
1103
  OutputConfig: OutputConfig;
1096
1104
  /**
1097
- * Specifies an external manifest that the services uses to train the model. If you specify TrainingData you must also specify TestingData. The project must not have any associated datasets.
1105
+ * Specifies an external manifest that the services uses to train the project version. If you specify TrainingData you must also specify TestingData. The project must not have any associated datasets.
1098
1106
  */
1099
1107
  TrainingData?: TrainingData;
1100
1108
  /**
1101
- * Specifies an external manifest that the service uses to test the model. If you specify TestingData you must also specify TrainingData. The project must not have any associated datasets.
1109
+ * Specifies an external manifest that the service uses to test the project version. If you specify TestingData you must also specify TrainingData. The project must not have any associated datasets.
1102
1110
  */
1103
1111
  TestingData?: TestingData;
1104
1112
  /**
1105
- * A set of tags (key-value pairs) that you want to attach to the model.
1113
+ * A set of tags (key-value pairs) that you want to attach to the project version.
1106
1114
  */
1107
1115
  Tags?: TagMap;
1108
1116
  /**
1109
- * The identifier for your AWS Key Management Service key (AWS KMS key). You can supply the Amazon Resource Name (ARN) of your KMS key, the ID of your KMS key, an alias for your KMS key, or an alias ARN. The key is used to encrypt training and test images copied into the service for model training. Your source images are unaffected. The key is also used to encrypt training results and manifest files written to the output Amazon S3 bucket (OutputConfig). If you choose to use your own KMS key, you need the following permissions on the KMS key. kms:CreateGrant kms:DescribeKey kms:GenerateDataKey kms:Decrypt If you don't specify a value for KmsKeyId, images copied into the service are encrypted using a key that AWS owns and manages.
1117
+ * The identifier for your AWS Key Management Service key (AWS KMS key). You can supply the Amazon Resource Name (ARN) of your KMS key, the ID of your KMS key, an alias for your KMS key, or an alias ARN. The key is used to encrypt training images, test images, and manifest files copied into the service for the project version. Your source images are unaffected. The key is also used to encrypt training results and manifest files written to the output Amazon S3 bucket (OutputConfig). If you choose to use your own KMS key, you need the following permissions on the KMS key. kms:CreateGrant kms:DescribeKey kms:GenerateDataKey kms:Decrypt If you don't specify a value for KmsKeyId, images copied into the service are encrypted using a key that AWS owns and manages.
1110
1118
  */
1111
1119
  KmsKeyId?: KmsKeyId;
1120
+ /**
1121
+ * A description applied to the project version being created.
1122
+ */
1123
+ VersionDescription?: VersionDescription;
1124
+ /**
1125
+ * Feature-specific configuration of the training job. If the job configuration does not match the feature type associated with the project, an InvalidParameterException is returned.
1126
+ */
1127
+ FeatureConfig?: CustomizationFeatureConfig;
1112
1128
  }
1113
1129
  export interface CreateProjectVersionResponse {
1114
1130
  /**
1115
- * The ARN of the model version that was created. Use DescribeProjectVersion to get the current status of the training operation.
1131
+ * The ARN of the model or the project version that was created. Use DescribeProjectVersion to get the current status of the training operation.
1116
1132
  */
1117
1133
  ProjectVersionArn?: ProjectVersionArn;
1118
1134
  }
@@ -1192,6 +1208,20 @@ declare namespace Rekognition {
1192
1208
  Geometry?: Geometry;
1193
1209
  }
1194
1210
  export type CustomLabels = CustomLabel[];
1211
+ export type CustomizationFeature = "CONTENT_MODERATION"|"CUSTOM_LABELS"|string;
1212
+ export interface CustomizationFeatureConfig {
1213
+ /**
1214
+ * Configuration options for Custom Moderation training.
1215
+ */
1216
+ ContentModeration?: CustomizationFeatureContentModerationConfig;
1217
+ }
1218
+ export interface CustomizationFeatureContentModerationConfig {
1219
+ /**
1220
+ * The confidence level you plan to use to identify if unsafe content is present during inference.
1221
+ */
1222
+ ConfidenceThreshold?: Percent;
1223
+ }
1224
+ export type CustomizationFeatures = CustomizationFeature[];
1195
1225
  export type DatasetArn = string;
1196
1226
  export interface DatasetChanges {
1197
1227
  /**
@@ -1377,7 +1407,7 @@ declare namespace Rekognition {
1377
1407
  }
1378
1408
  export interface DeleteProjectVersionRequest {
1379
1409
  /**
1380
- * The Amazon Resource Name (ARN) of the model version that you want to delete.
1410
+ * The Amazon Resource Name (ARN) of the project version that you want to delete.
1381
1411
  */
1382
1412
  ProjectVersionArn: ProjectVersionArn;
1383
1413
  }
@@ -1453,15 +1483,15 @@ declare namespace Rekognition {
1453
1483
  }
1454
1484
  export interface DescribeProjectVersionsRequest {
1455
1485
  /**
1456
- * The Amazon Resource Name (ARN) of the project that contains the models you want to describe.
1486
+ * The Amazon Resource Name (ARN) of the project that contains the model/adapter you want to describe.
1457
1487
  */
1458
1488
  ProjectArn: ProjectArn;
1459
1489
  /**
1460
- * A list of model version names that you want to describe. You can add up to 10 model version names to the list. If you don't specify a value, all model descriptions are returned. A version name is part of a model (ProjectVersion) ARN. For example, my-model.2020-01-21T09.10.15 is the version name in the following ARN. arn:aws:rekognition:us-east-1:123456789012:project/getting-started/version/my-model.2020-01-21T09.10.15/1234567890123.
1490
+ * A list of model or project version names that you want to describe. You can add up to 10 model or project version names to the list. If you don't specify a value, all project version descriptions are returned. A version name is part of a project version ARN. For example, my-model.2020-01-21T09.10.15 is the version name in the following ARN. arn:aws:rekognition:us-east-1:123456789012:project/getting-started/version/my-model.2020-01-21T09.10.15/1234567890123.
1461
1491
  */
1462
1492
  VersionNames?: VersionNames;
1463
1493
  /**
1464
- * If the previous response was incomplete (because there is more results to retrieve), Amazon Rekognition Custom Labels returns a pagination token in the response. You can use this pagination token to retrieve the next set of results.
1494
+ * If the previous response was incomplete (because there is more results to retrieve), Amazon Rekognition returns a pagination token in the response. You can use this pagination token to retrieve the next set of results.
1465
1495
  */
1466
1496
  NextToken?: ExtendedPaginationToken;
1467
1497
  /**
@@ -1471,17 +1501,17 @@ declare namespace Rekognition {
1471
1501
  }
1472
1502
  export interface DescribeProjectVersionsResponse {
1473
1503
  /**
1474
- * A list of model descriptions. The list is sorted by the creation date and time of the model versions, latest to earliest.
1504
+ * A list of project version descriptions. The list is sorted by the creation date and time of the project versions, latest to earliest.
1475
1505
  */
1476
1506
  ProjectVersionDescriptions?: ProjectVersionDescriptions;
1477
1507
  /**
1478
- * If the previous response was incomplete (because there is more results to retrieve), Amazon Rekognition Custom Labels returns a pagination token in the response. You can use this pagination token to retrieve the next set of results.
1508
+ * If the previous response was incomplete (because there is more results to retrieve), Amazon Rekognition returns a pagination token in the response. You can use this pagination token to retrieve the next set of results.
1479
1509
  */
1480
1510
  NextToken?: ExtendedPaginationToken;
1481
1511
  }
1482
1512
  export interface DescribeProjectsRequest {
1483
1513
  /**
1484
- * If the previous response was incomplete (because there is more results to retrieve), Amazon Rekognition Custom Labels returns a pagination token in the response. You can use this pagination token to retrieve the next set of results.
1514
+ * If the previous response was incomplete (because there is more results to retrieve), Rekognition returns a pagination token in the response. You can use this pagination token to retrieve the next set of results.
1485
1515
  */
1486
1516
  NextToken?: ExtendedPaginationToken;
1487
1517
  /**
@@ -1489,9 +1519,13 @@ declare namespace Rekognition {
1489
1519
  */
1490
1520
  MaxResults?: ProjectsPageSize;
1491
1521
  /**
1492
- * A list of the projects that you want Amazon Rekognition Custom Labels to describe. If you don't specify a value, the response includes descriptions for all the projects in your AWS account.
1522
+ * A list of the projects that you want Rekognition to describe. If you don't specify a value, the response includes descriptions for all the projects in your AWS account.
1493
1523
  */
1494
1524
  ProjectNames?: ProjectNames;
1525
+ /**
1526
+ * Specifies the type of customization to filter projects by. If no value is specified, CUSTOM_LABELS is used as a default.
1527
+ */
1528
+ Features?: CustomizationFeatures;
1495
1529
  }
1496
1530
  export interface DescribeProjectsResponse {
1497
1531
  /**
@@ -1499,7 +1533,7 @@ declare namespace Rekognition {
1499
1533
  */
1500
1534
  ProjectDescriptions?: ProjectDescriptions;
1501
1535
  /**
1502
- * If the previous response was incomplete (because there is more results to retrieve), Amazon Rekognition Custom Labels returns a pagination token in the response. You can use this pagination token to retrieve the next set of results.
1536
+ * If the previous response was incomplete (because there is more results to retrieve), Amazon Rekognition returns a pagination token in the response. You can use this pagination token to retrieve the next set of results.
1503
1537
  */
1504
1538
  NextToken?: ExtendedPaginationToken;
1505
1539
  }
@@ -1566,7 +1600,7 @@ declare namespace Rekognition {
1566
1600
  }
1567
1601
  export interface DetectCustomLabelsRequest {
1568
1602
  /**
1569
- * The ARN of the model version that you want to use.
1603
+ * The ARN of the model version that you want to use. Only models associated with Custom Labels projects accepted by the operation. If a provided ARN refers to a model version associated with a project for a different feature type, then an InvalidParameterException is returned.
1570
1604
  */
1571
1605
  ProjectVersionArn: ProjectVersionArn;
1572
1606
  Image: Image;
@@ -1729,6 +1763,10 @@ declare namespace Rekognition {
1729
1763
  * Sets up the configuration for human evaluation, including the FlowDefinition the image will be sent to.
1730
1764
  */
1731
1765
  HumanLoopConfig?: HumanLoopConfig;
1766
+ /**
1767
+ * Identifier for the custom adapter. Expects the ProjectVersionArn as a value. Use the CreateProject or CreateProjectVersion APIs to create a custom adapter.
1768
+ */
1769
+ ProjectVersion?: ProjectVersionId;
1732
1770
  }
1733
1771
  export interface DetectModerationLabelsResponse {
1734
1772
  /**
@@ -1736,13 +1774,17 @@ declare namespace Rekognition {
1736
1774
  */
1737
1775
  ModerationLabels?: ModerationLabels;
1738
1776
  /**
1739
- * Version number of the moderation detection model that was used to detect unsafe content.
1777
+ * Version number of the base moderation detection model that was used to detect unsafe content.
1740
1778
  */
1741
1779
  ModerationModelVersion?: String;
1742
1780
  /**
1743
1781
  * Shows the results of the human in the loop evaluation.
1744
1782
  */
1745
1783
  HumanLoopActivationOutput?: HumanLoopActivationOutput;
1784
+ /**
1785
+ * Identifier of the custom adapter that was used during inference. If during inference the adapter was EXPIRED, then the parameter will not be returned, indicating that a base moderation detection project version was used.
1786
+ */
1787
+ ProjectVersion?: ProjectVersionId;
1746
1788
  }
1747
1789
  export interface DetectProtectiveEquipmentRequest {
1748
1790
  /**
@@ -3277,6 +3319,7 @@ declare namespace Rekognition {
3277
3319
  Pitch?: Degree;
3278
3320
  }
3279
3321
  export type ProjectArn = string;
3322
+ export type ProjectAutoUpdate = "ENABLED"|"DISABLED"|string;
3280
3323
  export interface ProjectDescription {
3281
3324
  /**
3282
3325
  * The Amazon Resource Name (ARN) of the project.
@@ -3294,6 +3337,14 @@ declare namespace Rekognition {
3294
3337
  * Information about the training and test datasets in the project.
3295
3338
  */
3296
3339
  Datasets?: DatasetMetadataList;
3340
+ /**
3341
+ * Specifies the project that is being customized.
3342
+ */
3343
+ Feature?: CustomizationFeature;
3344
+ /**
3345
+ * Indicates whether automatic retraining will be attempted for the versions of the project. Applies only to adapters.
3346
+ */
3347
+ AutoUpdate?: ProjectAutoUpdate;
3297
3348
  }
3298
3349
  export type ProjectDescriptions = ProjectDescription[];
3299
3350
  export type ProjectName = string;
@@ -3332,7 +3383,7 @@ declare namespace Rekognition {
3332
3383
  export type ProjectVersionArn = string;
3333
3384
  export interface ProjectVersionDescription {
3334
3385
  /**
3335
- * The Amazon Resource Name (ARN) of the model version.
3386
+ * The Amazon Resource Name (ARN) of the project version.
3336
3387
  */
3337
3388
  ProjectVersionArn?: ProjectVersionArn;
3338
3389
  /**
@@ -3340,7 +3391,7 @@ declare namespace Rekognition {
3340
3391
  */
3341
3392
  CreationTimestamp?: DateTime;
3342
3393
  /**
3343
- * The minimum number of inference units used by the model. For more information, see StartProjectVersion.
3394
+ * The minimum number of inference units used by the model. Applies only to Custom Labels projects. For more information, see StartProjectVersion.
3344
3395
  */
3345
3396
  MinInferenceUnits?: InferenceUnits;
3346
3397
  /**
@@ -3384,16 +3435,33 @@ declare namespace Rekognition {
3384
3435
  */
3385
3436
  KmsKeyId?: KmsKeyId;
3386
3437
  /**
3387
- * The maximum number of inference units Amazon Rekognition Custom Labels uses to auto-scale the model. For more information, see StartProjectVersion.
3438
+ * The maximum number of inference units Amazon Rekognition uses to auto-scale the model. Applies only to Custom Labels projects. For more information, see StartProjectVersion.
3388
3439
  */
3389
3440
  MaxInferenceUnits?: InferenceUnits;
3390
3441
  /**
3391
3442
  * If the model version was copied from a different project, SourceProjectVersionArn contains the ARN of the source model version.
3392
3443
  */
3393
3444
  SourceProjectVersionArn?: ProjectVersionArn;
3445
+ /**
3446
+ * A user-provided description of the project version.
3447
+ */
3448
+ VersionDescription?: VersionDescription;
3449
+ /**
3450
+ * The feature that was customized.
3451
+ */
3452
+ Feature?: CustomizationFeature;
3453
+ /**
3454
+ * The base detection model version used to create the project version.
3455
+ */
3456
+ BaseModelVersion?: String;
3457
+ /**
3458
+ * Feature specific configuration that was applied during training.
3459
+ */
3460
+ FeatureConfig?: CustomizationFeatureConfig;
3394
3461
  }
3395
3462
  export type ProjectVersionDescriptions = ProjectVersionDescription[];
3396
- export type ProjectVersionStatus = "TRAINING_IN_PROGRESS"|"TRAINING_COMPLETED"|"TRAINING_FAILED"|"STARTING"|"RUNNING"|"FAILED"|"STOPPING"|"STOPPED"|"DELETING"|"COPYING_IN_PROGRESS"|"COPYING_COMPLETED"|"COPYING_FAILED"|string;
3463
+ export type ProjectVersionId = string;
3464
+ export type ProjectVersionStatus = "TRAINING_IN_PROGRESS"|"TRAINING_COMPLETED"|"TRAINING_FAILED"|"STARTING"|"RUNNING"|"FAILED"|"STOPPING"|"STOPPED"|"DELETING"|"COPYING_IN_PROGRESS"|"COPYING_COMPLETED"|"COPYING_FAILED"|"DEPRECATED"|"EXPIRED"|string;
3397
3465
  export type ProjectVersionsPageSize = number;
3398
3466
  export type ProjectsPageSize = number;
3399
3467
  export interface ProtectiveEquipmentBodyPart {
@@ -3974,7 +4042,7 @@ declare namespace Rekognition {
3974
4042
  */
3975
4043
  ProjectVersionArn: ProjectVersionArn;
3976
4044
  /**
3977
- * The minimum number of inference units to use. A single inference unit represents 1 hour of processing. For information about the number of transactions per second (TPS) that an inference unit can support, see Running a trained Amazon Rekognition Custom Labels model in the Amazon Rekognition Custom Labels Guide. Use a higher number to increase the TPS throughput of your model. You are charged for the number of inference units that you use.
4045
+ * The minimum number of inference units to use. A single inference unit represents 1 hour of processing. Use a higher number to increase the TPS throughput of your model. You are charged for the number of inference units that you use.
3978
4046
  */
3979
4047
  MinInferenceUnits: InferenceUnits;
3980
4048
  /**
@@ -4099,7 +4167,7 @@ declare namespace Rekognition {
4099
4167
  export type StatusMessage = string;
4100
4168
  export interface StopProjectVersionRequest {
4101
4169
  /**
4102
- * The Amazon Resource Name (ARN) of the model version that you want to delete. This operation requires permissions to perform the rekognition:StopProjectVersion action.
4170
+ * The Amazon Resource Name (ARN) of the model version that you want to stop. This operation requires permissions to perform the rekognition:StopProjectVersion action.
4103
4171
  */
4104
4172
  ProjectVersionArn: ProjectVersionArn;
4105
4173
  }
@@ -4233,7 +4301,7 @@ declare namespace Rekognition {
4233
4301
  */
4234
4302
  Assets?: Assets;
4235
4303
  /**
4236
- * If specified, Amazon Rekognition Custom Labels temporarily splits the training dataset (80%) to create a test dataset (20%) for the training job. After training completes, the test dataset is not stored and the training dataset reverts to its previous size.
4304
+ * If specified, Rekognition splits training dataset to create a test dataset for the training job.
4237
4305
  */
4238
4306
  AutoCreate?: Boolean;
4239
4307
  }
@@ -4294,21 +4362,21 @@ declare namespace Rekognition {
4294
4362
  export type Timestamp = number;
4295
4363
  export interface TrainingData {
4296
4364
  /**
4297
- * A Sagemaker GroundTruth manifest file that contains the training images (assets).
4365
+ * A manifest file that contains references to the training images and ground-truth annotations.
4298
4366
  */
4299
4367
  Assets?: Assets;
4300
4368
  }
4301
4369
  export interface TrainingDataResult {
4302
4370
  /**
4303
- * The training assets that you supplied for training.
4371
+ * The training data that you supplied.
4304
4372
  */
4305
4373
  Input?: TrainingData;
4306
4374
  /**
4307
- * The images (assets) that were actually trained by Amazon Rekognition Custom Labels.
4375
+ * Reference to images (assets) that were actually used during training with trained model predictions.
4308
4376
  */
4309
4377
  Output?: TrainingData;
4310
4378
  /**
4311
- * The location of the data validation manifest. The data validation manifest is created for the training dataset during model training.
4379
+ * A manifest that you supplied for training, with validation results for each line.
4312
4380
  */
4313
4381
  Validation?: ValidationData;
4314
4382
  }
@@ -4471,6 +4539,7 @@ declare namespace Rekognition {
4471
4539
  */
4472
4540
  Assets?: Assets;
4473
4541
  }
4542
+ export type VersionDescription = string;
4474
4543
  export type VersionName = string;
4475
4544
  export type VersionNames = VersionName[];
4476
4545
  export interface Video {