cdk-lambda-subminute 2.0.237 → 2.0.239

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -44,13 +44,21 @@ declare class LookoutEquipment extends Service {
44
44
  */
45
45
  createLabelGroup(callback?: (err: AWSError, data: LookoutEquipment.Types.CreateLabelGroupResponse) => void): Request<LookoutEquipment.Types.CreateLabelGroupResponse, AWSError>;
46
46
  /**
47
- * Creates an ML model for data inference. A machine-learning (ML) model is a mathematical model that finds patterns in your data. In Amazon Lookout for Equipment, the model learns the patterns of normal behavior and detects abnormal behavior that could be potential equipment failure (or maintenance events). The models are made by analyzing normal data and abnormalities in machine behavior that have already occurred. Your model is trained using a portion of the data from your dataset and uses that data to learn patterns of normal behavior and abnormal patterns that lead to equipment failure. Another portion of the data is used to evaluate the model's accuracy.
47
+ * Creates a machine learning model for data inference. A machine-learning (ML) model is a mathematical model that finds patterns in your data. In Amazon Lookout for Equipment, the model learns the patterns of normal behavior and detects abnormal behavior that could be potential equipment failure (or maintenance events). The models are made by analyzing normal data and abnormalities in machine behavior that have already occurred. Your model is trained using a portion of the data from your dataset and uses that data to learn patterns of normal behavior and abnormal patterns that lead to equipment failure. Another portion of the data is used to evaluate the model's accuracy.
48
48
  */
49
49
  createModel(params: LookoutEquipment.Types.CreateModelRequest, callback?: (err: AWSError, data: LookoutEquipment.Types.CreateModelResponse) => void): Request<LookoutEquipment.Types.CreateModelResponse, AWSError>;
50
50
  /**
51
- * Creates an ML model for data inference. A machine-learning (ML) model is a mathematical model that finds patterns in your data. In Amazon Lookout for Equipment, the model learns the patterns of normal behavior and detects abnormal behavior that could be potential equipment failure (or maintenance events). The models are made by analyzing normal data and abnormalities in machine behavior that have already occurred. Your model is trained using a portion of the data from your dataset and uses that data to learn patterns of normal behavior and abnormal patterns that lead to equipment failure. Another portion of the data is used to evaluate the model's accuracy.
51
+ * Creates a machine learning model for data inference. A machine-learning (ML) model is a mathematical model that finds patterns in your data. In Amazon Lookout for Equipment, the model learns the patterns of normal behavior and detects abnormal behavior that could be potential equipment failure (or maintenance events). The models are made by analyzing normal data and abnormalities in machine behavior that have already occurred. Your model is trained using a portion of the data from your dataset and uses that data to learn patterns of normal behavior and abnormal patterns that lead to equipment failure. Another portion of the data is used to evaluate the model's accuracy.
52
52
  */
53
53
  createModel(callback?: (err: AWSError, data: LookoutEquipment.Types.CreateModelResponse) => void): Request<LookoutEquipment.Types.CreateModelResponse, AWSError>;
54
+ /**
55
+ * Creates a retraining scheduler on the specified model.
56
+ */
57
+ createRetrainingScheduler(params: LookoutEquipment.Types.CreateRetrainingSchedulerRequest, callback?: (err: AWSError, data: LookoutEquipment.Types.CreateRetrainingSchedulerResponse) => void): Request<LookoutEquipment.Types.CreateRetrainingSchedulerResponse, AWSError>;
58
+ /**
59
+ * Creates a retraining scheduler on the specified model.
60
+ */
61
+ createRetrainingScheduler(callback?: (err: AWSError, data: LookoutEquipment.Types.CreateRetrainingSchedulerResponse) => void): Request<LookoutEquipment.Types.CreateRetrainingSchedulerResponse, AWSError>;
54
62
  /**
55
63
  * Deletes a dataset and associated artifacts. The operation will check to see if any inference scheduler or data ingestion job is currently using the dataset, and if there isn't, the dataset, its metadata, and any associated data stored in S3 will be deleted. This does not affect any models that used this dataset for training and evaluation, but does prevent it from being used in the future.
56
64
  */
@@ -60,11 +68,11 @@ declare class LookoutEquipment extends Service {
60
68
  */
61
69
  deleteDataset(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
62
70
  /**
63
- * Deletes an inference scheduler that has been set up. Already processed output results are not affected.
71
+ * Deletes an inference scheduler that has been set up. Prior inference results will not be deleted.
64
72
  */
65
73
  deleteInferenceScheduler(params: LookoutEquipment.Types.DeleteInferenceSchedulerRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
66
74
  /**
67
- * Deletes an inference scheduler that has been set up. Already processed output results are not affected.
75
+ * Deletes an inference scheduler that has been set up. Prior inference results will not be deleted.
68
76
  */
69
77
  deleteInferenceScheduler(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
70
78
  /**
@@ -84,11 +92,11 @@ declare class LookoutEquipment extends Service {
84
92
  */
85
93
  deleteLabelGroup(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
86
94
  /**
87
- * Deletes an ML model currently available for Amazon Lookout for Equipment. This will prevent it from being used with an inference scheduler, even one that is already set up.
95
+ * Deletes a machine learning model currently available for Amazon Lookout for Equipment. This will prevent it from being used with an inference scheduler, even one that is already set up.
88
96
  */
89
97
  deleteModel(params: LookoutEquipment.Types.DeleteModelRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
90
98
  /**
91
- * Deletes an ML model currently available for Amazon Lookout for Equipment. This will prevent it from being used with an inference scheduler, even one that is already set up.
99
+ * Deletes a machine learning model currently available for Amazon Lookout for Equipment. This will prevent it from being used with an inference scheduler, even one that is already set up.
92
100
  */
93
101
  deleteModel(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
94
102
  /**
@@ -99,6 +107,14 @@ declare class LookoutEquipment extends Service {
99
107
  * Deletes the resource policy attached to the resource.
100
108
  */
101
109
  deleteResourcePolicy(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
110
+ /**
111
+ * Deletes a retraining scheduler from a model. The retraining scheduler must be in the STOPPED status.
112
+ */
113
+ deleteRetrainingScheduler(params: LookoutEquipment.Types.DeleteRetrainingSchedulerRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
114
+ /**
115
+ * Deletes a retraining scheduler from a model. The retraining scheduler must be in the STOPPED status.
116
+ */
117
+ deleteRetrainingScheduler(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
102
118
  /**
103
119
  * Provides information on a specific data ingestion job such as creation time, dataset ARN, and status.
104
120
  */
@@ -140,11 +156,11 @@ declare class LookoutEquipment extends Service {
140
156
  */
141
157
  describeLabelGroup(callback?: (err: AWSError, data: LookoutEquipment.Types.DescribeLabelGroupResponse) => void): Request<LookoutEquipment.Types.DescribeLabelGroupResponse, AWSError>;
142
158
  /**
143
- * Provides a JSON containing the overall information about a specific ML model, including model name and ARN, dataset, training and evaluation information, status, and so on.
159
+ * Provides a JSON containing the overall information about a specific machine learning model, including model name and ARN, dataset, training and evaluation information, status, and so on.
144
160
  */
145
161
  describeModel(params: LookoutEquipment.Types.DescribeModelRequest, callback?: (err: AWSError, data: LookoutEquipment.Types.DescribeModelResponse) => void): Request<LookoutEquipment.Types.DescribeModelResponse, AWSError>;
146
162
  /**
147
- * Provides a JSON containing the overall information about a specific ML model, including model name and ARN, dataset, training and evaluation information, status, and so on.
163
+ * Provides a JSON containing the overall information about a specific machine learning model, including model name and ARN, dataset, training and evaluation information, status, and so on.
148
164
  */
149
165
  describeModel(callback?: (err: AWSError, data: LookoutEquipment.Types.DescribeModelResponse) => void): Request<LookoutEquipment.Types.DescribeModelResponse, AWSError>;
150
166
  /**
@@ -163,6 +179,14 @@ declare class LookoutEquipment extends Service {
163
179
  * Provides the details of a resource policy attached to a resource.
164
180
  */
165
181
  describeResourcePolicy(callback?: (err: AWSError, data: LookoutEquipment.Types.DescribeResourcePolicyResponse) => void): Request<LookoutEquipment.Types.DescribeResourcePolicyResponse, AWSError>;
182
+ /**
183
+ * Provides a description of the retraining scheduler, including information such as the model name and retraining parameters.
184
+ */
185
+ describeRetrainingScheduler(params: LookoutEquipment.Types.DescribeRetrainingSchedulerRequest, callback?: (err: AWSError, data: LookoutEquipment.Types.DescribeRetrainingSchedulerResponse) => void): Request<LookoutEquipment.Types.DescribeRetrainingSchedulerResponse, AWSError>;
186
+ /**
187
+ * Provides a description of the retraining scheduler, including information such as the model name and retraining parameters.
188
+ */
189
+ describeRetrainingScheduler(callback?: (err: AWSError, data: LookoutEquipment.Types.DescribeRetrainingSchedulerResponse) => void): Request<LookoutEquipment.Types.DescribeRetrainingSchedulerResponse, AWSError>;
166
190
  /**
167
191
  * Imports a dataset.
168
192
  */
@@ -251,6 +275,14 @@ declare class LookoutEquipment extends Service {
251
275
  * Generates a list of all models in the account, including model name and ARN, dataset, and status.
252
276
  */
253
277
  listModels(callback?: (err: AWSError, data: LookoutEquipment.Types.ListModelsResponse) => void): Request<LookoutEquipment.Types.ListModelsResponse, AWSError>;
278
+ /**
279
+ * Lists all retraining schedulers in your account, filtering by model name prefix and status.
280
+ */
281
+ listRetrainingSchedulers(params: LookoutEquipment.Types.ListRetrainingSchedulersRequest, callback?: (err: AWSError, data: LookoutEquipment.Types.ListRetrainingSchedulersResponse) => void): Request<LookoutEquipment.Types.ListRetrainingSchedulersResponse, AWSError>;
282
+ /**
283
+ * Lists all retraining schedulers in your account, filtering by model name prefix and status.
284
+ */
285
+ listRetrainingSchedulers(callback?: (err: AWSError, data: LookoutEquipment.Types.ListRetrainingSchedulersResponse) => void): Request<LookoutEquipment.Types.ListRetrainingSchedulersResponse, AWSError>;
254
286
  /**
255
287
  * Lists statistics about the data collected for each of the sensors that have been successfully ingested in the particular dataset. Can also be used to retreive Sensor Statistics for a previous ingestion job.
256
288
  */
@@ -291,6 +323,14 @@ declare class LookoutEquipment extends Service {
291
323
  * Starts an inference scheduler.
292
324
  */
293
325
  startInferenceScheduler(callback?: (err: AWSError, data: LookoutEquipment.Types.StartInferenceSchedulerResponse) => void): Request<LookoutEquipment.Types.StartInferenceSchedulerResponse, AWSError>;
326
+ /**
327
+ * Starts a retraining scheduler.
328
+ */
329
+ startRetrainingScheduler(params: LookoutEquipment.Types.StartRetrainingSchedulerRequest, callback?: (err: AWSError, data: LookoutEquipment.Types.StartRetrainingSchedulerResponse) => void): Request<LookoutEquipment.Types.StartRetrainingSchedulerResponse, AWSError>;
330
+ /**
331
+ * Starts a retraining scheduler.
332
+ */
333
+ startRetrainingScheduler(callback?: (err: AWSError, data: LookoutEquipment.Types.StartRetrainingSchedulerResponse) => void): Request<LookoutEquipment.Types.StartRetrainingSchedulerResponse, AWSError>;
294
334
  /**
295
335
  * Stops an inference scheduler.
296
336
  */
@@ -299,6 +339,14 @@ declare class LookoutEquipment extends Service {
299
339
  * Stops an inference scheduler.
300
340
  */
301
341
  stopInferenceScheduler(callback?: (err: AWSError, data: LookoutEquipment.Types.StopInferenceSchedulerResponse) => void): Request<LookoutEquipment.Types.StopInferenceSchedulerResponse, AWSError>;
342
+ /**
343
+ * Stops a retraining scheduler.
344
+ */
345
+ stopRetrainingScheduler(params: LookoutEquipment.Types.StopRetrainingSchedulerRequest, callback?: (err: AWSError, data: LookoutEquipment.Types.StopRetrainingSchedulerResponse) => void): Request<LookoutEquipment.Types.StopRetrainingSchedulerResponse, AWSError>;
346
+ /**
347
+ * Stops a retraining scheduler.
348
+ */
349
+ stopRetrainingScheduler(callback?: (err: AWSError, data: LookoutEquipment.Types.StopRetrainingSchedulerResponse) => void): Request<LookoutEquipment.Types.StopRetrainingSchedulerResponse, AWSError>;
302
350
  /**
303
351
  * Associates a given tag to a resource in your account. A tag is a key-value pair which can be added to an Amazon Lookout for Equipment resource as metadata. Tags can be used for organizing your resources as well as helping you to search and filter by tag. Multiple tags can be added to a resource, either when you create it, or later. Up to 50 tags can be associated with each resource.
304
352
  */
@@ -339,9 +387,27 @@ declare class LookoutEquipment extends Service {
339
387
  * Updates the label group.
340
388
  */
341
389
  updateLabelGroup(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
390
+ /**
391
+ * Updates a model in the account.
392
+ */
393
+ updateModel(params: LookoutEquipment.Types.UpdateModelRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
394
+ /**
395
+ * Updates a model in the account.
396
+ */
397
+ updateModel(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
398
+ /**
399
+ * Updates a retraining scheduler.
400
+ */
401
+ updateRetrainingScheduler(params: LookoutEquipment.Types.UpdateRetrainingSchedulerRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
402
+ /**
403
+ * Updates a retraining scheduler.
404
+ */
405
+ updateRetrainingScheduler(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
342
406
  }
343
407
  declare namespace LookoutEquipment {
344
408
  export type AmazonResourceArn = string;
409
+ export type AutoPromotionResult = "MODEL_PROMOTED"|"MODEL_NOT_PROMOTED"|"RETRAINING_INTERNAL_ERROR"|"RETRAINING_CUSTOMER_ERROR"|"RETRAINING_CANCELLED"|string;
410
+ export type AutoPromotionResultReason = string;
345
411
  export type Boolean = boolean;
346
412
  export type BoundedLengthString = string;
347
413
  export interface CategoricalValues {
@@ -405,7 +471,7 @@ declare namespace LookoutEquipment {
405
471
  }
406
472
  export interface CreateInferenceSchedulerRequest {
407
473
  /**
408
- * The name of the previously trained ML model being used to create the inference scheduler.
474
+ * The name of the previously trained machine learning model being used to create the inference scheduler.
409
475
  */
410
476
  ModelName: ModelName;
411
477
  /**
@@ -529,19 +595,19 @@ declare namespace LookoutEquipment {
529
595
  }
530
596
  export interface CreateModelRequest {
531
597
  /**
532
- * The name for the ML model to be created.
598
+ * The name for the machine learning model to be created.
533
599
  */
534
600
  ModelName: ModelName;
535
601
  /**
536
- * The name of the dataset for the ML model being created.
602
+ * The name of the dataset for the machine learning model being created.
537
603
  */
538
604
  DatasetName: DatasetIdentifier;
539
605
  /**
540
- * The data schema for the ML model being created.
606
+ * The data schema for the machine learning model being created.
541
607
  */
542
608
  DatasetSchema?: DatasetSchema;
543
609
  /**
544
- * The input configuration for the labels being used for the ML model that's being created.
610
+ * The input configuration for the labels being used for the machine learning model that's being created.
545
611
  */
546
612
  LabelsInputConfiguration?: LabelsInputConfiguration;
547
613
  /**
@@ -549,23 +615,23 @@ declare namespace LookoutEquipment {
549
615
  */
550
616
  ClientToken: IdempotenceToken;
551
617
  /**
552
- * Indicates the time reference in the dataset that should be used to begin the subset of training data for the ML model.
618
+ * Indicates the time reference in the dataset that should be used to begin the subset of training data for the machine learning model.
553
619
  */
554
620
  TrainingDataStartTime?: Timestamp;
555
621
  /**
556
- * Indicates the time reference in the dataset that should be used to end the subset of training data for the ML model.
622
+ * Indicates the time reference in the dataset that should be used to end the subset of training data for the machine learning model.
557
623
  */
558
624
  TrainingDataEndTime?: Timestamp;
559
625
  /**
560
- * Indicates the time reference in the dataset that should be used to begin the subset of evaluation data for the ML model.
626
+ * Indicates the time reference in the dataset that should be used to begin the subset of evaluation data for the machine learning model.
561
627
  */
562
628
  EvaluationDataStartTime?: Timestamp;
563
629
  /**
564
- * Indicates the time reference in the dataset that should be used to end the subset of evaluation data for the ML model.
630
+ * Indicates the time reference in the dataset that should be used to end the subset of evaluation data for the machine learning model.
565
631
  */
566
632
  EvaluationDataEndTime?: Timestamp;
567
633
  /**
568
- * The Amazon Resource Name (ARN) of a role with permission to access the data source being used to create the ML model.
634
+ * The Amazon Resource Name (ARN) of a role with permission to access the data source being used to create the machine learning model.
569
635
  */
570
636
  RoleArn?: IamRoleArn;
571
637
  /**
@@ -577,7 +643,7 @@ declare namespace LookoutEquipment {
577
643
  */
578
644
  ServerSideKmsKeyId?: NameOrArn;
579
645
  /**
580
- * Any tags associated with the ML model being created.
646
+ * Any tags associated with the machine learning model being created.
581
647
  */
582
648
  Tags?: TagList;
583
649
  /**
@@ -595,6 +661,46 @@ declare namespace LookoutEquipment {
595
661
  */
596
662
  Status?: ModelStatus;
597
663
  }
664
+ export interface CreateRetrainingSchedulerRequest {
665
+ /**
666
+ * The name of the model to add the retraining scheduler to.
667
+ */
668
+ ModelName: ModelName;
669
+ /**
670
+ * The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the nearest UTC day.
671
+ */
672
+ RetrainingStartDate?: Timestamp;
673
+ /**
674
+ * This parameter uses the ISO 8601 standard to set the frequency at which you want retraining to occur in terms of Years, Months, and/or Days (note: other parameters like Time are not currently supported). The minimum value is 30 days (P30D) and the maximum value is 1 year (P1Y). For example, the following values are valid: P3M15D – Every 3 months and 15 days P2M – Every 2 months P150D – Every 150 days
675
+ */
676
+ RetrainingFrequency: RetrainingFrequency;
677
+ /**
678
+ * The number of past days of data that will be used for retraining.
679
+ */
680
+ LookbackWindow: LookbackWindow;
681
+ /**
682
+ * Indicates how the service will use new models. In MANAGED mode, new models will automatically be used for inference if they have better performance than the current model. In MANUAL mode, the new models will not be used until they are manually activated.
683
+ */
684
+ PromoteMode?: ModelPromoteMode;
685
+ /**
686
+ * A unique identifier for the request. If you do not set the client request token, Amazon Lookout for Equipment generates one.
687
+ */
688
+ ClientToken: IdempotenceToken;
689
+ }
690
+ export interface CreateRetrainingSchedulerResponse {
691
+ /**
692
+ * The name of the model that you added the retraining scheduler to.
693
+ */
694
+ ModelName?: ModelName;
695
+ /**
696
+ * The ARN of the model that you added the retraining scheduler to.
697
+ */
698
+ ModelArn?: ModelArn;
699
+ /**
700
+ * The status of the retraining scheduler.
701
+ */
702
+ Status?: RetrainingSchedulerStatus;
703
+ }
598
704
  export type DataDelayOffsetInMinutes = number;
599
705
  export type DataIngestionJobSummaries = DataIngestionJobSummary[];
600
706
  export interface DataIngestionJobSummary {
@@ -654,7 +760,7 @@ declare namespace LookoutEquipment {
654
760
  export type DatasetName = string;
655
761
  export interface DatasetSchema {
656
762
  /**
657
- *
763
+ * The data schema used within the given dataset.
658
764
  */
659
765
  InlineDataSchema?: InlineDataSchema;
660
766
  }
@@ -708,7 +814,7 @@ declare namespace LookoutEquipment {
708
814
  }
709
815
  export interface DeleteModelRequest {
710
816
  /**
711
- * The name of the ML model to be deleted.
817
+ * The name of the machine learning model to be deleted.
712
818
  */
713
819
  ModelName: ModelName;
714
820
  }
@@ -718,6 +824,12 @@ declare namespace LookoutEquipment {
718
824
  */
719
825
  ResourceArn: ResourceArn;
720
826
  }
827
+ export interface DeleteRetrainingSchedulerRequest {
828
+ /**
829
+ * The name of the model whose retraining scheduler you want to delete.
830
+ */
831
+ ModelName: ModelName;
832
+ }
721
833
  export interface DescribeDataIngestionJobRequest {
722
834
  /**
723
835
  * The job ID of the data ingestion job.
@@ -851,11 +963,11 @@ declare namespace LookoutEquipment {
851
963
  }
852
964
  export interface DescribeInferenceSchedulerResponse {
853
965
  /**
854
- * The Amazon Resource Name (ARN) of the ML model of the inference scheduler being described.
966
+ * The Amazon Resource Name (ARN) of the machine learning model of the inference scheduler being described.
855
967
  */
856
968
  ModelArn?: ModelArn;
857
969
  /**
858
- * The name of the ML model of the inference scheduler being described.
970
+ * The name of the machine learning model of the inference scheduler being described.
859
971
  */
860
972
  ModelName?: ModelName;
861
973
  /**
@@ -989,25 +1101,25 @@ declare namespace LookoutEquipment {
989
1101
  }
990
1102
  export interface DescribeModelRequest {
991
1103
  /**
992
- * The name of the ML model to be described.
1104
+ * The name of the machine learning model to be described.
993
1105
  */
994
1106
  ModelName: ModelName;
995
1107
  }
996
1108
  export interface DescribeModelResponse {
997
1109
  /**
998
- * The name of the ML model being described.
1110
+ * The name of the machine learning model being described.
999
1111
  */
1000
1112
  ModelName?: ModelName;
1001
1113
  /**
1002
- * The Amazon Resource Name (ARN) of the ML model being described.
1114
+ * The Amazon Resource Name (ARN) of the machine learning model being described.
1003
1115
  */
1004
1116
  ModelArn?: ModelArn;
1005
1117
  /**
1006
- * The name of the dataset being used by the ML being described.
1118
+ * The name of the dataset being used by the machine learning being described.
1007
1119
  */
1008
1120
  DatasetName?: DatasetName;
1009
1121
  /**
1010
- * The Amazon Resouce Name (ARN) of the dataset used to create the ML model being described.
1122
+ * The Amazon Resouce Name (ARN) of the dataset used to create the machine learning model being described.
1011
1123
  */
1012
1124
  DatasetArn?: DatasetArn;
1013
1125
  /**
@@ -1019,23 +1131,23 @@ declare namespace LookoutEquipment {
1019
1131
  */
1020
1132
  LabelsInputConfiguration?: LabelsInputConfiguration;
1021
1133
  /**
1022
- * Indicates the time reference in the dataset that was used to begin the subset of training data for the ML model.
1134
+ * Indicates the time reference in the dataset that was used to begin the subset of training data for the machine learning model.
1023
1135
  */
1024
1136
  TrainingDataStartTime?: Timestamp;
1025
1137
  /**
1026
- * Indicates the time reference in the dataset that was used to end the subset of training data for the ML model.
1138
+ * Indicates the time reference in the dataset that was used to end the subset of training data for the machine learning model.
1027
1139
  */
1028
1140
  TrainingDataEndTime?: Timestamp;
1029
1141
  /**
1030
- * Indicates the time reference in the dataset that was used to begin the subset of evaluation data for the ML model.
1142
+ * Indicates the time reference in the dataset that was used to begin the subset of evaluation data for the machine learning model.
1031
1143
  */
1032
1144
  EvaluationDataStartTime?: Timestamp;
1033
1145
  /**
1034
- * Indicates the time reference in the dataset that was used to end the subset of evaluation data for the ML model.
1146
+ * Indicates the time reference in the dataset that was used to end the subset of evaluation data for the machine learning model.
1035
1147
  */
1036
1148
  EvaluationDataEndTime?: Timestamp;
1037
1149
  /**
1038
- * The Amazon Resource Name (ARN) of a role with permission to access the data source for the ML model being described.
1150
+ * The Amazon Resource Name (ARN) of a role with permission to access the data source for the machine learning model being described.
1039
1151
  */
1040
1152
  RoleArn?: IamRoleArn;
1041
1153
  /**
@@ -1047,15 +1159,15 @@ declare namespace LookoutEquipment {
1047
1159
  */
1048
1160
  Status?: ModelStatus;
1049
1161
  /**
1050
- * Indicates the time at which the training of the ML model began.
1162
+ * Indicates the time at which the training of the machine learning model began.
1051
1163
  */
1052
1164
  TrainingExecutionStartTime?: Timestamp;
1053
1165
  /**
1054
- * Indicates the time at which the training of the ML model was completed.
1166
+ * Indicates the time at which the training of the machine learning model was completed.
1055
1167
  */
1056
1168
  TrainingExecutionEndTime?: Timestamp;
1057
1169
  /**
1058
- * If the training of the ML model failed, this indicates the reason for that failure.
1170
+ * If the training of the machine learning model failed, this indicates the reason for that failure.
1059
1171
  */
1060
1172
  FailedReason?: BoundedLengthString;
1061
1173
  /**
@@ -1063,11 +1175,11 @@ declare namespace LookoutEquipment {
1063
1175
  */
1064
1176
  ModelMetrics?: ModelMetrics;
1065
1177
  /**
1066
- * Indicates the last time the ML model was updated. The type of update is not specified.
1178
+ * Indicates the last time the machine learning model was updated. The type of update is not specified.
1067
1179
  */
1068
1180
  LastUpdatedTime?: Timestamp;
1069
1181
  /**
1070
- * Indicates the time and date at which the ML model was created.
1182
+ * Indicates the time and date at which the machine learning model was created.
1071
1183
  */
1072
1184
  CreatedAt?: Timestamp;
1073
1185
  /**
@@ -1114,6 +1226,46 @@ declare namespace LookoutEquipment {
1114
1226
  * The date and time when the previous active model version was activated.
1115
1227
  */
1116
1228
  PreviousModelVersionActivatedAt?: Timestamp;
1229
+ /**
1230
+ * If the model version was retrained, this field shows a summary of the performance of the prior model on the new training range. You can use the information in this JSON-formatted object to compare the new model version and the prior model version.
1231
+ */
1232
+ PriorModelMetrics?: ModelMetrics;
1233
+ /**
1234
+ * If the model version was generated by retraining and the training failed, this indicates the reason for that failure.
1235
+ */
1236
+ LatestScheduledRetrainingFailedReason?: BoundedLengthString;
1237
+ /**
1238
+ * Indicates the status of the most recent scheduled retraining run.
1239
+ */
1240
+ LatestScheduledRetrainingStatus?: ModelVersionStatus;
1241
+ /**
1242
+ * Indicates the most recent model version that was generated by retraining.
1243
+ */
1244
+ LatestScheduledRetrainingModelVersion?: ModelVersion;
1245
+ /**
1246
+ * Indicates the start time of the most recent scheduled retraining run.
1247
+ */
1248
+ LatestScheduledRetrainingStartTime?: Timestamp;
1249
+ /**
1250
+ * Indicates the number of days of data used in the most recent scheduled retraining run.
1251
+ */
1252
+ LatestScheduledRetrainingAvailableDataInDays?: Integer;
1253
+ /**
1254
+ * Indicates the date and time that the next scheduled retraining run will start on. Lookout for Equipment truncates the time you provide to the nearest UTC day.
1255
+ */
1256
+ NextScheduledRetrainingStartDate?: Timestamp;
1257
+ /**
1258
+ * Indicates the start time of the inference data that has been accumulated.
1259
+ */
1260
+ AccumulatedInferenceDataStartTime?: Timestamp;
1261
+ /**
1262
+ * Indicates the end time of the inference data that has been accumulated.
1263
+ */
1264
+ AccumulatedInferenceDataEndTime?: Timestamp;
1265
+ /**
1266
+ * Indicates the status of the retraining scheduler.
1267
+ */
1268
+ RetrainingSchedulerStatus?: RetrainingSchedulerStatus;
1117
1269
  }
1118
1270
  export interface DescribeModelVersionRequest {
1119
1271
  /**
@@ -1232,6 +1384,22 @@ declare namespace LookoutEquipment {
1232
1384
  * The size in bytes of the imported data. This field appears if the model version was imported.
1233
1385
  */
1234
1386
  ImportedDataSizeInBytes?: DataSizeInBytes;
1387
+ /**
1388
+ * If the model version was retrained, this field shows a summary of the performance of the prior model on the new training range. You can use the information in this JSON-formatted object to compare the new model version and the prior model version.
1389
+ */
1390
+ PriorModelMetrics?: ModelMetrics;
1391
+ /**
1392
+ * Indicates the number of days of data used in the most recent scheduled retraining run.
1393
+ */
1394
+ RetrainingAvailableDataInDays?: Integer;
1395
+ /**
1396
+ * Indicates whether the model version was promoted to be the active version after retraining or if there was an error with or cancellation of the retraining.
1397
+ */
1398
+ AutoPromotionResult?: AutoPromotionResult;
1399
+ /**
1400
+ * Indicates the reason for the AutoPromotionResult. For example, a model might not be promoted if its performance was worse than the active version, if there was an error during training, or if the retraining scheduler was using MANUAL promote mode. The model will be promoted in MANAGED promote mode if the performance is better than the previous model.
1401
+ */
1402
+ AutoPromotionResultReason?: AutoPromotionResultReason;
1235
1403
  }
1236
1404
  export interface DescribeResourcePolicyRequest {
1237
1405
  /**
@@ -1257,6 +1425,50 @@ declare namespace LookoutEquipment {
1257
1425
  */
1258
1426
  LastModifiedTime?: Timestamp;
1259
1427
  }
1428
+ export interface DescribeRetrainingSchedulerRequest {
1429
+ /**
1430
+ * The name of the model that the retraining scheduler is attached to.
1431
+ */
1432
+ ModelName: ModelName;
1433
+ }
1434
+ export interface DescribeRetrainingSchedulerResponse {
1435
+ /**
1436
+ * The name of the model that the retraining scheduler is attached to.
1437
+ */
1438
+ ModelName?: ModelName;
1439
+ /**
1440
+ * The ARN of the model that the retraining scheduler is attached to.
1441
+ */
1442
+ ModelArn?: ModelArn;
1443
+ /**
1444
+ * The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the nearest UTC day.
1445
+ */
1446
+ RetrainingStartDate?: Timestamp;
1447
+ /**
1448
+ * The frequency at which the model retraining is set. This follows the ISO 8601 guidelines.
1449
+ */
1450
+ RetrainingFrequency?: RetrainingFrequency;
1451
+ /**
1452
+ * The number of past days of data used for retraining.
1453
+ */
1454
+ LookbackWindow?: LookbackWindow;
1455
+ /**
1456
+ * The status of the retraining scheduler.
1457
+ */
1458
+ Status?: RetrainingSchedulerStatus;
1459
+ /**
1460
+ * Indicates how the service uses new models. In MANAGED mode, new models are used for inference if they have better performance than the current model. In MANUAL mode, the new models are not used until they are manually activated.
1461
+ */
1462
+ PromoteMode?: ModelPromoteMode;
1463
+ /**
1464
+ * Indicates the time and date at which the retraining scheduler was created.
1465
+ */
1466
+ CreatedAt?: Timestamp;
1467
+ /**
1468
+ * Indicates the time and date at which the retraining scheduler was updated.
1469
+ */
1470
+ UpdatedAt?: Timestamp;
1471
+ }
1260
1472
  export interface DuplicateTimestamps {
1261
1473
  /**
1262
1474
  * Indicates the total number of duplicate timestamps.
@@ -1341,6 +1553,10 @@ declare namespace LookoutEquipment {
1341
1553
  * The tags associated with the machine learning model to be created.
1342
1554
  */
1343
1555
  Tags?: TagList;
1556
+ /**
1557
+ * Indicates how to import the accumulated inference data when a model version is imported. The possible values are as follows: NO_IMPORT – Don't import the data. ADD_WHEN_EMPTY – Only import the data from the source model if there is no existing data in the target model. OVERWRITE – Import the data from the source model and overwrite the existing data in the target model.
1558
+ */
1559
+ InferenceDataImportStrategy?: InferenceDataImportStrategy;
1344
1560
  }
1345
1561
  export interface ImportModelVersionResponse {
1346
1562
  /**
@@ -1364,6 +1580,7 @@ declare namespace LookoutEquipment {
1364
1580
  */
1365
1581
  Status?: ModelVersionStatus;
1366
1582
  }
1583
+ export type InferenceDataImportStrategy = "NO_IMPORT"|"ADD_WHEN_EMPTY"|"OVERWRITE"|string;
1367
1584
  export type InferenceEventSummaries = InferenceEventSummary[];
1368
1585
  export interface InferenceEventSummary {
1369
1586
  /**
@@ -1395,11 +1612,11 @@ declare namespace LookoutEquipment {
1395
1612
  export type InferenceExecutionSummaries = InferenceExecutionSummary[];
1396
1613
  export interface InferenceExecutionSummary {
1397
1614
  /**
1398
- * The name of the ML model being used for the inference execution.
1615
+ * The name of the machine learning model being used for the inference execution.
1399
1616
  */
1400
1617
  ModelName?: ModelName;
1401
1618
  /**
1402
- * The Amazon Resource Name (ARN) of the ML model used for the inference execution.
1619
+ * The Amazon Resource Name (ARN) of the machine learning model used for the inference execution.
1403
1620
  */
1404
1621
  ModelArn?: ModelArn;
1405
1622
  /**
@@ -1431,7 +1648,7 @@ declare namespace LookoutEquipment {
1431
1648
  */
1432
1649
  DataOutputConfiguration?: InferenceOutputConfiguration;
1433
1650
  /**
1434
- *
1651
+ * The S3 object that the inference execution results were uploaded to.
1435
1652
  */
1436
1653
  CustomerResultObject?: S3Object;
1437
1654
  /**
@@ -1442,6 +1659,14 @@ declare namespace LookoutEquipment {
1442
1659
  * Specifies the reason for failure when an inference execution has failed.
1443
1660
  */
1444
1661
  FailedReason?: BoundedLengthString;
1662
+ /**
1663
+ * The model version used for the inference execution.
1664
+ */
1665
+ ModelVersion?: ModelVersion;
1666
+ /**
1667
+ * The Amazon Resource Number (ARN) of the model version used for the inference execution.
1668
+ */
1669
+ ModelVersionArn?: ModelVersionArn;
1445
1670
  }
1446
1671
  export interface InferenceInputConfiguration {
1447
1672
  /**
@@ -1504,11 +1729,11 @@ declare namespace LookoutEquipment {
1504
1729
  export type InferenceSchedulerSummaries = InferenceSchedulerSummary[];
1505
1730
  export interface InferenceSchedulerSummary {
1506
1731
  /**
1507
- * The name of the ML model used for the inference scheduler.
1732
+ * The name of the machine learning model used for the inference scheduler.
1508
1733
  */
1509
1734
  ModelName?: ModelName;
1510
1735
  /**
1511
- * The Amazon Resource Name (ARN) of the ML model used by the inference scheduler.
1736
+ * The Amazon Resource Name (ARN) of the machine learning model used by the inference scheduler.
1512
1737
  */
1513
1738
  ModelArn?: ModelArn;
1514
1739
  /**
@@ -1827,7 +2052,7 @@ declare namespace LookoutEquipment {
1827
2052
  */
1828
2053
  InferenceSchedulerNameBeginsWith?: InferenceSchedulerIdentifier;
1829
2054
  /**
1830
- * The name of the ML model used by the inference scheduler to be listed.
2055
+ * The name of the machine learning model used by the inference scheduler to be listed.
1831
2056
  */
1832
2057
  ModelName?: ModelName;
1833
2058
  /**
@@ -1959,29 +2184,29 @@ declare namespace LookoutEquipment {
1959
2184
  }
1960
2185
  export interface ListModelsRequest {
1961
2186
  /**
1962
- * An opaque pagination token indicating where to continue the listing of ML models.
2187
+ * An opaque pagination token indicating where to continue the listing of machine learning models.
1963
2188
  */
1964
2189
  NextToken?: NextToken;
1965
2190
  /**
1966
- * Specifies the maximum number of ML models to list.
2191
+ * Specifies the maximum number of machine learning models to list.
1967
2192
  */
1968
2193
  MaxResults?: MaxResults;
1969
2194
  /**
1970
- * The status of the ML model.
2195
+ * The status of the machine learning model.
1971
2196
  */
1972
2197
  Status?: ModelStatus;
1973
2198
  /**
1974
- * The beginning of the name of the ML models being listed.
2199
+ * The beginning of the name of the machine learning models being listed.
1975
2200
  */
1976
2201
  ModelNameBeginsWith?: ModelName;
1977
2202
  /**
1978
- * The beginning of the name of the dataset of the ML models to be listed.
2203
+ * The beginning of the name of the dataset of the machine learning models to be listed.
1979
2204
  */
1980
2205
  DatasetNameBeginsWith?: DatasetName;
1981
2206
  }
1982
2207
  export interface ListModelsResponse {
1983
2208
  /**
1984
- * An opaque pagination token indicating where to continue the listing of ML models.
2209
+ * An opaque pagination token indicating where to continue the listing of machine learning models.
1985
2210
  */
1986
2211
  NextToken?: NextToken;
1987
2212
  /**
@@ -1990,6 +2215,34 @@ declare namespace LookoutEquipment {
1990
2215
  ModelSummaries?: ModelSummaries;
1991
2216
  }
1992
2217
  export type ListOfDiscardedFiles = S3Object[];
2218
+ export interface ListRetrainingSchedulersRequest {
2219
+ /**
2220
+ * Specify this field to only list retraining schedulers whose machine learning models begin with the value you specify.
2221
+ */
2222
+ ModelNameBeginsWith?: ModelName;
2223
+ /**
2224
+ * Specify this field to only list retraining schedulers whose status matches the value you specify.
2225
+ */
2226
+ Status?: RetrainingSchedulerStatus;
2227
+ /**
2228
+ * If the number of results exceeds the maximum, a pagination token is returned. Use the token in the request to show the next page of retraining schedulers.
2229
+ */
2230
+ NextToken?: NextToken;
2231
+ /**
2232
+ * Specifies the maximum number of retraining schedulers to list.
2233
+ */
2234
+ MaxResults?: MaxResults;
2235
+ }
2236
+ export interface ListRetrainingSchedulersResponse {
2237
+ /**
2238
+ * Provides information on the specified retraining scheduler, including the model name, model ARN, status, and start date.
2239
+ */
2240
+ RetrainingSchedulerSummaries?: RetrainingSchedulerSummaries;
2241
+ /**
2242
+ * If the number of results exceeds the maximum, this pagination token is returned. Use this token in the request to show the next page of retraining schedulers.
2243
+ */
2244
+ NextToken?: NextToken;
2245
+ }
1993
2246
  export interface ListSensorStatisticsRequest {
1994
2247
  /**
1995
2248
  * The name of the dataset associated with the list of Sensor Statistics.
@@ -2030,6 +2283,7 @@ declare namespace LookoutEquipment {
2030
2283
  */
2031
2284
  Tags?: TagList;
2032
2285
  }
2286
+ export type LookbackWindow = string;
2033
2287
  export type MaxResults = number;
2034
2288
  export interface MissingCompleteSensorData {
2035
2289
  /**
@@ -2050,19 +2304,20 @@ declare namespace LookoutEquipment {
2050
2304
  export type ModelArn = string;
2051
2305
  export type ModelMetrics = string;
2052
2306
  export type ModelName = string;
2307
+ export type ModelPromoteMode = "MANAGED"|"MANUAL"|string;
2053
2308
  export type ModelStatus = "IN_PROGRESS"|"SUCCESS"|"FAILED"|"IMPORT_IN_PROGRESS"|string;
2054
2309
  export type ModelSummaries = ModelSummary[];
2055
2310
  export interface ModelSummary {
2056
2311
  /**
2057
- * The name of the ML model.
2312
+ * The name of the machine learning model.
2058
2313
  */
2059
2314
  ModelName?: ModelName;
2060
2315
  /**
2061
- * The Amazon Resource Name (ARN) of the ML model.
2316
+ * The Amazon Resource Name (ARN) of the machine learning model.
2062
2317
  */
2063
2318
  ModelArn?: ModelArn;
2064
2319
  /**
2065
- * The name of the dataset being used for the ML model.
2320
+ * The name of the dataset being used for the machine learning model.
2066
2321
  */
2067
2322
  DatasetName?: DatasetName;
2068
2323
  /**
@@ -2070,7 +2325,7 @@ declare namespace LookoutEquipment {
2070
2325
  */
2071
2326
  DatasetArn?: DatasetArn;
2072
2327
  /**
2073
- * Indicates the status of the ML model.
2328
+ * Indicates the status of the machine learning model.
2074
2329
  */
2075
2330
  Status?: ModelStatus;
2076
2331
  /**
@@ -2085,6 +2340,26 @@ declare namespace LookoutEquipment {
2085
2340
  * The Amazon Resource Name (ARN) of the model version that is set as active. The active model version is the model version that the inference scheduler uses to run an inference execution.
2086
2341
  */
2087
2342
  ActiveModelVersionArn?: ModelVersionArn;
2343
+ /**
2344
+ * Indicates the status of the most recent scheduled retraining run.
2345
+ */
2346
+ LatestScheduledRetrainingStatus?: ModelVersionStatus;
2347
+ /**
2348
+ * Indicates the most recent model version that was generated by retraining.
2349
+ */
2350
+ LatestScheduledRetrainingModelVersion?: ModelVersion;
2351
+ /**
2352
+ * Indicates the start time of the most recent scheduled retraining run.
2353
+ */
2354
+ LatestScheduledRetrainingStartTime?: Timestamp;
2355
+ /**
2356
+ * Indicates the date that the next scheduled retraining run will start on. Lookout for Equipment truncates the time you provide to the nearest UTC day.
2357
+ */
2358
+ NextScheduledRetrainingStartDate?: Timestamp;
2359
+ /**
2360
+ * Indicates the status of the retraining scheduler.
2361
+ */
2362
+ RetrainingSchedulerStatus?: RetrainingSchedulerStatus;
2088
2363
  }
2089
2364
  export type ModelVersion = number;
2090
2365
  export type ModelVersionArn = string;
@@ -2172,6 +2447,35 @@ declare namespace LookoutEquipment {
2172
2447
  PolicyRevisionId?: PolicyRevisionId;
2173
2448
  }
2174
2449
  export type ResourceArn = string;
2450
+ export type RetrainingFrequency = string;
2451
+ export type RetrainingSchedulerStatus = "PENDING"|"RUNNING"|"STOPPING"|"STOPPED"|string;
2452
+ export type RetrainingSchedulerSummaries = RetrainingSchedulerSummary[];
2453
+ export interface RetrainingSchedulerSummary {
2454
+ /**
2455
+ * The name of the model that the retraining scheduler is attached to.
2456
+ */
2457
+ ModelName?: ModelName;
2458
+ /**
2459
+ * The ARN of the model that the retraining scheduler is attached to.
2460
+ */
2461
+ ModelArn?: ModelArn;
2462
+ /**
2463
+ * The status of the retraining scheduler.
2464
+ */
2465
+ Status?: RetrainingSchedulerStatus;
2466
+ /**
2467
+ * The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the nearest UTC day.
2468
+ */
2469
+ RetrainingStartDate?: Timestamp;
2470
+ /**
2471
+ * The frequency at which the model retraining is set. This follows the ISO 8601 guidelines.
2472
+ */
2473
+ RetrainingFrequency?: RetrainingFrequency;
2474
+ /**
2475
+ * The number of past days of data used for retraining.
2476
+ */
2477
+ LookbackWindow?: LookbackWindow;
2478
+ }
2175
2479
  export type S3Bucket = string;
2176
2480
  export type S3Key = string;
2177
2481
  export interface S3Object {
@@ -2283,11 +2587,11 @@ declare namespace LookoutEquipment {
2283
2587
  }
2284
2588
  export interface StartInferenceSchedulerResponse {
2285
2589
  /**
2286
- * The Amazon Resource Name (ARN) of the ML model being used by the inference scheduler.
2590
+ * The Amazon Resource Name (ARN) of the machine learning model being used by the inference scheduler.
2287
2591
  */
2288
2592
  ModelArn?: ModelArn;
2289
2593
  /**
2290
- * The name of the ML model being used by the inference scheduler.
2594
+ * The name of the machine learning model being used by the inference scheduler.
2291
2595
  */
2292
2596
  ModelName?: ModelName;
2293
2597
  /**
@@ -2303,6 +2607,26 @@ declare namespace LookoutEquipment {
2303
2607
  */
2304
2608
  Status?: InferenceSchedulerStatus;
2305
2609
  }
2610
+ export interface StartRetrainingSchedulerRequest {
2611
+ /**
2612
+ * The name of the model whose retraining scheduler you want to start.
2613
+ */
2614
+ ModelName: ModelName;
2615
+ }
2616
+ export interface StartRetrainingSchedulerResponse {
2617
+ /**
2618
+ * The name of the model whose retraining scheduler is being started.
2619
+ */
2620
+ ModelName?: ModelName;
2621
+ /**
2622
+ * The ARN of the model whose retraining scheduler is being started.
2623
+ */
2624
+ ModelArn?: ModelArn;
2625
+ /**
2626
+ * The status of the retraining scheduler.
2627
+ */
2628
+ Status?: RetrainingSchedulerStatus;
2629
+ }
2306
2630
  export type StatisticalIssueStatus = "POTENTIAL_ISSUE_DETECTED"|"NO_ISSUE_DETECTED"|string;
2307
2631
  export interface StopInferenceSchedulerRequest {
2308
2632
  /**
@@ -2312,11 +2636,11 @@ declare namespace LookoutEquipment {
2312
2636
  }
2313
2637
  export interface StopInferenceSchedulerResponse {
2314
2638
  /**
2315
- * The Amazon Resource Name (ARN) of the ML model used by the inference scheduler being stopped.
2639
+ * The Amazon Resource Name (ARN) of the machine learning model used by the inference scheduler being stopped.
2316
2640
  */
2317
2641
  ModelArn?: ModelArn;
2318
2642
  /**
2319
- * The name of the ML model used by the inference scheduler being stopped.
2643
+ * The name of the machine learning model used by the inference scheduler being stopped.
2320
2644
  */
2321
2645
  ModelName?: ModelName;
2322
2646
  /**
@@ -2332,6 +2656,26 @@ declare namespace LookoutEquipment {
2332
2656
  */
2333
2657
  Status?: InferenceSchedulerStatus;
2334
2658
  }
2659
+ export interface StopRetrainingSchedulerRequest {
2660
+ /**
2661
+ * The name of the model whose retraining scheduler you want to stop.
2662
+ */
2663
+ ModelName: ModelName;
2664
+ }
2665
+ export interface StopRetrainingSchedulerResponse {
2666
+ /**
2667
+ * The name of the model whose retraining scheduler is being stopped.
2668
+ */
2669
+ ModelName?: ModelName;
2670
+ /**
2671
+ * The ARN of the model whose retraining scheduler is being stopped.
2672
+ */
2673
+ ModelArn?: ModelArn;
2674
+ /**
2675
+ * The status of the retraining scheduler.
2676
+ */
2677
+ Status?: RetrainingSchedulerStatus;
2678
+ }
2335
2679
  export interface Tag {
2336
2680
  /**
2337
2681
  * The key for the specified tag.
@@ -2451,6 +2795,39 @@ declare namespace LookoutEquipment {
2451
2795
  */
2452
2796
  FaultCodes?: FaultCodes;
2453
2797
  }
2798
+ export interface UpdateModelRequest {
2799
+ /**
2800
+ * The name of the model to update.
2801
+ */
2802
+ ModelName: ModelName;
2803
+ LabelsInputConfiguration?: LabelsInputConfiguration;
2804
+ /**
2805
+ * The ARN of the model to update.
2806
+ */
2807
+ RoleArn?: IamRoleArn;
2808
+ }
2809
+ export interface UpdateRetrainingSchedulerRequest {
2810
+ /**
2811
+ * The name of the model whose retraining scheduler you want to update.
2812
+ */
2813
+ ModelName: ModelName;
2814
+ /**
2815
+ * The start date for the retraining scheduler. Lookout for Equipment truncates the time you provide to the nearest UTC day.
2816
+ */
2817
+ RetrainingStartDate?: Timestamp;
2818
+ /**
2819
+ * This parameter uses the ISO 8601 standard to set the frequency at which you want retraining to occur in terms of Years, Months, and/or Days (note: other parameters like Time are not currently supported). The minimum value is 30 days (P30D) and the maximum value is 1 year (P1Y). For example, the following values are valid: P3M15D – Every 3 months and 15 days P2M – Every 2 months P150D – Every 150 days
2820
+ */
2821
+ RetrainingFrequency?: RetrainingFrequency;
2822
+ /**
2823
+ * The number of past days of data that will be used for retraining.
2824
+ */
2825
+ LookbackWindow?: LookbackWindow;
2826
+ /**
2827
+ * Indicates how the service will use new models. In MANAGED mode, new models will automatically be used for inference if they have better performance than the current model. In MANUAL mode, the new models will not be used until they are manually activated.
2828
+ */
2829
+ PromoteMode?: ModelPromoteMode;
2830
+ }
2454
2831
  /**
2455
2832
  * A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
2456
2833
  */